1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/pmbus.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/of.h> 23 #include <linux/thermal.h> 24 #include "pmbus.h" 25 26 /* 27 * Number of additional attribute pointers to allocate 28 * with each call to krealloc 29 */ 30 #define PMBUS_ATTR_ALLOC_SIZE 32 31 #define PMBUS_NAME_SIZE 24 32 33 struct pmbus_sensor { 34 struct pmbus_sensor *next; 35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 36 struct device_attribute attribute; 37 u8 page; /* page number */ 38 u8 phase; /* phase number, 0xff for all phases */ 39 u16 reg; /* register */ 40 enum pmbus_sensor_classes class; /* sensor class */ 41 bool update; /* runtime sensor update needed */ 42 bool convert; /* Whether or not to apply linear/vid/direct */ 43 int data; /* Sensor data. 44 Negative if there was a read error */ 45 }; 46 #define to_pmbus_sensor(_attr) \ 47 container_of(_attr, struct pmbus_sensor, attribute) 48 49 struct pmbus_boolean { 50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 51 struct sensor_device_attribute attribute; 52 struct pmbus_sensor *s1; 53 struct pmbus_sensor *s2; 54 }; 55 #define to_pmbus_boolean(_attr) \ 56 container_of(_attr, struct pmbus_boolean, attribute) 57 58 struct pmbus_label { 59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 60 struct device_attribute attribute; 61 char label[PMBUS_NAME_SIZE]; /* label */ 62 }; 63 #define to_pmbus_label(_attr) \ 64 container_of(_attr, struct pmbus_label, attribute) 65 66 /* Macros for converting between sensor index and register/page/status mask */ 67 68 #define PB_STATUS_MASK 0xffff 69 #define PB_REG_SHIFT 16 70 #define PB_REG_MASK 0x3ff 71 #define PB_PAGE_SHIFT 26 72 #define PB_PAGE_MASK 0x3f 73 74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ 75 ((reg) << PB_REG_SHIFT) | (mask)) 76 77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) 78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) 79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) 80 81 struct pmbus_data { 82 struct device *dev; 83 struct device *hwmon_dev; 84 85 u32 flags; /* from platform data */ 86 87 int exponent[PMBUS_PAGES]; 88 /* linear mode: exponent for output voltages */ 89 90 const struct pmbus_driver_info *info; 91 92 int max_attributes; 93 int num_attributes; 94 struct attribute_group group; 95 const struct attribute_group **groups; 96 struct dentry *debugfs; /* debugfs device directory */ 97 98 struct pmbus_sensor *sensors; 99 100 struct mutex update_lock; 101 102 bool has_status_word; /* device uses STATUS_WORD register */ 103 int (*read_status)(struct i2c_client *client, int page); 104 105 s16 currpage; /* current page, -1 for unknown/unset */ 106 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 107 }; 108 109 struct pmbus_debugfs_entry { 110 struct i2c_client *client; 111 u8 page; 112 u8 reg; 113 }; 114 115 static const int pmbus_fan_rpm_mask[] = { 116 PB_FAN_1_RPM, 117 PB_FAN_2_RPM, 118 PB_FAN_1_RPM, 119 PB_FAN_2_RPM, 120 }; 121 122 static const int pmbus_fan_config_registers[] = { 123 PMBUS_FAN_CONFIG_12, 124 PMBUS_FAN_CONFIG_12, 125 PMBUS_FAN_CONFIG_34, 126 PMBUS_FAN_CONFIG_34 127 }; 128 129 static const int pmbus_fan_command_registers[] = { 130 PMBUS_FAN_COMMAND_1, 131 PMBUS_FAN_COMMAND_2, 132 PMBUS_FAN_COMMAND_3, 133 PMBUS_FAN_COMMAND_4, 134 }; 135 136 void pmbus_clear_cache(struct i2c_client *client) 137 { 138 struct pmbus_data *data = i2c_get_clientdata(client); 139 struct pmbus_sensor *sensor; 140 141 for (sensor = data->sensors; sensor; sensor = sensor->next) 142 sensor->data = -ENODATA; 143 } 144 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS); 145 146 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update) 147 { 148 struct pmbus_data *data = i2c_get_clientdata(client); 149 struct pmbus_sensor *sensor; 150 151 for (sensor = data->sensors; sensor; sensor = sensor->next) 152 if (sensor->reg == reg) 153 sensor->update = update; 154 } 155 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS); 156 157 int pmbus_set_page(struct i2c_client *client, int page, int phase) 158 { 159 struct pmbus_data *data = i2c_get_clientdata(client); 160 int rv; 161 162 if (page < 0) 163 return 0; 164 165 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 166 data->info->pages > 1 && page != data->currpage) { 167 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 168 if (rv < 0) 169 return rv; 170 171 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 172 if (rv < 0) 173 return rv; 174 175 if (rv != page) 176 return -EIO; 177 } 178 data->currpage = page; 179 180 if (data->info->phases[page] && data->currphase != phase && 181 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 182 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 183 phase); 184 if (rv) 185 return rv; 186 } 187 data->currphase = phase; 188 189 return 0; 190 } 191 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS); 192 193 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 194 { 195 int rv; 196 197 rv = pmbus_set_page(client, page, 0xff); 198 if (rv < 0) 199 return rv; 200 201 return i2c_smbus_write_byte(client, value); 202 } 203 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS); 204 205 /* 206 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 207 * a device specific mapping function exists and calls it if necessary. 208 */ 209 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 210 { 211 struct pmbus_data *data = i2c_get_clientdata(client); 212 const struct pmbus_driver_info *info = data->info; 213 int status; 214 215 if (info->write_byte) { 216 status = info->write_byte(client, page, value); 217 if (status != -ENODATA) 218 return status; 219 } 220 return pmbus_write_byte(client, page, value); 221 } 222 223 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 224 u16 word) 225 { 226 int rv; 227 228 rv = pmbus_set_page(client, page, 0xff); 229 if (rv < 0) 230 return rv; 231 232 return i2c_smbus_write_word_data(client, reg, word); 233 } 234 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS); 235 236 237 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 238 u16 word) 239 { 240 int bit; 241 int id; 242 int rv; 243 244 switch (reg) { 245 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 246 id = reg - PMBUS_VIRT_FAN_TARGET_1; 247 bit = pmbus_fan_rpm_mask[id]; 248 rv = pmbus_update_fan(client, page, id, bit, bit, word); 249 break; 250 default: 251 rv = -ENXIO; 252 break; 253 } 254 255 return rv; 256 } 257 258 /* 259 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 260 * a device specific mapping function exists and calls it if necessary. 261 */ 262 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 263 u16 word) 264 { 265 struct pmbus_data *data = i2c_get_clientdata(client); 266 const struct pmbus_driver_info *info = data->info; 267 int status; 268 269 if (info->write_word_data) { 270 status = info->write_word_data(client, page, reg, word); 271 if (status != -ENODATA) 272 return status; 273 } 274 275 if (reg >= PMBUS_VIRT_BASE) 276 return pmbus_write_virt_reg(client, page, reg, word); 277 278 return pmbus_write_word_data(client, page, reg, word); 279 } 280 281 /* 282 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if 283 * a device specific mapping function exists and calls it if necessary. 284 */ 285 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value) 286 { 287 struct pmbus_data *data = i2c_get_clientdata(client); 288 const struct pmbus_driver_info *info = data->info; 289 int status; 290 291 if (info->write_byte_data) { 292 status = info->write_byte_data(client, page, reg, value); 293 if (status != -ENODATA) 294 return status; 295 } 296 return pmbus_write_byte_data(client, page, reg, value); 297 } 298 299 /* 300 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 301 * a device specific mapping function exists and calls it if necessary. 302 */ 303 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 304 { 305 struct pmbus_data *data = i2c_get_clientdata(client); 306 const struct pmbus_driver_info *info = data->info; 307 int status; 308 309 if (info->read_byte_data) { 310 status = info->read_byte_data(client, page, reg); 311 if (status != -ENODATA) 312 return status; 313 } 314 return pmbus_read_byte_data(client, page, reg); 315 } 316 317 int pmbus_update_fan(struct i2c_client *client, int page, int id, 318 u8 config, u8 mask, u16 command) 319 { 320 int from; 321 int rv; 322 u8 to; 323 324 from = _pmbus_read_byte_data(client, page, 325 pmbus_fan_config_registers[id]); 326 if (from < 0) 327 return from; 328 329 to = (from & ~mask) | (config & mask); 330 if (to != from) { 331 rv = _pmbus_write_byte_data(client, page, 332 pmbus_fan_config_registers[id], to); 333 if (rv < 0) 334 return rv; 335 } 336 337 return _pmbus_write_word_data(client, page, 338 pmbus_fan_command_registers[id], command); 339 } 340 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS); 341 342 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 343 { 344 int rv; 345 346 rv = pmbus_set_page(client, page, phase); 347 if (rv < 0) 348 return rv; 349 350 return i2c_smbus_read_word_data(client, reg); 351 } 352 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS); 353 354 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 355 { 356 int rv; 357 int id; 358 359 switch (reg) { 360 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 361 id = reg - PMBUS_VIRT_FAN_TARGET_1; 362 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 363 break; 364 default: 365 rv = -ENXIO; 366 break; 367 } 368 369 return rv; 370 } 371 372 /* 373 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 374 * a device specific mapping function exists and calls it if necessary. 