xref: /linux/drivers/hwmon/pmbus/pmbus_core.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/kernel.h>
12 #include <linux/math64.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/i2c.h>
18 #include <linux/hwmon.h>
19 #include <linux/hwmon-sysfs.h>
20 #include <linux/pmbus.h>
21 #include <linux/regulator/driver.h>
22 #include <linux/regulator/machine.h>
23 #include <linux/of.h>
24 #include <linux/thermal.h>
25 #include "pmbus.h"
26 
27 /*
28  * Number of additional attribute pointers to allocate
29  * with each call to krealloc
30  */
31 #define PMBUS_ATTR_ALLOC_SIZE	32
32 #define PMBUS_NAME_SIZE		24
33 
34 struct pmbus_sensor {
35 	struct pmbus_sensor *next;
36 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
37 	struct device_attribute attribute;
38 	u8 page;		/* page number */
39 	u8 phase;		/* phase number, 0xff for all phases */
40 	u16 reg;		/* register */
41 	enum pmbus_sensor_classes class;	/* sensor class */
42 	bool update;		/* runtime sensor update needed */
43 	bool convert;		/* Whether or not to apply linear/vid/direct */
44 	int data;		/* Sensor data.
45 				   Negative if there was a read error */
46 };
47 #define to_pmbus_sensor(_attr) \
48 	container_of(_attr, struct pmbus_sensor, attribute)
49 
50 struct pmbus_boolean {
51 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
52 	struct sensor_device_attribute attribute;
53 	struct pmbus_sensor *s1;
54 	struct pmbus_sensor *s2;
55 };
56 #define to_pmbus_boolean(_attr) \
57 	container_of(_attr, struct pmbus_boolean, attribute)
58 
59 struct pmbus_label {
60 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
61 	struct device_attribute attribute;
62 	char label[PMBUS_NAME_SIZE];	/* label */
63 };
64 #define to_pmbus_label(_attr) \
65 	container_of(_attr, struct pmbus_label, attribute)
66 
67 /* Macros for converting between sensor index and register/page/status mask */
68 
69 #define PB_STATUS_MASK	0xffff
70 #define PB_REG_SHIFT	16
71 #define PB_REG_MASK	0x3ff
72 #define PB_PAGE_SHIFT	26
73 #define PB_PAGE_MASK	0x3f
74 
75 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
76 						 ((reg) << PB_REG_SHIFT) | (mask))
77 
78 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
79 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
80 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
81 
82 struct pmbus_data {
83 	struct device *dev;
84 	struct device *hwmon_dev;
85 	struct regulator_dev **rdevs;
86 
87 	u32 flags;		/* from platform data */
88 
89 	u8 revision;	/* The PMBus revision the device is compliant with */
90 
91 	int exponent[PMBUS_PAGES];
92 				/* linear mode: exponent for output voltages */
93 
94 	const struct pmbus_driver_info *info;
95 
96 	int max_attributes;
97 	int num_attributes;
98 	struct attribute_group group;
99 	const struct attribute_group **groups;
100 	struct dentry *debugfs;		/* debugfs device directory */
101 
102 	struct pmbus_sensor *sensors;
103 
104 	struct mutex update_lock;
105 
106 	bool has_status_word;		/* device uses STATUS_WORD register */
107 	int (*read_status)(struct i2c_client *client, int page);
108 
109 	s16 currpage;	/* current page, -1 for unknown/unset */
110 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
111 
112 	int vout_low[PMBUS_PAGES];	/* voltage low margin */
113 	int vout_high[PMBUS_PAGES];	/* voltage high margin */
114 	ktime_t write_time;		/* Last SMBUS write timestamp */
115 	ktime_t access_time;		/* Last SMBUS access timestamp */
116 };
117 
118 struct pmbus_debugfs_entry {
119 	struct i2c_client *client;
120 	u8 page;
121 	u8 reg;
122 };
123 
124 static const int pmbus_fan_rpm_mask[] = {
125 	PB_FAN_1_RPM,
126 	PB_FAN_2_RPM,
127 	PB_FAN_1_RPM,
128 	PB_FAN_2_RPM,
129 };
130 
131 static const int pmbus_fan_config_registers[] = {
132 	PMBUS_FAN_CONFIG_12,
133 	PMBUS_FAN_CONFIG_12,
134 	PMBUS_FAN_CONFIG_34,
135 	PMBUS_FAN_CONFIG_34
136 };
137 
138 static const int pmbus_fan_command_registers[] = {
139 	PMBUS_FAN_COMMAND_1,
140 	PMBUS_FAN_COMMAND_2,
141 	PMBUS_FAN_COMMAND_3,
142 	PMBUS_FAN_COMMAND_4,
143 };
144 
145 void pmbus_clear_cache(struct i2c_client *client)
146 {
147 	struct pmbus_data *data = i2c_get_clientdata(client);
148 	struct pmbus_sensor *sensor;
149 
150 	for (sensor = data->sensors; sensor; sensor = sensor->next)
151 		sensor->data = -ENODATA;
152 }
153 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
154 
155 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
156 {
157 	struct pmbus_data *data = i2c_get_clientdata(client);
158 	struct pmbus_sensor *sensor;
159 
160 	for (sensor = data->sensors; sensor; sensor = sensor->next)
161 		if (sensor->reg == reg)
162 			sensor->update = update;
163 }
164 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
165 
166 /* Some chips need a delay between accesses. */
167 static void pmbus_wait(struct i2c_client *client)
168 {
169 	struct pmbus_data *data = i2c_get_clientdata(client);
170 	const struct pmbus_driver_info *info = data->info;
171 	s64 delta;
172 
173 	if (info->access_delay) {
174 		delta = ktime_us_delta(ktime_get(), data->access_time);
175 
176 		if (delta < info->access_delay)
177 			fsleep(info->access_delay - delta);
178 	} else if (info->write_delay) {
179 		delta = ktime_us_delta(ktime_get(), data->write_time);
180 
181 		if (delta < info->write_delay)
182 			fsleep(info->write_delay - delta);
183 	}
184 }
185 
186 /* Sets the last accessed timestamp for pmbus_wait */
187 static void pmbus_update_ts(struct i2c_client *client, bool write_op)
188 {
189 	struct pmbus_data *data = i2c_get_clientdata(client);
190 	const struct pmbus_driver_info *info = data->info;
191 
192 	if (info->access_delay) {
193 		data->access_time = ktime_get();
194 	} else if (info->write_delay && write_op) {
195 		data->write_time = ktime_get();
196 	}
197 }
198 
199 int pmbus_set_page(struct i2c_client *client, int page, int phase)
200 {
201 	struct pmbus_data *data = i2c_get_clientdata(client);
202 	int rv;
203 
204 	if (page < 0)
205 		return 0;
206 
207 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
208 	    data->info->pages > 1 && page != data->currpage) {
209 		pmbus_wait(client);
210 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
211 		pmbus_update_ts(client, true);
212 		if (rv < 0)
213 			return rv;
214 
215 		pmbus_wait(client);
216 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
217 		pmbus_update_ts(client, false);
218 		if (rv < 0)
219 			return rv;
220 
221 		if (rv != page)
222 			return -EIO;
223 	}
224 	data->currpage = page;
225 
226 	if (data->info->phases[page] && data->currphase != phase &&
227 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
228 		pmbus_wait(client);
229 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
230 					       phase);
231 		pmbus_update_ts(client, true);
232 		if (rv)
233 			return rv;
234 	}
235 	data->currphase = phase;
236 
237 	return 0;
238 }
239 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
240 
241 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
242 {
243 	int rv;
244 
245 	rv = pmbus_set_page(client, page, 0xff);
246 	if (rv < 0)
247 		return rv;
248 
249 	pmbus_wait(client);
250 	rv = i2c_smbus_write_byte(client, value);
251 	pmbus_update_ts(client, true);
252 
253 	return rv;
254 }
255 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
256 
257 /*
258  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
259  * a device specific mapping function exists and calls it if necessary.
260  */
261 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
262 {
263 	struct pmbus_data *data = i2c_get_clientdata(client);
264 	const struct pmbus_driver_info *info = data->info;
265 	int status;
266 
267 	if (info->write_byte) {
268 		status = info->write_byte(client, page, value);
269 		if (status != -ENODATA)
270 			return status;
271 	}
272 	return pmbus_write_byte(client, page, value);
273 }
274 
275 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
276 			  u16 word)
277 {
278 	int rv;
279 
280 	rv = pmbus_set_page(client, page, 0xff);
281 	if (rv < 0)
282 		return rv;
283 
284 	pmbus_wait(client);
285 	rv = i2c_smbus_write_word_data(client, reg, word);
286 	pmbus_update_ts(client, true);
287 
288 	return rv;
289 }
290 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
291 
292 
293 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
294 				u16 word)
295 {
296 	int bit;
297 	int id;
298 	int rv;
299 
300 	switch (reg) {
301 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
302 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
303 		bit = pmbus_fan_rpm_mask[id];
304 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
305 		break;
306 	default:
307 		rv = -ENXIO;
308 		break;
309 	}
310 
311 	return rv;
312 }
313 
314 /*
315  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
316  * a device specific mapping function exists and calls it if necessary.
317  */
318 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
319 				  u16 word)
320 {
321 	struct pmbus_data *data = i2c_get_clientdata(client);
322 	const struct pmbus_driver_info *info = data->info;
323 	int status;
324 
325 	if (info->write_word_data) {
326 		status = info->write_word_data(client, page, reg, word);
327 		if (status != -ENODATA)
328 			return status;
329 	}
330 
331 	if (reg >= PMBUS_VIRT_BASE)
332 		return pmbus_write_virt_reg(client, page, reg, word);
333 
334 	return pmbus_write_word_data(client, page, reg, word);
335 }
336 
337 /*
338  * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
339  * a device specific mapping function exists and calls it if necessary.
340  */
341 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
342 {
343 	struct pmbus_data *data = i2c_get_clientdata(client);
344 	const struct pmbus_driver_info *info = data->info;
345 	int status;
346 
347 	if (info->write_byte_data) {
348 		status = info->write_byte_data(client, page, reg, value);
349 		if (status != -ENODATA)
350 			return status;
351 	}
352 	return pmbus_write_byte_data(client, page, reg, value);
353 }
354 
355 /*
356  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
357  * a device specific mapping function exists and calls it if necessary.
358  */
359 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
360 {
361 	struct pmbus_data *data = i2c_get_clientdata(client);
362 	const struct pmbus_driver_info *info = data->info;
363 	int status;
364 
365 	if (info->read_byte_data) {
366 		status = info->read_byte_data(client, page, reg);
367 		if (status != -ENODATA)
368 			return status;
369 	}
370 	return pmbus_read_byte_data(client, page, reg);
371 }
372 
373 int pmbus_update_fan(struct i2c_client *client, int page, int id,
374 		     u8 config, u8 mask, u16 command)
375 {
376 	int from;
377 	int rv;
378 	u8 to;
379 
380 	from = _pmbus_read_byte_data(client, page,
381 				    pmbus_fan_config_registers[id]);
382 	if (from < 0)
383 		return from;
384 
385 	to = (from & ~mask) | (config & mask);
386 	if (to != from) {
387 		rv = _pmbus_write_byte_data(client, page,
388 					   pmbus_fan_config_registers[id], to);
389 		if (rv < 0)
390 			return rv;
391 	}
392 
393 	return _pmbus_write_word_data(client, page,
394 				      pmbus_fan_command_registers[id], command);
395 }
396 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
397 
398 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
399 {
400 	int rv;
401 
402 	rv = pmbus_set_page(client, page, phase);
403 	if (rv < 0)
404 		return rv;
405 
406 	pmbus_wait(client);
407 	rv = i2c_smbus_read_word_data(client, reg);
408 	pmbus_update_ts(client, false);
409 
410 	return rv;
411 }
412 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
413 
414 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
415 {
416 	int rv;
417 	int id;
418 
419 	switch (reg) {
420 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
421 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
422 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
423 		break;
424 	default:
425 		rv = -ENXIO;
426 		break;
427 	}
428 
429 	return rv;
430 }
431 
432 /*
433  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
434  * a device specific mapping function exists and calls it if necessary.
