1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/pmbus.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/of.h> 23 #include <linux/thermal.h> 24 #include "pmbus.h" 25 26 /* 27 * Number of additional attribute pointers to allocate 28 * with each call to krealloc 29 */ 30 #define PMBUS_ATTR_ALLOC_SIZE 32 31 #define PMBUS_NAME_SIZE 24 32 33 struct pmbus_sensor { 34 struct pmbus_sensor *next; 35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 36 struct device_attribute attribute; 37 u8 page; /* page number */ 38 u8 phase; /* phase number, 0xff for all phases */ 39 u16 reg; /* register */ 40 enum pmbus_sensor_classes class; /* sensor class */ 41 bool update; /* runtime sensor update needed */ 42 bool convert; /* Whether or not to apply linear/vid/direct */ 43 int data; /* Sensor data. 44 Negative if there was a read error */ 45 }; 46 #define to_pmbus_sensor(_attr) \ 47 container_of(_attr, struct pmbus_sensor, attribute) 48 49 struct pmbus_boolean { 50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 51 struct sensor_device_attribute attribute; 52 struct pmbus_sensor *s1; 53 struct pmbus_sensor *s2; 54 }; 55 #define to_pmbus_boolean(_attr) \ 56 container_of(_attr, struct pmbus_boolean, attribute) 57 58 struct pmbus_label { 59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 60 struct device_attribute attribute; 61 char label[PMBUS_NAME_SIZE]; /* label */ 62 }; 63 #define to_pmbus_label(_attr) \ 64 container_of(_attr, struct pmbus_label, attribute) 65 66 /* Macros for converting between sensor index and register/page/status mask */ 67 68 #define PB_STATUS_MASK 0xffff 69 #define PB_REG_SHIFT 16 70 #define PB_REG_MASK 0x3ff 71 #define PB_PAGE_SHIFT 26 72 #define PB_PAGE_MASK 0x3f 73 74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ 75 ((reg) << PB_REG_SHIFT) | (mask)) 76 77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) 78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) 79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) 80 81 struct pmbus_data { 82 struct device *dev; 83 struct device *hwmon_dev; 84 struct regulator_dev **rdevs; 85 86 u32 flags; /* from platform data */ 87 88 int exponent[PMBUS_PAGES]; 89 /* linear mode: exponent for output voltages */ 90 91 const struct pmbus_driver_info *info; 92 93 int max_attributes; 94 int num_attributes; 95 struct attribute_group group; 96 const struct attribute_group **groups; 97 struct dentry *debugfs; /* debugfs device directory */ 98 99 struct pmbus_sensor *sensors; 100 101 struct mutex update_lock; 102 103 bool has_status_word; /* device uses STATUS_WORD register */ 104 int (*read_status)(struct i2c_client *client, int page); 105 106 s16 currpage; /* current page, -1 for unknown/unset */ 107 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 108 109 int vout_low[PMBUS_PAGES]; /* voltage low margin */ 110 int vout_high[PMBUS_PAGES]; /* voltage high margin */ 111 }; 112 113 struct pmbus_debugfs_entry { 114 struct i2c_client *client; 115 u8 page; 116 u8 reg; 117 }; 118 119 static const int pmbus_fan_rpm_mask[] = { 120 PB_FAN_1_RPM, 121 PB_FAN_2_RPM, 122 PB_FAN_1_RPM, 123 PB_FAN_2_RPM, 124 }; 125 126 static const int pmbus_fan_config_registers[] = { 127 PMBUS_FAN_CONFIG_12, 128 PMBUS_FAN_CONFIG_12, 129 PMBUS_FAN_CONFIG_34, 130 PMBUS_FAN_CONFIG_34 131 }; 132 133 static const int pmbus_fan_command_registers[] = { 134 PMBUS_FAN_COMMAND_1, 135 PMBUS_FAN_COMMAND_2, 136 PMBUS_FAN_COMMAND_3, 137 PMBUS_FAN_COMMAND_4, 138 }; 139 140 void pmbus_clear_cache(struct i2c_client *client) 141 { 142 struct pmbus_data *data = i2c_get_clientdata(client); 143 struct pmbus_sensor *sensor; 144 145 for (sensor = data->sensors; sensor; sensor = sensor->next) 146 sensor->data = -ENODATA; 147 } 148 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS); 149 150 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update) 151 { 152 struct pmbus_data *data = i2c_get_clientdata(client); 153 struct pmbus_sensor *sensor; 154 155 for (sensor = data->sensors; sensor; sensor = sensor->next) 156 if (sensor->reg == reg) 157 sensor->update = update; 158 } 159 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS); 160 161 int pmbus_set_page(struct i2c_client *client, int page, int phase) 162 { 163 struct pmbus_data *data = i2c_get_clientdata(client); 164 int rv; 165 166 if (page < 0) 167 return 0; 168 169 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 170 data->info->pages > 1 && page != data->currpage) { 171 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 172 if (rv < 0) 173 return rv; 174 175 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 176 if (rv < 0) 177 return rv; 178 179 if (rv != page) 180 return -EIO; 181 } 182 data->currpage = page; 183 184 if (data->info->phases[page] && data->currphase != phase && 185 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 186 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 187 phase); 188 if (rv) 189 return rv; 190 } 191 data->currphase = phase; 192 193 return 0; 194 } 195 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS); 196 197 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 198 { 199 int rv; 200 201 rv = pmbus_set_page(client, page, 0xff); 202 if (rv < 0) 203 return rv; 204 205 return i2c_smbus_write_byte(client, value); 206 } 207 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS); 208 209 /* 210 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 211 * a device specific mapping function exists and calls it if necessary. 212 */ 213 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 214 { 215 struct pmbus_data *data = i2c_get_clientdata(client); 216 const struct pmbus_driver_info *info = data->info; 217 int status; 218 219 if (info->write_byte) { 220 status = info->write_byte(client, page, value); 221 if (status != -ENODATA) 222 return status; 223 } 224 return pmbus_write_byte(client, page, value); 225 } 226 227 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 228 u16 word) 229 { 230 int rv; 231 232 rv = pmbus_set_page(client, page, 0xff); 233 if (rv < 0) 234 return rv; 235 236 return i2c_smbus_write_word_data(client, reg, word); 237 } 238 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS); 239 240 241 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 242 u16 word) 243 { 244 int bit; 245 int id; 246 int rv; 247 248 switch (reg) { 249 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 250 id = reg - PMBUS_VIRT_FAN_TARGET_1; 251 bit = pmbus_fan_rpm_mask[id]; 252 rv = pmbus_update_fan(client, page, id, bit, bit, word); 253 break; 254 default: 255 rv = -ENXIO; 256 break; 257 } 258 259 return rv; 260 } 261 262 /* 263 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 264 * a device specific mapping function exists and calls it if necessary. 265 */ 266 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 267 u16 word) 268 { 269 struct pmbus_data *data = i2c_get_clientdata(client); 270 const struct pmbus_driver_info *info = data->info; 271 int status; 272 273 if (info->write_word_data) { 274 status = info->write_word_data(client, page, reg, word); 275 if (status != -ENODATA) 276 return status; 277 } 278 279 if (reg >= PMBUS_VIRT_BASE) 280 return pmbus_write_virt_reg(client, page, reg, word); 281 282 return pmbus_write_word_data(client, page, reg, word); 283 } 284 285 /* 286 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if 287 * a device specific mapping function exists and calls it if necessary. 288 */ 289 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value) 290 { 291 struct pmbus_data *data = i2c_get_clientdata(client); 292 const struct pmbus_driver_info *info = data->info; 293 int status; 294 295 if (info->write_byte_data) { 296 status = info->write_byte_data(client, page, reg, value); 297 if (status != -ENODATA) 298 return status; 299 } 300 return pmbus_write_byte_data(client, page, reg, value); 301 } 302 303 /* 304 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 305 * a device specific mapping function exists and calls it if necessary. 306 */ 307 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 308 { 309 struct pmbus_data *data = i2c_get_clientdata(client); 310 const struct pmbus_driver_info *info = data->info; 311 int status; 312 313 if (info->read_byte_data) { 314 status = info->read_byte_data(client, page, reg); 315 if (status != -ENODATA) 316 return status; 317 } 318 return pmbus_read_byte_data(client, page, reg); 319 } 320 321 int pmbus_update_fan(struct i2c_client *client, int page, int id, 322 u8 config, u8 mask, u16 command) 323 { 324 int from; 325 int rv; 326 u8 to; 327 328 from = _pmbus_read_byte_data(client, page, 329 pmbus_fan_config_registers[id]); 330 if (from < 0) 331 return from; 332 333 to = (from & ~mask) | (config & mask); 334 if (to != from) { 335 rv = _pmbus_write_byte_data(client, page, 336 pmbus_fan_config_registers[id], to); 337 if (rv < 0) 338 return rv; 339 } 340 341 return _pmbus_write_word_data(client, page, 342 pmbus_fan_command_registers[id], command); 343 } 344 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS); 345 346 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 347 { 348 int rv; 349 350 rv = pmbus_set_page(client, page, phase); 351 if (rv < 0) 352 return rv; 353 354 return i2c_smbus_read_word_data(client, reg); 355 } 356 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS); 357 358 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 359 { 360 int rv; 361 int id; 362 363 switch (reg) { 364 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 365 id = reg - PMBUS_VIRT_FAN_TARGET_1; 366 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 367 break; 368 default: 369 rv = -ENXIO; 370 break; 371 } 372 373 return rv; 374 } 375 376 /* 377 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 378 * a device specific mapping function exists and calls it if necessary. 379 */ 380 static int _pmbus_read_word_data(struct i2c_client *client, int page, 381 int phase, int reg) 382 { 383 struct pmbus_data *data = i2c_get_clientdata(client); 384 const struct pmbus_driver_info *info = data->info; 385 int status; 386 387 if (info->read_word_data) { 388 status = info->read_word_data(client, page, phase, reg); 389 if (status != -ENODATA) 390 return status; 391 } 392 393 if (reg >= PMBUS_VIRT_BASE) 394 return pmbus_read_virt_reg(client, page, reg); 395 396 return pmbus_read_word_data(client, page, phase, reg); 397 } 398 399 /* Same as above, but without phase parameter, for use in check functions */ 400 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 401 { 402 return _pmbus_read_word_data(client, page, 0xff, reg); 403 } 404 405 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 406 { 407 int rv; 408 409 rv = pmbus_set_page(client, page, 0xff); 410 if (rv < 0) 411 return rv; 412 413 return i2c_smbus_read_byte_data(client, reg); 414 } 415 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS); 416 417 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 418 { 419 int rv; 420 421 rv = pmbus_set_page(client, page, 0xff); 422 if (rv < 0) 423 return rv; 424 425 return i2c_smbus_write_byte_data(client, reg, value); 426 } 427 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS); 428 429 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 430 u8 mask, u8 value) 431 { 432 unsigned int tmp; 433 int rv; 434 435 rv = _pmbus_read_byte_data(client, page, reg); 436 if (rv < 0) 437 return rv; 438 439 tmp = (rv & ~mask) | (value & mask); 440 441 if (tmp != rv) 442 rv = _pmbus_write_byte_data(client, page, reg, tmp); 443 444 return rv; 445 } 446 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS); 447 448 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg, 449 char *data_buf) 450 { 451 int rv; 452 453 rv = pmbus_set_page(client, page, 0xff); 454 if (rv < 0) 455 return rv; 456 457 return i2c_smbus_read_block_data(client, reg, data_buf); 458 } 459 460 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 461 int reg) 462 { 463 struct pmbus_sensor *sensor; 464 465 for (sensor = data->sensors; sensor; sensor = sensor->next) { 466 if (sensor->page == page && sensor->reg == reg) 467 return sensor; 468 } 469 470 return ERR_PTR(-EINVAL); 471 } 472 473 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 474 enum pmbus_fan_mode mode, 475 bool from_cache) 476 { 477 struct pmbus_data *data = i2c_get_clientdata(client); 478 bool want_rpm, have_rpm; 479 struct pmbus_sensor *s; 480 int config; 481 int reg; 482 483 want_rpm = (mode == rpm); 484 485 if (from_cache) { 486 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 487 s = pmbus_find_sensor(data, page, reg + id); 488 if (IS_ERR(s)) 489 return PTR_ERR(s); 490 491 return s->data; 492 } 493 494 config = _pmbus_read_byte_data(client, page, 495 pmbus_fan_config_registers[id]); 496 if (config < 0) 497 return config; 498 499 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 500 if (want_rpm == have_rpm) 501 return pmbus_read_word_data(client, page, 0xff, 502 pmbus_fan_command_registers[id]); 503 504 /* Can't sensibly map between RPM and PWM, just return zero */ 505 return 0; 506 } 507 508 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 509 enum pmbus_fan_mode mode) 510 { 511 return pmbus_get_fan_rate(client, page, id, mode, false); 512 } 513 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS); 514 515 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 516 enum pmbus_fan_mode mode) 517 { 518 return pmbus_get_fan_rate(client, page, id, mode, true); 519 } 520 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS); 521 522 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 523 { 524 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 525 } 526 527 void pmbus_clear_faults(struct i2c_client *client) 528 { 529 struct pmbus_data *data = i2c_get_clientdata(client); 530 int i; 531 532 for (i = 0; i < data->info->pages; i++) 533 pmbus_clear_fault_page(client, i); 534 } 535 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS); 536 537 static int pmbus_check_status_cml(struct i2c_client *client) 538 { 539 struct pmbus_data *data = i2c_get_clientdata(client); 540 int status, status2; 541 542 status = data->read_status(client, -1); 543 if (status < 0 || (status & PB_STATUS_CML)) { 544 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 545 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 546 return -EIO; 547 } 548 return 0; 549 } 550 551 static bool pmbus_check_register(struct i2c_client *client, 552 int (*func)(struct i2c_client *client, 553 int page, int reg), 554 int page, int reg) 555 { 556 int rv; 557 struct pmbus_data *data = i2c_get_clientdata(client); 558 559 rv = func(client, page, reg); 560 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 561 rv = pmbus_check_status_cml(client); 562 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) 563 data->read_status(client, -1); 564 if (reg < PMBUS_VIRT_BASE) 565 pmbus_clear_fault_page(client, -1); 566 return rv >= 0; 567 } 568 569 static bool pmbus_check_status_register(struct i2c_client *client, int page) 570 { 571 int status; 572 struct pmbus_data *data = i2c_get_clientdata(client); 573 574 status = data->read_status(client, page); 575 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 576 (status & PB_STATUS_CML)) { 577 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 578 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 579 status = -EIO; 580 } 581 582 pmbus_clear_fault_page(client, -1); 583 return status >= 0; 584 } 585 586 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 587 { 588 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 589 } 590 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS); 591 592 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 593 { 594 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 595 } 596 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS); 597 598 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client, 599 int page, int reg) 600 { 601 int rv; 602 struct pmbus_data *data = i2c_get_clientdata(client); 603 char data_buf[I2C_SMBUS_BLOCK_MAX + 2]; 604 605 rv = pmbus_read_block_data(client, page, reg, data_buf); 606 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 607 rv = pmbus_check_status_cml(client); 608 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) 609 data->read_status(client, -1); 610 pmbus_clear_fault_page(client, -1); 611 return rv >= 0; 612 } 613 614 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 615 { 616 struct pmbus_data *data = i2c_get_clientdata(client); 617 618 return data->info; 619 } 620 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS); 621 622 static int pmbus_get_status(struct i2c_client *client, int page, int reg) 623 { 624 struct pmbus_data *data = i2c_get_clientdata(client); 625 int status; 626 627 switch (reg) { 628 case PMBUS_STATUS_WORD: 629 status = data->read_status(client, page); 630 break; 631 default: 632 status = _pmbus_read_byte_data(client, page, reg); 633 break; 634 } 635 if (status < 0) 636 pmbus_clear_faults(client); 637 return status; 638 } 639 640 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) 641 { 642 if (sensor->data < 0 || sensor->update) 643 sensor->data = _pmbus_read_word_data(client, sensor->page, 644 sensor->phase, sensor->reg); 645 } 646 647 /* 648 * Convert ieee754 sensor values to milli- or micro-units 649 * depending on sensor type. 650 * 651 * ieee754 data format: 652 * bit 15: sign 653 * bit 10..14: exponent 654 * bit 0..9: mantissa 655 * exponent=0: 656 * v=(−1)^signbit * 2^(−14) * 0.significantbits 657 * exponent=1..30: 658 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits 659 * exponent=31: 660 * v=NaN 661 * 662 * Add the number mantissa bits into the calculations for simplicity. 663 * To do that, add '10' to the exponent. By doing that, we can just add 664 * 0x400 to normal values and get the expected result. 665 */ 666 static long pmbus_reg2data_ieee754(struct pmbus_data *data, 667 struct pmbus_sensor *sensor) 668 { 669 int exponent; 670 bool sign; 671 long val; 672 673 /* only support half precision for now */ 674 sign = sensor->data & 0x8000; 675 exponent = (sensor->data >> 10) & 0x1f; 676 val = sensor->data & 0x3ff; 677 678 if (exponent == 0) { /* subnormal */ 679 exponent = -(14 + 10); 680 } else if (exponent == 0x1f) { /* NaN, convert to min/max */ 681 exponent = 0; 682 val = 65504; 683 } else { 684 exponent -= (15 + 10); /* normal */ 685 val |= 0x400; 686 } 687 688 /* scale result to milli-units for all sensors except fans */ 689 if (sensor->class != PSC_FAN) 690 val = val * 1000L; 691 692 /* scale result to micro-units for power sensors */ 693 if (sensor->class == PSC_POWER) 694 val = val * 1000L; 695 696 if (exponent >= 0) 697 val <<= exponent; 698 else 699 val >>= -exponent; 700 701 if (sign) 702 val = -val; 703 704 return val; 705 } 706 707 /* 708 * Convert linear sensor values to milli- or micro-units 709 * depending on sensor type. 710 */ 711 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 712 struct pmbus_sensor *sensor) 713 { 714 s16 exponent; 715 s32 mantissa; 716 s64 val; 717 718 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 719 exponent = data->exponent[sensor->page]; 720 mantissa = (u16) sensor->data; 721 } else { /* LINEAR11 */ 722 exponent = ((s16)sensor->data) >> 11; 723 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 724 } 725 726 val = mantissa; 727 728 /* scale result to milli-units for all sensors except fans */ 729 if (sensor->class != PSC_FAN) 730 val = val * 1000LL; 731 732 /* scale result to micro-units for power sensors */ 733 if (sensor->class == PSC_POWER) 734 val = val * 1000LL; 735 736 if (exponent >= 0) 737 val <<= exponent; 738 else 739 val >>= -exponent; 740 741 return val; 742 } 743 744 /* 745 * Convert direct sensor values to milli- or micro-units 746 * depending on sensor type. 747 */ 748 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 749 struct pmbus_sensor *sensor) 750 { 751 s64 b, val = (s16)sensor->data; 752 s32 m, R; 753 754 m = data->info->m[sensor->class]; 755 b = data->info->b[sensor->class]; 756 R = data->info->R[sensor->class]; 757 758 if (m == 0) 759 return 0; 760 761 /* X = 1/m * (Y * 10^-R - b) */ 762 R = -R; 763 /* scale result to milli-units for everything but fans */ 764 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 765 R += 3; 766 b *= 1000; 767 } 768 769 /* scale result to micro-units for power sensors */ 770 if (sensor->class == PSC_POWER) { 771 R += 3; 772 b *= 1000; 773 } 774 775 while (R > 0) { 776 val *= 10; 777 R--; 778 } 779 while (R < 0) { 780 val = div_s64(val + 5LL, 10L); /* round closest */ 781 R++; 782 } 783 784 val = div_s64(val - b, m); 785 return val; 786 } 787 788 /* 789 * Convert VID sensor values to milli- or micro-units 790 * depending on sensor type. 791 */ 792 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 793 struct pmbus_sensor *sensor) 794 { 795 long val = sensor->data; 796 long rv = 0; 797 798 switch (data->info->vrm_version[sensor->page]) { 799 case vr11: 800 if (val >= 0x02 && val <= 0xb2) 801 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 802 break; 803 case vr12: 804 if (val >= 0x01) 805 rv = 250 + (val - 1) * 5; 806 break; 807 case vr13: 808 if (val >= 0x01) 809 rv = 500 + (val - 1) * 10; 810 break; 811 case imvp9: 812 if (val >= 0x01) 813 rv = 200 + (val - 1) * 10; 814 break; 815 case amd625mv: 816 if (val >= 0x0 && val <= 0xd8) 817 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 818 break; 819 } 820 return rv; 821 } 822 823 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 824 { 825 s64 val; 826 827 if (!sensor->convert) 828 return sensor->data; 829 830 switch (data->info->format[sensor->class]) { 831 case direct: 832 val = pmbus_reg2data_direct(data, sensor); 833 break; 834 case vid: 835 val = pmbus_reg2data_vid(data, sensor); 836 break; 837 case ieee754: 838 val = pmbus_reg2data_ieee754(data, sensor); 839 break; 840 case linear: 841 default: 842 val = pmbus_reg2data_linear(data, sensor); 843 break; 844 } 845 return val; 846 } 847 848 #define MAX_IEEE_MANTISSA (0x7ff * 1000) 849 #define MIN_IEEE_MANTISSA (0x400 * 1000) 850 851 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data, 852 struct pmbus_sensor *sensor, long val) 853 { 854 u16 exponent = (15 + 10); 855 long mantissa; 856 u16 sign = 0; 857 858 /* simple case */ 859 if (val == 0) 860 return 0; 861 862 if (val < 0) { 863 sign = 0x8000; 864 val = -val; 865 } 866 867 /* Power is in uW. Convert to mW before converting. */ 868 if (sensor->class == PSC_POWER) 869 val = DIV_ROUND_CLOSEST(val, 1000L); 870 871 /* 872 * For simplicity, convert fan data to milli-units 873 * before calculating the exponent. 874 */ 875 if (sensor->class == PSC_FAN) 876 val = val * 1000; 877 878 /* Reduce large mantissa until it fits into 10 bit */ 879 while (val > MAX_IEEE_MANTISSA && exponent < 30) { 880 exponent++; 881 val >>= 1; 882 } 883 /* 884 * Increase small mantissa to generate valid 'normal' 885 * number 886 */ 887 while (val < MIN_IEEE_MANTISSA && exponent > 1) { 888 exponent--; 889 val <<= 1; 890 } 891 892 /* Convert mantissa from milli-units to units */ 893 mantissa = DIV_ROUND_CLOSEST(val, 1000); 894 895 /* 896 * Ensure that the resulting number is within range. 897 * Valid range is 0x400..0x7ff, where bit 10 reflects 898 * the implied high bit in normalized ieee754 numbers. 899 * Set the range to 0x400..0x7ff to reflect this. 900 * The upper bit is then removed by the mask against 901 * 0x3ff in the final assignment. 902 */ 903 if (mantissa > 0x7ff) 904 mantissa = 0x7ff; 905 else if (mantissa < 0x400) 906 mantissa = 0x400; 907 908 /* Convert to sign, 5 bit exponent, 10 bit mantissa */ 909 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00); 910 } 911 912 #define MAX_LIN_MANTISSA (1023 * 1000) 913 #define MIN_LIN_MANTISSA (511 * 1000) 914 915 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 916 struct pmbus_sensor *sensor, s64 val) 917 { 918 s16 exponent = 0, mantissa; 919 bool negative = false; 920 921 /* simple case */ 922 if (val == 0) 923 return 0; 924 925 if (sensor->class == PSC_VOLTAGE_OUT) { 926 /* LINEAR16 does not support negative voltages */ 927 if (val < 0) 928 return 0; 929 930 /* 931 * For a static exponents, we don't have a choice 932 * but to adjust the value to it. 933 */ 934 if (data->exponent[sensor->page] < 0) 935 val <<= -data->exponent[sensor->page]; 936 else 937 val >>= data->exponent[sensor->page]; 938 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 939 return clamp_val(val, 0, 0xffff); 940 } 941 942 if (val < 0) { 943 negative = true; 944 val = -val; 945 } 946 947 /* Power is in uW. Convert to mW before converting. */ 948 if (sensor->class == PSC_POWER) 949 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 950 951 /* 952 * For simplicity, convert fan data to milli-units 953 * before calculating the exponent. 