375 */ 376 static int _pmbus_read_word_data(struct i2c_client *client, int page, 377 int phase, int reg) 378 { 379 struct pmbus_data *data = i2c_get_clientdata(client); 380 const struct pmbus_driver_info *info = data->info; 381 int status; 382 383 if (info->read_word_data) { 384 status = info->read_word_data(client, page, phase, reg); 385 if (status != -ENODATA) 386 return status; 387 } 388 389 if (reg >= PMBUS_VIRT_BASE) 390 return pmbus_read_virt_reg(client, page, reg); 391 392 return pmbus_read_word_data(client, page, phase, reg); 393 } 394 395 /* Same as above, but without phase parameter, for use in check functions */ 396 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 397 { 398 return _pmbus_read_word_data(client, page, 0xff, reg); 399 } 400 401 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 402 { 403 int rv; 404 405 rv = pmbus_set_page(client, page, 0xff); 406 if (rv < 0) 407 return rv; 408 409 return i2c_smbus_read_byte_data(client, reg); 410 } 411 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS); 412 413 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 414 { 415 int rv; 416 417 rv = pmbus_set_page(client, page, 0xff); 418 if (rv < 0) 419 return rv; 420 421 return i2c_smbus_write_byte_data(client, reg, value); 422 } 423 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS); 424 425 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 426 u8 mask, u8 value) 427 { 428 unsigned int tmp; 429 int rv; 430 431 rv = _pmbus_read_byte_data(client, page, reg); 432 if (rv < 0) 433 return rv; 434 435 tmp = (rv & ~mask) | (value & mask); 436 437 if (tmp != rv) 438 rv = _pmbus_write_byte_data(client, page, reg, tmp); 439 440 return rv; 441 } 442 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS); 443 444 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 445 int reg) 446 { 447 struct pmbus_sensor *sensor; 448 449 for (sensor = data->sensors; sensor; sensor = sensor->next) { 450 if (sensor->page == page && sensor->reg == reg) 451 return sensor; 452 } 453 454 return ERR_PTR(-EINVAL); 455 } 456 457 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 458 enum pmbus_fan_mode mode, 459 bool from_cache) 460 { 461 struct pmbus_data *data = i2c_get_clientdata(client); 462 bool want_rpm, have_rpm; 463 struct pmbus_sensor *s; 464 int config; 465 int reg; 466 467 want_rpm = (mode == rpm); 468 469 if (from_cache) { 470 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 471 s = pmbus_find_sensor(data, page, reg + id); 472 if (IS_ERR(s)) 473 return PTR_ERR(s); 474 475 return s->data; 476 } 477 478 config = _pmbus_read_byte_data(client, page, 479 pmbus_fan_config_registers[id]); 480 if (config < 0) 481 return config; 482 483 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 484 if (want_rpm == have_rpm) 485 return pmbus_read_word_data(client, page, 0xff, 486 pmbus_fan_command_registers[id]); 487 488 /* Can't sensibly map between RPM and PWM, just return zero */ 489 return 0; 490 } 491 492 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 493 enum pmbus_fan_mode mode) 494 { 495 return pmbus_get_fan_rate(client, page, id, mode, false); 496 } 497 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS); 498 499 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 500 enum pmbus_fan_mode mode) 501 { 502 return pmbus_get_fan_rate(client, page, id, mode, true); 503 } 504 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS); 505 506 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 507 { 508 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 509 } 510 511 void pmbus_clear_faults(struct i2c_client *client) 512 { 513 struct pmbus_data *data = i2c_get_clientdata(client); 514 int i; 515 516 for (i = 0; i < data->info->pages; i++) 517 pmbus_clear_fault_page(client, i); 518 } 519 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS); 520 521 static int pmbus_check_status_cml(struct i2c_client *client) 522 { 523 struct pmbus_data *data = i2c_get_clientdata(client); 524 int status, status2; 525 526 status = data->read_status(client, -1); 527 if (status < 0 || (status & PB_STATUS_CML)) { 528 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 529 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 530 return -EIO; 531 } 532 return 0; 533 } 534 535 static bool pmbus_check_register(struct i2c_client *client, 536 int (*func)(struct i2c_client *client, 537 int page, int reg), 538 int page, int reg) 539 { 540 int rv; 541 struct pmbus_data *data = i2c_get_clientdata(client); 542 543 rv = func(client, page, reg); 544 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 545 rv = pmbus_check_status_cml(client); 546 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) 547 data->read_status(client, -1); 548 pmbus_clear_fault_page(client, -1); 549 return rv >= 0; 550 } 551 552 static bool pmbus_check_status_register(struct i2c_client *client, int page) 553 { 554 int status; 555 struct pmbus_data *data = i2c_get_clientdata(client); 556 557 status = data->read_status(client, page); 558 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 559 (status & PB_STATUS_CML)) { 560 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 561 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 562 status = -EIO; 563 } 564 565 pmbus_clear_fault_page(client, -1); 566 return status >= 0; 567 } 568 569 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 570 { 571 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 572 } 573 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS); 574 575 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 576 { 577 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 578 } 579 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS); 580 581 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 582 { 583 struct pmbus_data *data = i2c_get_clientdata(client); 584 585 return data->info; 586 } 587 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS); 588 589 static int pmbus_get_status(struct i2c_client *client, int page, int reg) 590 { 591 struct pmbus_data *data = i2c_get_clientdata(client); 592 int status; 593 594 switch (reg) { 595 case PMBUS_STATUS_WORD: 596 status = data->read_status(client, page); 597 break; 598 default: 599 status = _pmbus_read_byte_data(client, page, reg); 600 break; 601 } 602 if (status < 0) 603 pmbus_clear_faults(client); 604 return status; 605 } 606 607 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) 608 { 609 if (sensor->data < 0 || sensor->update) 610 sensor->data = _pmbus_read_word_data(client, sensor->page, 611 sensor->phase, sensor->reg); 612 } 613 614 /* 615 * Convert linear sensor values to milli- or micro-units 616 * depending on sensor type. 617 */ 618 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 619 struct pmbus_sensor *sensor) 620 { 621 s16 exponent; 622 s32 mantissa; 623 s64 val; 624 625 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 626 exponent = data->exponent[sensor->page]; 627 mantissa = (u16) sensor->data; 628 } else { /* LINEAR11 */ 629 exponent = ((s16)sensor->data) >> 11; 630 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 631 } 632 633 val = mantissa; 634 635 /* scale result to milli-units for all sensors except fans */ 636 if (sensor->class != PSC_FAN) 637 val = val * 1000LL; 638 639 /* scale result to micro-units for power sensors */ 640 if (sensor->class == PSC_POWER) 641 val = val * 1000LL; 642 643 if (exponent >= 0) 644 val <<= exponent; 645 else 646 val >>= -exponent; 647 648 return val; 649 } 650 651 /* 652 * Convert direct sensor values to milli- or micro-units 653 * depending on sensor type. 654 */ 655 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 656 struct pmbus_sensor *sensor) 657 { 658 s64 b, val = (s16)sensor->data; 659 s32 m, R; 660 661 m = data->info->m[sensor->class]; 662 b = data->info->b[sensor->class]; 663 R = data->info->R[sensor->class]; 664 665 if (m == 0) 666 return 0; 667 668 /* X = 1/m * (Y * 10^-R - b) */ 669 R = -R; 670 /* scale result to milli-units for everything but fans */ 671 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 672 R += 3; 673 b *= 1000; 674 } 675 676 /* scale result to micro-units for power sensors */ 677 if (sensor->class == PSC_POWER) { 678 R += 3; 679 b *= 1000; 680 } 681 682 while (R > 0) { 683 val *= 10; 684 R--; 685 } 686 while (R < 0) { 687 val = div_s64(val + 5LL, 10L); /* round closest */ 688 R++; 689 } 690 691 val = div_s64(val - b, m); 692 return val; 693 } 694 695 /* 696 * Convert VID sensor values to milli- or micro-units 697 * depending on sensor type. 698 */ 699 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 700 struct pmbus_sensor *sensor) 701 { 702 long val = sensor->data; 703 long rv = 0; 704 705 switch (data->info->vrm_version[sensor->page]) { 706 case vr11: 707 if (val >= 0x02 && val <= 0xb2) 708 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 709 break; 710 case vr12: 711 if (val >= 0x01) 712 rv = 250 + (val - 1) * 5; 713 break; 714 case vr13: 715 if (val >= 0x01) 716 rv = 500 + (val - 1) * 10; 717 break; 718 case imvp9: 719 if (val >= 0x01) 720 rv = 200 + (val - 1) * 10; 721 break; 722 case amd625mv: 723 if (val >= 0x0 && val <= 0xd8) 724 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 725 break; 726 } 727 return rv; 728 } 729 730 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 731 { 732 s64 val; 733 734 if (!sensor->convert) 735 return sensor->data; 736 737 switch (data->info->format[sensor->class]) { 738 case direct: 739 val = pmbus_reg2data_direct(data, sensor); 740 break; 741 case vid: 742 val = pmbus_reg2data_vid(data, sensor); 743 break; 744 case linear: 745 default: 746 val = pmbus_reg2data_linear(data, sensor); 747 break; 748 } 749 return val; 750 } 751 752 #define MAX_MANTISSA (1023 * 1000) 753 #define MIN_MANTISSA (511 * 1000) 754 755 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 756 struct pmbus_sensor *sensor, s64 val) 757 { 758 s16 exponent = 0, mantissa; 759 bool negative = false; 760 761 /* simple case */ 762 if (val == 0) 763 return 0; 764 765 if (sensor->class == PSC_VOLTAGE_OUT) { 766 /* LINEAR16 does not support negative voltages */ 767 if (val < 0) 768 return 0; 769 770 /* 771 * For a static exponents, we don't have a choice 772 * but to adjust the value to it. 773 */ 774 if (data->exponent[sensor->page] < 0) 775 val <<= -data->exponent[sensor->page]; 776 else 777 val >>= data->exponent[sensor->page]; 778 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 779 return clamp_val(val, 0, 0xffff); 780 } 781 782 if (val < 0) { 783 negative = true; 784 val = -val; 785 } 786 787 /* Power is in uW. Convert to mW before converting. */ 788 if (sensor->class == PSC_POWER) 789 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 790 791 /* 792 * For simplicity, convert fan data to milli-units 793 * before calculating the exponent. 