435  */
436 static int _pmbus_read_word_data(struct i2c_client *client, int page,
437 				 int phase, int reg)
438 {
439 	struct pmbus_data *data = i2c_get_clientdata(client);
440 	const struct pmbus_driver_info *info = data->info;
441 	int status;
442 
443 	if (info->read_word_data) {
444 		status = info->read_word_data(client, page, phase, reg);
445 		if (status != -ENODATA)
446 			return status;
447 	}
448 
449 	if (reg >= PMBUS_VIRT_BASE)
450 		return pmbus_read_virt_reg(client, page, reg);
451 
452 	return pmbus_read_word_data(client, page, phase, reg);
453 }
454 
455 /* Same as above, but without phase parameter, for use in check functions */
456 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
457 {
458 	return _pmbus_read_word_data(client, page, 0xff, reg);
459 }
460 
461 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
462 {
463 	int rv;
464 
465 	rv = pmbus_set_page(client, page, 0xff);
466 	if (rv < 0)
467 		return rv;
468 
469 	pmbus_wait(client);
470 	rv = i2c_smbus_read_byte_data(client, reg);
471 	pmbus_update_ts(client, false);
472 
473 	return rv;
474 }
475 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
476 
477 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
478 {
479 	int rv;
480 
481 	rv = pmbus_set_page(client, page, 0xff);
482 	if (rv < 0)
483 		return rv;
484 
485 	pmbus_wait(client);
486 	rv = i2c_smbus_write_byte_data(client, reg, value);
487 	pmbus_update_ts(client, true);
488 
489 	return rv;
490 }
491 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
492 
493 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
494 			   u8 mask, u8 value)
495 {
496 	unsigned int tmp;
497 	int rv;
498 
499 	rv = _pmbus_read_byte_data(client, page, reg);
500 	if (rv < 0)
501 		return rv;
502 
503 	tmp = (rv & ~mask) | (value & mask);
504 
505 	if (tmp != rv)
506 		rv = _pmbus_write_byte_data(client, page, reg, tmp);
507 
508 	return rv;
509 }
510 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
511 
512 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
513 				 char *data_buf)
514 {
515 	int rv;
516 
517 	rv = pmbus_set_page(client, page, 0xff);
518 	if (rv < 0)
519 		return rv;
520 
521 	pmbus_wait(client);
522 	rv = i2c_smbus_read_block_data(client, reg, data_buf);
523 	pmbus_update_ts(client, false);
524 
525 	return rv;
526 }
527 
528 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
529 					      int reg)
530 {
531 	struct pmbus_sensor *sensor;
532 
533 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
534 		if (sensor->page == page && sensor->reg == reg)
535 			return sensor;
536 	}
537 
538 	return ERR_PTR(-EINVAL);
539 }
540 
541 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
542 			      enum pmbus_fan_mode mode,
543 			      bool from_cache)
544 {
545 	struct pmbus_data *data = i2c_get_clientdata(client);
546 	bool want_rpm, have_rpm;
547 	struct pmbus_sensor *s;
548 	int config;
549 	int reg;
550 
551 	want_rpm = (mode == rpm);
552 
553 	if (from_cache) {
554 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
555 		s = pmbus_find_sensor(data, page, reg + id);
556 		if (IS_ERR(s))
557 			return PTR_ERR(s);
558 
559 		return s->data;
560 	}
561 
562 	config = _pmbus_read_byte_data(client, page,
563 				      pmbus_fan_config_registers[id]);
564 	if (config < 0)
565 		return config;
566 
567 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
568 	if (want_rpm == have_rpm)
569 		return pmbus_read_word_data(client, page, 0xff,
570 					    pmbus_fan_command_registers[id]);
571 
572 	/* Can't sensibly map between RPM and PWM, just return zero */
573 	return 0;
574 }
575 
576 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
577 			      enum pmbus_fan_mode mode)
578 {
579 	return pmbus_get_fan_rate(client, page, id, mode, false);
580 }
581 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
582 
583 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
584 			      enum pmbus_fan_mode mode)
585 {
586 	return pmbus_get_fan_rate(client, page, id, mode, true);
587 }
588 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
589 
590 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
591 {
592 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
593 }
594 
595 void pmbus_clear_faults(struct i2c_client *client)
596 {
597 	struct pmbus_data *data = i2c_get_clientdata(client);
598 	int i;
599 
600 	for (i = 0; i < data->info->pages; i++)
601 		pmbus_clear_fault_page(client, i);
602 }
603 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
604 
605 static int pmbus_check_status_cml(struct i2c_client *client)
606 {
607 	struct pmbus_data *data = i2c_get_clientdata(client);
608 	int status, status2;
609 
610 	status = data->read_status(client, -1);
611 	if (status < 0 || (status & PB_STATUS_CML)) {
612 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
613 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
614 			return -EIO;
615 	}
616 	return 0;
617 }
618 
619 static bool pmbus_check_register(struct i2c_client *client,
620 				 int (*func)(struct i2c_client *client,
621 					     int page, int reg),
622 				 int page, int reg)
623 {
624 	int rv;
625 	struct pmbus_data *data = i2c_get_clientdata(client);
626 
627 	rv = func(client, page, reg);
628 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
629 		rv = pmbus_check_status_cml(client);
630 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
631 		data->read_status(client, -1);
632 	if (reg < PMBUS_VIRT_BASE)
633 		pmbus_clear_fault_page(client, -1);
634 	return rv >= 0;
635 }
636 
637 static bool pmbus_check_status_register(struct i2c_client *client, int page)
638 {
639 	int status;
640 	struct pmbus_data *data = i2c_get_clientdata(client);
641 
642 	status = data->read_status(client, page);
643 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
644 	    (status & PB_STATUS_CML)) {
645 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
646 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
647 			status = -EIO;
648 	}
649 
650 	pmbus_clear_fault_page(client, -1);
651 	return status >= 0;
652 }
653 
654 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
655 {
656 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
657 }
658 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
659 
660 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
661 {
662 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
663 }
664 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
665 
666 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
667 						      int page, int reg)
668 {
669 	int rv;
670 	struct pmbus_data *data = i2c_get_clientdata(client);
671 	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
672 
673 	rv = pmbus_read_block_data(client, page, reg, data_buf);
674 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
675 		rv = pmbus_check_status_cml(client);
676 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
677 		data->read_status(client, -1);
678 	pmbus_clear_fault_page(client, -1);
679 	return rv >= 0;
680 }
681 
682 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
683 {
684 	struct pmbus_data *data = i2c_get_clientdata(client);
685 
686 	return data->info;
687 }
688 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
689 
690 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
691 {
692 	struct pmbus_data *data = i2c_get_clientdata(client);
693 	int status;
694 
695 	switch (reg) {
696 	case PMBUS_STATUS_WORD:
697 		status = data->read_status(client, page);
698 		break;
699 	default:
700 		status = _pmbus_read_byte_data(client, page, reg);
701 		break;
702 	}
703 	if (status < 0)
704 		pmbus_clear_faults(client);
705 	return status;
706 }
707 
708 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
709 {
710 	if (sensor->data < 0 || sensor->update)
711 		sensor->data = _pmbus_read_word_data(client, sensor->page,
712 						     sensor->phase, sensor->reg);
713 }
714 
715 /*
716  * Convert ieee754 sensor values to milli- or micro-units
717  * depending on sensor type.
718  *
719  * ieee754 data format:
720  *	bit 15:		sign
721  *	bit 10..14:	exponent
722  *	bit 0..9:	mantissa
723  * exponent=0:
724  *	v=(−1)^signbit * 2^(−14) * 0.significantbits
725  * exponent=1..30:
726  *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
727  * exponent=31:
728  *	v=NaN
729  *
730  * Add the number mantissa bits into the calculations for simplicity.
731  * To do that, add '10' to the exponent. By doing that, we can just add
732  * 0x400 to normal values and get the expected result.
733  */
734 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
735 				   struct pmbus_sensor *sensor)
736 {
737 	int exponent;
738 	bool sign;
739 	long val;
740 
741 	/* only support half precision for now */
742 	sign = sensor->data & 0x8000;
743 	exponent = (sensor->data >> 10) & 0x1f;
744 	val = sensor->data & 0x3ff;
745 
746 	if (exponent == 0) {			/* subnormal */
747 		exponent = -(14 + 10);
748 	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
749 		exponent = 0;
750 		val = 65504;
751 	} else {
752 		exponent -= (15 + 10);		/* normal */
753 		val |= 0x400;
754 	}
755 
756 	/* scale result to milli-units for all sensors except fans */
757 	if (sensor->class != PSC_FAN)
758 		val = val * 1000L;
759 
760 	/* scale result to micro-units for power sensors */
761 	if (sensor->class == PSC_POWER)
762 		val = val * 1000L;
763 
764 	if (exponent >= 0)
765 		val <<= exponent;
766 	else
767 		val >>= -exponent;
768 
769 	if (sign)
770 		val = -val;
771 
772 	return val;
773 }
774 
775 /*
776  * Convert linear sensor values to milli- or micro-units
777  * depending on sensor type.
778  */
779 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
780 				 struct pmbus_sensor *sensor)
781 {
782 	s16 exponent;
783 	s32 mantissa;
784 	s64 val;
785 
786 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
787 		exponent = data->exponent[sensor->page];
788 		mantissa = (u16) sensor->data;
789 	} else {				/* LINEAR11 */
790 		exponent = ((s16)sensor->data) >> 11;
791 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
792 	}
793 
794 	val = mantissa;
795 
796 	/* scale result to milli-units for all sensors except fans */
797 	if (sensor->class != PSC_FAN)
798 		val = val * 1000LL;
799 
800 	/* scale result to micro-units for power sensors */
801 	if (sensor->class == PSC_POWER)
802 		val = val * 1000LL;
803 
804 	if (exponent >= 0)
805 		val <<= exponent;
806 	else
807 		val >>= -exponent;
808 
809 	return val;
810 }
811 
812 /*
813  * Convert direct sensor values to milli- or micro-units
814  * depending on sensor type.
815  */
816 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
817 				 struct pmbus_sensor *sensor)
818 {
819 	s64 b, val = (s16)sensor->data;
820 	s32 m, R;
821 
822 	m = data->info->m[sensor->class];
823 	b = data->info->b[sensor->class];
824 	R = data->info->R[sensor->class];
825 
826 	if (m == 0)
827 		return 0;
828 
829 	/* X = 1/m * (Y * 10^-R - b) */
830 	R = -R;
831 	/* scale result to milli-units for everything but fans */
832 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
833 		R += 3;
834 		b *= 1000;
835 	}
836 
837 	/* scale result to micro-units for power sensors */
838 	if (sensor->class == PSC_POWER) {
839 		R += 3;
840 		b *= 1000;
841 	}
842 
843 	while (R > 0) {
844 		val *= 10;
845 		R--;
846 	}
847 	while (R < 0) {
848 		val = div_s64(val + 5LL, 10L);  /* round closest */
849 		R++;
850 	}
851 
852 	val = div_s64(val - b, m);
853 	return val;
854 }
855 
856 /*
857  * Convert VID sensor values to milli- or micro-units
858  * depending on sensor type.
859  */
860 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
861 			      struct pmbus_sensor *sensor)
862 {
863 	long val = sensor->data;
864 	long rv = 0;
865 
866 	switch (data->info->vrm_version[sensor->page]) {
867 	case vr11:
868 		if (val >= 0x02 && val <= 0xb2)
869 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
870 		break;
871 	case vr12:
872 		if (val >= 0x01)
873 			rv = 250 + (val - 1) * 5;
874 		break;
875 	case vr13:
876 		if (val >= 0x01)
877 			rv = 500 + (val - 1) * 10;
878 		break;
879 	case imvp9:
880 		if (val >= 0x01)
881 			rv = 200 + (val - 1) * 10;
882 		break;
883 	case amd625mv:
884 		if (val >= 0x0 && val <= 0xd8)
885 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
886 		break;
887 	}
888 	return rv;
889 }
890 
891 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
892 {
893 	s64 val;
894 
895 	if (!sensor->convert)
896 		return sensor->data;
897 
898 	switch (data->info->format[sensor->class]) {
899 	case direct:
900 		val = pmbus_reg2data_direct(data, sensor);
901 		break;
902 	case vid:
903 		val = pmbus_reg2data_vid(data, sensor);
904 		break;
905 	case ieee754:
906 		val = pmbus_reg2data_ieee754(data, sensor);
907 		break;
908 	case linear:
909 	default:
910 		val = pmbus_reg2data_linear(data, sensor);
911 		break;
912 	}
913 	return val;
914 }
915 
916 #define MAX_IEEE_MANTISSA	(0x7ff * 1000)
917 #define MIN_IEEE_MANTISSA	(0x400 * 1000)
918 
919 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
920 				  struct pmbus_sensor *sensor, long val)
921 {
922 	u16 exponent = (15 + 10);
923 	long mantissa;
924 	u16 sign = 0;
925 
926 	/* simple case */
927 	if (val == 0)
928 		return 0;
929 
930 	if (val < 0) {
931 		sign = 0x8000;
932 		val = -val;
933 	}
934 
935 	/* Power is in uW. Convert to mW before converting. */
936 	if (sensor->class == PSC_POWER)
937 		val = DIV_ROUND_CLOSEST(val, 1000L);
938 
939 	/*
940 	 * For simplicity, convert fan data to milli-units
941 	 * before calculating the exponent.
942 	 */
943 	if (sensor->class == PSC_FAN)
944 		val = val * 1000;
945 
946 	/* Reduce large mantissa until it fits into 10 bit */
947 	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
948 		exponent++;
949 		val >>= 1;
950 	}
951 	/*
952 	 * Increase small mantissa to generate valid 'normal'
953 	 * number
954 	 */
955 	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
956 		exponent--;
957 		val <<= 1;
958 	}
959 
960 	/* Convert mantissa from milli-units to units */
961 	mantissa = DIV_ROUND_CLOSEST(val, 1000);
962 
963 	/*
964 	 * Ensure that the resulting number is within range.
965 	 * Valid range is 0x400..0x7ff, where bit 10 reflects
966 	 * the implied high bit in normalized ieee754 numbers.
967 	 * Set the range to 0x400..0x7ff to reflect this.
968 	 * The upper bit is then removed by the mask against
969 	 * 0x3ff in the final assignment.
970 	 */
971 	if (mantissa > 0x7ff)
972 		mantissa = 0x7ff;
973 	else if (mantissa < 0x400)
974 		mantissa = 0x400;
975 
976 	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
977 	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
978 }
979 
980 #define MAX_LIN_MANTISSA	(1023 * 1000)
981 #define MIN_LIN_MANTISSA	(511 * 1000)
982 
983 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
984 				 struct pmbus_sensor *sensor, s64 val)
985 {
986 	s16 exponent = 0, mantissa;
987 	bool negative = false;
988 
989 	/* simple case */
990 	if (val == 0)
991 		return 0;
992 
993 	if (sensor->class == PSC_VOLTAGE_OUT) {
994 		/* LINEAR16 does not support negative voltages */
995 		if (val < 0)
996 			return 0;
997 
998 		/*
999 		 * For a static exponents, we don't have a choice
1000 		 * but to adjust the value to it.
1001 		 */
1002 		if (data->exponent[sensor->page] < 0)
1003 			val <<= -data->exponent[sensor->page];
1004 		else
1005 			val >>= data->exponent[sensor->page];
1006 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1007 		return clamp_val(val, 0, 0xffff);
1008 	}
1009 
1010 	if (val < 0) {
1011 		negative = true;
1012 		val = -val;
1013 	}
1014 
1015 	/* Power is in uW. Convert to mW before converting. */
1016 	if (sensor->class == PSC_POWER)
1017 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1018 
1019 	/*
1020 	 * For simplicity, convert fan data to milli-units
1021 	 * before calculating the exponent.