954 */ 955 if (sensor->class == PSC_FAN) 956 val = val * 1000LL; 957 958 /* Reduce large mantissa until it fits into 10 bit */ 959 while (val >= MAX_LIN_MANTISSA && exponent < 15) { 960 exponent++; 961 val >>= 1; 962 } 963 /* Increase small mantissa to improve precision */ 964 while (val < MIN_LIN_MANTISSA && exponent > -15) { 965 exponent--; 966 val <<= 1; 967 } 968 969 /* Convert mantissa from milli-units to units */ 970 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 971 972 /* restore sign */ 973 if (negative) 974 mantissa = -mantissa; 975 976 /* Convert to 5 bit exponent, 11 bit mantissa */ 977 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 978 } 979 980 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 981 struct pmbus_sensor *sensor, s64 val) 982 { 983 s64 b; 984 s32 m, R; 985 986 m = data->info->m[sensor->class]; 987 b = data->info->b[sensor->class]; 988 R = data->info->R[sensor->class]; 989 990 /* Power is in uW. Adjust R and b. */ 991 if (sensor->class == PSC_POWER) { 992 R -= 3; 993 b *= 1000; 994 } 995 996 /* Calculate Y = (m * X + b) * 10^R */ 997 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 998 R -= 3; /* Adjust R and b for data in milli-units */ 999 b *= 1000; 1000 } 1001 val = val * m + b; 1002 1003 while (R > 0) { 1004 val *= 10; 1005 R--; 1006 } 1007 while (R < 0) { 1008 val = div_s64(val + 5LL, 10L); /* round closest */ 1009 R++; 1010 } 1011 1012 return (u16)clamp_val(val, S16_MIN, S16_MAX); 1013 } 1014 1015 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 1016 struct pmbus_sensor *sensor, s64 val) 1017 { 1018 val = clamp_val(val, 500, 1600); 1019 1020 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 1021 } 1022 1023 static u16 pmbus_data2reg(struct pmbus_data *data, 1024 struct pmbus_sensor *sensor, s64 val) 1025 { 1026 u16 regval; 1027 1028 if (!sensor->convert) 1029 return val; 1030 1031 switch (data->info->format[sensor->class]) { 1032 case direct: 1033 regval = pmbus_data2reg_direct(data, sensor, val); 1034 break; 1035 case vid: 1036 regval = pmbus_data2reg_vid(data, sensor, val); 1037 break; 1038 case ieee754: 1039 regval = pmbus_data2reg_ieee754(data, sensor, val); 1040 break; 1041 case linear: 1042 default: 1043 regval = pmbus_data2reg_linear(data, sensor, val); 1044 break; 1045 } 1046 return regval; 1047 } 1048 1049 /* 1050 * Return boolean calculated from converted data. 1051 * <index> defines a status register index and mask. 1052 * The mask is in the lower 8 bits, the register index is in bits 8..23. 1053 * 1054 * The associated pmbus_boolean structure contains optional pointers to two 1055 * sensor attributes. If specified, those attributes are compared against each 1056 * other to determine if a limit has been exceeded. 1057 * 1058 * If the sensor attribute pointers are NULL, the function returns true if 1059 * (status[reg] & mask) is true. 1060 * 1061 * If sensor attribute pointers are provided, a comparison against a specified 1062 * limit has to be performed to determine the boolean result. 1063 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 1064 * sensor values referenced by sensor attribute pointers s1 and s2). 1065 * 1066 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 1067 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 1068 * 1069 * If a negative value is stored in any of the referenced registers, this value 1070 * reflects an error code which will be returned. 1071 */ 1072 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, 1073 int index) 1074 { 1075 struct pmbus_data *data = i2c_get_clientdata(client); 1076 struct pmbus_sensor *s1 = b->s1; 1077 struct pmbus_sensor *s2 = b->s2; 1078 u16 mask = pb_index_to_mask(index); 1079 u8 page = pb_index_to_page(index); 1080 u16 reg = pb_index_to_reg(index); 1081 int ret, status; 1082 u16 regval; 1083 1084 mutex_lock(&data->update_lock); 1085 status = pmbus_get_status(client, page, reg); 1086 if (status < 0) { 1087 ret = status; 1088 goto unlock; 1089 } 1090 1091 if (s1) 1092 pmbus_update_sensor_data(client, s1); 1093 if (s2) 1094 pmbus_update_sensor_data(client, s2); 1095 1096 regval = status & mask; 1097 if (regval) { 1098 ret = _pmbus_write_byte_data(client, page, reg, regval); 1099 if (ret) 1100 goto unlock; 1101 } 1102 if (s1 && s2) { 1103 s64 v1, v2; 1104 1105 if (s1->data < 0) { 1106 ret = s1->data; 1107 goto unlock; 1108 } 1109 if (s2->data < 0) { 1110 ret = s2->data; 1111 goto unlock; 1112 } 1113 1114 v1 = pmbus_reg2data(data, s1); 1115 v2 = pmbus_reg2data(data, s2); 1116 ret = !!(regval && v1 >= v2); 1117 } else { 1118 ret = !!regval; 1119 } 1120 unlock: 1121 mutex_unlock(&data->update_lock); 1122 return ret; 1123 } 1124 1125 static ssize_t pmbus_show_boolean(struct device *dev, 1126 struct device_attribute *da, char *buf) 1127 { 1128 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 1129 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 1130 struct i2c_client *client = to_i2c_client(dev->parent); 1131 int val; 1132 1133 val = pmbus_get_boolean(client, boolean, attr->index); 1134 if (val < 0) 1135 return val; 1136 return sysfs_emit(buf, "%d\n", val); 1137 } 1138 1139 static ssize_t pmbus_show_sensor(struct device *dev, 1140 struct device_attribute *devattr, char *buf) 1141 { 1142 struct i2c_client *client = to_i2c_client(dev->parent); 1143 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 1144 struct pmbus_data *data = i2c_get_clientdata(client); 1145 ssize_t ret; 1146 1147 mutex_lock(&data->update_lock); 1148 pmbus_update_sensor_data(client, sensor); 1149 if (sensor->data < 0) 1150 ret = sensor->data; 1151 else 1152 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor)); 1153 mutex_unlock(&data->update_lock); 1154 return ret; 1155 } 1156 1157 static ssize_t pmbus_set_sensor(struct device *dev, 1158 struct device_attribute *devattr, 1159 const char *buf, size_t count) 1160 { 1161 struct i2c_client *client = to_i2c_client(dev->parent); 1162 struct pmbus_data *data = i2c_get_clientdata(client); 1163 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 1164 ssize_t rv = count; 1165 s64 val; 1166 int ret; 1167 u16 regval; 1168 1169 if (kstrtos64(buf, 10, &val) < 0) 1170 return -EINVAL; 1171 1172 mutex_lock(&data->update_lock); 1173 regval = pmbus_data2reg(data, sensor, val); 1174 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 1175 if (ret < 0) 1176 rv = ret; 1177 else 1178 sensor->data = -ENODATA; 1179 mutex_unlock(&data->update_lock); 1180 return rv; 1181 } 1182 1183 static ssize_t pmbus_show_label(struct device *dev, 1184 struct device_attribute *da, char *buf) 1185 { 1186 struct pmbus_label *label = to_pmbus_label(da); 1187 1188 return sysfs_emit(buf, "%s\n", label->label); 1189 } 1190 1191 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 1192 { 1193 if (data->num_attributes >= data->max_attributes - 1) { 1194 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 1195 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs, 1196 new_max_attrs, sizeof(void *), 1197 GFP_KERNEL); 1198 if (!new_attrs) 1199 return -ENOMEM; 1200 data->group.attrs = new_attrs; 1201 data->max_attributes = new_max_attrs; 1202 } 1203 1204 data->group.attrs[data->num_attributes++] = attr; 1205 data->group.attrs[data->num_attributes] = NULL; 1206 return 0; 1207 } 1208 1209 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1210 const char *name, 1211 umode_t mode, 1212 ssize_t (*show)(struct device *dev, 1213 struct device_attribute *attr, 1214 char *buf), 1215 ssize_t (*store)(struct device *dev, 1216 struct device_attribute *attr, 1217 const char *buf, size_t count)) 1218 { 1219 sysfs_attr_init(&dev_attr->attr); 1220 dev_attr->attr.name = name; 1221 dev_attr->attr.mode = mode; 1222 dev_attr->show = show; 1223 dev_attr->store = store; 1224 } 1225 1226 static void pmbus_attr_init(struct sensor_device_attribute *a, 1227 const char *name, 1228 umode_t mode, 1229 ssize_t (*show)(struct device *dev, 1230 struct device_attribute *attr, 1231 char *buf), 1232 ssize_t (*store)(struct device *dev, 1233 struct device_attribute *attr, 1234 const char *buf, size_t count), 1235 int idx) 1236 { 1237 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1238 a->index = idx; 1239 } 1240 1241 static int pmbus_add_boolean(struct pmbus_data *data, 1242 const char *name, const char *type, int seq, 1243 struct pmbus_sensor *s1, 1244 struct pmbus_sensor *s2, 1245 u8 page, u16 reg, u16 mask) 1246 { 1247 struct pmbus_boolean *boolean; 1248 struct sensor_device_attribute *a; 1249 1250 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) 1251 return -EINVAL; 1252 1253 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1254 if (!boolean) 1255 return -ENOMEM; 1256 1257 a = &boolean->attribute; 1258 1259 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1260 name, seq, type); 1261 boolean->s1 = s1; 1262 boolean->s2 = s2; 1263 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1264 pb_reg_to_index(page, reg, mask)); 1265 1266 return pmbus_add_attribute(data, &a->dev_attr.attr); 1267 } 1268 1269 /* of thermal for pmbus temperature sensors */ 1270 struct pmbus_thermal_data { 1271 struct pmbus_data *pmbus_data; 1272 struct pmbus_sensor *sensor; 1273 }; 1274 1275 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp) 1276 { 1277 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz); 1278 struct pmbus_sensor *sensor = tdata->sensor; 1279 struct pmbus_data *pmbus_data = tdata->pmbus_data; 1280 struct i2c_client *client = to_i2c_client(pmbus_data->dev); 1281 struct device *dev = pmbus_data->hwmon_dev; 1282 int ret = 0; 1283 1284 if (!dev) { 1285 /* May not even get to hwmon yet */ 1286 *temp = 0; 1287 return 0; 1288 } 1289 1290 mutex_lock(&pmbus_data->update_lock); 1291 pmbus_update_sensor_data(client, sensor); 1292 if (sensor->data < 0) 1293 ret = sensor->data; 1294 else 1295 *temp = (int)pmbus_reg2data(pmbus_data, sensor); 1296 mutex_unlock(&pmbus_data->update_lock); 1297 1298 return ret; 1299 } 1300 1301 static const struct thermal_zone_device_ops pmbus_thermal_ops = { 1302 .get_temp = pmbus_thermal_get_temp, 1303 }; 1304 1305 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data, 1306 struct pmbus_sensor *sensor, int index) 1307 { 1308 struct device *dev = pmbus_data->dev; 1309 struct pmbus_thermal_data *tdata; 1310 struct thermal_zone_device *tzd; 1311 1312 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL); 1313 if (!tdata) 1314 return -ENOMEM; 1315 1316 tdata->sensor = sensor; 1317 tdata->pmbus_data = pmbus_data; 1318 1319 tzd = devm_thermal_of_zone_register(dev, index, tdata, 1320 &pmbus_thermal_ops); 1321 /* 1322 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV, 1323 * so ignore that error but forward any other error. 1324 */ 1325 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV)) 1326 return PTR_ERR(tzd); 1327 1328 return 0; 1329 } 1330 1331 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1332 const char *name, const char *type, 1333 int seq, int page, int phase, 1334 int reg, 1335 enum pmbus_sensor_classes class, 1336 bool update, bool readonly, 1337 bool convert) 1338 { 1339 struct pmbus_sensor *sensor; 1340 struct device_attribute *a; 1341 1342 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1343 if (!sensor) 1344 return NULL; 1345 a = &sensor->attribute; 1346 1347 if (type) 1348 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1349 name, seq, type); 1350 else 1351 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1352 name, seq); 1353 1354 if (data->flags & PMBUS_WRITE_PROTECTED) 1355 readonly = true; 1356 1357 sensor->page = page; 1358 sensor->phase = phase; 1359 sensor->reg = reg; 1360 sensor->class = class; 1361 sensor->update = update; 1362 sensor->convert = convert; 1363 sensor->data = -ENODATA; 1364 pmbus_dev_attr_init(a, sensor->name, 1365 readonly ? 0444 : 0644, 1366 pmbus_show_sensor, pmbus_set_sensor); 1367 1368 if (pmbus_add_attribute(data, &a->attr)) 1369 return NULL; 1370 1371 sensor->next = data->sensors; 1372 data->sensors = sensor; 1373 1374 /* temperature sensors with _input values are registered with thermal */ 1375 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0) 1376 pmbus_thermal_add_sensor(data, sensor, seq); 1377 1378 return sensor; 1379 } 1380 1381 static int pmbus_add_label(struct pmbus_data *data, 1382 const char *name, int seq, 1383 const char *lstring, int index, int phase) 1384 { 1385 struct pmbus_label *label; 1386 struct device_attribute *a; 1387 1388 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1389 if (!label) 1390 return -ENOMEM; 1391 1392 a = &label->attribute; 1393 1394 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1395 if (!index) { 1396 if (phase == 0xff) 1397 strncpy(label->label, lstring, 1398 sizeof(label->label) - 1); 1399 else 1400 snprintf(label->label, sizeof(label->label), "%s.%d", 1401 lstring, phase); 1402 } else { 1403 if (phase == 0xff) 1404 snprintf(label->label, sizeof(label->label), "%s%d", 1405 lstring, index); 1406 else 1407 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1408 lstring, index, phase); 1409 } 1410 1411 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1412 return pmbus_add_attribute(data, &a->attr); 1413 } 1414 1415 /* 1416 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1417 */ 1418 1419 /* 1420 * The pmbus_limit_attr structure describes a single limit attribute 1421 * and its associated alarm attribute. 