794 */ 795 if (sensor->class == PSC_FAN) 796 val = val * 1000LL; 797 798 /* Reduce large mantissa until it fits into 10 bit */ 799 while (val >= MAX_MANTISSA && exponent < 15) { 800 exponent++; 801 val >>= 1; 802 } 803 /* Increase small mantissa to improve precision */ 804 while (val < MIN_MANTISSA && exponent > -15) { 805 exponent--; 806 val <<= 1; 807 } 808 809 /* Convert mantissa from milli-units to units */ 810 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 811 812 /* restore sign */ 813 if (negative) 814 mantissa = -mantissa; 815 816 /* Convert to 5 bit exponent, 11 bit mantissa */ 817 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 818 } 819 820 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 821 struct pmbus_sensor *sensor, s64 val) 822 { 823 s64 b; 824 s32 m, R; 825 826 m = data->info->m[sensor->class]; 827 b = data->info->b[sensor->class]; 828 R = data->info->R[sensor->class]; 829 830 /* Power is in uW. Adjust R and b. */ 831 if (sensor->class == PSC_POWER) { 832 R -= 3; 833 b *= 1000; 834 } 835 836 /* Calculate Y = (m * X + b) * 10^R */ 837 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 838 R -= 3; /* Adjust R and b for data in milli-units */ 839 b *= 1000; 840 } 841 val = val * m + b; 842 843 while (R > 0) { 844 val *= 10; 845 R--; 846 } 847 while (R < 0) { 848 val = div_s64(val + 5LL, 10L); /* round closest */ 849 R++; 850 } 851 852 return (u16)clamp_val(val, S16_MIN, S16_MAX); 853 } 854 855 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 856 struct pmbus_sensor *sensor, s64 val) 857 { 858 val = clamp_val(val, 500, 1600); 859 860 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 861 } 862 863 static u16 pmbus_data2reg(struct pmbus_data *data, 864 struct pmbus_sensor *sensor, s64 val) 865 { 866 u16 regval; 867 868 if (!sensor->convert) 869 return val; 870 871 switch (data->info->format[sensor->class]) { 872 case direct: 873 regval = pmbus_data2reg_direct(data, sensor, val); 874 break; 875 case vid: 876 regval = pmbus_data2reg_vid(data, sensor, val); 877 break; 878 case linear: 879 default: 880 regval = pmbus_data2reg_linear(data, sensor, val); 881 break; 882 } 883 return regval; 884 } 885 886 /* 887 * Return boolean calculated from converted data. 888 * <index> defines a status register index and mask. 889 * The mask is in the lower 8 bits, the register index is in bits 8..23. 890 * 891 * The associated pmbus_boolean structure contains optional pointers to two 892 * sensor attributes. If specified, those attributes are compared against each 893 * other to determine if a limit has been exceeded. 894 * 895 * If the sensor attribute pointers are NULL, the function returns true if 896 * (status[reg] & mask) is true. 897 * 898 * If sensor attribute pointers are provided, a comparison against a specified 899 * limit has to be performed to determine the boolean result. 900 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 901 * sensor values referenced by sensor attribute pointers s1 and s2). 902 * 903 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 904 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 905 * 906 * If a negative value is stored in any of the referenced registers, this value 907 * reflects an error code which will be returned. 908 */ 909 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, 910 int index) 911 { 912 struct pmbus_data *data = i2c_get_clientdata(client); 913 struct pmbus_sensor *s1 = b->s1; 914 struct pmbus_sensor *s2 = b->s2; 915 u16 mask = pb_index_to_mask(index); 916 u8 page = pb_index_to_page(index); 917 u16 reg = pb_index_to_reg(index); 918 int ret, status; 919 u16 regval; 920 921 mutex_lock(&data->update_lock); 922 status = pmbus_get_status(client, page, reg); 923 if (status < 0) { 924 ret = status; 925 goto unlock; 926 } 927 928 if (s1) 929 pmbus_update_sensor_data(client, s1); 930 if (s2) 931 pmbus_update_sensor_data(client, s2); 932 933 regval = status & mask; 934 if (regval) { 935 ret = _pmbus_write_byte_data(client, page, reg, regval); 936 if (ret) 937 goto unlock; 938 } 939 if (s1 && s2) { 940 s64 v1, v2; 941 942 if (s1->data < 0) { 943 ret = s1->data; 944 goto unlock; 945 } 946 if (s2->data < 0) { 947 ret = s2->data; 948 goto unlock; 949 } 950 951 v1 = pmbus_reg2data(data, s1); 952 v2 = pmbus_reg2data(data, s2); 953 ret = !!(regval && v1 >= v2); 954 } else { 955 ret = !!regval; 956 } 957 unlock: 958 mutex_unlock(&data->update_lock); 959 return ret; 960 } 961 962 static ssize_t pmbus_show_boolean(struct device *dev, 963 struct device_attribute *da, char *buf) 964 { 965 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 966 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 967 struct i2c_client *client = to_i2c_client(dev->parent); 968 int val; 969 970 val = pmbus_get_boolean(client, boolean, attr->index); 971 if (val < 0) 972 return val; 973 return sysfs_emit(buf, "%d\n", val); 974 } 975 976 static ssize_t pmbus_show_sensor(struct device *dev, 977 struct device_attribute *devattr, char *buf) 978 { 979 struct i2c_client *client = to_i2c_client(dev->parent); 980 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 981 struct pmbus_data *data = i2c_get_clientdata(client); 982 ssize_t ret; 983 984 mutex_lock(&data->update_lock); 985 pmbus_update_sensor_data(client, sensor); 986 if (sensor->data < 0) 987 ret = sensor->data; 988 else 989 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor)); 990 mutex_unlock(&data->update_lock); 991 return ret; 992 } 993 994 static ssize_t pmbus_set_sensor(struct device *dev, 995 struct device_attribute *devattr, 996 const char *buf, size_t count) 997 { 998 struct i2c_client *client = to_i2c_client(dev->parent); 999 struct pmbus_data *data = i2c_get_clientdata(client); 1000 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 1001 ssize_t rv = count; 1002 s64 val; 1003 int ret; 1004 u16 regval; 1005 1006 if (kstrtos64(buf, 10, &val) < 0) 1007 return -EINVAL; 1008 1009 mutex_lock(&data->update_lock); 1010 regval = pmbus_data2reg(data, sensor, val); 1011 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 1012 if (ret < 0) 1013 rv = ret; 1014 else 1015 sensor->data = -ENODATA; 1016 mutex_unlock(&data->update_lock); 1017 return rv; 1018 } 1019 1020 static ssize_t pmbus_show_label(struct device *dev, 1021 struct device_attribute *da, char *buf) 1022 { 1023 struct pmbus_label *label = to_pmbus_label(da); 1024 1025 return sysfs_emit(buf, "%s\n", label->label); 1026 } 1027 1028 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 1029 { 1030 if (data->num_attributes >= data->max_attributes - 1) { 1031 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 1032 void *new_attrs = devm_krealloc(data->dev, data->group.attrs, 1033 new_max_attrs * sizeof(void *), 1034 GFP_KERNEL); 1035 if (!new_attrs) 1036 return -ENOMEM; 1037 data->group.attrs = new_attrs; 1038 data->max_attributes = new_max_attrs; 1039 } 1040 1041 data->group.attrs[data->num_attributes++] = attr; 1042 data->group.attrs[data->num_attributes] = NULL; 1043 return 0; 1044 } 1045 1046 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1047 const char *name, 1048 umode_t mode, 1049 ssize_t (*show)(struct device *dev, 1050 struct device_attribute *attr, 1051 char *buf), 1052 ssize_t (*store)(struct device *dev, 1053 struct device_attribute *attr, 1054 const char *buf, size_t count)) 1055 { 1056 sysfs_attr_init(&dev_attr->attr); 1057 dev_attr->attr.name = name; 1058 dev_attr->attr.mode = mode; 1059 dev_attr->show = show; 1060 dev_attr->store = store; 1061 } 1062 1063 static void pmbus_attr_init(struct sensor_device_attribute *a, 1064 const char *name, 1065 umode_t mode, 1066 ssize_t (*show)(struct device *dev, 1067 struct device_attribute *attr, 1068 char *buf), 1069 ssize_t (*store)(struct device *dev, 1070 struct device_attribute *attr, 1071 const char *buf, size_t count), 1072 int idx) 1073 { 1074 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1075 a->index = idx; 1076 } 1077 1078 static int pmbus_add_boolean(struct pmbus_data *data, 1079 const char *name, const char *type, int seq, 1080 struct pmbus_sensor *s1, 1081 struct pmbus_sensor *s2, 1082 u8 page, u16 reg, u16 mask) 1083 { 1084 struct pmbus_boolean *boolean; 1085 struct sensor_device_attribute *a; 1086 1087 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) 1088 return -EINVAL; 1089 1090 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1091 if (!boolean) 1092 return -ENOMEM; 1093 1094 a = &boolean->attribute; 1095 1096 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1097 name, seq, type); 1098 boolean->s1 = s1; 1099 boolean->s2 = s2; 1100 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1101 pb_reg_to_index(page, reg, mask)); 1102 1103 return pmbus_add_attribute(data, &a->dev_attr.attr); 1104 } 1105 1106 /* of thermal for pmbus temperature sensors */ 1107 struct pmbus_thermal_data { 1108 struct pmbus_data *pmbus_data; 1109 struct pmbus_sensor *sensor; 1110 }; 1111 1112 static int pmbus_thermal_get_temp(void *data, int *temp) 1113 { 1114 struct pmbus_thermal_data *tdata = data; 1115 struct pmbus_sensor *sensor = tdata->sensor; 1116 struct pmbus_data *pmbus_data = tdata->pmbus_data; 1117 struct i2c_client *client = to_i2c_client(pmbus_data->dev); 1118 struct device *dev = pmbus_data->hwmon_dev; 1119 int ret = 0; 1120 1121 if (!dev) { 1122 /* May not even get to hwmon yet */ 1123 *temp = 0; 1124 return 0; 1125 } 1126 1127 mutex_lock(&pmbus_data->update_lock); 1128 pmbus_update_sensor_data(client, sensor); 1129 if (sensor->data < 0) 1130 ret = sensor->data; 1131 else 1132 *temp = (int)pmbus_reg2data(pmbus_data, sensor); 1133 mutex_unlock(&pmbus_data->update_lock); 1134 1135 return ret; 1136 } 1137 1138 static const struct thermal_zone_of_device_ops pmbus_thermal_ops = { 1139 .get_temp = pmbus_thermal_get_temp, 1140 }; 1141 1142 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data, 1143 struct pmbus_sensor *sensor, int index) 1144 { 1145 struct device *dev = pmbus_data->dev; 1146 struct pmbus_thermal_data *tdata; 1147 struct thermal_zone_device *tzd; 1148 1149 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL); 1150 if (!tdata) 1151 return -ENOMEM; 1152 1153 tdata->sensor = sensor; 1154 tdata->pmbus_data = pmbus_data; 1155 1156 tzd = devm_thermal_zone_of_sensor_register(dev, index, tdata, 1157 &pmbus_thermal_ops); 1158 /* 1159 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV, 1160 * so ignore that error but forward any other error. 1161 */ 1162 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV)) 1163 return PTR_ERR(tzd); 1164 1165 return 0; 1166 } 1167 1168 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1169 const char *name, const char *type, 1170 int seq, int page, int phase, 1171 int reg, 1172 enum pmbus_sensor_classes class, 1173 bool update, bool readonly, 1174 bool convert) 1175 { 1176 struct pmbus_sensor *sensor; 1177 struct device_attribute *a; 1178 1179 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1180 if (!sensor) 1181 return NULL; 1182 a = &sensor->attribute; 1183 1184 if (type) 1185 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1186 name, seq, type); 1187 else 1188 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1189 name, seq); 1190 1191 if (data->flags & PMBUS_WRITE_PROTECTED) 1192 readonly = true; 1193 1194 sensor->page = page; 1195 sensor->phase = phase; 1196 sensor->reg = reg; 1197 sensor->class = class; 1198 sensor->update = update; 1199 sensor->convert = convert; 1200 sensor->data = -ENODATA; 1201 pmbus_dev_attr_init(a, sensor->name, 1202 readonly ? 