1022 	 */
1023 	if (sensor->class == PSC_FAN)
1024 		val = val * 1000LL;
1025 
1026 	/* Reduce large mantissa until it fits into 10 bit */
1027 	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1028 		exponent++;
1029 		val >>= 1;
1030 	}
1031 	/* Increase small mantissa to improve precision */
1032 	while (val < MIN_LIN_MANTISSA && exponent > -15) {
1033 		exponent--;
1034 		val <<= 1;
1035 	}
1036 
1037 	/* Convert mantissa from milli-units to units */
1038 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1039 
1040 	/* restore sign */
1041 	if (negative)
1042 		mantissa = -mantissa;
1043 
1044 	/* Convert to 5 bit exponent, 11 bit mantissa */
1045 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1046 }
1047 
1048 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1049 				 struct pmbus_sensor *sensor, s64 val)
1050 {
1051 	s64 b;
1052 	s32 m, R;
1053 
1054 	m = data->info->m[sensor->class];
1055 	b = data->info->b[sensor->class];
1056 	R = data->info->R[sensor->class];
1057 
1058 	/* Power is in uW. Adjust R and b. */
1059 	if (sensor->class == PSC_POWER) {
1060 		R -= 3;
1061 		b *= 1000;
1062 	}
1063 
1064 	/* Calculate Y = (m * X + b) * 10^R */
1065 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1066 		R -= 3;		/* Adjust R and b for data in milli-units */
1067 		b *= 1000;
1068 	}
1069 	val = val * m + b;
1070 
1071 	while (R > 0) {
1072 		val *= 10;
1073 		R--;
1074 	}
1075 	while (R < 0) {
1076 		val = div_s64(val + 5LL, 10L);  /* round closest */
1077 		R++;
1078 	}
1079 
1080 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1081 }
1082 
1083 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1084 			      struct pmbus_sensor *sensor, s64 val)
1085 {
1086 	val = clamp_val(val, 500, 1600);
1087 
1088 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1089 }
1090 
1091 static u16 pmbus_data2reg(struct pmbus_data *data,
1092 			  struct pmbus_sensor *sensor, s64 val)
1093 {
1094 	u16 regval;
1095 
1096 	if (!sensor->convert)
1097 		return val;
1098 
1099 	switch (data->info->format[sensor->class]) {
1100 	case direct:
1101 		regval = pmbus_data2reg_direct(data, sensor, val);
1102 		break;
1103 	case vid:
1104 		regval = pmbus_data2reg_vid(data, sensor, val);
1105 		break;
1106 	case ieee754:
1107 		regval = pmbus_data2reg_ieee754(data, sensor, val);
1108 		break;
1109 	case linear:
1110 	default:
1111 		regval = pmbus_data2reg_linear(data, sensor, val);
1112 		break;
1113 	}
1114 	return regval;
1115 }
1116 
1117 /*
1118  * Return boolean calculated from converted data.
1119  * <index> defines a status register index and mask.
1120  * The mask is in the lower 8 bits, the register index is in bits 8..23.
1121  *
1122  * The associated pmbus_boolean structure contains optional pointers to two
1123  * sensor attributes. If specified, those attributes are compared against each
1124  * other to determine if a limit has been exceeded.
1125  *
1126  * If the sensor attribute pointers are NULL, the function returns true if
1127  * (status[reg] & mask) is true.
1128  *
1129  * If sensor attribute pointers are provided, a comparison against a specified
1130  * limit has to be performed to determine the boolean result.
1131  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1132  * sensor values referenced by sensor attribute pointers s1 and s2).
1133  *
1134  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1135  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1136  *
1137  * If a negative value is stored in any of the referenced registers, this value
1138  * reflects an error code which will be returned.
1139  */
1140 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1141 			     int index)
1142 {
1143 	struct pmbus_data *data = i2c_get_clientdata(client);
1144 	struct pmbus_sensor *s1 = b->s1;
1145 	struct pmbus_sensor *s2 = b->s2;
1146 	u16 mask = pb_index_to_mask(index);
1147 	u8 page = pb_index_to_page(index);
1148 	u16 reg = pb_index_to_reg(index);
1149 	int ret, status;
1150 	u16 regval;
1151 
1152 	mutex_lock(&data->update_lock);
1153 	status = pmbus_get_status(client, page, reg);
1154 	if (status < 0) {
1155 		ret = status;
1156 		goto unlock;
1157 	}
1158 
1159 	if (s1)
1160 		pmbus_update_sensor_data(client, s1);
1161 	if (s2)
1162 		pmbus_update_sensor_data(client, s2);
1163 
1164 	regval = status & mask;
1165 	if (regval) {
1166 		if (data->revision >= PMBUS_REV_12) {
1167 			ret = _pmbus_write_byte_data(client, page, reg, regval);
1168 			if (ret)
1169 				goto unlock;
1170 		} else {
1171 			pmbus_clear_fault_page(client, page);
1172 		}
1173 
1174 	}
1175 	if (s1 && s2) {
1176 		s64 v1, v2;
1177 
1178 		if (s1->data < 0) {
1179 			ret = s1->data;
1180 			goto unlock;
1181 		}
1182 		if (s2->data < 0) {
1183 			ret = s2->data;
1184 			goto unlock;
1185 		}
1186 
1187 		v1 = pmbus_reg2data(data, s1);
1188 		v2 = pmbus_reg2data(data, s2);
1189 		ret = !!(regval && v1 >= v2);
1190 	} else {
1191 		ret = !!regval;
1192 	}
1193 unlock:
1194 	mutex_unlock(&data->update_lock);
1195 	return ret;
1196 }
1197 
1198 static ssize_t pmbus_show_boolean(struct device *dev,
1199 				  struct device_attribute *da, char *buf)
1200 {
1201 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1202 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1203 	struct i2c_client *client = to_i2c_client(dev->parent);
1204 	int val;
1205 
1206 	val = pmbus_get_boolean(client, boolean, attr->index);
1207 	if (val < 0)
1208 		return val;
1209 	return sysfs_emit(buf, "%d\n", val);
1210 }
1211 
1212 static ssize_t pmbus_show_sensor(struct device *dev,
1213 				 struct device_attribute *devattr, char *buf)
1214 {
1215 	struct i2c_client *client = to_i2c_client(dev->parent);
1216 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1217 	struct pmbus_data *data = i2c_get_clientdata(client);
1218 	ssize_t ret;
1219 
1220 	mutex_lock(&data->update_lock);
1221 	pmbus_update_sensor_data(client, sensor);
1222 	if (sensor->data < 0)
1223 		ret = sensor->data;
1224 	else
1225 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1226 	mutex_unlock(&data->update_lock);
1227 	return ret;
1228 }
1229 
1230 static ssize_t pmbus_set_sensor(struct device *dev,
1231 				struct device_attribute *devattr,
1232 				const char *buf, size_t count)
1233 {
1234 	struct i2c_client *client = to_i2c_client(dev->parent);
1235 	struct pmbus_data *data = i2c_get_clientdata(client);
1236 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1237 	ssize_t rv = count;
1238 	s64 val;
1239 	int ret;
1240 	u16 regval;
1241 
1242 	if (kstrtos64(buf, 10, &val) < 0)
1243 		return -EINVAL;
1244 
1245 	mutex_lock(&data->update_lock);
1246 	regval = pmbus_data2reg(data, sensor, val);
1247 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1248 	if (ret < 0)
1249 		rv = ret;
1250 	else
1251 		sensor->data = -ENODATA;
1252 	mutex_unlock(&data->update_lock);
1253 	return rv;
1254 }
1255 
1256 static ssize_t pmbus_show_label(struct device *dev,
1257 				struct device_attribute *da, char *buf)
1258 {
1259 	struct pmbus_label *label = to_pmbus_label(da);
1260 
1261 	return sysfs_emit(buf, "%s\n", label->label);
1262 }
1263 
1264 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1265 {
1266 	if (data->num_attributes >= data->max_attributes - 1) {
1267 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1268 		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1269 						      new_max_attrs, sizeof(void *),
1270 						      GFP_KERNEL);
1271 		if (!new_attrs)
1272 			return -ENOMEM;
1273 		data->group.attrs = new_attrs;
1274 		data->max_attributes = new_max_attrs;
1275 	}
1276 
1277 	data->group.attrs[data->num_attributes++] = attr;
1278 	data->group.attrs[data->num_attributes] = NULL;
1279 	return 0;
1280 }
1281 
1282 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1283 				const char *name,
1284 				umode_t mode,
1285 				ssize_t (*show)(struct device *dev,
1286 						struct device_attribute *attr,
1287 						char *buf),
1288 				ssize_t (*store)(struct device *dev,
1289 						 struct device_attribute *attr,
1290 						 const char *buf, size_t count))
1291 {
1292 	sysfs_attr_init(&dev_attr->attr);
1293 	dev_attr->attr.name = name;
1294 	dev_attr->attr.mode = mode;
1295 	dev_attr->show = show;
1296 	dev_attr->store = store;
1297 }
1298 
1299 static void pmbus_attr_init(struct sensor_device_attribute *a,
1300 			    const char *name,
1301 			    umode_t mode,
1302 			    ssize_t (*show)(struct device *dev,
1303 					    struct device_attribute *attr,
1304 					    char *buf),
1305 			    ssize_t (*store)(struct device *dev,
1306 					     struct device_attribute *attr,
1307 					     const char *buf, size_t count),
1308 			    int idx)
1309 {
1310 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1311 	a->index = idx;
1312 }
1313 
1314 static int pmbus_add_boolean(struct pmbus_data *data,
1315 			     const char *name, const char *type, int seq,
1316 			     struct pmbus_sensor *s1,
1317 			     struct pmbus_sensor *s2,
1318 			     u8 page, u16 reg, u16 mask)
1319 {
1320 	struct pmbus_boolean *boolean;
1321 	struct sensor_device_attribute *a;
1322 
1323 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1324 		return -EINVAL;
1325 
1326 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1327 	if (!boolean)
1328 		return -ENOMEM;
1329 
1330 	a = &boolean->attribute;
1331 
1332 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1333 		 name, seq, type);
1334 	boolean->s1 = s1;
1335 	boolean->s2 = s2;
1336 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1337 			pb_reg_to_index(page, reg, mask));
1338 
1339 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1340 }
1341 
1342 /* of thermal for pmbus temperature sensors */
1343 struct pmbus_thermal_data {
1344 	struct pmbus_data *pmbus_data;
1345 	struct pmbus_sensor *sensor;
1346 };
1347 
1348 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1349 {
1350 	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1351 	struct pmbus_sensor *sensor = tdata->sensor;
1352 	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1353 	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1354 	struct device *dev = pmbus_data->hwmon_dev;
1355 	int ret = 0;
1356 
1357 	if (!dev) {
1358 		/* May not even get to hwmon yet */
1359 		*temp = 0;
1360 		return 0;
1361 	}
1362 
1363 	mutex_lock(&pmbus_data->update_lock);
1364 	pmbus_update_sensor_data(client, sensor);
1365 	if (sensor->data < 0)
1366 		ret = sensor->data;
1367 	else
1368 		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1369 	mutex_unlock(&pmbus_data->update_lock);
1370 
1371 	return ret;
1372 }
1373 
1374 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1375 	.get_temp = pmbus_thermal_get_temp,
1376 };
1377 
1378 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1379 				    struct pmbus_sensor *sensor, int index)
1380 {
1381 	struct device *dev = pmbus_data->dev;
1382 	struct pmbus_thermal_data *tdata;
1383 	struct thermal_zone_device *tzd;
1384 
1385 	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1386 	if (!tdata)
1387 		return -ENOMEM;
1388 
1389 	tdata->sensor = sensor;
1390 	tdata->pmbus_data = pmbus_data;
1391 
1392 	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1393 					    &pmbus_thermal_ops);
1394 	/*
1395 	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1396 	 * so ignore that error but forward any other error.
1397 	 */
1398 	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1399 		return PTR_ERR(tzd);
1400 
1401 	return 0;
1402 }
1403 
1404 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1405 					     const char *name, const char *type,
1406 					     int seq, int page, int phase,
1407 					     int reg,
1408 					     enum pmbus_sensor_classes class,
1409 					     bool update, bool readonly,
1410 					     bool convert)
1411 {
1412 	struct pmbus_sensor *sensor;
1413 	struct device_attribute *a;
1414 
1415 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1416 	if (!sensor)
1417 		return NULL;
1418 	a = &sensor->attribute;
1419 
1420 	if (type)
1421 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1422 			 name, seq, type);
1423 	else
1424 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1425 			 name, seq);
1426 
1427 	if (data->flags & PMBUS_WRITE_PROTECTED)
1428 		readonly = true;
1429 
1430 	sensor->page = page;
1431 	sensor->phase = phase;
1432 	sensor->reg = reg;
1433 	sensor->class = class;
1434 	sensor->update = update;
1435 	sensor->convert = convert;
1436 	sensor->data = -ENODATA;
1437 	pmbus_dev_attr_init(a, sensor->name,
1438 			    readonly ? 0444 : 0644,
1439 			    pmbus_show_sensor, pmbus_set_sensor);
1440 
1441 	if (pmbus_add_attribute(data, &a->attr))
1442 		return NULL;
1443 
1444 	sensor->next = data->sensors;
1445 	data->sensors = sensor;
1446 
1447 	/* temperature sensors with _input values are registered with thermal */
1448 	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1449 		pmbus_thermal_add_sensor(data, sensor, seq);
1450 
1451 	return sensor;
1452 }
1453 
1454 static int pmbus_add_label(struct pmbus_data *data,
1455 			   const char *name, int seq,
1456 			   const char *lstring, int index, int phase)
1457 {
1458 	struct pmbus_label *label;
1459 	struct device_attribute *a;
1460 
1461 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1462 	if (!label)
1463 		return -ENOMEM;
1464 
1465 	a = &label->attribute;
1466 
1467 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1468 	if (!index) {
1469 		if (phase == 0xff)
1470 			strncpy(label->label, lstring,
1471 				sizeof(label->label) - 1);
1472 		else
1473 			snprintf(label->label, sizeof(label->label), "%s.%d",
1474 				 lstring, phase);
1475 	} else {
1476 		if (phase == 0xff)
1477 			snprintf(label->label, sizeof(label->label), "%s%d",
1478 				 lstring, index);
1479 		else
1480 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1481 				 lstring, index, phase);
1482 	}
1483 
1484 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1485 	return pmbus_add_attribute(data, &a->attr);
1486 }
1487 
1488 /*
1489  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1490  */
1491 
1492 /*
1493  * The pmbus_limit_attr structure describes a single limit attribute
1494  * and its associated alarm attribute.