1422 */ 1423 struct pmbus_limit_attr { 1424 u16 reg; /* Limit register */ 1425 u16 sbit; /* Alarm attribute status bit */ 1426 bool update; /* True if register needs updates */ 1427 bool low; /* True if low limit; for limits with compare 1428 functions only */ 1429 const char *attr; /* Attribute name */ 1430 const char *alarm; /* Alarm attribute name */ 1431 }; 1432 1433 /* 1434 * The pmbus_sensor_attr structure describes one sensor attribute. This 1435 * description includes a reference to the associated limit attributes. 1436 */ 1437 struct pmbus_sensor_attr { 1438 u16 reg; /* sensor register */ 1439 u16 gbit; /* generic status bit */ 1440 u8 nlimit; /* # of limit registers */ 1441 enum pmbus_sensor_classes class;/* sensor class */ 1442 const char *label; /* sensor label */ 1443 bool paged; /* true if paged sensor */ 1444 bool update; /* true if update needed */ 1445 bool compare; /* true if compare function needed */ 1446 u32 func; /* sensor mask */ 1447 u32 sfunc; /* sensor status mask */ 1448 int sreg; /* status register */ 1449 const struct pmbus_limit_attr *limit;/* limit registers */ 1450 }; 1451 1452 /* 1453 * Add a set of limit attributes and, if supported, the associated 1454 * alarm attributes. 1455 * returns 0 if no alarm register found, 1 if an alarm register was found, 1456 * < 0 on errors. 1457 */ 1458 static int pmbus_add_limit_attrs(struct i2c_client *client, 1459 struct pmbus_data *data, 1460 const struct pmbus_driver_info *info, 1461 const char *name, int index, int page, 1462 struct pmbus_sensor *base, 1463 const struct pmbus_sensor_attr *attr) 1464 { 1465 const struct pmbus_limit_attr *l = attr->limit; 1466 int nlimit = attr->nlimit; 1467 int have_alarm = 0; 1468 int i, ret; 1469 struct pmbus_sensor *curr; 1470 1471 for (i = 0; i < nlimit; i++) { 1472 if (pmbus_check_word_register(client, page, l->reg)) { 1473 curr = pmbus_add_sensor(data, name, l->attr, index, 1474 page, 0xff, l->reg, attr->class, 1475 attr->update || l->update, 1476 false, true); 1477 if (!curr) 1478 return -ENOMEM; 1479 if (l->sbit && (info->func[page] & attr->sfunc)) { 1480 ret = pmbus_add_boolean(data, name, 1481 l->alarm, index, 1482 attr->compare ? l->low ? curr : base 1483 : NULL, 1484 attr->compare ? l->low ? base : curr 1485 : NULL, 1486 page, attr->sreg, l->sbit); 1487 if (ret) 1488 return ret; 1489 have_alarm = 1; 1490 } 1491 } 1492 l++; 1493 } 1494 return have_alarm; 1495 } 1496 1497 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1498 struct pmbus_data *data, 1499 const struct pmbus_driver_info *info, 1500 const char *name, 1501 int index, int page, int phase, 1502 const struct pmbus_sensor_attr *attr, 1503 bool paged) 1504 { 1505 struct pmbus_sensor *base; 1506 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1507 int ret; 1508 1509 if (attr->label) { 1510 ret = pmbus_add_label(data, name, index, attr->label, 1511 paged ? page + 1 : 0, phase); 1512 if (ret) 1513 return ret; 1514 } 1515 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1516 attr->reg, attr->class, true, true, true); 1517 if (!base) 1518 return -ENOMEM; 1519 /* No limit and alarm attributes for phase specific sensors */ 1520 if (attr->sfunc && phase == 0xff) { 1521 ret = pmbus_add_limit_attrs(client, data, info, name, 1522 index, page, base, attr); 1523 if (ret < 0) 1524 return ret; 1525 /* 1526 * Add generic alarm attribute only if there are no individual 1527 * alarm attributes, if there is a global alarm bit, and if 1528 * the generic status register (word or byte, depending on 1529 * which global bit is set) for this page is accessible. 1530 */ 1531 if (!ret && attr->gbit && 1532 (!upper || data->has_status_word) && 1533 pmbus_check_status_register(client, page)) { 1534 ret = pmbus_add_boolean(data, name, "alarm", index, 1535 NULL, NULL, 1536 page, PMBUS_STATUS_WORD, 1537 attr->gbit); 1538 if (ret) 1539 return ret; 1540 } 1541 } 1542 return 0; 1543 } 1544 1545 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1546 const struct pmbus_sensor_attr *attr) 1547 { 1548 int p; 1549 1550 if (attr->paged) 1551 return true; 1552 1553 /* 1554 * Some attributes may be present on more than one page despite 1555 * not being marked with the paged attribute. If that is the case, 1556 * then treat the sensor as being paged and add the page suffix to the 1557 * attribute name. 1558 * We don't just add the paged attribute to all such attributes, in 1559 * order to maintain the un-suffixed labels in the case where the 1560 * attribute is only on page 0. 1561 */ 1562 for (p = 1; p < info->pages; p++) { 1563 if (info->func[p] & attr->func) 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1570 struct pmbus_data *data, 1571 const char *name, 1572 const struct pmbus_sensor_attr *attrs, 1573 int nattrs) 1574 { 1575 const struct pmbus_driver_info *info = data->info; 1576 int index, i; 1577 int ret; 1578 1579 index = 1; 1580 for (i = 0; i < nattrs; i++) { 1581 int page, pages; 1582 bool paged = pmbus_sensor_is_paged(info, attrs); 1583 1584 pages = paged ? info->pages : 1; 1585 for (page = 0; page < pages; page++) { 1586 if (info->func[page] & attrs->func) { 1587 ret = pmbus_add_sensor_attrs_one(client, data, info, 1588 name, index, page, 1589 0xff, attrs, paged); 1590 if (ret) 1591 return ret; 1592 index++; 1593 } 1594 if (info->phases[page]) { 1595 int phase; 1596 1597 for (phase = 0; phase < info->phases[page]; 1598 phase++) { 1599 if (!(info->pfunc[phase] & attrs->func)) 1600 continue; 1601 ret = pmbus_add_sensor_attrs_one(client, 1602 data, info, name, index, page, 1603 phase, attrs, paged); 1604 if (ret) 1605 return ret; 1606 index++; 1607 } 1608 } 1609 } 1610 attrs++; 1611 } 1612 return 0; 1613 } 1614 1615 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1616 { 1617 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1618 .attr = "min", 1619 .alarm = "min_alarm", 1620 .sbit = PB_VOLTAGE_UV_WARNING, 1621 }, { 1622 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1623 .attr = "lcrit", 1624 .alarm = "lcrit_alarm", 1625 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF, 1626 }, { 1627 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1628 .attr = "max", 1629 .alarm = "max_alarm", 1630 .sbit = PB_VOLTAGE_OV_WARNING, 1631 }, { 1632 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1633 .attr = "crit", 1634 .alarm = "crit_alarm", 1635 .sbit = PB_VOLTAGE_OV_FAULT, 1636 }, { 1637 .reg = PMBUS_VIRT_READ_VIN_AVG, 1638 .update = true, 1639 .attr = "average", 1640 }, { 1641 .reg = PMBUS_VIRT_READ_VIN_MIN, 1642 .update = true, 1643 .attr = "lowest", 1644 }, { 1645 .reg = PMBUS_VIRT_READ_VIN_MAX, 1646 .update = true, 1647 .attr = "highest", 1648 }, { 1649 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1650 .attr = "reset_history", 1651 }, { 1652 .reg = PMBUS_MFR_VIN_MIN, 1653 .attr = "rated_min", 1654 }, { 1655 .reg = PMBUS_MFR_VIN_MAX, 1656 .attr = "rated_max", 1657 }, 1658 }; 1659 1660 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1661 { 1662 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1663 .attr = "min", 1664 .alarm = "min_alarm", 1665 .sbit = PB_VOLTAGE_UV_WARNING, 1666 }, { 1667 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1668 .attr = "lcrit", 1669 .alarm = "lcrit_alarm", 1670 .sbit = PB_VOLTAGE_UV_FAULT, 1671 }, { 1672 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1673 .attr = "max", 1674 .alarm = "max_alarm", 1675 .sbit = PB_VOLTAGE_OV_WARNING, 1676 }, { 1677 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1678 .attr = "crit", 1679 .alarm = "crit_alarm", 1680 .sbit = PB_VOLTAGE_OV_FAULT, 1681 } 1682 }; 1683 1684 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1685 { 1686 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1687 .attr = "min", 1688 .alarm = "min_alarm", 1689 .sbit = PB_VOLTAGE_UV_WARNING, 1690 }, { 1691 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1692 .attr = "lcrit", 1693 .alarm = "lcrit_alarm", 1694 .sbit = PB_VOLTAGE_UV_FAULT, 1695 }, { 1696 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1697 .attr = "max", 1698 .alarm = "max_alarm", 1699 .sbit = PB_VOLTAGE_OV_WARNING, 1700 }, { 1701 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1702 .attr = "crit", 1703 .alarm = "crit_alarm", 1704 .sbit = PB_VOLTAGE_OV_FAULT, 1705 }, { 1706 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1707 .update = true, 1708 .attr = "average", 1709 }, { 1710 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1711 .update = true, 1712 .attr = "lowest", 1713 }, { 1714 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1715 .update = true, 1716 .attr = "highest", 1717 }, { 1718 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1719 .attr = "reset_history", 1720 }, { 1721 .reg = PMBUS_MFR_VOUT_MIN, 1722 .attr = "rated_min", 1723 }, { 1724 .reg = PMBUS_MFR_VOUT_MAX, 1725 .attr = "rated_max", 1726 }, 1727 }; 1728 1729 static const struct pmbus_sensor_attr voltage_attributes[] = { 1730 { 1731 .reg = PMBUS_READ_VIN, 1732 .class = PSC_VOLTAGE_IN, 1733 .label = "vin", 1734 .func = PMBUS_HAVE_VIN, 1735 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1736 .sreg = PMBUS_STATUS_INPUT, 1737 .gbit = PB_STATUS_VIN_UV, 1738 .limit = vin_limit_attrs, 1739 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1740 }, { 1741 .reg = PMBUS_VIRT_READ_VMON, 1742 .class = PSC_VOLTAGE_IN, 1743 .label = "vmon", 1744 .func = PMBUS_HAVE_VMON, 1745 .sfunc = PMBUS_HAVE_STATUS_VMON, 1746 .sreg = PMBUS_VIRT_STATUS_VMON, 1747 .limit = vmon_limit_attrs, 1748 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1749 }, { 1750 .reg = PMBUS_READ_VCAP, 1751 .class = PSC_VOLTAGE_IN, 1752 .label = "vcap", 1753 .func = PMBUS_HAVE_VCAP, 1754 }, { 1755 .reg = PMBUS_READ_VOUT, 1756 .class = PSC_VOLTAGE_OUT, 1757 .label = "vout", 1758 .paged = true, 1759 .func = PMBUS_HAVE_VOUT, 1760 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1761 .sreg = PMBUS_STATUS_VOUT, 1762 .gbit = PB_STATUS_VOUT_OV, 1763 .limit = vout_limit_attrs, 1764 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1765 } 1766 }; 1767 1768 /* Current attributes */ 1769 1770 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1771 { 1772 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1773 .attr = "max", 1774 .alarm = "max_alarm", 1775 .sbit = PB_IIN_OC_WARNING, 1776 }, { 1777 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1778 .attr = "crit", 1779 .alarm = "crit_alarm", 1780 .sbit = PB_IIN_OC_FAULT, 1781 }, { 1782 .reg = PMBUS_VIRT_READ_IIN_AVG, 1783 .update = true, 1784 .attr = "average", 1785 }, { 1786 .reg = PMBUS_VIRT_READ_IIN_MIN, 1787 .update = true, 1788 .attr = "lowest", 1789 }, { 1790 .reg = PMBUS_VIRT_READ_IIN_MAX, 1791 .update = true, 1792 .attr = "highest", 1793 }, { 1794 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1795 .attr = "reset_history", 1796 }, { 1797 .reg = PMBUS_MFR_IIN_MAX, 1798 .attr = "rated_max", 1799 }, 1800 }; 1801 1802 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1803 { 1804 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1805 .attr = "max", 1806 .alarm = "max_alarm", 1807 .sbit = PB_IOUT_OC_WARNING, 1808 }, { 1809 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1810 .attr = "lcrit", 1811 .alarm = "lcrit_alarm", 1812 .sbit = PB_IOUT_UC_FAULT, 1813 }, { 1814 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1815 .attr = "crit", 1816 .alarm = "crit_alarm", 1817 .sbit = PB_IOUT_OC_FAULT, 1818 }, { 1819 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1820 .update = true, 1821 .attr = "average", 1822 }, { 1823 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1824 .update = true, 1825 .attr = "lowest", 1826 }, { 1827 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1828 .update = true, 1829 .attr = "highest", 1830 }, { 1831 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1832 .attr = "reset_history", 1833 }, { 1834 .reg = PMBUS_MFR_IOUT_MAX, 1835 .attr = "rated_max", 1836 }, 1837 }; 1838 1839 static const struct pmbus_sensor_attr current_attributes[] = { 1840 { 1841 .reg = PMBUS_READ_IIN, 1842 .class = PSC_CURRENT_IN, 1843 .label = "iin", 1844 .func = PMBUS_HAVE_IIN, 1845 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1846 .sreg = PMBUS_STATUS_INPUT, 1847 .gbit = PB_STATUS_INPUT, 1848 .limit = iin_limit_attrs, 1849 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1850 }, { 1851 .reg = PMBUS_READ_IOUT, 1852 .class = PSC_CURRENT_OUT, 1853 .label = "iout", 1854 .paged = true, 1855 .func = PMBUS_HAVE_IOUT, 1856 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1857 .sreg = PMBUS_STATUS_IOUT, 1858 .gbit = PB_STATUS_IOUT_OC, 1859 .limit = iout_limit_attrs, 1860 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1861 } 1862 }; 1863 1864 /* Power attributes */ 1865 1866 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1867 { 1868 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1869 .attr = "max", 1870 .alarm = "alarm", 1871 .sbit = PB_PIN_OP_WARNING, 1872 }, { 1873 .reg = PMBUS_VIRT_READ_PIN_AVG, 1874 .update = true, 1875 .attr = "average", 1876 }, { 1877 .reg = PMBUS_VIRT_READ_PIN_MIN, 1878 .update = true, 1879 .attr = "input_lowest", 1880 }, { 1881 .reg = PMBUS_VIRT_READ_PIN_MAX, 1882 .update = true, 1883 .attr = "input_highest", 1884 }, { 1885 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1886 .attr = "reset_history", 1887 }, { 1888 .reg = PMBUS_MFR_PIN_MAX, 1889 .attr = "rated_max", 1890 }, 1891 }; 1892 1893 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1894 { 1895 .reg = PMBUS_POUT_MAX, 1896 .attr = "cap", 1897 .alarm = "cap_alarm", 1898 .sbit = PB_POWER_LIMITING, 1899 }, { 1900 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1901 .attr = "max", 1902 .alarm = "max_alarm", 1903 .sbit = PB_POUT_OP_WARNING, 1904 }, { 1905 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1906 .attr = "crit", 1907 .alarm = "crit_alarm", 1908 .sbit = PB_POUT_OP_FAULT, 1909 }, { 1910 .reg = PMBUS_VIRT_READ_POUT_AVG, 1911 .update = true, 1912 .attr = "average", 1913 }, { 1914 .reg = PMBUS_VIRT_READ_POUT_MIN, 1915 .update = true, 1916 .attr = "input_lowest", 1917 }, { 1918 .reg = PMBUS_VIRT_READ_POUT_MAX, 1919 .update = true, 1920 .attr = "input_highest", 1921 }, { 1922 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1923 .attr = "reset_history", 1924 }, { 1925 .reg = PMBUS_MFR_POUT_MAX, 1926 .attr = "rated_max", 1927 }, 1928 }; 1929 1930 static const struct pmbus_sensor_attr power_attributes[] = { 1931 { 1932 .reg = PMBUS_READ_PIN, 1933 .class = PSC_POWER, 1934 .label = "pin", 1935 .func = PMBUS_HAVE_PIN, 1936 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1937 .sreg = PMBUS_STATUS_INPUT, 1938 .gbit = PB_STATUS_INPUT, 1939 .limit = pin_limit_attrs, 1940 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1941 }, { 1942 .reg = PMBUS_READ_POUT, 1943 .class = PSC_POWER, 1944 .label = "pout", 1945 .paged = true, 1946 .func = PMBUS_HAVE_POUT, 1947 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1948 .sreg = PMBUS_STATUS_IOUT, 1949 .limit = pout_limit_attrs, 1950 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1951 } 1952 }; 1953 1954 /* Temperature atributes */ 1955 1956 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1957 { 1958 .reg = PMBUS_UT_WARN_LIMIT, 1959 .low = true, 1960 .attr = "min", 1961 .alarm = "min_alarm", 1962 .sbit = PB_TEMP_UT_WARNING, 1963 }, { 1964 .reg = PMBUS_UT_FAULT_LIMIT, 1965 .low = true, 1966 .attr = "lcrit", 1967 .alarm = "lcrit_alarm", 1968 .sbit = PB_TEMP_UT_FAULT, 1969 }, { 1970 .reg = PMBUS_OT_WARN_LIMIT, 1971 .attr = "max", 1972 .alarm = "max_alarm", 1973 .sbit = PB_TEMP_OT_WARNING, 1974 }, { 1975 .reg = PMBUS_OT_FAULT_LIMIT, 1976 .attr = "crit", 1977 .alarm = "crit_alarm", 1978 .sbit = PB_TEMP_OT_FAULT, 1979 }, { 1980 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1981 .attr = "lowest", 1982 }, { 1983 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1984 .attr = "average", 1985 }, { 1986 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1987 .attr = "highest", 1988 }, { 1989 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1990 .attr = "reset_history", 1991 }, { 1992 .reg = PMBUS_MFR_MAX_TEMP_1, 1993 .attr = "rated_max", 1994 }, 1995 }; 1996 1997 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1998 { 1999 .reg = PMBUS_UT_WARN_LIMIT, 2000 .low = true, 2001 .attr = "min", 2002 .alarm = "min_alarm", 2003 .sbit = PB_TEMP_UT_WARNING, 2004 }, { 2005 .reg = PMBUS_UT_FAULT_LIMIT, 2006 .low = true, 2007 .attr = "lcrit", 2008 .alarm = "lcrit_alarm", 2009 .sbit = PB_TEMP_UT_FAULT, 2010 }, { 2011 .reg = PMBUS_OT_WARN_LIMIT, 2012 .attr = "max", 2013 .alarm = "max_alarm", 2014 .sbit = PB_TEMP_OT_WARNING, 2015 }, { 2016 .reg = PMBUS_OT_FAULT_LIMIT, 2017 .attr = "crit", 2018 .alarm = "crit_alarm", 2019 .sbit = PB_TEMP_OT_FAULT, 2020 }, { 2021 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 2022 .attr = "lowest", 2023 }, { 2024 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 2025 .attr = "average", 2026 }, { 2027 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 2028 .attr = "highest", 2029 }, { 2030 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 2031 .attr = "reset_history", 2032 }, { 2033 .reg = PMBUS_MFR_MAX_TEMP_2, 2034 .attr = "rated_max", 2035 }, 2036 }; 2037 2038 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 2039 { 2040 .reg = PMBUS_UT_WARN_LIMIT, 2041 .low = true, 2042 .attr = "min", 2043 .alarm = "min_alarm", 2044 .sbit = PB_TEMP_UT_WARNING, 2045 }, { 2046 .reg = PMBUS_UT_FAULT_LIMIT, 2047 .low = true, 2048 .attr = "lcrit", 2049 .alarm = "lcrit_alarm", 2050 .sbit = PB_TEMP_UT_FAULT, 2051 }, { 2052 .reg = PMBUS_OT_WARN_LIMIT, 2053 .attr = "max", 2054 .alarm = "max_alarm", 2055 .sbit = PB_TEMP_OT_WARNING, 2056 }, { 2057 .reg = PMBUS_OT_FAULT_LIMIT, 2058 .attr = "crit", 2059 .alarm = "crit_alarm", 2060 .sbit = PB_TEMP_OT_FAULT, 2061 }, { 2062 .reg = PMBUS_MFR_MAX_TEMP_3, 2063 .attr = "rated_max", 2064 }, 2065 }; 2066 2067 static const struct pmbus_sensor_attr temp_attributes[] = { 2068 { 2069 .reg = PMBUS_READ_TEMPERATURE_1, 2070 .class = PSC_TEMPERATURE, 2071 .paged = true, 2072 .update = true, 2073 .compare = true, 2074 .func = PMBUS_HAVE_TEMP, 2075 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2076 .sreg = PMBUS_STATUS_TEMPERATURE, 2077 .gbit = PB_STATUS_TEMPERATURE, 2078 .limit = temp_limit_attrs, 2079 .nlimit = ARRAY_SIZE(temp_limit_attrs), 2080 }, { 2081 .reg = PMBUS_READ_TEMPERATURE_2, 2082 .class = PSC_TEMPERATURE, 2083 .paged = true, 2084 .update = true, 2085 .compare = true, 2086 .func = PMBUS_HAVE_TEMP2, 2087 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2088 .sreg = PMBUS_STATUS_TEMPERATURE, 2089 .gbit = PB_STATUS_TEMPERATURE, 2090 .limit = temp_limit_attrs2, 2091 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 2092 }, { 2093 .reg = PMBUS_READ_TEMPERATURE_3, 2094 .class = PSC_TEMPERATURE, 2095 .paged = true, 2096 .update = true, 2097 .compare = true, 2098 .func = PMBUS_HAVE_TEMP3, 2099 .sfunc = PMBUS_HAVE_STATUS_TEMP, 2100 .sreg = PMBUS_STATUS_TEMPERATURE, 2101 .gbit = PB_STATUS_TEMPERATURE, 2102 .limit = temp_limit_attrs3, 2103 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 2104 } 2105 }; 2106 2107 static const int pmbus_fan_registers[] = { 2108 PMBUS_READ_FAN_SPEED_1, 2109 PMBUS_READ_FAN_SPEED_2, 2110 PMBUS_READ_FAN_SPEED_3, 2111 PMBUS_READ_FAN_SPEED_4 2112 }; 2113 2114 static const int pmbus_fan_status_registers[] = { 2115 PMBUS_STATUS_FAN_12, 2116 PMBUS_STATUS_FAN_12, 2117 PMBUS_STATUS_FAN_34, 2118 PMBUS_STATUS_FAN_34 2119 }; 2120 2121 static const u32 pmbus_fan_flags[] = { 2122 PMBUS_HAVE_FAN12, 2123 PMBUS_HAVE_FAN12, 2124 PMBUS_HAVE_FAN34, 2125 PMBUS_HAVE_FAN34 2126 }; 2127 2128 static const u32 pmbus_fan_status_flags[] = { 2129 PMBUS_HAVE_STATUS_FAN12, 2130 PMBUS_HAVE_STATUS_FAN12, 2131 PMBUS_HAVE_STATUS_FAN34, 2132 PMBUS_HAVE_STATUS_FAN34 2133 }; 2134 2135 /* Fans */ 2136 2137 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 2138 static int pmbus_add_fan_ctrl(struct i2c_client *client, 2139 struct pmbus_data *data, int index, int page, int id, 2140 u8 config) 2141 { 2142 struct pmbus_sensor *sensor; 2143 2144 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 2145 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 2146 false, false, true); 2147 2148 if (!sensor) 2149 return -ENOMEM; 2150 2151 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 2152 (data->info->func[page] & PMBUS_HAVE_PWM34))) 2153 return 0; 2154 2155 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 2156 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 2157 false, false, true); 2158 2159 if (!sensor) 2160 return -ENOMEM; 2161 2162 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 2163 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 2164 true, false, false); 2165 2166 if (!sensor) 2167 return -ENOMEM; 2168 2169 return 0; 2170 } 2171 2172 static int pmbus_add_fan_attributes(struct i2c_client *client, 2173 struct pmbus_data *data) 2174 { 2175 const struct pmbus_driver_info *info = data->info; 2176 int index = 1; 2177 int page; 2178 int ret; 2179 2180 for (page = 0; page < info->pages; page++) { 2181 int f; 2182 2183 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 2184 int regval; 2185 2186 if (!(info->func[page] & pmbus_fan_flags[f])) 2187 break; 2188 2189 if (!pmbus_check_word_register(client, page, 2190 pmbus_fan_registers[f])) 2191 break; 2192 2193 /* 2194 * Skip fan if not installed. 2195 * Each fan configuration register covers multiple fans, 2196 * so we have to do some magic. 2197 */ 2198 regval = _pmbus_read_byte_data(client, page, 2199 pmbus_fan_config_registers[f]); 2200 if (regval < 0 || 2201 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 2202 continue; 2203 2204 if (pmbus_add_sensor(data, "fan", "input", index, 2205 page, 0xff, pmbus_fan_registers[f], 2206 PSC_FAN, true, true, true) == NULL) 2207 return -ENOMEM; 2208 2209 /* Fan control */ 2210 if (pmbus_check_word_register(client, page, 2211 pmbus_fan_command_registers[f])) { 2212 ret = pmbus_add_fan_ctrl(client, data, index, 2213 page, f, regval); 2214 if (ret < 0) 2215 return ret; 2216 } 2217 2218 /* 2219 * Each fan status register covers multiple fans, 2220 * so we have to do some magic. 2221 */ 2222 if ((info->func[page] & pmbus_fan_status_flags[f]) && 2223 pmbus_check_byte_register(client, 2224 page, pmbus_fan_status_registers[f])) { 2225 int reg; 2226 2227 if (f > 1) /* fan 3, 4 */ 2228 reg = PMBUS_STATUS_FAN_34; 2229 else 2230 reg = PMBUS_STATUS_FAN_12; 2231 ret = pmbus_add_boolean(data, "fan", 2232 "alarm", index, NULL, NULL, page, reg, 2233 PB_FAN_FAN1_WARNING >> (f & 1)); 2234 if (ret) 2235 return ret; 2236 ret = pmbus_add_boolean(data, "fan", 2237 "fault", index, NULL, NULL, page, reg, 2238 PB_FAN_FAN1_FAULT >> (f & 1)); 2239 if (ret) 2240 return ret; 2241 } 2242 index++; 2243 } 2244 } 2245 return 0; 2246 } 2247 2248 struct pmbus_samples_attr { 2249 int reg; 2250 char *name; 2251 }; 2252 2253 struct pmbus_samples_reg { 2254 int page; 2255 struct pmbus_samples_attr *attr; 2256 struct device_attribute dev_attr; 2257 }; 2258 2259 static struct pmbus_samples_attr pmbus_samples_registers[] = { 2260 { 2261 .reg = PMBUS_VIRT_SAMPLES, 2262 .name = "samples", 2263 }, { 2264 .reg = PMBUS_VIRT_IN_SAMPLES, 2265 .name = "in_samples", 2266 }, { 2267 .reg = PMBUS_VIRT_CURR_SAMPLES, 2268 .name = "curr_samples", 2269 }, { 2270 .reg = PMBUS_VIRT_POWER_SAMPLES, 2271 .name = "power_samples", 2272 }, { 2273 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2274 .name = "temp_samples", 2275 } 2276 }; 2277 2278 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2279 2280 static ssize_t pmbus_show_samples(struct device *dev, 2281 struct device_attribute *devattr, char *buf) 2282 { 2283 int val; 2284 struct i2c_client *client = to_i2c_client(dev->parent); 2285 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2286 struct pmbus_data *data = i2c_get_clientdata(client); 2287 2288 mutex_lock(&data->update_lock); 2289 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2290 mutex_unlock(&data->update_lock); 2291 if (val < 0) 2292 return val; 2293 2294 return sysfs_emit(buf, "%d\n", val); 2295 } 2296 2297 static ssize_t pmbus_set_samples(struct device *dev, 2298 struct device_attribute *devattr, 2299 const char *buf, size_t count) 2300 { 2301 int ret; 2302 long val; 2303 struct i2c_client *client = to_i2c_client(dev->parent); 2304 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2305 struct pmbus_data *data = i2c_get_clientdata(client); 2306 2307 if (kstrtol(buf, 0, &val) < 0) 2308 return -EINVAL; 2309 2310 mutex_lock(&data->update_lock); 2311 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2312 mutex_unlock(&data->update_lock); 2313 2314 return ret ? : count; 2315 } 2316 2317 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2318 struct pmbus_samples_attr *attr) 2319 { 2320 struct pmbus_samples_reg *reg; 2321 2322 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2323 if (!reg) 2324 return -ENOMEM; 2325 2326 reg->attr = attr; 2327 reg->page = page; 2328 2329 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2330 pmbus_show_samples, pmbus_set_samples); 2331 2332 return pmbus_add_attribute(data, ®->dev_attr.attr); 2333 } 2334 2335 static int pmbus_add_samples_attributes(struct i2c_client *client, 2336 struct pmbus_data *data) 2337 { 2338 const struct pmbus_driver_info *info = data->info; 2339 int s; 2340 2341 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2342 return 0; 2343 2344 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2345 struct pmbus_samples_attr *attr; 2346 int ret; 2347 2348 attr = &pmbus_samples_registers[s]; 2349 if (!pmbus_check_word_register(client, 0, attr->reg)) 2350 continue; 2351 2352 ret = pmbus_add_samples_attr(data, 0, attr); 2353 if (ret) 2354 return ret; 2355 } 2356 2357 return 0; 2358 } 2359 2360 static int pmbus_find_attributes(struct i2c_client *client, 2361 struct pmbus_data *data) 2362 { 2363 int ret; 2364 2365 /* Voltage sensors */ 2366 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2367 ARRAY_SIZE(voltage_attributes)); 2368 if (ret) 2369 return ret; 2370 2371 /* Current sensors */ 2372 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2373 ARRAY_SIZE(current_attributes)); 2374 if (ret) 2375 return ret; 2376 2377 /* Power sensors */ 2378 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2379 ARRAY_SIZE(power_attributes)); 2380 if (ret) 2381 return ret; 2382 2383 /* Temperature sensors */ 2384 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2385 ARRAY_SIZE(temp_attributes)); 2386 if (ret) 2387 return ret; 2388 2389 /* Fans */ 2390 ret = pmbus_add_fan_attributes(client, data); 2391 if (ret) 2392 return ret; 2393 2394 ret = pmbus_add_samples_attributes(client, data); 2395 return ret; 2396 } 2397 2398 /* 2399 * The pmbus_class_attr_map structure maps one sensor class to 2400 * it's corresponding sensor attributes array. 