0444 : 0644, 1203 pmbus_show_sensor, pmbus_set_sensor); 1204 1205 if (pmbus_add_attribute(data, &a->attr)) 1206 return NULL; 1207 1208 sensor->next = data->sensors; 1209 data->sensors = sensor; 1210 1211 /* temperature sensors with _input values are registered with thermal */ 1212 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0) 1213 pmbus_thermal_add_sensor(data, sensor, seq); 1214 1215 return sensor; 1216 } 1217 1218 static int pmbus_add_label(struct pmbus_data *data, 1219 const char *name, int seq, 1220 const char *lstring, int index, int phase) 1221 { 1222 struct pmbus_label *label; 1223 struct device_attribute *a; 1224 1225 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1226 if (!label) 1227 return -ENOMEM; 1228 1229 a = &label->attribute; 1230 1231 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1232 if (!index) { 1233 if (phase == 0xff) 1234 strncpy(label->label, lstring, 1235 sizeof(label->label) - 1); 1236 else 1237 snprintf(label->label, sizeof(label->label), "%s.%d", 1238 lstring, phase); 1239 } else { 1240 if (phase == 0xff) 1241 snprintf(label->label, sizeof(label->label), "%s%d", 1242 lstring, index); 1243 else 1244 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1245 lstring, index, phase); 1246 } 1247 1248 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1249 return pmbus_add_attribute(data, &a->attr); 1250 } 1251 1252 /* 1253 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1254 */ 1255 1256 /* 1257 * The pmbus_limit_attr structure describes a single limit attribute 1258 * and its associated alarm attribute. 1259 */ 1260 struct pmbus_limit_attr { 1261 u16 reg; /* Limit register */ 1262 u16 sbit; /* Alarm attribute status bit */ 1263 bool update; /* True if register needs updates */ 1264 bool low; /* True if low limit; for limits with compare 1265 functions only */ 1266 const char *attr; /* Attribute name */ 1267 const char *alarm; /* Alarm attribute name */ 1268 }; 1269 1270 /* 1271 * The pmbus_sensor_attr structure describes one sensor attribute. This 1272 * description includes a reference to the associated limit attributes. 1273 */ 1274 struct pmbus_sensor_attr { 1275 u16 reg; /* sensor register */ 1276 u16 gbit; /* generic status bit */ 1277 u8 nlimit; /* # of limit registers */ 1278 enum pmbus_sensor_classes class;/* sensor class */ 1279 const char *label; /* sensor label */ 1280 bool paged; /* true if paged sensor */ 1281 bool update; /* true if update needed */ 1282 bool compare; /* true if compare function needed */ 1283 u32 func; /* sensor mask */ 1284 u32 sfunc; /* sensor status mask */ 1285 int sreg; /* status register */ 1286 const struct pmbus_limit_attr *limit;/* limit registers */ 1287 }; 1288 1289 /* 1290 * Add a set of limit attributes and, if supported, the associated 1291 * alarm attributes. 1292 * returns 0 if no alarm register found, 1 if an alarm register was found, 1293 * < 0 on errors. 1294 */ 1295 static int pmbus_add_limit_attrs(struct i2c_client *client, 1296 struct pmbus_data *data, 1297 const struct pmbus_driver_info *info, 1298 const char *name, int index, int page, 1299 struct pmbus_sensor *base, 1300 const struct pmbus_sensor_attr *attr) 1301 { 1302 const struct pmbus_limit_attr *l = attr->limit; 1303 int nlimit = attr->nlimit; 1304 int have_alarm = 0; 1305 int i, ret; 1306 struct pmbus_sensor *curr; 1307 1308 for (i = 0; i < nlimit; i++) { 1309 if (pmbus_check_word_register(client, page, l->reg)) { 1310 curr = pmbus_add_sensor(data, name, l->attr, index, 1311 page, 0xff, l->reg, attr->class, 1312 attr->update || l->update, 1313 false, true); 1314 if (!curr) 1315 return -ENOMEM; 1316 if (l->sbit && (info->func[page] & attr->sfunc)) { 1317 ret = pmbus_add_boolean(data, name, 1318 l->alarm, index, 1319 attr->compare ? l->low ? curr : base 1320 : NULL, 1321 attr->compare ? l->low ? base : curr 1322 : NULL, 1323 page, attr->sreg, l->sbit); 1324 if (ret) 1325 return ret; 1326 have_alarm = 1; 1327 } 1328 } 1329 l++; 1330 } 1331 return have_alarm; 1332 } 1333 1334 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1335 struct pmbus_data *data, 1336 const struct pmbus_driver_info *info, 1337 const char *name, 1338 int index, int page, int phase, 1339 const struct pmbus_sensor_attr *attr, 1340 bool paged) 1341 { 1342 struct pmbus_sensor *base; 1343 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1344 int ret; 1345 1346 if (attr->label) { 1347 ret = pmbus_add_label(data, name, index, attr->label, 1348 paged ? page + 1 : 0, phase); 1349 if (ret) 1350 return ret; 1351 } 1352 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1353 attr->reg, attr->class, true, true, true); 1354 if (!base) 1355 return -ENOMEM; 1356 /* No limit and alarm attributes for phase specific sensors */ 1357 if (attr->sfunc && phase == 0xff) { 1358 ret = pmbus_add_limit_attrs(client, data, info, name, 1359 index, page, base, attr); 1360 if (ret < 0) 1361 return ret; 1362 /* 1363 * Add generic alarm attribute only if there are no individual 1364 * alarm attributes, if there is a global alarm bit, and if 1365 * the generic status register (word or byte, depending on 1366 * which global bit is set) for this page is accessible. 1367 */ 1368 if (!ret && attr->gbit && 1369 (!upper || data->has_status_word) && 1370 pmbus_check_status_register(client, page)) { 1371 ret = pmbus_add_boolean(data, name, "alarm", index, 1372 NULL, NULL, 1373 page, PMBUS_STATUS_WORD, 1374 attr->gbit); 1375 if (ret) 1376 return ret; 1377 } 1378 } 1379 return 0; 1380 } 1381 1382 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1383 const struct pmbus_sensor_attr *attr) 1384 { 1385 int p; 1386 1387 if (attr->paged) 1388 return true; 1389 1390 /* 1391 * Some attributes may be present on more than one page despite 1392 * not being marked with the paged attribute. If that is the case, 1393 * then treat the sensor as being paged and add the page suffix to the 1394 * attribute name. 1395 * We don't just add the paged attribute to all such attributes, in 1396 * order to maintain the un-suffixed labels in the case where the 1397 * attribute is only on page 0. 1398 */ 1399 for (p = 1; p < info->pages; p++) { 1400 if (info->func[p] & attr->func) 1401 return true; 1402 } 1403 return false; 1404 } 1405 1406 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1407 struct pmbus_data *data, 1408 const char *name, 1409 const struct pmbus_sensor_attr *attrs, 1410 int nattrs) 1411 { 1412 const struct pmbus_driver_info *info = data->info; 1413 int index, i; 1414 int ret; 1415 1416 index = 1; 1417 for (i = 0; i < nattrs; i++) { 1418 int page, pages; 1419 bool paged = pmbus_sensor_is_paged(info, attrs); 1420 1421 pages = paged ? info->pages : 1; 1422 for (page = 0; page < pages; page++) { 1423 if (info->func[page] & attrs->func) { 1424 ret = pmbus_add_sensor_attrs_one(client, data, info, 1425 name, index, page, 1426 0xff, attrs, paged); 1427 if (ret) 1428 return ret; 1429 index++; 1430 } 1431 if (info->phases[page]) { 1432 int phase; 1433 1434 for (phase = 0; phase < info->phases[page]; 1435 phase++) { 1436 if (!(info->pfunc[phase] & attrs->func)) 1437 continue; 1438 ret = pmbus_add_sensor_attrs_one(client, 1439 data, info, name, index, page, 1440 phase, attrs, paged); 1441 if (ret) 1442 return ret; 1443 index++; 1444 } 1445 } 1446 } 1447 attrs++; 1448 } 1449 return 0; 1450 } 1451 1452 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1453 { 1454 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1455 .attr = "min", 1456 .alarm = "min_alarm", 1457 .sbit = PB_VOLTAGE_UV_WARNING, 1458 }, { 1459 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1460 .attr = "lcrit", 1461 .alarm = "lcrit_alarm", 1462 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF, 1463 }, { 1464 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1465 .attr = "max", 1466 .alarm = "max_alarm", 1467 .sbit = PB_VOLTAGE_OV_WARNING, 1468 }, { 1469 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1470 .attr = "crit", 1471 .alarm = "crit_alarm", 1472 .sbit = PB_VOLTAGE_OV_FAULT, 1473 }, { 1474 .reg = PMBUS_VIRT_READ_VIN_AVG, 1475 .update = true, 1476 .attr = "average", 1477 }, { 1478 .reg = PMBUS_VIRT_READ_VIN_MIN, 1479 .update = true, 1480 .attr = "lowest", 1481 }, { 1482 .reg = PMBUS_VIRT_READ_VIN_MAX, 1483 .update = true, 1484 .attr = "highest", 1485 }, { 1486 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1487 .attr = "reset_history", 1488 }, { 1489 .reg = PMBUS_MFR_VIN_MIN, 1490 .attr = "rated_min", 1491 }, { 1492 .reg = PMBUS_MFR_VIN_MAX, 1493 .attr = "rated_max", 1494 }, 1495 }; 1496 1497 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1498 { 1499 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1500 .attr = "min", 1501 .alarm = "min_alarm", 1502 .sbit = PB_VOLTAGE_UV_WARNING, 1503 }, { 1504 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1505 .attr = "lcrit", 1506 .alarm = "lcrit_alarm", 1507 .sbit = PB_VOLTAGE_UV_FAULT, 1508 }, { 1509 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1510 .attr = "max", 1511 .alarm = "max_alarm", 1512 .sbit = PB_VOLTAGE_OV_WARNING, 1513 }, { 1514 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1515 .attr = "crit", 1516 .alarm = "crit_alarm", 1517 .sbit = PB_VOLTAGE_OV_FAULT, 1518 } 1519 }; 1520 1521 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1522 { 1523 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1524 .attr = "min", 1525 .alarm = "min_alarm", 1526 .sbit = PB_VOLTAGE_UV_WARNING, 1527 }, { 1528 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1529 .attr = "lcrit", 1530 .alarm = "lcrit_alarm", 1531 .sbit = PB_VOLTAGE_UV_FAULT, 1532 }, { 1533 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1534 .attr = "max", 1535 .alarm = "max_alarm", 1536 .sbit = PB_VOLTAGE_OV_WARNING, 1537 }, { 1538 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1539 .attr = "crit", 1540 .alarm = "crit_alarm", 1541 .sbit = PB_VOLTAGE_OV_FAULT, 1542 }, { 1543 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1544 .update = true, 1545 .attr = "average", 1546 }, { 1547 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1548 .update = true, 1549 .attr = "lowest", 1550 }, { 1551 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1552 .update = true, 1553 .attr = "highest", 1554 }, { 1555 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1556 .attr = "reset_history", 1557 }, { 1558 .reg = PMBUS_MFR_VOUT_MIN, 1559 .attr = "rated_min", 1560 }, { 1561 .reg = PMBUS_MFR_VOUT_MAX, 1562 .attr = "rated_max", 1563 }, 1564 }; 1565 1566 static const struct pmbus_sensor_attr voltage_attributes[] = { 1567 { 1568 .reg = PMBUS_READ_VIN, 1569 .class = PSC_VOLTAGE_IN, 1570 .label = "vin", 1571 .func = PMBUS_HAVE_VIN, 1572 