1495  */
1496 struct pmbus_limit_attr {
1497 	u16 reg;		/* Limit register */
1498 	u16 sbit;		/* Alarm attribute status bit */
1499 	bool update;		/* True if register needs updates */
1500 	bool low;		/* True if low limit; for limits with compare
1501 				   functions only */
1502 	const char *attr;	/* Attribute name */
1503 	const char *alarm;	/* Alarm attribute name */
1504 };
1505 
1506 /*
1507  * The pmbus_sensor_attr structure describes one sensor attribute. This
1508  * description includes a reference to the associated limit attributes.
1509  */
1510 struct pmbus_sensor_attr {
1511 	u16 reg;			/* sensor register */
1512 	u16 gbit;			/* generic status bit */
1513 	u8 nlimit;			/* # of limit registers */
1514 	enum pmbus_sensor_classes class;/* sensor class */
1515 	const char *label;		/* sensor label */
1516 	bool paged;			/* true if paged sensor */
1517 	bool update;			/* true if update needed */
1518 	bool compare;			/* true if compare function needed */
1519 	u32 func;			/* sensor mask */
1520 	u32 sfunc;			/* sensor status mask */
1521 	int sreg;			/* status register */
1522 	const struct pmbus_limit_attr *limit;/* limit registers */
1523 };
1524 
1525 /*
1526  * Add a set of limit attributes and, if supported, the associated
1527  * alarm attributes.
1528  * returns 0 if no alarm register found, 1 if an alarm register was found,
1529  * < 0 on errors.
1530  */
1531 static int pmbus_add_limit_attrs(struct i2c_client *client,
1532 				 struct pmbus_data *data,
1533 				 const struct pmbus_driver_info *info,
1534 				 const char *name, int index, int page,
1535 				 struct pmbus_sensor *base,
1536 				 const struct pmbus_sensor_attr *attr)
1537 {
1538 	const struct pmbus_limit_attr *l = attr->limit;
1539 	int nlimit = attr->nlimit;
1540 	int have_alarm = 0;
1541 	int i, ret;
1542 	struct pmbus_sensor *curr;
1543 
1544 	for (i = 0; i < nlimit; i++) {
1545 		if (pmbus_check_word_register(client, page, l->reg)) {
1546 			curr = pmbus_add_sensor(data, name, l->attr, index,
1547 						page, 0xff, l->reg, attr->class,
1548 						attr->update || l->update,
1549 						false, true);
1550 			if (!curr)
1551 				return -ENOMEM;
1552 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1553 				ret = pmbus_add_boolean(data, name,
1554 					l->alarm, index,
1555 					attr->compare ?  l->low ? curr : base
1556 						      : NULL,
1557 					attr->compare ? l->low ? base : curr
1558 						      : NULL,
1559 					page, attr->sreg, l->sbit);
1560 				if (ret)
1561 					return ret;
1562 				have_alarm = 1;
1563 			}
1564 		}
1565 		l++;
1566 	}
1567 	return have_alarm;
1568 }
1569 
1570 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1571 				      struct pmbus_data *data,
1572 				      const struct pmbus_driver_info *info,
1573 				      const char *name,
1574 				      int index, int page, int phase,
1575 				      const struct pmbus_sensor_attr *attr,
1576 				      bool paged)
1577 {
1578 	struct pmbus_sensor *base;
1579 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1580 	int ret;
1581 
1582 	if (attr->label) {
1583 		ret = pmbus_add_label(data, name, index, attr->label,
1584 				      paged ? page + 1 : 0, phase);
1585 		if (ret)
1586 			return ret;
1587 	}
1588 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1589 				attr->reg, attr->class, true, true, true);
1590 	if (!base)
1591 		return -ENOMEM;
1592 	/* No limit and alarm attributes for phase specific sensors */
1593 	if (attr->sfunc && phase == 0xff) {
1594 		ret = pmbus_add_limit_attrs(client, data, info, name,
1595 					    index, page, base, attr);
1596 		if (ret < 0)
1597 			return ret;
1598 		/*
1599 		 * Add generic alarm attribute only if there are no individual
1600 		 * alarm attributes, if there is a global alarm bit, and if
1601 		 * the generic status register (word or byte, depending on
1602 		 * which global bit is set) for this page is accessible.
1603 		 */
1604 		if (!ret && attr->gbit &&
1605 		    (!upper || data->has_status_word) &&
1606 		    pmbus_check_status_register(client, page)) {
1607 			ret = pmbus_add_boolean(data, name, "alarm", index,
1608 						NULL, NULL,
1609 						page, PMBUS_STATUS_WORD,
1610 						attr->gbit);
1611 			if (ret)
1612 				return ret;
1613 		}
1614 	}
1615 	return 0;
1616 }
1617 
1618 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1619 				  const struct pmbus_sensor_attr *attr)
1620 {
1621 	int p;
1622 
1623 	if (attr->paged)
1624 		return true;
1625 
1626 	/*
1627 	 * Some attributes may be present on more than one page despite
1628 	 * not being marked with the paged attribute. If that is the case,
1629 	 * then treat the sensor as being paged and add the page suffix to the
1630 	 * attribute name.
1631 	 * We don't just add the paged attribute to all such attributes, in
1632 	 * order to maintain the un-suffixed labels in the case where the
1633 	 * attribute is only on page 0.
1634 	 */
1635 	for (p = 1; p < info->pages; p++) {
1636 		if (info->func[p] & attr->func)
1637 			return true;
1638 	}
1639 	return false;
1640 }
1641 
1642 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1643 				  struct pmbus_data *data,
1644 				  const char *name,
1645 				  const struct pmbus_sensor_attr *attrs,
1646 				  int nattrs)
1647 {
1648 	const struct pmbus_driver_info *info = data->info;
1649 	int index, i;
1650 	int ret;
1651 
1652 	index = 1;
1653 	for (i = 0; i < nattrs; i++) {
1654 		int page, pages;
1655 		bool paged = pmbus_sensor_is_paged(info, attrs);
1656 
1657 		pages = paged ? info->pages : 1;
1658 		for (page = 0; page < pages; page++) {
1659 			if (info->func[page] & attrs->func) {
1660 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1661 								 name, index, page,
1662 								 0xff, attrs, paged);
1663 				if (ret)
1664 					return ret;
1665 				index++;
1666 			}
1667 			if (info->phases[page]) {
1668 				int phase;
1669 
1670 				for (phase = 0; phase < info->phases[page];
1671 				     phase++) {
1672 					if (!(info->pfunc[phase] & attrs->func))
1673 						continue;
1674 					ret = pmbus_add_sensor_attrs_one(client,
1675 						data, info, name, index, page,
1676 						phase, attrs, paged);
1677 					if (ret)
1678 						return ret;
1679 					index++;
1680 				}
1681 			}
1682 		}
1683 		attrs++;
1684 	}
1685 	return 0;
1686 }
1687 
1688 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1689 	{
1690 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1691 		.attr = "min",
1692 		.alarm = "min_alarm",
1693 		.sbit = PB_VOLTAGE_UV_WARNING,
1694 	}, {
1695 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1696 		.attr = "lcrit",
1697 		.alarm = "lcrit_alarm",
1698 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1699 	}, {
1700 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1701 		.attr = "max",
1702 		.alarm = "max_alarm",
1703 		.sbit = PB_VOLTAGE_OV_WARNING,
1704 	}, {
1705 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1706 		.attr = "crit",
1707 		.alarm = "crit_alarm",
1708 		.sbit = PB_VOLTAGE_OV_FAULT,
1709 	}, {
1710 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1711 		.update = true,
1712 		.attr = "average",
1713 	}, {
1714 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1715 		.update = true,
1716 		.attr = "lowest",
1717 	}, {
1718 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1719 		.update = true,
1720 		.attr = "highest",
1721 	}, {
1722 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1723 		.attr = "reset_history",
1724 	}, {
1725 		.reg = PMBUS_MFR_VIN_MIN,
1726 		.attr = "rated_min",
1727 	}, {
1728 		.reg = PMBUS_MFR_VIN_MAX,
1729 		.attr = "rated_max",
1730 	},
1731 };
1732 
1733 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1734 	{
1735 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1736 		.attr = "min",
1737 		.alarm = "min_alarm",
1738 		.sbit = PB_VOLTAGE_UV_WARNING,
1739 	}, {
1740 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1741 		.attr = "lcrit",
1742 		.alarm = "lcrit_alarm",
1743 		.sbit = PB_VOLTAGE_UV_FAULT,
1744 	}, {
1745 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1746 		.attr = "max",
1747 		.alarm = "max_alarm",
1748 		.sbit = PB_VOLTAGE_OV_WARNING,
1749 	}, {
1750 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1751 		.attr = "crit",
1752 		.alarm = "crit_alarm",
1753 		.sbit = PB_VOLTAGE_OV_FAULT,
1754 	}
1755 };
1756 
1757 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1758 	{
1759 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1760 		.attr = "min",
1761 		.alarm = "min_alarm",
1762 		.sbit = PB_VOLTAGE_UV_WARNING,
1763 	}, {
1764 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1765 		.attr = "lcrit",
1766 		.alarm = "lcrit_alarm",
1767 		.sbit = PB_VOLTAGE_UV_FAULT,
1768 	}, {
1769 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1770 		.attr = "max",
1771 		.alarm = "max_alarm",
1772 		.sbit = PB_VOLTAGE_OV_WARNING,
1773 	}, {
1774 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1775 		.attr = "crit",
1776 		.alarm = "crit_alarm",
1777 		.sbit = PB_VOLTAGE_OV_FAULT,
1778 	}, {
1779 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1780 		.update = true,
1781 		.attr = "average",
1782 	}, {
1783 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1784 		.update = true,
1785 		.attr = "lowest",
1786 	}, {
1787 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1788 		.update = true,
1789 		.attr = "highest",
1790 	}, {
1791 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1792 		.attr = "reset_history",
1793 	}, {
1794 		.reg = PMBUS_MFR_VOUT_MIN,
1795 		.attr = "rated_min",
1796 	}, {
1797 		.reg = PMBUS_MFR_VOUT_MAX,
1798 		.attr = "rated_max",
1799 	},
1800 };
1801 
1802 static const struct pmbus_sensor_attr voltage_attributes[] = {
1803 	{
1804 		.reg = PMBUS_READ_VIN,
1805 		.class = PSC_VOLTAGE_IN,
1806 		.label = "vin",
1807 		.func = PMBUS_HAVE_VIN,
1808 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1809 		.sreg = PMBUS_STATUS_INPUT,
1810 		.gbit = PB_STATUS_VIN_UV,
1811 		.limit = vin_limit_attrs,
1812 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1813 	}, {
1814 		.reg = PMBUS_VIRT_READ_VMON,
1815 		.class = PSC_VOLTAGE_IN,
1816 		.label = "vmon",
1817 		.func = PMBUS_HAVE_VMON,
1818 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1819 		.sreg = PMBUS_VIRT_STATUS_VMON,
1820 		.limit = vmon_limit_attrs,
1821 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1822 	}, {
1823 		.reg = PMBUS_READ_VCAP,
1824 		.class = PSC_VOLTAGE_IN,
1825 		.label = "vcap",
1826 		.func = PMBUS_HAVE_VCAP,
1827 	}, {
1828 		.reg = PMBUS_READ_VOUT,
1829 		.class = PSC_VOLTAGE_OUT,
1830 		.label = "vout",
1831 		.paged = true,
1832 		.func = PMBUS_HAVE_VOUT,
1833 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1834 		.sreg = PMBUS_STATUS_VOUT,
1835 		.gbit = PB_STATUS_VOUT_OV,
1836 		.limit = vout_limit_attrs,
1837 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1838 	}
1839 };
1840 
1841 /* Current attributes */
1842 
1843 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1844 	{
1845 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1846 		.attr = "max",
1847 		.alarm = "max_alarm",
1848 		.sbit = PB_IIN_OC_WARNING,
1849 	}, {
1850 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1851 		.attr = "crit",
1852 		.alarm = "crit_alarm",
1853 		.sbit = PB_IIN_OC_FAULT,
1854 	}, {
1855 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1856 		.update = true,
1857 		.attr = "average",
1858 	}, {
1859 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1860 		.update = true,
1861 		.attr = "lowest",
1862 	}, {
1863 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1864 		.update = true,
1865 		.attr = "highest",
1866 	}, {
1867 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1868 		.attr = "reset_history",
1869 	}, {
1870 		.reg = PMBUS_MFR_IIN_MAX,
1871 		.attr = "rated_max",
1872 	},
1873 };
1874 
1875 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1876 	{