2401 */ 2402 struct pmbus_class_attr_map { 2403 enum pmbus_sensor_classes class; 2404 int nattr; 2405 const struct pmbus_sensor_attr *attr; 2406 }; 2407 2408 static const struct pmbus_class_attr_map class_attr_map[] = { 2409 { 2410 .class = PSC_VOLTAGE_IN, 2411 .attr = voltage_attributes, 2412 .nattr = ARRAY_SIZE(voltage_attributes), 2413 }, { 2414 .class = PSC_VOLTAGE_OUT, 2415 .attr = voltage_attributes, 2416 .nattr = ARRAY_SIZE(voltage_attributes), 2417 }, { 2418 .class = PSC_CURRENT_IN, 2419 .attr = current_attributes, 2420 .nattr = ARRAY_SIZE(current_attributes), 2421 }, { 2422 .class = PSC_CURRENT_OUT, 2423 .attr = current_attributes, 2424 .nattr = ARRAY_SIZE(current_attributes), 2425 }, { 2426 .class = PSC_POWER, 2427 .attr = power_attributes, 2428 .nattr = ARRAY_SIZE(power_attributes), 2429 }, { 2430 .class = PSC_TEMPERATURE, 2431 .attr = temp_attributes, 2432 .nattr = ARRAY_SIZE(temp_attributes), 2433 } 2434 }; 2435 2436 /* 2437 * Read the coefficients for direct mode. 2438 */ 2439 static int pmbus_read_coefficients(struct i2c_client *client, 2440 struct pmbus_driver_info *info, 2441 const struct pmbus_sensor_attr *attr) 2442 { 2443 int rv; 2444 union i2c_smbus_data data; 2445 enum pmbus_sensor_classes class = attr->class; 2446 s8 R; 2447 s16 m, b; 2448 2449 data.block[0] = 2; 2450 data.block[1] = attr->reg; 2451 data.block[2] = 0x01; 2452 2453 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags, 2454 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS, 2455 I2C_SMBUS_BLOCK_PROC_CALL, &data); 2456 2457 if (rv < 0) 2458 return rv; 2459 2460 if (data.block[0] != 5) 2461 return -EIO; 2462 2463 m = data.block[1] | (data.block[2] << 8); 2464 b = data.block[3] | (data.block[4] << 8); 2465 R = data.block[5]; 2466 info->m[class] = m; 2467 info->b[class] = b; 2468 info->R[class] = R; 2469 2470 return rv; 2471 } 2472 2473 static int pmbus_init_coefficients(struct i2c_client *client, 2474 struct pmbus_driver_info *info) 2475 { 2476 int i, n, ret = -EINVAL; 2477 const struct pmbus_class_attr_map *map; 2478 const struct pmbus_sensor_attr *attr; 2479 2480 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) { 2481 map = &class_attr_map[i]; 2482 if (info->format[map->class] != direct) 2483 continue; 2484 for (n = 0; n < map->nattr; n++) { 2485 attr = &map->attr[n]; 2486 if (map->class != attr->class) 2487 continue; 2488 ret = pmbus_read_coefficients(client, info, attr); 2489 if (ret >= 0) 2490 break; 2491 } 2492 if (ret < 0) { 2493 dev_err(&client->dev, 2494 "No coefficients found for sensor class %d\n", 2495 map->class); 2496 return -EINVAL; 2497 } 2498 } 2499 2500 return 0; 2501 } 2502 2503 /* 2504 * Identify chip parameters. 2505 * This function is called for all chips. 2506 */ 2507 static int pmbus_identify_common(struct i2c_client *client, 2508 struct pmbus_data *data, int page) 2509 { 2510 int vout_mode = -1; 2511 2512 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2513 vout_mode = _pmbus_read_byte_data(client, page, 2514 PMBUS_VOUT_MODE); 2515 if (vout_mode >= 0 && vout_mode != 0xff) { 2516 /* 2517 * Not all chips support the VOUT_MODE command, 2518 * so a failure to read it is not an error. 2519 */ 2520 switch (vout_mode >> 5) { 2521 case 0: /* linear mode */ 2522 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2523 return -ENODEV; 2524 2525 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2526 break; 2527 case 1: /* VID mode */ 2528 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2529 return -ENODEV; 2530 break; 2531 case 2: /* direct mode */ 2532 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2533 return -ENODEV; 2534 break; 2535 case 3: /* ieee 754 half precision */ 2536 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754) 2537 return -ENODEV; 2538 break; 2539 default: 2540 return -ENODEV; 2541 } 2542 } 2543 2544 return 0; 2545 } 2546 2547 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2548 { 2549 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2550 } 2551 2552 static int pmbus_read_status_word(struct i2c_client *client, int page) 2553 { 2554 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2555 } 2556 2557 /* PEC attribute support */ 2558 2559 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy, 2560 char *buf) 2561 { 2562 struct i2c_client *client = to_i2c_client(dev); 2563 2564 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); 2565 } 2566 2567 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy, 2568 const char *buf, size_t count) 2569 { 2570 struct i2c_client *client = to_i2c_client(dev); 2571 bool enable; 2572 int err; 2573 2574 err = kstrtobool(buf, &enable); 2575 if (err < 0) 2576 return err; 2577 2578 if (enable) 2579 client->flags |= I2C_CLIENT_PEC; 2580 else 2581 client->flags &= ~I2C_CLIENT_PEC; 2582 2583 return count; 2584 } 2585 2586 static DEVICE_ATTR_RW(pec); 2587 2588 static void pmbus_remove_pec(void *dev) 2589 { 2590 device_remove_file(dev, &dev_attr_pec); 2591 } 2592 2593 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2594 struct pmbus_driver_info *info) 2595 { 2596 struct device *dev = &client->dev; 2597 int page, ret; 2598 2599 /* 2600 * Figure out if PEC is enabled before accessing any other register. 2601 * Make sure PEC is disabled, will be enabled later if needed. 2602 */ 2603 client->flags &= ~I2C_CLIENT_PEC; 2604 2605 /* Enable PEC if the controller and bus supports it */ 2606 if (!(data->flags & PMBUS_NO_CAPABILITY)) { 2607 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2608 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) { 2609 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) 2610 client->flags |= I2C_CLIENT_PEC; 2611 } 2612 } 2613 2614 /* 2615 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2616 * to use PMBUS_STATUS_BYTE instead if that is the case. 2617 * Bail out if both registers are not supported. 2618 */ 2619 data->read_status = pmbus_read_status_word; 2620 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2621 if (ret < 0 || ret == 0xffff) { 2622 data->read_status = pmbus_read_status_byte; 2623 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2624 if (ret < 0 || ret == 0xff) { 2625 dev_err(dev, "PMBus status register not found\n"); 2626 return -ENODEV; 2627 } 2628 } else { 2629 data->has_status_word = true; 2630 } 2631 2632 /* 2633 * Check if the chip is write protected. If it is, we can not clear 2634 * faults, and we should not try it. Also, in that case, writes into 2635 * limit registers need to be disabled. 2636 */ 2637 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) { 2638 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2639 if (ret > 0 && (ret & PB_WP_ANY)) 2640 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2641 } 2642 2643 if (data->info->pages) 2644 pmbus_clear_faults(client); 2645 else 2646 pmbus_clear_fault_page(client, -1); 2647 2648 if (info->identify) { 2649 ret = (*info->identify)(client, info); 2650 if (ret < 0) { 2651 dev_err(dev, "Chip identification failed\n"); 2652 return ret; 2653 } 2654 } 2655 2656 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2657 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2658 return -ENODEV; 2659 } 2660 2661 for (page = 0; page < info->pages; page++) { 2662 ret = pmbus_identify_common(client, data, page); 2663 if (ret < 0) { 2664 dev_err(dev, "Failed to identify chip capabilities\n"); 2665 return ret; 2666 } 2667 } 2668 2669 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) { 2670 if (!i2c_check_functionality(client->adapter, 2671 I2C_FUNC_SMBUS_BLOCK_PROC_CALL)) 2672 return -ENODEV; 2673 2674 ret = pmbus_init_coefficients(client, info); 2675 if (ret < 0) 2676 return ret; 2677 } 2678 2679 if (client->flags & I2C_CLIENT_PEC) { 2680 /* 2681 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the 2682 * chip support PEC. Add 'pec' attribute to client device to let 2683 * the user control it. 2684 */ 2685 ret = device_create_file(dev, &dev_attr_pec); 2686 if (ret) 2687 return ret; 2688 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev); 2689 if (ret) 2690 return ret; 2691 } 2692 2693 return 0; 2694 } 2695 2696 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */ 2697 struct pmbus_status_assoc { 2698 int pflag, rflag, eflag; 2699 }; 2700 2701 /* PMBus->regulator bit mappings for a PMBus status register */ 2702 struct pmbus_status_category { 2703 int func; 2704 int reg; 2705 const struct pmbus_status_assoc *bits; /* zero-terminated */ 2706 }; 2707 2708 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = { 2709 { 2710 .func = PMBUS_HAVE_STATUS_VOUT, 2711 .reg = PMBUS_STATUS_VOUT, 2712 .bits = (const struct pmbus_status_assoc[]) { 2713 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN, 2714 REGULATOR_EVENT_UNDER_VOLTAGE_WARN }, 2715 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE, 2716 REGULATOR_EVENT_UNDER_VOLTAGE }, 2717 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN, 2718 REGULATOR_EVENT_OVER_VOLTAGE_WARN }, 2719 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT, 2720 REGULATOR_EVENT_OVER_VOLTAGE_WARN }, 2721 { }, 2722 }, 2723 }, { 2724 .func = PMBUS_HAVE_STATUS_IOUT, 2725 .reg = PMBUS_STATUS_IOUT, 2726 .bits = (const struct pmbus_status_assoc[]) { 2727 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN, 2728 REGULATOR_EVENT_OVER_CURRENT_WARN }, 2729 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT, 2730 REGULATOR_EVENT_OVER_CURRENT }, 2731 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT, 2732 REGULATOR_EVENT_OVER_CURRENT }, 2733 { }, 2734 }, 2735 }, { 2736 .func = PMBUS_HAVE_STATUS_TEMP, 2737 .reg = PMBUS_STATUS_TEMPERATURE, 2738 .bits = (const struct pmbus_status_assoc[]) { 2739 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN, 2740 REGULATOR_EVENT_OVER_TEMP_WARN }, 2741 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP, 2742 REGULATOR_EVENT_OVER_TEMP }, 2743 { }, 2744 }, 2745 }, 2746 }; 2747 2748 static int _pmbus_is_enabled(struct i2c_client *client, u8 page) 2749 { 2750 int ret; 2751 2752 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2753 2754 if (ret < 0) 2755 return ret; 2756 2757 return !!