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1573 .sreg = PMBUS_STATUS_INPUT, 1574 .gbit = PB_STATUS_VIN_UV, 1575 .limit = vin_limit_attrs, 1576 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1577 }, { 1578 .reg = PMBUS_VIRT_READ_VMON, 1579 .class = PSC_VOLTAGE_IN, 1580 .label = "vmon", 1581 .func = PMBUS_HAVE_VMON, 1582 .sfunc = PMBUS_HAVE_STATUS_VMON, 1583 .sreg = PMBUS_VIRT_STATUS_VMON, 1584 .limit = vmon_limit_attrs, 1585 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1586 }, { 1587 .reg = PMBUS_READ_VCAP, 1588 .class = PSC_VOLTAGE_IN, 1589 .label = "vcap", 1590 .func = PMBUS_HAVE_VCAP, 1591 }, { 1592 .reg = PMBUS_READ_VOUT, 1593 .class = PSC_VOLTAGE_OUT, 1594 .label = "vout", 1595 .paged = true, 1596 .func = PMBUS_HAVE_VOUT, 1597 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1598 .sreg = PMBUS_STATUS_VOUT, 1599 .gbit = PB_STATUS_VOUT_OV, 1600 .limit = vout_limit_attrs, 1601 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1602 } 1603 }; 1604 1605 /* Current attributes */ 1606 1607 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1608 { 1609 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1610 .attr = "max", 1611 .alarm = "max_alarm", 1612 .sbit = PB_IIN_OC_WARNING, 1613 }, { 1614 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1615 .attr = "crit", 1616 .alarm = "crit_alarm", 1617 .sbit = PB_IIN_OC_FAULT, 1618 }, { 1619 .reg = PMBUS_VIRT_READ_IIN_AVG, 1620 .update = true, 1621 .attr = "average", 1622 }, { 1623 .reg = PMBUS_VIRT_READ_IIN_MIN, 1624 .update = true, 1625 .attr = "lowest", 1626 }, { 1627 .reg = PMBUS_VIRT_READ_IIN_MAX, 1628 .update = true, 1629 .attr = "highest", 1630 }, { 1631 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1632 .attr = "reset_history", 1633 }, { 1634 .reg = PMBUS_MFR_IIN_MAX, 1635 .attr = "rated_max", 1636 }, 1637 }; 1638 1639 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1640 { 1641 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1642 .attr = "max", 1643 .alarm = "max_alarm", 1644 .sbit = PB_IOUT_OC_WARNING, 1645 }, { 1646 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1647 .attr = "lcrit", 1648 .alarm = "lcrit_alarm", 1649 .sbit = PB_IOUT_UC_FAULT, 1650 }, { 1651 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1652 .attr = "crit", 1653 .alarm = "crit_alarm", 1654 .sbit = PB_IOUT_OC_FAULT, 1655 }, { 1656 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1657 .update = true, 1658 .attr = "average", 1659 }, { 1660 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1661 .update = true, 1662 .attr = "lowest", 1663 }, { 1664 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1665 .update = true, 1666 .attr = "highest", 1667 }, { 1668 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1669 .attr = "reset_history", 1670 }, { 1671 .reg = PMBUS_MFR_IOUT_MAX, 1672 .attr = "rated_max", 1673 }, 1674 }; 1675 1676 static const struct pmbus_sensor_attr current_attributes[] = { 1677 { 1678 .reg = PMBUS_READ_IIN, 1679 .class = PSC_CURRENT_IN, 1680 .label = "iin", 1681 .func = PMBUS_HAVE_IIN, 1682 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1683 .sreg = PMBUS_STATUS_INPUT, 1684 .gbit = PB_STATUS_INPUT, 1685 .limit = iin_limit_attrs, 1686 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1687 }, { 1688 .reg = PMBUS_READ_IOUT, 1689 .class = PSC_CURRENT_OUT, 1690 .label = "iout", 1691 .paged = true, 1692 .func = PMBUS_HAVE_IOUT, 1693 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1694 .sreg = PMBUS_STATUS_IOUT, 1695 .gbit = PB_STATUS_IOUT_OC, 1696 .limit = iout_limit_attrs, 1697 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1698 } 1699 }; 1700 1701 /* Power attributes */ 1702 1703 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1704 { 1705 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1706 .attr = "max", 1707 .alarm = "alarm", 1708 .sbit = PB_PIN_OP_WARNING, 1709 }, { 1710 .reg = PMBUS_VIRT_READ_PIN_AVG, 1711 .update = true, 1712 .attr = "average", 1713 }, { 1714 .reg = PMBUS_VIRT_READ_PIN_MIN, 1715 .update = true, 1716 .attr = "input_lowest", 1717 }, { 1718 .reg = PMBUS_VIRT_READ_PIN_MAX, 1719 .update = true, 1720 .attr = "input_highest", 1721 }, { 1722 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1723 .attr = "reset_history", 1724 }, { 1725 .reg = PMBUS_MFR_PIN_MAX, 1726 .attr = "rated_max", 1727 }, 1728 }; 1729 1730 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1731 { 1732 .reg = PMBUS_POUT_MAX, 1733 .attr = "cap", 1734 .alarm = "cap_alarm", 1735 .sbit = PB_POWER_LIMITING, 1736 }, { 1737 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1738 .attr = "max", 1739 .alarm = "max_alarm", 1740 .sbit = PB_POUT_OP_WARNING, 1741 }, { 1742 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1743 .attr = "crit", 1744 .alarm = "crit_alarm", 1745 .sbit = PB_POUT_OP_FAULT, 1746 }, { 1747 .reg = PMBUS_VIRT_READ_POUT_AVG, 1748 .update = true, 1749 .attr = "average", 1750 }, { 1751 .reg = PMBUS_VIRT_READ_POUT_MIN, 1752 .update = true, 1753 .attr = "input_lowest", 1754 }, { 1755 .reg = PMBUS_VIRT_READ_POUT_MAX, 1756 .update = true, 1757 .attr = "input_highest", 1758 }, { 1759 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1760 .attr = "reset_history", 1761 }, { 1762 .reg = PMBUS_MFR_POUT_MAX, 1763 .attr = "rated_max", 1764 }, 1765 }; 1766 1767 static const struct pmbus_sensor_attr power_attributes[] = { 1768 { 1769 .reg = PMBUS_READ_PIN, 1770 .class = PSC_POWER, 1771 .label = "pin", 1772 .func = PMBUS_HAVE_PIN, 1773 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1774 .sreg = PMBUS_STATUS_INPUT, 1775 .gbit = PB_STATUS_INPUT, 1776 .limit = pin_limit_attrs, 1777 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1778 }, { 1779 .reg = PMBUS_READ_POUT, 1780 .class = PSC_POWER, 1781 .label = "pout", 1782 .paged = true, 1783 .func = PMBUS_HAVE_POUT, 1784 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1785 .sreg = PMBUS_STATUS_IOUT, 1786 .limit = pout_limit_attrs, 1787 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1788 } 1789 }; 1790 1791 /* Temperature atributes */ 1792 1793 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1794 { 1795 .reg = PMBUS_UT_WARN_LIMIT, 1796 .low = true, 1797 .attr = "min", 1798 .alarm = "min_alarm", 1799 .sbit = PB_TEMP_UT_WARNING, 1800 }, { 1801 .reg = PMBUS_UT_FAULT_LIMIT, 1802 .low = true, 1803 .attr = "lcrit", 1804 .alarm = "lcrit_alarm", 1805 .sbit = PB_TEMP_UT_FAULT, 1806 }, { 1807 .reg = PMBUS_OT_WARN_LIMIT, 1808 .attr = "max", 1809 .alarm = "max_alarm", 1810 .sbit = PB_TEMP_OT_WARNING, 1811 }, { 1812 .reg = PMBUS_OT_FAULT_LIMIT, 1813 .attr = "crit", 1814 .alarm = "crit_alarm", 1815 .sbit = PB_TEMP_OT_FAULT, 1816 }, { 1817 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1818 .attr = "lowest", 1819 }, { 1820 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1821 .attr = "average", 1822 }, { 1823 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1824 .attr = "highest", 1825 }, { 1826 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1827 .attr = "reset_history", 1828 }, { 1829 .reg = PMBUS_MFR_MAX_TEMP_1, 1830 .attr = "rated_max", 1831 }, 1832 }; 1833 1834 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1835 { 1836 .reg = PMBUS_UT_WARN_LIMIT, 1837 .low = true, 1838 .attr = "min", 1839 .alarm = "min_alarm", 1840 .sbit = PB_TEMP_UT_WARNING, 1841 }, { 1842 .reg = PMBUS_UT_FAULT_LIMIT, 1843 .low = true, 1844 .attr = "lcrit", 1845 .alarm = "lcrit_alarm", 1846 .sbit = PB_TEMP_UT_FAULT, 1847 }, { 1848 .reg = PMBUS_OT_WARN_LIMIT, 1849 .attr = "max", 1850 .alarm = "max_alarm", 1851 .sbit = PB_TEMP_OT_WARNING, 1852 }, { 1853 .reg = PMBUS_OT_FAULT_LIMIT, 1854 .attr = "crit", 1855 .alarm = "crit_alarm", 1856 .sbit = PB_TEMP_OT_FAULT, 1857 }, { 1858 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1859 .attr = "lowest", 1860 }, { 1861 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1862 .attr = "average", 1863 }, { 1864 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1865 .attr = "highest", 1866 }, { 1867 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1868 .attr = "reset_history", 1869 }, { 1870 .reg = PMBUS_MFR_MAX_TEMP_2, 1871 .attr = "rated_max", 1872 }, 1873 }; 1874 1875 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1876 { 1877 .reg = PMBUS_UT_WARN_LIMIT, 1878 .low = true, 1879 .attr = "min", 1880 .alarm = "min_alarm", 1881 .sbit = PB_TEMP_UT_WARNING, 1882 }, { 1883 .reg = PMBUS_UT_FAULT_LIMIT, 1884 .low = true, 1885 .attr = "lcrit", 1886 .alarm = "lcrit_alarm", 1887 .sbit = PB_TEMP_UT_FAULT, 1888 }, { 1889 .reg = PMBUS_OT_WARN_LIMIT, 1890 .attr = "max", 1891 .alarm = "max_alarm", 1892 .sbit = PB_TEMP_OT_WARNING, 1893 }, { 1894 .reg = PMBUS_OT_FAULT_LIMIT, 1895 .attr = "crit", 1896 .alarm = "crit_alarm", 1897 .sbit = PB_TEMP_OT_FAULT, 1898 }, { 1899 .reg = PMBUS_MFR_MAX_TEMP_3, 1900 .attr = "rated_max", 1901 }, 1902 }; 1903 1904 static const struct pmbus_sensor_attr temp_attributes[] = { 1905 { 1906 .reg = PMBUS_READ_TEMPERATURE_1, 1907 .class = PSC_TEMPERATURE, 1908 .paged = true, 1909 .update = true, 1910 .compare = true, 1911 .func = PMBUS_HAVE_TEMP, 1912 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1913 .sreg = PMBUS_STATUS_TEMPERATURE, 1914 .gbit = PB_STATUS_TEMPERATURE, 1915 .limit = temp_limit_attrs, 1916 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1917 }, { 1918 .reg = PMBUS_READ_TEMPERATURE_2, 1919 .class = PSC_TEMPERATURE, 1920 .paged = true, 1921 .update = true, 1922 .compare = true, 1923 .func = PMBUS_HAVE_TEMP2, 1924 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1925 .sreg = PMBUS_STATUS_TEMPERATURE, 1926 .gbit = PB_STATUS_TEMPERATURE, 1927 .limit = temp_limit_attrs2, 1928 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1929 }, { 1930 .reg = PMBUS_READ_TEMPERATURE_3, 1931 .class = PSC_TEMPERATURE, 1932 .paged = true, 1933 .update = true, 1934 .compare = true, 1935 .func = PMBUS_HAVE_TEMP3, 1936 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1937 .sreg = PMBUS_STATUS_TEMPERATURE, 1938 .gbit = PB_STATUS_TEMPERATURE, 1939 .limit = temp_limit_attrs3, 1940 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1941 } 1942 }; 1943 1944 static const int pmbus_fan_registers[] = { 1945 PMBUS_READ_FAN_SPEED_1, 1946 PMBUS_READ_FAN_SPEED_2, 1947 PMBUS_READ_FAN_SPEED_3, 1948 PMBUS_READ_FAN_SPEED_4 1949 }; 1950 1951 static const int pmbus_fan_status_registers[] = { 1952 PMBUS_STATUS_FAN_12, 1953 PMBUS_STATUS_FAN_12, 1954 PMBUS_STATUS_FAN_34, 1955 PMBUS_STATUS_FAN_34 1956 }; 1957 1958 static const u32 pmbus_fan_flags[] = { 1959 PMBUS_HAVE_FAN12, 1960 PMBUS_HAVE_FAN12, 1961 PMBUS_HAVE_FAN34, 1962 PMBUS_HAVE_FAN34 1963 }; 1964 1965 static const u32 pmbus_fan_status_flags[] = { 1966 PMBUS_HAVE_STATUS_FAN12, 1967 PMBUS_HAVE_STATUS_FAN12, 1968 PMBUS_HAVE_STATUS_FAN34, 1969 PMBUS_HAVE_STATUS_FAN34 1970 }; 1971 1972 /* Fans */ 1973 1974 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 1975 static int pmbus_add_fan_ctrl(struct i2c_client *client, 1976 struct pmbus_data *data, int index, int page, int id, 1977 u8 config) 1978 { 1979 struct pmbus_sensor *sensor; 1980 1981 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 1982 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 1983 false, false, true); 1984 1985 if (!sensor) 1986 return -ENOMEM; 1987 1988 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 1989 (data->info->func[page] & PMBUS_HAVE_PWM34))) 1990 return 0; 1991 1992 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 1993 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 1994 false, false, true); 1995 1996 if (!sensor) 1997 return -ENOMEM; 1998 1999 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 2000 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 2001 true, false, false); 2002 2003 if (!sensor) 2004 return -ENOMEM; 2005 2006 return 0; 2007 } 2008 2009 static int pmbus_add_fan_attributes(struct i2c_client *client, 2010 struct pmbus_data *data) 2011 { 2012 const struct pmbus_driver_info *info = data->info; 2013 int index = 1; 2014 int page; 2015 int ret; 2016 2017 for (page = 0; page < info->pages; page++) { 2018 int f; 2019 2020 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 2021 int regval; 2022 2023 if (!