1877 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1878 		.attr = "max",
1879 		.alarm = "max_alarm",
1880 		.sbit = PB_IOUT_OC_WARNING,
1881 	}, {
1882 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1883 		.attr = "lcrit",
1884 		.alarm = "lcrit_alarm",
1885 		.sbit = PB_IOUT_UC_FAULT,
1886 	}, {
1887 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1888 		.attr = "crit",
1889 		.alarm = "crit_alarm",
1890 		.sbit = PB_IOUT_OC_FAULT,
1891 	}, {
1892 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1893 		.update = true,
1894 		.attr = "average",
1895 	}, {
1896 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1897 		.update = true,
1898 		.attr = "lowest",
1899 	}, {
1900 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1901 		.update = true,
1902 		.attr = "highest",
1903 	}, {
1904 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1905 		.attr = "reset_history",
1906 	}, {
1907 		.reg = PMBUS_MFR_IOUT_MAX,
1908 		.attr = "rated_max",
1909 	},
1910 };
1911 
1912 static const struct pmbus_sensor_attr current_attributes[] = {
1913 	{
1914 		.reg = PMBUS_READ_IIN,
1915 		.class = PSC_CURRENT_IN,
1916 		.label = "iin",
1917 		.func = PMBUS_HAVE_IIN,
1918 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1919 		.sreg = PMBUS_STATUS_INPUT,
1920 		.gbit = PB_STATUS_INPUT,
1921 		.limit = iin_limit_attrs,
1922 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1923 	}, {
1924 		.reg = PMBUS_READ_IOUT,
1925 		.class = PSC_CURRENT_OUT,
1926 		.label = "iout",
1927 		.paged = true,
1928 		.func = PMBUS_HAVE_IOUT,
1929 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1930 		.sreg = PMBUS_STATUS_IOUT,
1931 		.gbit = PB_STATUS_IOUT_OC,
1932 		.limit = iout_limit_attrs,
1933 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1934 	}
1935 };
1936 
1937 /* Power attributes */
1938 
1939 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1940 	{
1941 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1942 		.attr = "max",
1943 		.alarm = "alarm",
1944 		.sbit = PB_PIN_OP_WARNING,
1945 	}, {
1946 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1947 		.update = true,
1948 		.attr = "average",
1949 	}, {
1950 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1951 		.update = true,
1952 		.attr = "input_lowest",
1953 	}, {
1954 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1955 		.update = true,
1956 		.attr = "input_highest",
1957 	}, {
1958 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1959 		.attr = "reset_history",
1960 	}, {
1961 		.reg = PMBUS_MFR_PIN_MAX,
1962 		.attr = "rated_max",
1963 	},
1964 };
1965 
1966 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1967 	{
1968 		.reg = PMBUS_POUT_MAX,
1969 		.attr = "cap",
1970 		.alarm = "cap_alarm",
1971 		.sbit = PB_POWER_LIMITING,
1972 	}, {
1973 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1974 		.attr = "max",
1975 		.alarm = "max_alarm",
1976 		.sbit = PB_POUT_OP_WARNING,
1977 	}, {
1978 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1979 		.attr = "crit",
1980 		.alarm = "crit_alarm",
1981 		.sbit = PB_POUT_OP_FAULT,
1982 	}, {
1983 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1984 		.update = true,
1985 		.attr = "average",
1986 	}, {
1987 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1988 		.update = true,
1989 		.attr = "input_lowest",
1990 	}, {
1991 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1992 		.update = true,
1993 		.attr = "input_highest",
1994 	}, {
1995 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1996 		.attr = "reset_history",
1997 	}, {
1998 		.reg = PMBUS_MFR_POUT_MAX,
1999 		.attr = "rated_max",
2000 	},
2001 };
2002 
2003 static const struct pmbus_sensor_attr power_attributes[] = {
2004 	{
2005 		.reg = PMBUS_READ_PIN,
2006 		.class = PSC_POWER,
2007 		.label = "pin",
2008 		.func = PMBUS_HAVE_PIN,
2009 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
2010 		.sreg = PMBUS_STATUS_INPUT,
2011 		.gbit = PB_STATUS_INPUT,
2012 		.limit = pin_limit_attrs,
2013 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
2014 	}, {
2015 		.reg = PMBUS_READ_POUT,
2016 		.class = PSC_POWER,
2017 		.label = "pout",
2018 		.paged = true,
2019 		.func = PMBUS_HAVE_POUT,
2020 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
2021 		.sreg = PMBUS_STATUS_IOUT,
2022 		.limit = pout_limit_attrs,
2023 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
2024 	}
2025 };
2026 
2027 /* Temperature atributes */
2028 
2029 static const struct pmbus_limit_attr temp_limit_attrs[] = {
2030 	{
2031 		.reg = PMBUS_UT_WARN_LIMIT,
2032 		.low = true,
2033 		.attr = "min",
2034 		.alarm = "min_alarm",
2035 		.sbit = PB_TEMP_UT_WARNING,
2036 	}, {
2037 		.reg = PMBUS_UT_FAULT_LIMIT,
2038 		.low = true,
2039 		.attr = "lcrit",
2040 		.alarm = "lcrit_alarm",
2041 		.sbit = PB_TEMP_UT_FAULT,
2042 	}, {
2043 		.reg = PMBUS_OT_WARN_LIMIT,
2044 		.attr = "max",
2045 		.alarm = "max_alarm",
2046 		.sbit = PB_TEMP_OT_WARNING,
2047 	}, {
2048 		.reg = PMBUS_OT_FAULT_LIMIT,
2049 		.attr = "crit",
2050 		.alarm = "crit_alarm",
2051 		.sbit = PB_TEMP_OT_FAULT,
2052 	}, {
2053 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
2054 		.attr = "lowest",
2055 	}, {
2056 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
2057 		.attr = "average",
2058 	}, {
2059 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
2060 		.attr = "highest",
2061 	}, {
2062 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2063 		.attr = "reset_history",
2064 	}, {
2065 		.reg = PMBUS_MFR_MAX_TEMP_1,
2066 		.attr = "rated_max",
2067 	},
2068 };
2069 
2070 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2071 	{
2072 		.reg = PMBUS_UT_WARN_LIMIT,
2073 		.low = true,
2074 		.attr = "min",
2075 		.alarm = "min_alarm",
2076 		.sbit = PB_TEMP_UT_WARNING,
2077 	}, {
2078 		.reg = PMBUS_UT_FAULT_LIMIT,
2079 		.low = true,
2080 		.attr = "lcrit",
2081 		.alarm = "lcrit_alarm",
2082 		.sbit = PB_TEMP_UT_FAULT,
2083 	}, {
2084 		.reg = PMBUS_OT_WARN_LIMIT,
2085 		.attr = "max",
2086 		.alarm = "max_alarm",
2087 		.sbit = PB_TEMP_OT_WARNING,
2088 	}, {
2089 		.reg = PMBUS_OT_FAULT_LIMIT,
2090 		.attr = "crit",
2091 		.alarm = "crit_alarm",
2092 		.sbit = PB_TEMP_OT_FAULT,
2093 	}, {
2094 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2095 		.attr = "lowest",
2096 	}, {
2097 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2098 		.attr = "average",
2099 	}, {
2100 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2101 		.attr = "highest",
2102 	}, {
2103 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2104 		.attr = "reset_history",
2105 	}, {
2106 		.reg = PMBUS_MFR_MAX_TEMP_2,
2107 		.attr = "rated_max",
2108 	},
2109 };
2110 
2111 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2112 	{
2113 		.reg = PMBUS_UT_WARN_LIMIT,
2114 		.low = true,
2115 		.attr = "min",
2116 		.alarm = "min_alarm",
2117 		.sbit = PB_TEMP_UT_WARNING,
2118 	}, {
2119 		.reg = PMBUS_UT_FAULT_LIMIT,
2120 		.low = true,
2121 		.attr = "lcrit",
2122 		.alarm = "lcrit_alarm",
2123 		.sbit = PB_TEMP_UT_FAULT,
2124 	}, {
2125 		.reg = PMBUS_OT_WARN_LIMIT,
2126 		.attr = "max",
2127 		.alarm = "max_alarm",
2128 		.sbit = PB_TEMP_OT_WARNING,
2129 	}, {
2130 		.reg = PMBUS_OT_FAULT_LIMIT,
2131 		.attr = "crit",
2132 		.alarm = "crit_alarm",
2133 		.sbit = PB_TEMP_OT_FAULT,
2134 	}, {
2135 		.reg = PMBUS_MFR_MAX_TEMP_3,
2136 		.attr = "rated_max",
2137 	},
2138 };
2139 
2140 static const struct pmbus_sensor_attr temp_attributes[] = {
2141 	{
2142 		.reg = PMBUS_READ_TEMPERATURE_1,
2143 		.class = PSC_TEMPERATURE,
2144 		.paged = true,
2145 		.update = true,
2146 		.compare = true,
2147 		.func = PMBUS_HAVE_TEMP,
2148 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2149 		.sreg = PMBUS_STATUS_TEMPERATURE,
2150 		.gbit = PB_STATUS_TEMPERATURE,
2151 		.limit = temp_limit_attrs,
2152 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2153 	}, {
2154 		.reg = PMBUS_READ_TEMPERATURE_2,
2155 		.class = PSC_TEMPERATURE,
2156 		.paged = true,
2157 		.update = true,
2158 		.compare = true,
2159 		.func = PMBUS_HAVE_TEMP2,
2160 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2161 		.sreg = PMBUS_STATUS_TEMPERATURE,
2162 		.gbit = PB_STATUS_TEMPERATURE,
2163 		.limit = temp_limit_attrs2,
2164 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2165 	}, {
2166 		.reg = PMBUS_READ_TEMPERATURE_3,
2167 		.class = PSC_TEMPERATURE,
2168 		.paged = true,
2169 		.update = true,
2170 		.compare = true,
2171 		.func = PMBUS_HAVE_TEMP3,
2172 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2173 		.sreg = PMBUS_STATUS_TEMPERATURE,
2174 		.gbit = PB_STATUS_TEMPERATURE,
2175 		.limit = temp_limit_attrs3,
2176 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2177 	}
2178 };
2179 
2180 static const int pmbus_fan_registers[] = {
2181 	PMBUS_READ_FAN_SPEED_1,
2182 	PMBUS_READ_FAN_SPEED_2,
2183 	PMBUS_READ_FAN_SPEED_3,
2184 	PMBUS_READ_FAN_SPEED_4
2185 };
2186 
2187 static const int pmbus_fan_status_registers[] = {
2188 	PMBUS_STATUS_FAN_12,
2189 	PMBUS_STATUS_FAN_12,
2190 	PMBUS_STATUS_FAN_34,
2191 	PMBUS_STATUS_FAN_34
2192 };
2193 
2194 static const u32 pmbus_fan_flags[] = {
2195 	PMBUS_HAVE_FAN12,
2196 	PMBUS_HAVE_FAN12,
2197 	PMBUS_HAVE_FAN34,
2198 	PMBUS_HAVE_FAN34
2199 };
2200 
2201 static const u32 pmbus_fan_status_flags[] = {
2202 	PMBUS_HAVE_STATUS_FAN12,
2203 	PMBUS_HAVE_STATUS_FAN12,
2204 	PMBUS_HAVE_STATUS_FAN34,
2205 	PMBUS_HAVE_STATUS_FAN34
2206 };
2207 
2208 /* Fans */
2209 
2210 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2211 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2212 		struct pmbus_data *data, int index, int page, int id,
2213 		u8 config)
2214 {
2215 	struct pmbus_sensor *sensor;
2216 
2217 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2218 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2219 				  false, false, true);
2220 
2221 	if (!sensor)
2222 		return -ENOMEM;
2223 
2224 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2225 			(data->info->func[page] & PMBUS_HAVE_PWM34)))
2226 		return 0;
2227 
2228 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2229 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2230 				  false, false, true);
2231 
2232 	if (!sensor)
2233 		return -ENOMEM;
2234 
2235 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2236 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2237 				  true, false, false);
2238 
2239 	if (!sensor)
2240 		return -ENOMEM;
2241 
2242 	return 0;
2243 }
2244 
2245 static int pmbus_add_fan_attributes(struct i2c_client *client,
2246 				    struct pmbus_data *data)
2247 {
2248 	const struct pmbus_driver_info *info = data->info;
2249 	int index = 1;
2250 	int page;
2251 	int ret;
2252 
2253 	for (page = 0; page < info->pages; page++) {
2254 		int f;
2255 
2256 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2257 			int regval;
2258 
2259 			if (!(info->func[page] & pmbus_fan_flags[f]))
2260 				break;
2261 
2262 			if (!pmbus_check_word_register(client, page,
2263 						       pmbus_fan_registers[f]))
2264 				break;
2265 
2266 			/*
2267 			 * Skip fan if not installed.
2268 			 * Each fan configuration register covers multiple fans,
2269 			 * so we have to do some magic.
2270 			 */
2271 			regval = _pmbus_read_byte_data(client, page,
2272 				pmbus_fan_config_registers[f]);
2273 			if (regval < 0 ||
2274 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2275 				continue;
2276 
2277 			if (pmbus_add_sensor(data, "fan", "input", index,
2278 					     page, 0xff, pmbus_fan_registers[f],
2279 					     PSC_FAN, true, true, true) == NULL)
2280 				return -ENOMEM;
2281 
2282 			/* Fan control */
2283 			if (pmbus_check_word_register(client, page,
2284 					pmbus_fan_command_registers[f])) {
2285 				ret = pmbus_add_fan_ctrl(client, data, index,
2286 							 page, f, regval);
2287 				if (ret < 0)
2288 					return ret;
2289 			}
2290 
2291 			/*
2292 			 * Each fan status register covers multiple fans,
2293 			 * so we have to do some magic.