(ret & PB_OPERATION_CONTROL_ON); 2758 } 2759 2760 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page) 2761 { 2762 struct pmbus_data *data = i2c_get_clientdata(client); 2763 int ret; 2764 2765 mutex_lock(&data->update_lock); 2766 ret = _pmbus_is_enabled(client, page); 2767 mutex_unlock(&data->update_lock); 2768 2769 return ret; 2770 } 2771 2772 #define to_dev_attr(_dev_attr) \ 2773 container_of(_dev_attr, struct device_attribute, attr) 2774 2775 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags) 2776 { 2777 int i; 2778 2779 for (i = 0; i < data->num_attributes; i++) { 2780 struct device_attribute *da = to_dev_attr(data->group.attrs[i]); 2781 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 2782 int index = attr->index; 2783 u16 smask = pb_index_to_mask(index); 2784 u8 spage = pb_index_to_page(index); 2785 u16 sreg = pb_index_to_reg(index); 2786 2787 if (reg == sreg && page == spage && (smask & flags)) { 2788 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name); 2789 sysfs_notify(&data->dev->kobj, NULL, da->attr.name); 2790 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE); 2791 flags &= ~smask; 2792 } 2793 2794 if (!flags) 2795 break; 2796 } 2797 } 2798 2799 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, 2800 unsigned int *event, bool notify) 2801 { 2802 int i, status; 2803 const struct pmbus_status_category *cat; 2804 const struct pmbus_status_assoc *bit; 2805 struct device *dev = data->dev; 2806 struct i2c_client *client = to_i2c_client(dev); 2807 int func = data->info->func[page]; 2808 2809 *flags = 0; 2810 *event = 0; 2811 2812 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) { 2813 cat = &pmbus_status_flag_map[i]; 2814 if (!(func & cat->func)) 2815 continue; 2816 2817 status = _pmbus_read_byte_data(client, page, cat->reg); 2818 if (status < 0) 2819 return status; 2820 2821 for (bit = cat->bits; bit->pflag; bit++) 2822 if (status & bit->pflag) { 2823 *flags |= bit->rflag; 2824 *event |= bit->eflag; 2825 } 2826 2827 if (notify && status) 2828 pmbus_notify(data, page, cat->reg, status); 2829 2830 } 2831 2832 /* 2833 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_* 2834 * bits. Some of the other bits are tempting (especially for cases 2835 * where we don't have the relevant PMBUS_HAVE_STATUS_* 2836 * functionality), but there's an unfortunate ambiguity in that 2837 * they're defined as indicating a fault *or* a warning, so we can't 2838 * easily determine whether to report REGULATOR_ERROR_<foo> or 2839 * REGULATOR_ERROR_<foo>_WARN. 2840 */ 2841 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); 2842 if (status < 0) 2843 return status; 2844 2845 if (_pmbus_is_enabled(client, page)) { 2846 if (status & PB_STATUS_OFF) { 2847 *flags |= REGULATOR_ERROR_FAIL; 2848 *event |= REGULATOR_EVENT_FAIL; 2849 } 2850 2851 if (status & PB_STATUS_POWER_GOOD_N) { 2852 *flags |= REGULATOR_ERROR_REGULATION_OUT; 2853 *event |= REGULATOR_EVENT_REGULATION_OUT; 2854 } 2855 } 2856 /* 2857 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are 2858 * defined strictly as fault indicators (not warnings). 2859 */ 2860 if (status & PB_STATUS_IOUT_OC) { 2861 *flags |= REGULATOR_ERROR_OVER_CURRENT; 2862 *event |= REGULATOR_EVENT_OVER_CURRENT; 2863 } 2864 if (status & PB_STATUS_VOUT_OV) { 2865 *flags |= REGULATOR_ERROR_REGULATION_OUT; 2866 *event |= REGULATOR_EVENT_FAIL; 2867 } 2868 2869 /* 2870 * If we haven't discovered any thermal faults or warnings via 2871 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as 2872 * a (conservative) best-effort interpretation. 2873 */ 2874 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) && 2875 (status & PB_STATUS_TEMPERATURE)) { 2876 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN; 2877 *event |= REGULATOR_EVENT_OVER_TEMP_WARN; 2878 } 2879 2880 2881 return 0; 2882 } 2883 2884 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, 2885 unsigned int *event, bool notify) 2886 { 2887 int ret; 2888 2889 mutex_lock(&data->update_lock); 2890 ret = _pmbus_get_flags(data, page, flags, event, notify); 2891 mutex_unlock(&data->update_lock); 2892 2893 return ret; 2894 } 2895 2896 #if IS_ENABLED(CONFIG_REGULATOR) 2897 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2898 { 2899 struct device *dev = rdev_get_dev(rdev); 2900 struct i2c_client *client = to_i2c_client(dev->parent); 2901 2902 return pmbus_is_enabled(client, rdev_get_id(rdev)); 2903 } 2904 2905 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2906 { 2907 struct device *dev = rdev_get_dev(rdev); 2908 struct i2c_client *client = to_i2c_client(dev->parent); 2909 struct pmbus_data *data = i2c_get_clientdata(client); 2910 u8 page = rdev_get_id(rdev); 2911 int ret; 2912 2913 mutex_lock(&data->update_lock); 2914 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2915 PB_OPERATION_CONTROL_ON, 2916 enable ? PB_OPERATION_CONTROL_ON : 0); 2917 mutex_unlock(&data->update_lock); 2918 2919 return ret; 2920 } 2921 2922 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2923 { 2924 return _pmbus_regulator_on_off(rdev, 1); 2925 } 2926 2927 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2928 { 2929 return _pmbus_regulator_on_off(rdev, 0); 2930 } 2931 2932 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags) 2933 { 2934 struct device *dev = rdev_get_dev(rdev); 2935 struct i2c_client *client = to_i2c_client(dev->parent); 2936 struct pmbus_data *data = i2c_get_clientdata(client); 2937 int event; 2938 2939 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false); 2940 } 2941 2942 static int pmbus_regulator_get_status(struct regulator_dev *rdev) 2943 { 2944 struct device *dev = rdev_get_dev(rdev); 2945 struct i2c_client *client = to_i2c_client(dev->parent); 2946 struct pmbus_data *data = i2c_get_clientdata(client); 2947 u8 page = rdev_get_id(rdev); 2948 int status, ret; 2949 int event; 2950 2951 mutex_lock(&data->update_lock); 2952 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); 2953 if (status < 0) { 2954 ret = status; 2955 goto unlock; 2956 } 2957 2958 if (status & PB_STATUS_OFF) { 2959 ret = REGULATOR_STATUS_OFF; 2960 goto unlock; 2961 } 2962 2963 /* If regulator is ON & reports power good then return ON */ 2964 if (!(status & PB_STATUS_POWER_GOOD_N)) { 2965 ret = REGULATOR_STATUS_ON; 2966 goto unlock; 2967 } 2968 2969 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false); 2970 if (ret) 2971 goto unlock; 2972 2973 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT | 2974 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) { 2975 ret = REGULATOR_STATUS_ERROR; 2976 goto unlock; 2977 } 2978 2979 ret = REGULATOR_STATUS_UNDEFINED; 2980 2981 unlock: 2982 mutex_unlock(&data->update_lock); 2983 return ret; 2984 } 2985 2986 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page) 2987 { 2988 struct pmbus_data *data = i2c_get_clientdata(client); 2989 struct pmbus_sensor s = { 2990 .page = page, 2991 .class = PSC_VOLTAGE_OUT, 2992 .convert = true, 2993 .data = -1, 2994 }; 2995 2996 if (data->vout_low[page] < 0) { 2997 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN)) 2998 s.data = _pmbus_read_word_data(client, page, 0xff, 2999 PMBUS_MFR_VOUT_MIN); 3000 if (s.data < 0) { 3001 s.data = _pmbus_read_word_data(client, page, 0xff, 3002 PMBUS_VOUT_MARGIN_LOW); 3003 if (s.data < 0) 3004 return s.data; 3005 } 3006 data->vout_low[page] = pmbus_reg2data(data, &s); 3007 } 3008 3009 return data->vout_low[page]; 3010 } 3011 3012 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page) 3013 { 3014 struct pmbus_data *data = i2c_get_clientdata(client); 3015 struct pmbus_sensor s = { 3016 .page = page, 3017 .class = PSC_VOLTAGE_OUT, 3018 .convert = true, 3019 .data = -1, 3020 }; 3021 3022 if (data->vout_high[page] < 0) { 3023 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX)) 3024 s.data = _pmbus_read_word_data(client, page, 0xff, 3025 PMBUS_MFR_VOUT_MAX); 3026 if (s.data < 0) { 3027 s.data = _pmbus_read_word_data(client, page, 0xff, 3028 PMBUS_VOUT_MARGIN_HIGH); 3029 if (s.data < 0) 3030 return s.data; 3031 } 3032 data->vout_high[page] = pmbus_reg2data(data, &s); 3033 } 3034 3035 return data->vout_high[page]; 3036 } 3037 3038 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev) 3039 { 3040 struct device *dev = rdev_get_dev(rdev); 3041 struct i2c_client *client = to_i2c_client(dev->parent); 3042 struct pmbus_data *data = i2c_get_clientdata(client); 3043 struct pmbus_sensor s = { 3044 .page = rdev_get_id(rdev), 3045 .class = PSC_VOLTAGE_OUT, 3046 .convert = true, 3047 }; 3048 3049 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT); 3050 if (s.data < 0) 3051 return s.data; 3052 3053 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */ 3054 } 3055 3056 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv, 3057 int max_uv, unsigned int *selector) 3058 { 3059 struct device *dev = rdev_get_dev(rdev); 3060 struct i2c_client *client = to_i2c_client(dev->parent); 3061 struct pmbus_data *data = i2c_get_clientdata(client); 3062 struct pmbus_sensor s = { 3063 .page = rdev_get_id(rdev), 3064 .class = PSC_VOLTAGE_OUT, 3065 .convert = true, 3066 .data = -1, 3067 }; 3068 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */ 3069 int low, high; 3070 3071 *selector = 0; 3072 3073 low = pmbus_regulator_get_low_margin(client, s.page); 3074 if (low < 0) 3075 return low; 3076 3077 high = pmbus_regulator_get_high_margin(client, s.page); 3078 if (high < 0) 3079 return high; 3080 3081 /* Make sure we are within margins */ 3082 if (low > val) 3083 val = low; 3084 if (high < val) 3085 val = high; 3086 3087 val = pmbus_data2reg(data, &s, val); 3088 3089 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val); 3090 } 3091 3092 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev, 3093 unsigned int selector) 3094 { 3095 struct device *dev = rdev_get_dev(rdev); 3096 struct i2c_client *client = to_i2c_client(dev->parent); 3097 int val, low, high; 3098 3099 if (selector >= rdev->desc->n_voltages || 3100 selector < rdev->desc->linear_min_sel) 3101 return -EINVAL; 3102 3103 selector -= rdev->desc->linear_min_sel; 3104 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV + 3105 (rdev->desc->uV_step * selector), 1000); /* convert to mV */ 3106 3107 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev)); 3108 if (low < 0) 3109 return low; 3110 3111 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev)); 3112 if (high < 0) 3113 return high; 3114 3115 if (val >= low && val <= high) 3116 return val * 1000; /* unit is uV */ 3117 3118 return 0; 3119 } 3120 3121 const struct regulator_ops pmbus_regulator_ops = { 3122 .enable = pmbus_regulator_enable, 3123 .disable = pmbus_regulator_disable, 3124 .is_enabled = pmbus_regulator_is_enabled, 3125 .get_error_flags = pmbus_regulator_get_error_flags, 3126 .get_status = pmbus_regulator_get_status, 3127 .get_voltage = pmbus_regulator_get_voltage, 3128 .set_voltage = pmbus_regulator_set_voltage, 3129 .list_voltage = pmbus_regulator_list_voltage, 3130 }; 3131 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS); 3132 3133 static int pmbus_regulator_register(struct pmbus_data *data) 3134 { 3135 struct device *dev = data->dev; 3136 const struct pmbus_driver_info *info = data->info; 3137 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 3138 int i; 3139 3140 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators, 3141 GFP_KERNEL); 3142 if (!data->rdevs) 3143 return -ENOMEM; 3144 3145 for (i = 0; i < info->num_regulators; i++) { 3146 struct regulator_config config = { }; 3147 3148 config.dev = dev; 3149 config.driver_data = data; 3150 3151 if (pdata && pdata->reg_init_data) 3152 config.init_data = &pdata->reg_init_data[i]; 3153 3154 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i], 3155 &config); 3156 if (IS_ERR(data->rdevs[i])) 3157 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]), 3158 "Failed to register %s regulator\n", 3159 info->reg_desc[i].name); 3160 } 3161 3162 return 0; 3163 } 3164 3165 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) 3166 { 3167 int j; 3168 3169 for (j = 0; j < data->info->num_regulators; j++) { 3170 if (page == rdev_get_id(data->rdevs[j])) { 3171 regulator_notifier_call_chain(data->rdevs[j], event, NULL); 3172 break; 3173 } 3174 } 3175 return 0; 3176 } 3177 #else 3178 static int pmbus_regulator_register(struct pmbus_data *data) 3179 { 3180 return 0; 3181 } 3182 3183 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) 3184 { 3185 return 0; 3186 } 3187 #endif 3188 3189 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val) 3190 { 3191 return pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8)); 3192 } 3193 3194 static irqreturn_t pmbus_fault_handler(int irq, void *pdata) 3195 { 3196 struct pmbus_data *data = pdata; 3197 struct i2c_client *client = to_i2c_client(data->dev); 3198 3199 int i, status, event; 3200 mutex_lock(&data->update_lock); 3201 for (i = 0; i < data->info->pages; i++) { 3202 _pmbus_get_flags(data, i, &status, &event, true); 3203 3204 if (event) 3205 pmbus_regulator_notify(data, i, event); 3206 } 3207 3208 pmbus_clear_faults(client); 3209 mutex_unlock(&data->update_lock); 3210 3211 return IRQ_HANDLED; 3212 } 3213 3214 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data) 3215 { 3216 struct device *dev = &client->dev; 3217 const struct pmbus_status_category *cat; 3218 const struct pmbus_status_assoc *bit; 3219 int i, j, err, func; 3220 u8 mask; 3221 3222 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER, 3223 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12, 3224 PMBUS_STATUS_FAN_34}; 3225 3226 if (!client->irq) 3227 return 0; 3228 3229 for (i = 0; i < data->info->pages; i++) { 3230 func = data->info->func[i]; 3231 3232 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) { 3233 cat = &pmbus_status_flag_map[j]; 3234 if (!