(info->func[page] & pmbus_fan_flags[f])) 2024 break; 2025 2026 if (!pmbus_check_word_register(client, page, 2027 pmbus_fan_registers[f])) 2028 break; 2029 2030 /* 2031 * Skip fan if not installed. 2032 * Each fan configuration register covers multiple fans, 2033 * so we have to do some magic. 2034 */ 2035 regval = _pmbus_read_byte_data(client, page, 2036 pmbus_fan_config_registers[f]); 2037 if (regval < 0 || 2038 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 2039 continue; 2040 2041 if (pmbus_add_sensor(data, "fan", "input", index, 2042 page, 0xff, pmbus_fan_registers[f], 2043 PSC_FAN, true, true, true) == NULL) 2044 return -ENOMEM; 2045 2046 /* Fan control */ 2047 if (pmbus_check_word_register(client, page, 2048 pmbus_fan_command_registers[f])) { 2049 ret = pmbus_add_fan_ctrl(client, data, index, 2050 page, f, regval); 2051 if (ret < 0) 2052 return ret; 2053 } 2054 2055 /* 2056 * Each fan status register covers multiple fans, 2057 * so we have to do some magic. 2058 */ 2059 if ((info->func[page] & pmbus_fan_status_flags[f]) && 2060 pmbus_check_byte_register(client, 2061 page, pmbus_fan_status_registers[f])) { 2062 int reg; 2063 2064 if (f > 1) /* fan 3, 4 */ 2065 reg = PMBUS_STATUS_FAN_34; 2066 else 2067 reg = PMBUS_STATUS_FAN_12; 2068 ret = pmbus_add_boolean(data, "fan", 2069 "alarm", index, NULL, NULL, page, reg, 2070 PB_FAN_FAN1_WARNING >> (f & 1)); 2071 if (ret) 2072 return ret; 2073 ret = pmbus_add_boolean(data, "fan", 2074 "fault", index, NULL, NULL, page, reg, 2075 PB_FAN_FAN1_FAULT >> (f & 1)); 2076 if (ret) 2077 return ret; 2078 } 2079 index++; 2080 } 2081 } 2082 return 0; 2083 } 2084 2085 struct pmbus_samples_attr { 2086 int reg; 2087 char *name; 2088 }; 2089 2090 struct pmbus_samples_reg { 2091 int page; 2092 struct pmbus_samples_attr *attr; 2093 struct device_attribute dev_attr; 2094 }; 2095 2096 static struct pmbus_samples_attr pmbus_samples_registers[] = { 2097 { 2098 .reg = PMBUS_VIRT_SAMPLES, 2099 .name = "samples", 2100 }, { 2101 .reg = PMBUS_VIRT_IN_SAMPLES, 2102 .name = "in_samples", 2103 }, { 2104 .reg = PMBUS_VIRT_CURR_SAMPLES, 2105 .name = "curr_samples", 2106 }, { 2107 .reg = PMBUS_VIRT_POWER_SAMPLES, 2108 .name = "power_samples", 2109 }, { 2110 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2111 .name = "temp_samples", 2112 } 2113 }; 2114 2115 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2116 2117 static ssize_t pmbus_show_samples(struct device *dev, 2118 struct device_attribute *devattr, char *buf) 2119 { 2120 int val; 2121 struct i2c_client *client = to_i2c_client(dev->parent); 2122 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2123 struct pmbus_data *data = i2c_get_clientdata(client); 2124 2125 mutex_lock(&data->update_lock); 2126 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2127 mutex_unlock(&data->update_lock); 2128 if (val < 0) 2129 return val; 2130 2131 return sysfs_emit(buf, "%d\n", val); 2132 } 2133 2134 static ssize_t pmbus_set_samples(struct device *dev, 2135 struct device_attribute *devattr, 2136 const char *buf, size_t count) 2137 { 2138 int ret; 2139 long val; 2140 struct i2c_client *client = to_i2c_client(dev->parent); 2141 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2142 struct pmbus_data *data = i2c_get_clientdata(client); 2143 2144 if (kstrtol(buf, 0, &val) < 0) 2145 return -EINVAL; 2146 2147 mutex_lock(&data->update_lock); 2148 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2149 mutex_unlock(&data->update_lock); 2150 2151 return ret ? : count; 2152 } 2153 2154 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2155 struct pmbus_samples_attr *attr) 2156 { 2157 struct pmbus_samples_reg *reg; 2158 2159 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2160 if (!reg) 2161 return -ENOMEM; 2162 2163 reg->attr = attr; 2164 reg->page = page; 2165 2166 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2167 pmbus_show_samples, pmbus_set_samples); 2168 2169 return pmbus_add_attribute(data, ®->dev_attr.attr); 2170 } 2171 2172 static int pmbus_add_samples_attributes(struct i2c_client *client, 2173 struct pmbus_data *data) 2174 { 2175 const struct pmbus_driver_info *info = data->info; 2176 int s; 2177 2178 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2179 return 0; 2180 2181 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2182 struct pmbus_samples_attr *attr; 2183 int ret; 2184 2185 attr = &pmbus_samples_registers[s]; 2186 if (!pmbus_check_word_register(client, 0, attr->reg)) 2187 continue; 2188 2189 ret = pmbus_add_samples_attr(data, 0, attr); 2190 if (ret) 2191 return ret; 2192 } 2193 2194 return 0; 2195 } 2196 2197 static int pmbus_find_attributes(struct i2c_client *client, 2198 struct pmbus_data *data) 2199 { 2200 int ret; 2201 2202 /* Voltage sensors */ 2203 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2204 ARRAY_SIZE(voltage_attributes)); 2205 if (ret) 2206 return ret; 2207 2208 /* Current sensors */ 2209 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2210 ARRAY_SIZE(current_attributes)); 2211 if (ret) 2212 return ret; 2213 2214 /* Power sensors */ 2215 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2216 ARRAY_SIZE(power_attributes)); 2217 if (ret) 2218 return ret; 2219 2220 /* Temperature sensors */ 2221 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2222 ARRAY_SIZE(temp_attributes)); 2223 if (ret) 2224 return ret; 2225 2226 /* Fans */ 2227 ret = pmbus_add_fan_attributes(client, data); 2228 if (ret) 2229 return ret; 2230 2231 ret = pmbus_add_samples_attributes(client, data); 2232 return ret; 2233 } 2234 2235 /* 2236 * The pmbus_class_attr_map structure maps one sensor class to 2237 * it's corresponding sensor attributes array. 2238 */ 2239 struct pmbus_class_attr_map { 2240 enum pmbus_sensor_classes class; 2241 int nattr; 2242 const struct pmbus_sensor_attr *attr; 2243 }; 2244 2245 static const struct pmbus_class_attr_map class_attr_map[] = { 2246 { 2247 .class = PSC_VOLTAGE_IN, 2248 .attr = voltage_attributes, 2249 .nattr = ARRAY_SIZE(voltage_attributes), 2250 }, { 2251 .class = PSC_VOLTAGE_OUT, 2252 .attr = voltage_attributes, 2253 .nattr = ARRAY_SIZE(voltage_attributes), 2254 }, { 2255 .class = PSC_CURRENT_IN, 2256 .attr = current_attributes, 2257 .nattr = ARRAY_SIZE(current_attributes), 2258 }, { 2259 .class = PSC_CURRENT_OUT, 2260 .attr = current_attributes, 2261 .nattr = ARRAY_SIZE(current_attributes), 2262 }, { 2263 .class = PSC_POWER, 2264 .attr = power_attributes, 2265 .nattr = ARRAY_SIZE(power_attributes), 2266 }, { 2267 .class = PSC_TEMPERATURE, 2268 .attr = temp_attributes, 2269 .nattr = ARRAY_SIZE(temp_attributes), 2270 } 2271 }; 2272 2273 /* 2274 * Read the coefficients for direct mode. 2275 */ 2276 static int pmbus_read_coefficients(struct i2c_client *client, 2277 struct pmbus_driver_info *info, 2278 const struct pmbus_sensor_attr *attr) 2279 { 2280 int rv; 2281 union i2c_smbus_data data; 2282 enum pmbus_sensor_classes class = attr->class; 2283 s8 R; 2284 s16 m, b; 2285 2286 data.block[0] = 2; 2287 data.block[1] = attr->reg; 2288 data.block[2] = 0x01; 2289 2290 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags, 2291 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS, 2292 I2C_SMBUS_BLOCK_PROC_CALL, &data); 2293 2294 if (rv < 0) 2295 return rv; 2296 2297 if (data.block[0] != 5) 2298 return -EIO; 2299 2300 m = data.block[1] | (data.block[2] << 8); 2301 b = data.block[3] | (data.block[4] << 8); 2302 R = data.block[5]; 2303 info->m[class] = m; 2304 info->b[class] = b; 2305 info->R[class] = R; 2306 2307 return rv; 2308 } 2309 2310 static int pmbus_init_coefficients(struct i2c_client *client, 2311 struct pmbus_driver_info *info) 2312 { 2313 int i, n, ret = -EINVAL; 2314 const struct pmbus_class_attr_map *map; 2315 const struct pmbus_sensor_attr *attr; 2316 2317 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) { 2318 map = &class_attr_map[i]; 2319 if (info->format[map->class] != direct) 2320 continue; 2321 for (n = 0; n < map->nattr; n++) { 2322 attr = &map->attr[n]; 2323 if (map->class != attr->class) 2324 continue; 2325 ret = pmbus_read_coefficients(client, info, attr); 2326 if (ret >= 0) 2327 break; 2328 } 2329 if (ret < 0) { 2330 dev_err(&client->dev, 2331 "No coefficients found for sensor class %d\n", 2332 map->class); 2333 return -EINVAL; 2334 } 2335 } 2336 2337 return 0; 2338 } 2339 2340 /* 2341 * Identify chip parameters. 2342 * This function is called for all chips. 2343 */ 2344 static int pmbus_identify_common(struct i2c_client *client, 2345 struct pmbus_data *data, int page) 2346 { 2347 int vout_mode = -1; 2348 2349 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2350 vout_mode = _pmbus_read_byte_data(client, page, 2351 PMBUS_VOUT_MODE); 2352 if (vout_mode >= 0 && vout_mode != 0xff) { 2353 /* 2354 * Not all chips support the VOUT_MODE command, 2355 * so a failure to read it is not an error. 