2294 			 */
2295 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2296 			    pmbus_check_byte_register(client,
2297 					page, pmbus_fan_status_registers[f])) {
2298 				int reg;
2299 
2300 				if (f > 1)	/* fan 3, 4 */
2301 					reg = PMBUS_STATUS_FAN_34;
2302 				else
2303 					reg = PMBUS_STATUS_FAN_12;
2304 				ret = pmbus_add_boolean(data, "fan",
2305 					"alarm", index, NULL, NULL, page, reg,
2306 					PB_FAN_FAN1_WARNING >> (f & 1));
2307 				if (ret)
2308 					return ret;
2309 				ret = pmbus_add_boolean(data, "fan",
2310 					"fault", index, NULL, NULL, page, reg,
2311 					PB_FAN_FAN1_FAULT >> (f & 1));
2312 				if (ret)
2313 					return ret;
2314 			}
2315 			index++;
2316 		}
2317 	}
2318 	return 0;
2319 }
2320 
2321 struct pmbus_samples_attr {
2322 	int reg;
2323 	char *name;
2324 };
2325 
2326 struct pmbus_samples_reg {
2327 	int page;
2328 	struct pmbus_samples_attr *attr;
2329 	struct device_attribute dev_attr;
2330 };
2331 
2332 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2333 	{
2334 		.reg = PMBUS_VIRT_SAMPLES,
2335 		.name = "samples",
2336 	}, {
2337 		.reg = PMBUS_VIRT_IN_SAMPLES,
2338 		.name = "in_samples",
2339 	}, {
2340 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2341 		.name = "curr_samples",
2342 	}, {
2343 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2344 		.name = "power_samples",
2345 	}, {
2346 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2347 		.name = "temp_samples",
2348 	}
2349 };
2350 
2351 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2352 
2353 static ssize_t pmbus_show_samples(struct device *dev,
2354 				  struct device_attribute *devattr, char *buf)
2355 {
2356 	int val;
2357 	struct i2c_client *client = to_i2c_client(dev->parent);
2358 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2359 	struct pmbus_data *data = i2c_get_clientdata(client);
2360 
2361 	mutex_lock(&data->update_lock);
2362 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2363 	mutex_unlock(&data->update_lock);
2364 	if (val < 0)
2365 		return val;
2366 
2367 	return sysfs_emit(buf, "%d\n", val);
2368 }
2369 
2370 static ssize_t pmbus_set_samples(struct device *dev,
2371 				 struct device_attribute *devattr,
2372 				 const char *buf, size_t count)
2373 {
2374 	int ret;
2375 	long val;
2376 	struct i2c_client *client = to_i2c_client(dev->parent);
2377 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2378 	struct pmbus_data *data = i2c_get_clientdata(client);
2379 
2380 	if (kstrtol(buf, 0, &val) < 0)
2381 		return -EINVAL;
2382 
2383 	mutex_lock(&data->update_lock);
2384 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2385 	mutex_unlock(&data->update_lock);
2386 
2387 	return ret ? : count;
2388 }
2389 
2390 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2391 				  struct pmbus_samples_attr *attr)
2392 {
2393 	struct pmbus_samples_reg *reg;
2394 
2395 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2396 	if (!reg)
2397 		return -ENOMEM;
2398 
2399 	reg->attr = attr;
2400 	reg->page = page;
2401 
2402 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2403 			    pmbus_show_samples, pmbus_set_samples);
2404 
2405 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2406 }
2407 
2408 static int pmbus_add_samples_attributes(struct i2c_client *client,
2409 					struct pmbus_data *data)
2410 {
2411 	const struct pmbus_driver_info *info = data->info;
2412 	int s;
2413 
2414 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2415 		return 0;
2416 
2417 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2418 		struct pmbus_samples_attr *attr;
2419 		int ret;
2420 
2421 		attr = &pmbus_samples_registers[s];
2422 		if (!pmbus_check_word_register(client, 0, attr->reg))
2423 			continue;
2424 
2425 		ret = pmbus_add_samples_attr(data, 0, attr);
2426 		if (ret)
2427 			return ret;
2428 	}
2429 
2430 	return 0;
2431 }
2432 
2433 static int pmbus_find_attributes(struct i2c_client *client,
2434 				 struct pmbus_data *data)
2435 {
2436 	int ret;
2437 
2438 	/* Voltage sensors */
2439 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2440 				     ARRAY_SIZE(voltage_attributes));
2441 	if (ret)
2442 		return ret;
2443 
2444 	/* Current sensors */
2445 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2446 				     ARRAY_SIZE(current_attributes));
2447 	if (ret)
2448 		return ret;
2449 
2450 	/* Power sensors */
2451 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2452 				     ARRAY_SIZE(power_attributes));
2453 	if (ret)
2454 		return ret;
2455 
2456 	/* Temperature sensors */
2457 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2458 				     ARRAY_SIZE(temp_attributes));
2459 	if (ret)
2460 		return ret;
2461 
2462 	/* Fans */
2463 	ret = pmbus_add_fan_attributes(client, data);
2464 	if (ret)
2465 		return ret;
2466 
2467 	ret = pmbus_add_samples_attributes(client, data);
2468 	return ret;
2469 }
2470 
2471 /*
2472  * The pmbus_class_attr_map structure maps one sensor class to
2473  * it's corresponding sensor attributes array.
2474  */
2475 struct pmbus_class_attr_map {
2476 	enum pmbus_sensor_classes class;
2477 	int nattr;
2478 	const struct pmbus_sensor_attr *attr;
2479 };
2480 
2481 static const struct pmbus_class_attr_map class_attr_map[] = {
2482 	{
2483 		.class = PSC_VOLTAGE_IN,
2484 		.attr = voltage_attributes,
2485 		.nattr = ARRAY_SIZE(voltage_attributes),
2486 	}, {
2487 		.class = PSC_VOLTAGE_OUT,
2488 		.attr = voltage_attributes,
2489 		.nattr = ARRAY_SIZE(voltage_attributes),
2490 	}, {
2491 		.class = PSC_CURRENT_IN,
2492 		.attr = current_attributes,
2493 		.nattr = ARRAY_SIZE(current_attributes),
2494 	}, {
2495 		.class = PSC_CURRENT_OUT,
2496 		.attr = current_attributes,
2497 		.nattr = ARRAY_SIZE(current_attributes),
2498 	}, {
2499 		.class = PSC_POWER,
2500 		.attr = power_attributes,
2501 		.nattr = ARRAY_SIZE(power_attributes),
2502 	}, {
2503 		.class = PSC_TEMPERATURE,
2504 		.attr = temp_attributes,
2505 		.nattr = ARRAY_SIZE(temp_attributes),
2506 	}
2507 };
2508 
2509 /*
2510  * Read the coefficients for direct mode.
2511  */
2512 static int pmbus_read_coefficients(struct i2c_client *client,
2513 				   struct pmbus_driver_info *info,
2514 				   const struct pmbus_sensor_attr *attr)
2515 {
2516 	int rv;
2517 	union i2c_smbus_data data;
2518 	enum pmbus_sensor_classes class = attr->class;
2519 	s8 R;
2520 	s16 m, b;
2521 
2522 	data.block[0] = 2;
2523 	data.block[1] = attr->reg;
2524 	data.block[2] = 0x01;
2525 
2526 	pmbus_wait(client);
2527 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2528 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2529 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2530 	pmbus_update_ts(client, true);
2531 
2532 	if (rv < 0)
2533 		return rv;
2534 
2535 	if (data.block[0] != 5)
2536 		return -EIO;
2537 
2538 	m = data.block[1] | (data.block[2] << 8);
2539 	b = data.block[3] | (data.block[4] << 8);
2540 	R = data.block[5];
2541 	info->m[class] = m;
2542 	info->b[class] = b;
2543 	info->R[class] = R;
2544 
2545 	return rv;
2546 }
2547 
2548 static int pmbus_init_coefficients(struct i2c_client *client,
2549 				   struct pmbus_driver_info *info)
2550 {
2551 	int i, n, ret = -EINVAL;
2552 	const struct pmbus_class_attr_map *map;
2553 	const struct pmbus_sensor_attr *attr;
2554 
2555 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2556 		map = &class_attr_map[i];
2557 		if (info->format[map->class] != direct)
2558 			continue;
2559 		for (n = 0; n < map->nattr; n++) {
2560 			attr = &map->attr[n];
2561 			if (map->class != attr->class)
2562 				continue;
2563 			ret = pmbus_read_coefficients(client, info, attr);
2564 			if (ret >= 0)
2565 				break;
2566 		}
2567 		if (ret < 0) {
2568 			dev_err(&client->dev,
2569 				"No coefficients found for sensor class %d\n",
2570 				map->class);
2571 			return -EINVAL;
2572 		}
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /*
2579  * Identify chip parameters.
2580  * This function is called for all chips.
2581  */
2582 static int pmbus_identify_common(struct i2c_client *client,
2583 				 struct pmbus_data *data, int page)
2584 {
2585 	int vout_mode = -1;
2586 
2587 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2588 		vout_mode = _pmbus_read_byte_data(client, page,
2589 						  PMBUS_VOUT_MODE);
2590 	if (vout_mode >= 0 && vout_mode != 0xff) {
2591 		/*
2592 		 * Not all chips support the VOUT_MODE command,
2593 		 * so a failure to read it is not an error.
2594 		 */
2595 		switch (vout_mode >> 5) {
2596 		case 0:	/* linear mode      */
2597 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2598 				return -ENODEV;
2599 
2600 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2601 			break;
2602 		case 1: /* VID mode         */
2603 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2604 				return -ENODEV;
2605 			break;
2606 		case 2:	/* direct mode      */
2607 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2608 				return -ENODEV;
2609 			break;
2610 		case 3:	/* ieee 754 half precision */
2611 			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2612 				return -ENODEV;
2613 			break;
2614 		default:
2615 			return -ENODEV;
2616 		}
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2623 {
2624 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2625 }
2626 
2627 static int pmbus_read_status_word(struct i2c_client *client, int page)
2628 {
2629 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2630 }
2631 
2632 /* PEC attribute support */
2633 
2634 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2635 			char *buf)
2636 {
2637 	struct i2c_client *client = to_i2c_client(dev);
2638 
2639 	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2640 }
2641 
2642 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2643 			 const char *buf, size_t count)
2644 {
2645 	struct i2c_client *client = to_i2c_client(dev);
2646 	bool enable;
2647 	int err;
2648 
2649 	err = kstrtobool(buf, &enable);
2650 	if (err < 0)
2651 		return err;
2652 
2653 	if (enable)
2654 		client->flags |= I2C_CLIENT_PEC;
2655 	else
2656 		client->flags &= ~I2C_CLIENT_PEC;
2657 
2658 	return count;
2659 }
2660 
2661 static DEVICE_ATTR_RW(pec);
2662 
2663 static void pmbus_remove_pec(void *dev)
2664 {
2665 	device_remove_file(dev, &dev_attr_pec);
2666 }
2667 
2668 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2669 			     struct pmbus_driver_info *info)
2670 {
2671 	struct device *dev = &client->dev;
2672 	int page, ret;
2673 
2674 	/*
2675 	 * Figure out if PEC is enabled before accessing any other register.
2676 	 * Make sure PEC is disabled, will be enabled later if needed.
2677 	 */
2678 	client->flags &= ~I2C_CLIENT_PEC;
2679 
2680 	/* Enable PEC if the controller and bus supports it */
2681 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2682 		pmbus_wait(client);
2683 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2684 		pmbus_update_ts(client, false);
2685 
2686 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2687 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2688 				client->flags |= I2C_CLIENT_PEC;
2689 		}
2690 	}
2691 
2692 	/*
2693 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2694 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2695 	 * Bail out if both registers are not supported.
2696 	 */
2697 	data->read_status = pmbus_read_status_word;
2698 	pmbus_wait(client);
2699 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2700 	pmbus_update_ts(client, false);
2701 
2702 	if (ret < 0 || ret == 0xffff) {
2703 		data->read_status = pmbus_read_status_byte;
2704 		pmbus_wait(client);
2705 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2706 		pmbus_update_ts(client, false);
2707 
2708 		if (ret < 0 || ret == 0xff) {
2709 			dev_err(dev, "PMBus status register not found\n");
2710 			return -ENODEV;
2711 		}
2712 	} else {
2713 		data->has_status_word = true;
2714 	}
2715 
2716 	/*
2717 	 * Check if the chip is write protected. If it is, we can not clear
2718 	 * faults, and we should not try it. Also, in that case, writes into
2719 	 * limit registers need to be disabled.
2720 	 */
2721 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2722 		pmbus_wait(client);
2723 		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2724 		pmbus_update_ts(client, false);
2725 
2726 		if (ret > 0 && (ret & PB_WP_ANY))
2727 			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2728 	}
2729 
2730 	ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2731 	if (ret >= 0)
2732 		data->revision = ret;
2733 
2734 	if (data->info->pages)
2735 		pmbus_clear_faults(client);
2736 	else
2737 		pmbus_clear_fault_page(client, -1);
2738 
2739 	if (info->identify) {
2740 		ret = (*info->identify)(client, info);
2741 		if (ret < 0) {
2742 			dev_err(dev, "Chip identification failed\n");
2743 			return ret;
2744 		}
2745 	}
2746 
2747 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2748 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2749 		return -ENODEV;
2750 	}
2751 
2752 	for (page = 0; page < info->pages; page++) {
2753 		ret = pmbus_identify_common(client, data, page);
2754 		if (ret < 0) {
2755 			dev_err(dev, "Failed to identify chip capabilities\n");
2756 			return ret;
2757 		}
2758 	}
2759 
2760 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2761 		if (!i2c_check_functionality(client->adapter,
2762 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2763 			return -ENODEV;
2764 
2765 		ret = pmbus_init_coefficients(client, info);
2766 		if (ret < 0)
2767 			return ret;
2768 	}
2769 
2770 	if (client->flags & I2C_CLIENT_PEC) {
2771 		/*
2772 		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2773 		 * chip support PEC. Add 'pec' attribute to client device to let
2774 		 * the user control it.
2775 		 */
2776 		ret = device_create_file(dev, &dev_attr_pec);
2777 		if (ret)
2778 			return ret;
2779 		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2780 		if (ret)
2781 			return ret;
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2788 struct pmbus_status_assoc {
2789 	int pflag, rflag, eflag;
2790 };
2791 
2792 /* PMBus->regulator bit mappings for a PMBus status register */
2793 struct pmbus_status_category {
2794 	int func;
2795 	int reg;
2796 	const struct pmbus_status_assoc *bits; /* zero-terminated */
2797 };
2798 
2799 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2800 	{
2801 		.func = PMBUS_HAVE_STATUS_VOUT,
2802 		.reg = PMBUS_STATUS_VOUT,
2803 		.bits = (const struct pmbus_status_assoc[]) {
2804 			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2805 			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2806 			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2807 			REGULATOR_EVENT_UNDER_VOLTAGE },
2808 			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2809 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2810 			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2811 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2812 			{ },
2813 		},
2814 	}, {
2815 		.func = PMBUS_HAVE_STATUS_IOUT,
2816 		.reg = PMBUS_STATUS_IOUT,
2817 		.bits = (const struct pmbus_status_assoc[]) {
2818 			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2819 			REGULATOR_EVENT_OVER_CURRENT_WARN },
2820 			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2821 			REGULATOR_EVENT_OVER_CURRENT },
2822 			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2823 			REGULATOR_EVENT_OVER_CURRENT },
2824 			{ },
2825 		},
2826 	}, {
2827 		.func = PMBUS_HAVE_STATUS_TEMP,
2828 		.reg = PMBUS_STATUS_TEMPERATURE,
2829 		.bits = (const struct pmbus_status_assoc[]) {
2830 			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2831 			REGULATOR_EVENT_OVER_TEMP_WARN },
2832 			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2833 			REGULATOR_EVENT_OVER_TEMP },
2834 			{ },
2835 		},
2836 	},
2837 };
2838 
2839 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2840 {
2841 	int ret;
2842 
2843 	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2844 
2845 	if (ret < 0)
2846 		return ret;
2847 
2848 	return !!(ret & PB_OPERATION_CONTROL_ON);
2849 }
2850 
2851 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2852 {
2853 	struct pmbus_data *data = i2c_get_clientdata(client);
2854 	int ret;
2855 
2856 	mutex_lock(&data->update_lock);
2857 	ret = _pmbus_is_enabled(client, page);
2858 	mutex_unlock(&data->update_lock);
2859 
2860 	return ret;
2861 }
2862 
2863 #define to_dev_attr(_dev_attr) \
2864 	container_of(_dev_attr, struct device_attribute, attr)
2865 
2866 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2867 {
2868 	int i;
2869 
2870 	for (i = 0; i < data->num_attributes; i++) {
2871 		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2872 		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2873 		int index = attr->index;
2874 		u16 smask = pb_index_to_mask(index);
2875 		u8 spage = pb_index_to_page(index);
2876 		u16 sreg = pb_index_to_reg(index);
2877 
2878 		if (reg == sreg && page == spage && (smask & flags)) {
2879 			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2880 			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2881 			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2882 			flags &= ~smask;
2883 		}
2884 
2885 		if (!flags)
2886 			break;
2887 	}
2888 }
2889 
2890 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2891 			   unsigned int *event, bool notify)
2892 {
2893 	int i, status;
2894 	const struct pmbus_status_category *cat;
2895 	const struct pmbus_status_assoc *bit;
2896 	struct device *dev = data->dev;
2897 	struct i2c_client *client = to_i2c_client(dev);
2898 	int func = data->info->func[page];
2899 
2900 	*flags = 0;
2901 	*event = 0;
2902 
2903 	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2904 		cat = &pmbus_status_flag_map[i];
2905 		if (!(func & cat->func))
2906 			continue;
2907 
2908 		status = _pmbus_read_byte_data(client, page, cat->reg);
2909 		if (status < 0)
2910 			return status;
2911 
2912 		for (bit = cat->bits; bit->pflag; bit++)
2913 			if (status & bit->pflag) {
2914 				*flags |= bit->rflag;
2915 				*event |= bit->eflag;
2916 			}
2917 
2918 		if (notify && status)
2919 			pmbus_notify(data, page, cat->reg, status);
2920 
2921 	}
2922 
2923 	/*
2924 	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2925 	 * bits.  Some of the other bits are tempting (especially for cases
2926 	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2927 	 * functionality), but there's an unfortunate ambiguity in that
2928 	 * they're defined as indicating a fault *or* a warning, so we can't
2929 	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2930 	 * REGULATOR_ERROR_<foo>_WARN.