2356 */ 2357 switch (vout_mode >> 5) { 2358 case 0: /* linear mode */ 2359 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2360 return -ENODEV; 2361 2362 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2363 break; 2364 case 1: /* VID mode */ 2365 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2366 return -ENODEV; 2367 break; 2368 case 2: /* direct mode */ 2369 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2370 return -ENODEV; 2371 break; 2372 default: 2373 return -ENODEV; 2374 } 2375 } 2376 2377 pmbus_clear_fault_page(client, page); 2378 return 0; 2379 } 2380 2381 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2382 { 2383 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2384 } 2385 2386 static int pmbus_read_status_word(struct i2c_client *client, int page) 2387 { 2388 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2389 } 2390 2391 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2392 struct pmbus_driver_info *info) 2393 { 2394 struct device *dev = &client->dev; 2395 int page, ret; 2396 2397 /* 2398 * Figure out if PEC is enabled before accessing any other register. 2399 * Make sure PEC is disabled, will be enabled later if needed. 2400 */ 2401 client->flags &= ~I2C_CLIENT_PEC; 2402 2403 /* Enable PEC if the controller and bus supports it */ 2404 if (!(data->flags & PMBUS_NO_CAPABILITY)) { 2405 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2406 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) { 2407 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) 2408 client->flags |= I2C_CLIENT_PEC; 2409 } 2410 } 2411 2412 /* 2413 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2414 * to use PMBUS_STATUS_BYTE instead if that is the case. 2415 * Bail out if both registers are not supported. 2416 */ 2417 data->read_status = pmbus_read_status_word; 2418 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2419 if (ret < 0 || ret == 0xffff) { 2420 data->read_status = pmbus_read_status_byte; 2421 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2422 if (ret < 0 || ret == 0xff) { 2423 dev_err(dev, "PMBus status register not found\n"); 2424 return -ENODEV; 2425 } 2426 } else { 2427 data->has_status_word = true; 2428 } 2429 2430 /* 2431 * Check if the chip is write protected. If it is, we can not clear 2432 * faults, and we should not try it. Also, in that case, writes into 2433 * limit registers need to be disabled. 2434 */ 2435 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) { 2436 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2437 if (ret > 0 && (ret & PB_WP_ANY)) 2438 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2439 } 2440 2441 if (data->info->pages) 2442 pmbus_clear_faults(client); 2443 else 2444 pmbus_clear_fault_page(client, -1); 2445 2446 if (info->identify) { 2447 ret = (*info->identify)(client, info); 2448 if (ret < 0) { 2449 dev_err(dev, "Chip identification failed\n"); 2450 return ret; 2451 } 2452 } 2453 2454 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2455 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2456 return -ENODEV; 2457 } 2458 2459 for (page = 0; page < info->pages; page++) { 2460 ret = pmbus_identify_common(client, data, page); 2461 if (ret < 0) { 2462 dev_err(dev, "Failed to identify chip capabilities\n"); 2463 return ret; 2464 } 2465 } 2466 2467 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) { 2468 if (!i2c_check_functionality(client->adapter, 2469 I2C_FUNC_SMBUS_BLOCK_PROC_CALL)) 2470 return -ENODEV; 2471 2472 ret = pmbus_init_coefficients(client, info); 2473 if (ret < 0) 2474 return ret; 2475 } 2476 2477 return 0; 2478 } 2479 2480 #if IS_ENABLED(CONFIG_REGULATOR) 2481 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2482 { 2483 struct device *dev = rdev_get_dev(rdev); 2484 struct i2c_client *client = to_i2c_client(dev->parent); 2485 struct pmbus_data *data = i2c_get_clientdata(client); 2486 u8 page = rdev_get_id(rdev); 2487 int ret; 2488 2489 mutex_lock(&data->update_lock); 2490 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2491 mutex_unlock(&data->update_lock); 2492 2493 if (ret < 0) 2494 return ret; 2495 2496 return !!(ret & PB_OPERATION_CONTROL_ON); 2497 } 2498 2499 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2500 { 2501 struct device *dev = rdev_get_dev(rdev); 2502 struct i2c_client *client = to_i2c_client(dev->parent); 2503 struct pmbus_data *data = i2c_get_clientdata(client); 2504 u8 page = rdev_get_id(rdev); 2505 int ret; 2506 2507 mutex_lock(&data->update_lock); 2508 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2509 PB_OPERATION_CONTROL_ON, 2510 enable ? PB_OPERATION_CONTROL_ON : 0); 2511 mutex_unlock(&data->update_lock); 2512 2513 return ret; 2514 } 2515 2516 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2517 { 2518 return _pmbus_regulator_on_off(rdev, 1); 2519 } 2520 2521 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2522 { 2523 return _pmbus_regulator_on_off(rdev, 0); 2524 } 2525 2526 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* flag */ 2527 struct pmbus_regulator_status_assoc { 2528 int pflag, rflag; 2529 }; 2530 2531 /* PMBus->regulator bit mappings for a PMBus status register */ 2532 struct pmbus_regulator_status_category { 2533 int func; 2534 int reg; 2535 const struct pmbus_regulator_status_assoc *bits; /* zero-terminated */ 2536 }; 2537 2538 static const struct pmbus_regulator_status_category pmbus_regulator_flag_map[] = { 2539 { 2540 .func = PMBUS_HAVE_STATUS_VOUT, 2541 .reg = PMBUS_STATUS_VOUT, 2542 .bits = (const struct pmbus_regulator_status_assoc[]) { 2543 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN }, 2544 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE }, 2545 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN }, 2546 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT }, 2547 { }, 2548 }, 2549 }, { 2550 .func = PMBUS_HAVE_STATUS_IOUT, 2551 .reg = PMBUS_STATUS_IOUT, 2552 .bits = (const struct pmbus_regulator_status_assoc[]) { 2553 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN }, 2554 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT }, 2555 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT }, 2556 { }, 2557 }, 2558 }, { 2559 .func = PMBUS_HAVE_STATUS_TEMP, 2560 .reg = PMBUS_STATUS_TEMPERATURE, 2561 .bits = (const struct pmbus_regulator_status_assoc[]) { 2562 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN }, 2563 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP }, 2564 { }, 2565 }, 2566 }, 2567 }; 2568 2569 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags) 2570 { 2571 int i, status; 2572 const struct pmbus_regulator_status_category *cat; 2573 const struct pmbus_regulator_status_assoc *bit; 2574 struct device *dev = rdev_get_dev(rdev); 2575 struct i2c_client *client = to_i2c_client(dev->parent); 2576 struct pmbus_data *data = i2c_get_clientdata(client); 2577 u8 page = rdev_get_id(rdev); 2578 int func = data->info->func[page]; 2579 2580 *flags = 0; 2581 2582 mutex_lock(&data->update_lock); 2583 2584 for (i = 0; i < ARRAY_SIZE(pmbus_regulator_flag_map); i++) { 2585 cat = &pmbus_regulator_flag_map[i]; 2586 if (!(func & cat->func)) 2587 continue; 2588 2589 status = _pmbus_read_byte_data(client, page, cat->reg); 2590 if (status < 0) { 2591 mutex_unlock(&data->update_lock); 2592 return status; 2593 } 2594 2595 for (bit = cat->bits; bit->pflag; bit++) { 2596 if (status & bit->pflag) 2597 *flags |= bit->rflag; 2598 } 2599 } 2600 2601 /* 2602 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_* 2603 * bits. Some of the other bits are tempting (especially for cases 2604 * where we don't have the relevant PMBUS_HAVE_STATUS_* 2605 * functionality), but there's an unfortunate ambiguity in that 2606 * they're defined as indicating a fault *or* a warning, so we can't 2607 * easily determine whether to report REGULATOR_ERROR_<foo> or 2608 * REGULATOR_ERROR_<foo>_WARN. 2609 */ 2610 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); 2611 mutex_unlock(&data->update_lock); 2612 if (status < 0) 2613 return status; 2614 2615 if (pmbus_regulator_is_enabled(rdev) && (status & PB_STATUS_OFF)) 2616 *flags |= REGULATOR_ERROR_FAIL; 2617 2618 /* 2619 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are 2620 * defined strictly as fault indicators (not warnings). 2621 */ 2622 if (status & PB_STATUS_IOUT_OC) 2623 *flags |= REGULATOR_ERROR_OVER_CURRENT; 2624 if (status & PB_STATUS_VOUT_OV) 2625 *flags |= REGULATOR_ERROR_REGULATION_OUT; 2626 2627 /* 2628 * If we haven't discovered any thermal faults or warnings via 2629 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as 2630 * a (conservative) best-effort interpretation. 2631 */ 2632 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) && 2633 (status & PB_STATUS_TEMPERATURE)) 2634 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN; 2635 2636 return 0; 2637 } 2638 2639 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev) 2640 { 2641 struct device *dev = rdev_get_dev(rdev); 2642 struct i2c_client *client = to_i2c_client(dev->parent); 2643 struct pmbus_data *data = i2c_get_clientdata(client); 2644 struct pmbus_sensor s = { 2645 .page = rdev_get_id(rdev), 2646 .class = PSC_VOLTAGE_OUT, 2647 .convert = true, 2648 }; 2649 2650 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT); 2651 if (s.data < 0) 2652 return s.data; 2653 2654 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */ 2655 } 2656 2657 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv, 2658 int max_uv, unsigned int *selector) 2659 { 2660 struct device *dev = rdev_get_dev(rdev); 2661 struct i2c_client *client = to_i2c_client(dev->parent); 2662 struct pmbus_data *data = i2c_get_clientdata(client); 2663 struct pmbus_sensor s = { 2664 .page = rdev_get_id(rdev), 2665 .class = PSC_VOLTAGE_OUT, 2666 .convert = true, 2667 .data = -1, 2668 }; 2669 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */ 2670 int low, high; 2671 2672 *selector = 0; 2673 2674 if (pmbus_check_word_register(client, s.page, PMBUS_MFR_VOUT_MIN)) 2675 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_MFR_VOUT_MIN); 2676 if (s.data < 0) { 2677 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_VOUT_MARGIN_LOW); 2678 if (s.data < 0) 2679 return s.data; 2680 } 2681 low = pmbus_reg2data(data, &s); 2682 2683 s.data = -1; 2684 if (pmbus_check_word_register(client, s.page, PMBUS_MFR_VOUT_MAX)) 2685 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_MFR_VOUT_MAX); 2686 if (s.data < 0) { 2687 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_VOUT_MARGIN_HIGH); 2688 if (s.data < 0) 2689 return s.data; 2690 } 2691 high = pmbus_reg2data(data, &s); 2692 2693 /* Make sure we are within margins */ 2694 if (low > val) 2695 val = low; 2696 if (high < val) 2697 val = high; 2698 2699 val = pmbus_data2reg(data, &s, val); 2700 2701 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val); 2702 } 2703 2704 const struct regulator_ops pmbus_regulator_ops = { 2705 .enable = pmbus_regulator_enable, 2706 .disable = pmbus_regulator_disable, 2707 .is_enabled = pmbus_regulator_is_enabled, 2708 .get_error_flags = pmbus_regulator_get_error_flags, 2709 .get_voltage = pmbus_regulator_get_voltage, 2710 .set_voltage = pmbus_regulator_set_voltage, 2711 }; 2712 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS); 2713 2714 static int pmbus_regulator_register(struct pmbus_data *data) 2715 { 2716 struct device *dev = data->dev; 2717 const struct pmbus_driver_info *info = data->info; 2718 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2719 struct regulator_dev *rdev; 2720 int i; 2721 2722 for (i = 0; i < info->num_regulators; i++) { 2723 struct regulator_config config = { }; 2724 2725 config.dev = dev; 2726 config.driver_data = data; 2727 2728 if (pdata && pdata->reg_init_data) 2729 config.init_data = &pdata->reg_init_data[i]; 2730 2731 rdev = devm_regulator_register(dev, &info->reg_desc[i], 2732 &config); 2733 if (IS_ERR(rdev)) { 2734 dev_err(dev, "Failed to register %s regulator\n", 2735 info->reg_desc[i].name); 2736 return PTR_ERR(rdev); 2737 } 2738 } 2739 2740 return 0; 2741 } 2742 #else 2743 static int pmbus_regulator_register(struct pmbus_data *data) 2744 { 2745 return 0; 2746 } 2747 #endif 2748 2749 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 2750 2751 #if IS_ENABLED(CONFIG_DEBUG_FS) 2752 static int pmbus_debugfs_get(void *data, u64 *val) 2753 { 2754 int rc; 2755 struct pmbus_debugfs_entry *entry = data; 2756 2757 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 2758 if (rc < 0) 2759 return rc; 2760 2761 *val = rc; 2762 2763 return 0; 2764 } 2765 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 2766 "0x%02llx\n"); 2767 2768 static int pmbus_debugfs_get_status(void *data, u64 *val) 2769 { 2770 int rc; 2771 struct pmbus_debugfs_entry *entry = data; 2772 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 2773 2774 rc = pdata->read_status(entry->client, entry->page); 2775 if (rc < 0) 2776 return rc; 2777 2778 *val = rc; 2779 2780 return 0; 2781 } 2782 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 2783 NULL, "0x%04llx\n"); 2784 2785 static int pmbus_debugfs_get_pec(void *data, u64 *val) 2786 { 2787 struct i2c_client *client = data; 2788 2789 *val = !!(client->flags & I2C_CLIENT_PEC); 2790 2791 return 0; 2792 } 2793 2794 static int pmbus_debugfs_set_pec(void *data, u64 val) 2795 { 2796 int rc; 2797 struct i2c_client *client = data; 2798 2799 if (!val) { 2800 client->flags &= ~I2C_CLIENT_PEC; 2801 return 0; 2802 } 2803 2804 if (val != 1) 2805 return -EINVAL; 2806 2807 rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2808 if (rc < 0) 2809 return rc; 2810 2811 if (!(rc & PB_CAPABILITY_ERROR_CHECK)) 2812 return -EOPNOTSUPP; 2813 2814 client->flags |= I2C_CLIENT_PEC; 2815 2816 return 0; 2817 } 2818 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec, 2819 pmbus_debugfs_set_pec, "%llu\n"); 2820 2821 static void pmbus_remove_debugfs(void *data) 2822 { 2823 struct dentry *entry = data; 2824 2825 debugfs_remove_recursive(entry); 2826 } 2827 2828 static int pmbus_init_debugfs(struct i2c_client *client, 2829 struct pmbus_data *data) 2830 { 2831 int i, idx = 0; 2832 char name[PMBUS_NAME_SIZE]; 2833 struct pmbus_debugfs_entry *entries; 2834 2835 if (!pmbus_debugfs_dir) 2836 return -ENODEV; 2837 2838 /* 2839 * Create the debugfs directory for this device. Use the hwmon device 2840 * name to avoid conflicts (hwmon numbers are globally unique). 2841 */ 2842 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 2843 pmbus_debugfs_dir); 2844 if (IS_ERR_OR_NULL(data->debugfs)) { 2845 data->debugfs = NULL; 2846 return -ENODEV; 2847 } 2848 2849 /* Allocate the max possible entries we need. */ 2850 entries = devm_kcalloc(data->dev, 2851 data->info->pages * 10, sizeof(*entries), 2852 GFP_KERNEL); 2853 if (!entries) 2854 return -ENOMEM; 2855 2856 debugfs_create_file("pec", 0664, data->debugfs, client, 2857 &pmbus_debugfs_ops_pec); 2858 2859 for (i = 0; i < data->info->pages; ++i) { 2860 /* Check accessibility of status register if it's not page 0 */ 2861 if (!i || pmbus_check_status_register(client, i)) { 2862 /* No need to set reg as we have special read op. */ 2863 entries[idx].client = client; 2864 entries[idx].page = i; 2865 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 2866 debugfs_create_file(name, 0444, data->debugfs, 2867 &entries[idx++], 2868 &pmbus_debugfs_ops_status); 2869 } 2870 2871 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 2872 entries[idx].client = client; 2873 entries[idx].page = i; 2874 entries[idx].reg = PMBUS_STATUS_VOUT; 2875 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 2876 debugfs_create_file(name, 0444, data->debugfs, 2877 &entries[idx++], 2878 &pmbus_debugfs_ops); 2879 } 2880 2881 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 2882 entries[idx].client = client; 2883 entries[idx].page = i; 2884 entries[idx].reg = PMBUS_STATUS_IOUT; 2885 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 2886 debugfs_create_file(name, 0444, data->debugfs, 2887 &entries[idx++], 2888 &pmbus_debugfs_ops); 2889 } 2890 2891 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 2892 entries[idx].client = client; 2893 entries[idx].page = i; 2894 entries[idx].reg = PMBUS_STATUS_INPUT; 2895 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 2896 debugfs_create_file(name, 0444, data->debugfs, 2897 &entries[idx++], 2898 &pmbus_debugfs_ops); 2899 } 2900 2901 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 2902 entries[idx].client = client; 2903 entries[idx].page = i; 2904 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 2905 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 2906 debugfs_create_file(name, 0444, data->debugfs, 2907 &entries[idx++], 2908 &pmbus_debugfs_ops); 2909 } 2910 2911 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 2912 entries[idx].client = client; 2913 entries[idx].page = i; 2914 entries[idx].reg = PMBUS_STATUS_CML; 2915 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 2916 debugfs_create_file(name, 0444, data->debugfs, 2917 &entries[idx++], 2918 &pmbus_debugfs_ops); 2919 } 2920 2921 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 2922 entries[idx].client = client; 2923 entries[idx].page = i; 2924 entries[idx].reg = PMBUS_STATUS_OTHER; 2925 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 2926 debugfs_create_file(name, 0444, data->debugfs, 2927 &entries[idx++], 2928 &pmbus_debugfs_ops); 2929 } 2930 2931 if (pmbus_check_byte_register(client, i, 2932 PMBUS_STATUS_MFR_SPECIFIC)) { 2933 entries[idx].client = client; 2934 entries[idx].page = i; 2935 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 2936 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 2937 debugfs_create_file(name, 0444, data->debugfs, 2938 &entries[idx++], 2939 &pmbus_debugfs_ops); 2940 } 2941 2942 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 2943 entries[idx].client = client; 2944 entries[idx].page = i; 2945 entries[idx].reg = PMBUS_STATUS_FAN_12; 2946 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 2947 debugfs_create_file(name, 0444, data->debugfs, 2948 &entries[idx++], 2949 &pmbus_debugfs_ops); 2950 } 2951 2952 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 2953 entries[idx].client = client; 2954 entries[idx].page = i; 2955 entries[idx].reg = PMBUS_STATUS_FAN_34; 2956 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 2957 debugfs_create_file(name, 0444, data->debugfs, 2958 &entries[idx++], 2959 &pmbus_debugfs_ops); 2960 } 2961 } 2962 2963 return devm_add_action_or_reset(data->dev, 2964 pmbus_remove_debugfs, data->debugfs); 2965 } 2966 #else 2967 static int pmbus_init_debugfs(struct i2c_client *client, 2968 struct pmbus_data *data) 2969 { 2970 return 0; 2971 } 2972 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 2973 2974 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) 2975 { 2976 struct device *dev = &client->dev; 2977 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2978 struct pmbus_data *data; 2979 size_t groups_num = 0; 2980 int ret; 2981 char *name; 2982 2983 if (!info) 2984 return -ENODEV; 2985 2986 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 2987 | I2C_FUNC_SMBUS_BYTE_DATA 2988 | I2C_FUNC_SMBUS_WORD_DATA)) 2989 return -ENODEV; 2990 2991 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 2992 if (!data) 2993 return -ENOMEM; 2994 2995 if (info->groups) 2996 while (info->groups[groups_num]) 2997 groups_num++; 2998 2999 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 3000 GFP_KERNEL); 3001 if (!data->groups) 3002 return -ENOMEM; 3003 3004 i2c_set_clientdata(client, data); 3005 mutex_init(&data->update_lock); 3006 data->dev = dev; 3007 3008 if (pdata) 3009 data->flags = pdata->flags; 3010 data->info = info; 3011 data->currpage = -1; 3012 data->currphase = -1; 3013 3014 ret = pmbus_init_common(client, data, info); 3015 if (ret < 0) 3016 return ret; 3017 3018 ret = pmbus_find_attributes(client, data); 3019 if (ret) 3020 return ret; 3021 3022 /* 3023 * If there are no attributes, something is wrong. 3024 * Bail out instead of trying to register nothing. 3025 */ 3026 if (!data->num_attributes) { 3027 dev_err(dev, "No attributes found\n"); 3028 return -ENODEV; 3029 } 3030 3031 name = devm_kstrdup(dev, client->name, GFP_KERNEL); 3032 if (!name) 3033 return -ENOMEM; 3034 strreplace(name, '-', '_'); 3035 3036 data->groups[0] = &data->group; 3037 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 3038 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, 3039 name, data, data->groups); 3040 if (IS_ERR(data->hwmon_dev)) { 3041 dev_err(dev, "Failed to register hwmon device\n"); 3042 return PTR_ERR(data->hwmon_dev); 3043 } 3044 3045 ret = pmbus_regulator_register(data); 3046 if (ret) 3047 return ret; 3048 3049 ret = pmbus_init_debugfs(client, data); 3050 if (ret) 3051 dev_warn(dev, "Failed to register debugfs\n"); 3052 3053 return 0; 3054 } 3055 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS); 3056 3057 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 3058 { 3059 struct pmbus_data *data = i2c_get_clientdata(client); 3060 3061 return data->debugfs; 3062 } 3063 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS); 3064 3065 static int __init pmbus_core_init(void) 3066 { 3067 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 3068 if (IS_ERR(pmbus_debugfs_dir)) 3069 pmbus_debugfs_dir = NULL; 3070 3071 return 0; 3072 } 3073 3074 static void __exit pmbus_core_exit(void) 3075 { 3076 debugfs_remove_recursive(pmbus_debugfs_dir); 3077 } 3078 3079 module_init(pmbus_core_init); 3080 module_exit(pmbus_core_exit); 3081 3082 MODULE_AUTHOR("Guenter Roeck"); 3083 MODULE_DESCRIPTION("PMBus core driver"); 3084 MODULE_LICENSE("GPL"); 3085