2931 	 */
2932 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2933 	if (status < 0)
2934 		return status;
2935 
2936 	if (_pmbus_is_enabled(client, page)) {
2937 		if (status & PB_STATUS_OFF) {
2938 			*flags |= REGULATOR_ERROR_FAIL;
2939 			*event |= REGULATOR_EVENT_FAIL;
2940 		}
2941 
2942 		if (status & PB_STATUS_POWER_GOOD_N) {
2943 			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2944 			*event |= REGULATOR_EVENT_REGULATION_OUT;
2945 		}
2946 	}
2947 	/*
2948 	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2949 	 * defined strictly as fault indicators (not warnings).
2950 	 */
2951 	if (status & PB_STATUS_IOUT_OC) {
2952 		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2953 		*event |= REGULATOR_EVENT_OVER_CURRENT;
2954 	}
2955 	if (status & PB_STATUS_VOUT_OV) {
2956 		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2957 		*event |= REGULATOR_EVENT_FAIL;
2958 	}
2959 
2960 	/*
2961 	 * If we haven't discovered any thermal faults or warnings via
2962 	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2963 	 * a (conservative) best-effort interpretation.
2964 	 */
2965 	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2966 	    (status & PB_STATUS_TEMPERATURE)) {
2967 		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2968 		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2969 	}
2970 
2971 
2972 	return 0;
2973 }
2974 
2975 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2976 					  unsigned int *event, bool notify)
2977 {
2978 	int ret;
2979 
2980 	mutex_lock(&data->update_lock);
2981 	ret = _pmbus_get_flags(data, page, flags, event, notify);
2982 	mutex_unlock(&data->update_lock);
2983 
2984 	return ret;
2985 }
2986 
2987 #if IS_ENABLED(CONFIG_REGULATOR)
2988 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2989 {
2990 	struct device *dev = rdev_get_dev(rdev);
2991 	struct i2c_client *client = to_i2c_client(dev->parent);
2992 
2993 	return pmbus_is_enabled(client, rdev_get_id(rdev));
2994 }
2995 
2996 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2997 {
2998 	struct device *dev = rdev_get_dev(rdev);
2999 	struct i2c_client *client = to_i2c_client(dev->parent);
3000 	struct pmbus_data *data = i2c_get_clientdata(client);
3001 	u8 page = rdev_get_id(rdev);
3002 	int ret;
3003 
3004 	mutex_lock(&data->update_lock);
3005 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3006 				     PB_OPERATION_CONTROL_ON,
3007 				     enable ? PB_OPERATION_CONTROL_ON : 0);
3008 	mutex_unlock(&data->update_lock);
3009 
3010 	return ret;
3011 }
3012 
3013 static int pmbus_regulator_enable(struct regulator_dev *rdev)
3014 {
3015 	return _pmbus_regulator_on_off(rdev, 1);
3016 }
3017 
3018 static int pmbus_regulator_disable(struct regulator_dev *rdev)
3019 {
3020 	return _pmbus_regulator_on_off(rdev, 0);
3021 }
3022 
3023 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3024 {
3025 	struct device *dev = rdev_get_dev(rdev);
3026 	struct i2c_client *client = to_i2c_client(dev->parent);
3027 	struct pmbus_data *data = i2c_get_clientdata(client);
3028 	int event;
3029 
3030 	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3031 }
3032 
3033 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3034 {
3035 	struct device *dev = rdev_get_dev(rdev);
3036 	struct i2c_client *client = to_i2c_client(dev->parent);
3037 	struct pmbus_data *data = i2c_get_clientdata(client);
3038 	u8 page = rdev_get_id(rdev);
3039 	int status, ret;
3040 	int event;
3041 
3042 	mutex_lock(&data->update_lock);
3043 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3044 	if (status < 0) {
3045 		ret = status;
3046 		goto unlock;
3047 	}
3048 
3049 	if (status & PB_STATUS_OFF) {
3050 		ret = REGULATOR_STATUS_OFF;
3051 		goto unlock;
3052 	}
3053 
3054 	/* If regulator is ON & reports power good then return ON */
3055 	if (!(status & PB_STATUS_POWER_GOOD_N)) {
3056 		ret = REGULATOR_STATUS_ON;
3057 		goto unlock;
3058 	}
3059 
3060 	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3061 	if (ret)
3062 		goto unlock;
3063 
3064 	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3065 	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3066 		ret = REGULATOR_STATUS_ERROR;
3067 		goto unlock;
3068 	}
3069 
3070 	ret = REGULATOR_STATUS_UNDEFINED;
3071 
3072 unlock:
3073 	mutex_unlock(&data->update_lock);
3074 	return ret;
3075 }
3076 
3077 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3078 {
3079 	struct pmbus_data *data = i2c_get_clientdata(client);
3080 	struct pmbus_sensor s = {
3081 		.page = page,
3082 		.class = PSC_VOLTAGE_OUT,
3083 		.convert = true,
3084 		.data = -1,
3085 	};
3086 
3087 	if (data->vout_low[page] < 0) {
3088 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3089 			s.data = _pmbus_read_word_data(client, page, 0xff,
3090 						       PMBUS_MFR_VOUT_MIN);
3091 		if (s.data < 0) {
3092 			s.data = _pmbus_read_word_data(client, page, 0xff,
3093 						       PMBUS_VOUT_MARGIN_LOW);
3094 			if (s.data < 0)
3095 				return s.data;
3096 		}
3097 		data->vout_low[page] = pmbus_reg2data(data, &s);
3098 	}
3099 
3100 	return data->vout_low[page];
3101 }
3102 
3103 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3104 {
3105 	struct pmbus_data *data = i2c_get_clientdata(client);
3106 	struct pmbus_sensor s = {
3107 		.page = page,
3108 		.class = PSC_VOLTAGE_OUT,
3109 		.convert = true,
3110 		.data = -1,
3111 	};
3112 
3113 	if (data->vout_high[page] < 0) {
3114 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3115 			s.data = _pmbus_read_word_data(client, page, 0xff,
3116 						       PMBUS_MFR_VOUT_MAX);
3117 		if (s.data < 0) {
3118 			s.data = _pmbus_read_word_data(client, page, 0xff,
3119 						       PMBUS_VOUT_MARGIN_HIGH);
3120 			if (s.data < 0)
3121 				return s.data;
3122 		}
3123 		data->vout_high[page] = pmbus_reg2data(data, &s);
3124 	}
3125 
3126 	return data->vout_high[page];
3127 }
3128 
3129 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3130 {
3131 	struct device *dev = rdev_get_dev(rdev);
3132 	struct i2c_client *client = to_i2c_client(dev->parent);
3133 	struct pmbus_data *data = i2c_get_clientdata(client);
3134 	struct pmbus_sensor s = {
3135 		.page = rdev_get_id(rdev),
3136 		.class = PSC_VOLTAGE_OUT,
3137 		.convert = true,
3138 	};
3139 
3140 	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3141 	if (s.data < 0)
3142 		return s.data;
3143 
3144 	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3145 }
3146 
3147 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3148 				       int max_uv, unsigned int *selector)
3149 {
3150 	struct device *dev = rdev_get_dev(rdev);
3151 	struct i2c_client *client = to_i2c_client(dev->parent);
3152 	struct pmbus_data *data = i2c_get_clientdata(client);
3153 	struct pmbus_sensor s = {
3154 		.page = rdev_get_id(rdev),
3155 		.class = PSC_VOLTAGE_OUT,
3156 		.convert = true,
3157 		.data = -1,
3158 	};
3159 	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3160 	int low, high;
3161 
3162 	*selector = 0;
3163 
3164 	low = pmbus_regulator_get_low_margin(client, s.page);
3165 	if (low < 0)
3166 		return low;
3167 
3168 	high = pmbus_regulator_get_high_margin(client, s.page);
3169 	if (high < 0)
3170 		return high;
3171 
3172 	/* Make sure we are within margins */
3173 	if (low > val)
3174 		val = low;
3175 	if (high < val)
3176 		val = high;
3177 
3178 	val = pmbus_data2reg(data, &s, val);
3179 
3180 	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3181 }
3182 
3183 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3184 					 unsigned int selector)
3185 {
3186 	struct device *dev = rdev_get_dev(rdev);
3187 	struct i2c_client *client = to_i2c_client(dev->parent);
3188 	int val, low, high;
3189 
3190 	if (selector >= rdev->desc->n_voltages ||
3191 	    selector < rdev->desc->linear_min_sel)
3192 		return -EINVAL;
3193 
3194 	selector -= rdev->desc->linear_min_sel;
3195 	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3196 				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3197 
3198 	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3199 	if (low < 0)
3200 		return low;
3201 
3202 	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3203 	if (high < 0)
3204 		return high;
3205 
3206 	if (val >= low && val <= high)
3207 		return val * 1000; /* unit is uV */
3208 
3209 	return 0;
3210 }
3211 
3212 const struct regulator_ops pmbus_regulator_ops = {
3213 	.enable = pmbus_regulator_enable,
3214 	.disable = pmbus_regulator_disable,
3215 	.is_enabled = pmbus_regulator_is_enabled,
3216 	.get_error_flags = pmbus_regulator_get_error_flags,
3217 	.get_status = pmbus_regulator_get_status,
3218 	.get_voltage = pmbus_regulator_get_voltage,
3219 	.set_voltage = pmbus_regulator_set_voltage,
3220 	.list_voltage = pmbus_regulator_list_voltage,
3221 };
3222 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3223 
3224 static int pmbus_regulator_register(struct pmbus_data *data)
3225 {
3226 	struct device *dev = data->dev;
3227 	const struct pmbus_driver_info *info = data->info;
3228 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3229 	int i;
3230 
3231 	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3232 				   GFP_KERNEL);
3233 	if (!data->rdevs)
3234 		return -ENOMEM;
3235 
3236 	for (i = 0; i < info->num_regulators; i++) {
3237 		struct regulator_config config = { };
3238 
3239 		config.dev = dev;
3240 		config.driver_data = data;
3241 
3242 		if (pdata && pdata->reg_init_data)
3243 			config.init_data = &pdata->reg_init_data[i];
3244 
3245 		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3246 							 &config);
3247 		if (IS_ERR(data->rdevs[i]))
3248 			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3249 					     "Failed to register %s regulator\n",
3250 					     info->reg_desc[i].name);
3251 	}
3252 
3253 	return 0;
3254 }
3255 
3256 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3257 {
3258 		int j;
3259 
3260 		for (j = 0; j < data->info->num_regulators; j++) {
3261 			if (page == rdev_get_id(data->rdevs[j])) {
3262 				regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3263 				break;
3264 			}
3265 		}
3266 		return 0;
3267 }
3268 #else
3269 static int pmbus_regulator_register(struct pmbus_data *data)
3270 {
3271 	return 0;
3272 }
3273 
3274 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3275 {
3276 		return 0;
3277 }
3278 #endif
3279 
3280 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3281 {
3282 	return _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3283 }
3284 
3285 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3286 {
3287 	struct pmbus_data *data = pdata;
3288 	struct i2c_client *client = to_i2c_client(data->dev);
3289 
3290 	int i, status, event;
3291 	mutex_lock(&data->update_lock);
3292 	for (i = 0; i < data->info->pages; i++) {
3293 		_pmbus_get_flags(data, i, &status, &event, true);
3294 
3295 		if (event)
3296 			pmbus_regulator_notify(data, i, event);
3297 	}
3298 
3299 	pmbus_clear_faults(client);
3300 	mutex_unlock(&data->update_lock);
3301 
3302 	return IRQ_HANDLED;
3303 }
3304 
3305 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3306 {
3307 	struct device *dev = &client->dev;
3308 	const struct pmbus_status_category *cat;
3309 	const struct pmbus_status_assoc *bit;
3310 	int i, j, err, func;
3311 	u8 mask;
3312 
3313 	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3314 					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3315 					 PMBUS_STATUS_FAN_34};
3316 
3317 	if (!client->irq)
3318 		return 0;
3319 
3320 	for (i = 0; i < data->info->pages; i++) {
3321 		func = data->info->func[i];
3322 
3323 		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3324 			cat = &pmbus_status_flag_map[j];
3325 			if (!(func & cat->func))
3326 				continue;
3327 			mask = 0;
3328 			for (bit = cat->bits; bit->pflag; bit++)
3329 				mask |= bit->pflag;
3330 
3331 			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3332 			if (err)
3333 				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3334 					     cat->reg);
3335 		}
3336 
3337 		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3338 			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3339 	}
3340 
3341 	/* Register notifiers */
3342 	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3343 					IRQF_ONESHOT, "pmbus-irq", data);
3344 	if (err) {
3345 		dev_err(dev, "failed to request an irq %d\n", err);
3346 		return err;
3347 	}
3348 
3349 	return 0;
3350 }
3351 
3352 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3353 
3354 #if IS_ENABLED(CONFIG_DEBUG_FS)
3355 static int pmbus_debugfs_get(void *data, u64 *val)
3356 {
3357 	int rc;
3358 	struct pmbus_debugfs_entry *entry = data;
3359 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3360 
3361 	rc = mutex_lock_interruptible(&pdata->update_lock);
3362 	if (rc)
3363 		return rc;
3364 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3365 	mutex_unlock(&pdata->update_lock);
3366 	if (rc < 0)
3367 		return rc;
3368 
3369 	*val = rc;
3370 
3371 	return 0;
3372 }
3373 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3374 			 "0x%02llx\n");
3375 
3376 static int pmbus_debugfs_get_status(void *data, u64 *val)
3377 {
3378 	int rc;
3379 	struct pmbus_debugfs_entry *entry = data;
3380 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3381 
3382 	rc = mutex_lock_interruptible(&pdata->update_lock);
3383 	if (rc)
3384 		return rc;
3385 	rc = pdata->read_status(entry->client, entry->page);
3386 	mutex_unlock(&pdata->update_lock);
3387 	if (rc < 0)
3388 		return rc;
3389 
3390 	*val = rc;
3391 
3392 	return 0;
3393 }
3394 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3395 			 NULL, "0x%04llx\n");
3396 
3397 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3398 				       size_t count, loff_t *ppos)
3399 {
3400 	int rc;
3401 	struct pmbus_debugfs_entry *entry = file->private_data;
3402 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3403 	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3404 
3405 	rc = mutex_lock_interruptible(&pdata->update_lock);
3406 	if (rc)
3407 		return rc;
3408 	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3409 				   data);
3410 	mutex_unlock(&pdata->update_lock);
3411 	if (rc < 0)
3412 		return rc;
3413 
3414 	/* Add newline at the end of a read data */
3415 	data[rc] = '\n';
3416 
3417 	/* Include newline into the length */
3418 	rc += 1;
3419 
3420 	return simple_read_from_buffer(buf, count, ppos, data, rc);
3421 }
3422 
3423 static const struct file_operations pmbus_debugfs_ops_mfr = {
3424 	.llseek = noop_llseek,
3425 	.read = pmbus_debugfs_mfr_read,
3426 	.write = NULL,
3427 	.open = simple_open,
3428 };
3429 
3430 static void pmbus_remove_debugfs(void *data)
3431 {
3432 	struct dentry *entry = data;
3433 
3434 	debugfs_remove_recursive(entry);
3435 }
3436 
3437 static int pmbus_init_debugfs(struct i2c_client *client,
3438 			      struct pmbus_data *data)
3439 {
3440 	int i, idx = 0;
3441 	char name[PMBUS_NAME_SIZE];
3442 	struct pmbus_debugfs_entry *entries;
3443 
3444 	if (!pmbus_debugfs_dir)
3445 		return -ENODEV;
3446 
3447 	/*
3448 	 * Create the debugfs directory for this device. Use the hwmon device
3449 	 * name to avoid conflicts (hwmon numbers are globally unique).
3450 	 */
3451 	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3452 					   pmbus_debugfs_dir);
3453 	if (IS_ERR_OR_NULL(data->debugfs)) {
3454 		data->debugfs = NULL;
3455 		return -ENODEV;
3456 	}
3457 
3458 	/*
3459 	 * Allocate the max possible entries we need.
3460 	 * 6 entries device-specific
3461 	 * 10 entries page-specific
3462 	 */
3463 	entries = devm_kcalloc(data->dev,
3464 			       6 + data->info->pages * 10, sizeof(*entries),
3465 			       GFP_KERNEL);
3466 	if (!entries)
3467 		return -ENOMEM;
3468 
3469 	/*
3470 	 * Add device-specific entries.
3471 	 * Please note that the PMBUS standard allows all registers to be
3472 	 * page-specific.
3473 	 * To reduce the number of debugfs entries for devices with many pages
3474 	 * assume that values of the following registers are the same for all
3475 	 * pages and report values only for page 0.
3476 	 */
3477 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3478 		entries[idx].client = client;
3479 		entries[idx].page = 0;
3480 		entries[idx].reg = PMBUS_MFR_ID;
3481 		debugfs_create_file("mfr_id", 0444, data->debugfs,
3482 				    &entries[idx++],
3483 				    &pmbus_debugfs_ops_mfr);
3484 	}
3485 
3486 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3487 		entries[idx].client = client;
3488 		entries[idx].page = 0;
3489 		entries[idx].reg = PMBUS_MFR_MODEL;
3490 		debugfs_create_file("mfr_model", 0444, data->debugfs,
3491 				    &entries[idx++],
3492 				    &pmbus_debugfs_ops_mfr);
3493 	}
3494 
3495 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3496 		entries[idx].client = client;
3497 		entries[idx].page = 0;
3498 		entries[idx].reg = PMBUS_MFR_REVISION;
3499 		debugfs_create_file("mfr_revision", 0444, data->debugfs,
3500 				    &entries[idx++],
3501 				    &pmbus_debugfs_ops_mfr);
3502 	}
3503 
3504 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3505 		entries[idx].client = client;
3506 		entries[idx].page = 0;
3507 		entries[idx].reg = PMBUS_MFR_LOCATION;
3508 		debugfs_create_file("mfr_location", 0444, data->debugfs,
3509 				    &entries[idx++],
3510 				    &pmbus_debugfs_ops_mfr);
3511 	}
3512 
3513 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3514 		entries[idx].client = client;
3515 		entries[idx].page = 0;
3516 		entries[idx].reg = PMBUS_MFR_DATE;
3517 		debugfs_create_file("mfr_date", 0444, data->debugfs,
3518 				    &entries[idx++],
3519 				    &pmbus_debugfs_ops_mfr);
3520 	}
3521 
3522 	if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3523 		entries[idx].client = client;
3524 		entries[idx].page = 0;
3525 		entries[idx].reg = PMBUS_MFR_SERIAL;
3526 		debugfs_create_file("mfr_serial", 0444, data->debugfs,
3527 				    &entries[idx++],
3528 				    &pmbus_debugfs_ops_mfr);
3529 	}
3530 
3531 	/* Add page specific entries */
3532 	for (i = 0; i < data->info->pages; ++i) {
3533 		/* Check accessibility of status register if it's not page 0 */
3534 		if (!i || pmbus_check_status_register(client, i)) {
3535 			/* No need to set reg as we have special read op. */
3536 			entries[idx].client = client;
3537 			entries[idx].page = i;
3538 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3539 			debugfs_create_file(name, 0444, data->debugfs,
3540 					    &entries[idx++],
3541 					    &pmbus_debugfs_ops_status);
3542 		}
3543 
3544 		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3545 			entries[idx].client = client;
3546 			entries[idx].page = i;
3547 			entries[idx].reg = PMBUS_STATUS_VOUT;
3548 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3549 			debugfs_create_file(name, 0444, data->debugfs,
3550 					    &entries[idx++],
3551 					    &pmbus_debugfs_ops);
3552 		}
3553 
3554 		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3555 			entries[idx].client = client;
3556 			entries[idx].page = i;
3557 			entries[idx].reg = PMBUS_STATUS_IOUT;
3558 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3559 			debugfs_create_file(name, 0444, data->debugfs,
3560 					    &entries[idx++],
3561 					    &pmbus_debugfs_ops);
3562 		}
3563 
3564 		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3565 			entries[idx].client = client;
3566 			entries[idx].page = i;
3567 			entries[idx].reg = PMBUS_STATUS_INPUT;
3568 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3569 			debugfs_create_file(name, 0444, data->debugfs,
3570 					    &entries[idx++],
3571 					    &pmbus_debugfs_ops);
3572 		}
3573 
3574 		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3575 			entries[idx].client = client;
3576 			entries[idx].page = i;
3577 			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3578 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3579 			debugfs_create_file(name, 0444, data->debugfs,
3580 					    &entries[idx++],
3581 					    &pmbus_debugfs_ops);
3582 		}
3583 
3584 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3585 			entries[idx].client = client;
3586 			entries[idx].page = i;
3587 			entries[idx].reg = PMBUS_STATUS_CML;
3588 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3589 			debugfs_create_file(name, 0444, data->debugfs,
3590 					    &entries[idx++],
3591 					    &pmbus_debugfs_ops);
3592 		}
3593 
3594 		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3595 			entries[idx].client = client;
3596 			entries[idx].page = i;
3597 			entries[idx].reg = PMBUS_STATUS_OTHER;
3598 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3599 			debugfs_create_file(name, 0444, data->debugfs,
3600 					    &entries[idx++],
3601 					    &pmbus_debugfs_ops);
3602 		}
3603 
3604 		if (pmbus_check_byte_register(client, i,
3605 					      PMBUS_STATUS_MFR_SPECIFIC)) {
3606 			entries[idx].client = client;
3607 			entries[idx].page = i;
3608 			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3609 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3610 			debugfs_create_file(name, 0444, data->debugfs,
3611 					    &entries[idx++],
3612 					    &pmbus_debugfs_ops);
3613 		}
3614 
3615 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3616 			entries[idx].client = client;
3617 			entries[idx].page = i;
3618 			entries[idx].reg = PMBUS_STATUS_FAN_12;
3619 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3620 			debugfs_create_file(name, 0444, data->debugfs,
3621 					    &entries[idx++],
3622 					    &pmbus_debugfs_ops);
3623 		}
3624 
3625 		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3626 			entries[idx].client = client;
3627 			entries[idx].page = i;
3628 			entries[idx].reg = PMBUS_STATUS_FAN_34;
3629 			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3630 			debugfs_create_file(name, 0444, data->debugfs,
3631 					    &entries[idx++],
3632 					    &pmbus_debugfs_ops);
3633 		}
3634 	}
3635 
3636 	return devm_add_action_or_reset(data->dev,
3637 					pmbus_remove_debugfs, data->debugfs);
3638 }
3639 #else
3640 static int pmbus_init_debugfs(struct i2c_client *client,
3641 			      struct pmbus_data *data)
3642 {
3643 	return 0;
3644 }
3645 #endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
3646 
3647 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3648 {
3649 	struct device *dev = &client->dev;
3650 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3651 	struct pmbus_data *data;
3652 	size_t groups_num = 0;
3653 	int ret;
3654 	int i;
3655 	char *name;
3656 
3657 	if (!info)
3658 		return -ENODEV;
3659 
3660 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3661 				     | I2C_FUNC_SMBUS_BYTE_DATA
3662 				     | I2C_FUNC_SMBUS_WORD_DATA))
3663 		return -ENODEV;
3664 
3665 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3666 	if (!data)
3667 		return -ENOMEM;
3668 
3669 	if (info->groups)
3670 		while (info->groups[groups_num])
3671 			groups_num++;
3672 
3673 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3674 				    GFP_KERNEL);
3675 	if (!data->groups)
3676 		return -ENOMEM;
3677 
3678 	i2c_set_clientdata(client, data);
3679 	mutex_init(&data->update_lock);
3680 	data->dev = dev;
3681 
3682 	if (pdata)
3683 		data->flags = pdata->flags;
3684 	data->info = info;
3685 	data->currpage = -1;
3686 	data->currphase = -1;
3687 
3688 	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3689 		data->vout_low[i] = -1;
3690 		data->vout_high[i] = -1;
3691 	}
3692 
3693 	ret = pmbus_init_common(client, data, info);
3694 	if (ret < 0)
3695 		return ret;
3696 
3697 	ret = pmbus_find_attributes(client, data);
3698 	if (ret)
3699 		return ret;
3700 
3701 	/*
3702 	 * If there are no attributes, something is wrong.
3703 	 * Bail out instead of trying to register nothing.
3704 	 */
3705 	if (!data->num_attributes) {
3706 		dev_err(dev, "No attributes found\n");
3707 		return -ENODEV;
3708 	}
3709 
3710 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3711 	if (!name)
3712 		return -ENOMEM;
3713 	strreplace(name, '-', '_');
3714 
3715 	data->groups[0] = &data->group;
3716 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3717 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3718 					name, data, data->groups);
3719 	if (IS_ERR(data->hwmon_dev)) {
3720 		dev_err(dev, "Failed to register hwmon device\n");
3721 		return PTR_ERR(data->hwmon_dev);
3722 	}
3723 
3724 	ret = pmbus_regulator_register(data);
3725 	if (ret)
3726 		return ret;
3727 
3728 	ret = pmbus_irq_setup(client, data);
3729 	if (ret)
3730 		return ret;
3731 
3732 	ret = pmbus_init_debugfs(client, data);
3733 	if (ret)
3734 		dev_warn(dev, "Failed to register debugfs\n");
3735 
3736 	return 0;
3737 }
3738 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3739 
3740 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3741 {
3742 	struct pmbus_data *data = i2c_get_clientdata(client);
3743 
3744 	return data->debugfs;
3745 }
3746 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3747 
3748 int pmbus_lock_interruptible(struct i2c_client *client)
3749 {
3750 	struct pmbus_data *data = i2c_get_clientdata(client);
3751 
3752 	return mutex_lock_interruptible(&data->update_lock);
3753 }
3754 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
3755 
3756 void pmbus_unlock(struct i2c_client *client)
3757 {
3758 	struct pmbus_data *data = i2c_get_clientdata(client);
3759 
3760 	mutex_unlock(&data->update_lock);
3761 }
3762 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
3763 
3764 static int __init pmbus_core_init(void)
3765 {
3766 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3767 	if (IS_ERR(pmbus_debugfs_dir))
3768 		pmbus_debugfs_dir = NULL;
3769 
3770 	return 0;
3771 }
3772 
3773 static void __exit pmbus_core_exit(void)
3774 {
3775 	debugfs_remove_recursive(pmbus_debugfs_dir);
3776 }
3777 
3778 module_init(pmbus_core_init);
3779 module_exit(pmbus_core_exit);
3780 
3781 MODULE_AUTHOR("Guenter Roeck");
3782 MODULE_DESCRIPTION("PMBus core driver");
3783 MODULE_LICENSE("GPL");
3784