(func & cat->func)) 3235 continue; 3236 mask = 0; 3237 for (bit = cat->bits; bit->pflag; bit++) 3238 mask |= bit->pflag; 3239 3240 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask); 3241 if (err) 3242 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n", 3243 cat->reg); 3244 } 3245 3246 for (j = 0; j < ARRAY_SIZE(misc_status); j++) 3247 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff); 3248 } 3249 3250 /* Register notifiers */ 3251 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler, 3252 IRQF_ONESHOT, "pmbus-irq", data); 3253 if (err) { 3254 dev_err(dev, "failed to request an irq %d\n", err); 3255 return err; 3256 } 3257 3258 return 0; 3259 } 3260 3261 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 3262 3263 #if IS_ENABLED(CONFIG_DEBUG_FS) 3264 static int pmbus_debugfs_get(void *data, u64 *val) 3265 { 3266 int rc; 3267 struct pmbus_debugfs_entry *entry = data; 3268 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3269 3270 rc = mutex_lock_interruptible(&pdata->update_lock); 3271 if (rc) 3272 return rc; 3273 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 3274 mutex_unlock(&pdata->update_lock); 3275 if (rc < 0) 3276 return rc; 3277 3278 *val = rc; 3279 3280 return 0; 3281 } 3282 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 3283 "0x%02llx\n"); 3284 3285 static int pmbus_debugfs_get_status(void *data, u64 *val) 3286 { 3287 int rc; 3288 struct pmbus_debugfs_entry *entry = data; 3289 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3290 3291 rc = mutex_lock_interruptible(&pdata->update_lock); 3292 if (rc) 3293 return rc; 3294 rc = pdata->read_status(entry->client, entry->page); 3295 mutex_unlock(&pdata->update_lock); 3296 if (rc < 0) 3297 return rc; 3298 3299 *val = rc; 3300 3301 return 0; 3302 } 3303 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 3304 NULL, "0x%04llx\n"); 3305 3306 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf, 3307 size_t count, loff_t *ppos) 3308 { 3309 int rc; 3310 struct pmbus_debugfs_entry *entry = file->private_data; 3311 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 3312 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 }; 3313 3314 rc = mutex_lock_interruptible(&pdata->update_lock); 3315 if (rc) 3316 return rc; 3317 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg, 3318 data); 3319 mutex_unlock(&pdata->update_lock); 3320 if (rc < 0) 3321 return rc; 3322 3323 /* Add newline at the end of a read data */ 3324 data[rc] = '\n'; 3325 3326 /* Include newline into the length */ 3327 rc += 1; 3328 3329 return simple_read_from_buffer(buf, count, ppos, data, rc); 3330 } 3331 3332 static const struct file_operations pmbus_debugfs_ops_mfr = { 3333 .llseek = noop_llseek, 3334 .read = pmbus_debugfs_mfr_read, 3335 .write = NULL, 3336 .open = simple_open, 3337 }; 3338 3339 static void pmbus_remove_debugfs(void *data) 3340 { 3341 struct dentry *entry = data; 3342 3343 debugfs_remove_recursive(entry); 3344 } 3345 3346 static int pmbus_init_debugfs(struct i2c_client *client, 3347 struct pmbus_data *data) 3348 { 3349 int i, idx = 0; 3350 char name[PMBUS_NAME_SIZE]; 3351 struct pmbus_debugfs_entry *entries; 3352 3353 if (!pmbus_debugfs_dir) 3354 return -ENODEV; 3355 3356 /* 3357 * Create the debugfs directory for this device. Use the hwmon device 3358 * name to avoid conflicts (hwmon numbers are globally unique). 3359 */ 3360 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 3361 pmbus_debugfs_dir); 3362 if (IS_ERR_OR_NULL(data->debugfs)) { 3363 data->debugfs = NULL; 3364 return -ENODEV; 3365 } 3366 3367 /* 3368 * Allocate the max possible entries we need. 3369 * 6 entries device-specific 3370 * 10 entries page-specific 3371 */ 3372 entries = devm_kcalloc(data->dev, 3373 6 + data->info->pages * 10, sizeof(*entries), 3374 GFP_KERNEL); 3375 if (!entries) 3376 return -ENOMEM; 3377 3378 /* 3379 * Add device-specific entries. 3380 * Please note that the PMBUS standard allows all registers to be 3381 * page-specific. 3382 * To reduce the number of debugfs entries for devices with many pages 3383 * assume that values of the following registers are the same for all 3384 * pages and report values only for page 0. 3385 */ 3386 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) { 3387 entries[idx].client = client; 3388 entries[idx].page = 0; 3389 entries[idx].reg = PMBUS_MFR_ID; 3390 debugfs_create_file("mfr_id", 0444, data->debugfs, 3391 &entries[idx++], 3392 &pmbus_debugfs_ops_mfr); 3393 } 3394 3395 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) { 3396 entries[idx].client = client; 3397 entries[idx].page = 0; 3398 entries[idx].reg = PMBUS_MFR_MODEL; 3399 debugfs_create_file("mfr_model", 0444, data->debugfs, 3400 &entries[idx++], 3401 &pmbus_debugfs_ops_mfr); 3402 } 3403 3404 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) { 3405 entries[idx].client = client; 3406 entries[idx].page = 0; 3407 entries[idx].reg = PMBUS_MFR_REVISION; 3408 debugfs_create_file("mfr_revision", 0444, data->debugfs, 3409 &entries[idx++], 3410 &pmbus_debugfs_ops_mfr); 3411 } 3412 3413 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) { 3414 entries[idx].client = client; 3415 entries[idx].page = 0; 3416 entries[idx].reg = PMBUS_MFR_LOCATION; 3417 debugfs_create_file("mfr_location", 0444, data->debugfs, 3418 &entries[idx++], 3419 &pmbus_debugfs_ops_mfr); 3420 } 3421 3422 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) { 3423 entries[idx].client = client; 3424 entries[idx].page = 0; 3425 entries[idx].reg = PMBUS_MFR_DATE; 3426 debugfs_create_file("mfr_date", 0444, data->debugfs, 3427 &entries[idx++], 3428 &pmbus_debugfs_ops_mfr); 3429 } 3430 3431 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) { 3432 entries[idx].client = client; 3433 entries[idx].page = 0; 3434 entries[idx].reg = PMBUS_MFR_SERIAL; 3435 debugfs_create_file("mfr_serial", 0444, data->debugfs, 3436 &entries[idx++], 3437 &pmbus_debugfs_ops_mfr); 3438 } 3439 3440 /* Add page specific entries */ 3441 for (i = 0; i < data->info->pages; ++i) { 3442 /* Check accessibility of status register if it's not page 0 */ 3443 if (!i || pmbus_check_status_register(client, i)) { 3444 /* No need to set reg as we have special read op. */ 3445 entries[idx].client = client; 3446 entries[idx].page = i; 3447 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 3448 debugfs_create_file(name, 0444, data->debugfs, 3449 &entries[idx++], 3450 &pmbus_debugfs_ops_status); 3451 } 3452 3453 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 3454 entries[idx].client = client; 3455 entries[idx].page = i; 3456 entries[idx].reg = PMBUS_STATUS_VOUT; 3457 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 3458 debugfs_create_file(name, 0444, data->debugfs, 3459 &entries[idx++], 3460 &pmbus_debugfs_ops); 3461 } 3462 3463 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 3464 entries[idx].client = client; 3465 entries[idx].page = i; 3466 entries[idx].reg = PMBUS_STATUS_IOUT; 3467 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 3468 debugfs_create_file(name, 0444, data->debugfs, 3469 &entries[idx++], 3470 &pmbus_debugfs_ops); 3471 } 3472 3473 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 3474 entries[idx].client = client; 3475 entries[idx].page = i; 3476 entries[idx].reg = PMBUS_STATUS_INPUT; 3477 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 3478 debugfs_create_file(name, 0444, data->debugfs, 3479 &entries[idx++], 3480 &pmbus_debugfs_ops); 3481 } 3482 3483 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 3484 entries[idx].client = client; 3485 entries[idx].page = i; 3486 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 3487 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 3488 debugfs_create_file(name, 0444, data->debugfs, 3489 &entries[idx++], 3490 &pmbus_debugfs_ops); 3491 } 3492 3493 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 3494 entries[idx].client = client; 3495 entries[idx].page = i; 3496 entries[idx].reg = PMBUS_STATUS_CML; 3497 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 3498 debugfs_create_file(name, 0444, data->debugfs, 3499 &entries[idx++], 3500 &pmbus_debugfs_ops); 3501 } 3502 3503 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 3504 entries[idx].client = client; 3505 entries[idx].page = i; 3506 entries[idx].reg = PMBUS_STATUS_OTHER; 3507 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 3508 debugfs_create_file(name, 0444, data->debugfs, 3509 &entries[idx++], 3510 &pmbus_debugfs_ops); 3511 } 3512 3513 if (pmbus_check_byte_register(client, i, 3514 PMBUS_STATUS_MFR_SPECIFIC)) { 3515 entries[idx].client = client; 3516 entries[idx].page = i; 3517 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 3518 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 3519 debugfs_create_file(name, 0444, data->debugfs, 3520 &entries[idx++], 3521 &pmbus_debugfs_ops); 3522 } 3523 3524 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 3525 entries[idx].client = client; 3526 entries[idx].page = i; 3527 entries[idx].reg = PMBUS_STATUS_FAN_12; 3528 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 3529 debugfs_create_file(name, 0444, data->debugfs, 3530 &entries[idx++], 3531 &pmbus_debugfs_ops); 3532 } 3533 3534 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 3535 entries[idx].client = client; 3536 entries[idx].page = i; 3537 entries[idx].reg = PMBUS_STATUS_FAN_34; 3538 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 3539 debugfs_create_file(name, 0444, data->debugfs, 3540 &entries[idx++], 3541 &pmbus_debugfs_ops); 3542 } 3543 } 3544 3545 return devm_add_action_or_reset(data->dev, 3546 pmbus_remove_debugfs, data->debugfs); 3547 } 3548 #else 3549 static int pmbus_init_debugfs(struct i2c_client *client, 3550 struct pmbus_data *data) 3551 { 3552 return 0; 3553 } 3554 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 3555 3556 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) 3557 { 3558 struct device *dev = &client->dev; 3559 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 3560 struct pmbus_data *data; 3561 size_t groups_num = 0; 3562 int ret; 3563 int i; 3564 char *name; 3565 3566 if (!info) 3567 return -ENODEV; 3568 3569 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 3570 | I2C_FUNC_SMBUS_BYTE_DATA 3571 | I2C_FUNC_SMBUS_WORD_DATA)) 3572 return -ENODEV; 3573 3574 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 3575 if (!data) 3576 return -ENOMEM; 3577 3578 if (info->groups) 3579 while (info->groups[groups_num]) 3580 groups_num++; 3581 3582 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 3583 GFP_KERNEL); 3584 if (!data->groups) 3585 return -ENOMEM; 3586 3587 i2c_set_clientdata(client, data); 3588 mutex_init(&data->update_lock); 3589 data->dev = dev; 3590 3591 if (pdata) 3592 data->flags = pdata->flags; 3593 data->info = info; 3594 data->currpage = -1; 3595 data->currphase = -1; 3596 3597 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) { 3598 data->vout_low[i] = -1; 3599 data->vout_high[i] = -1; 3600 } 3601 3602 ret = pmbus_init_common(client, data, info); 3603 if (ret < 0) 3604 return ret; 3605 3606 ret = pmbus_find_attributes(client, data); 3607 if (ret) 3608 return ret; 3609 3610 /* 3611 * If there are no attributes, something is wrong. 3612 * Bail out instead of trying to register nothing. 3613 */ 3614 if (!data->num_attributes) { 3615 dev_err(dev, "No attributes found\n"); 3616 return -ENODEV; 3617 } 3618 3619 name = devm_kstrdup(dev, client->name, GFP_KERNEL); 3620 if (!name) 3621 return -ENOMEM; 3622 strreplace(name, '-', '_'); 3623 3624 data->groups[0] = &data->group; 3625 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 3626 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, 3627 name, data, data->groups); 3628 if (IS_ERR(data->hwmon_dev)) { 3629 dev_err(dev, "Failed to register hwmon device\n"); 3630 return PTR_ERR(data->hwmon_dev); 3631 } 3632 3633 ret = pmbus_regulator_register(data); 3634 if (ret) 3635 return ret; 3636 3637 ret = pmbus_irq_setup(client, data); 3638 if (ret) 3639 return ret; 3640 3641 ret = pmbus_init_debugfs(client, data); 3642 if (ret) 3643 dev_warn(dev, "Failed to register debugfs\n"); 3644 3645 return 0; 3646 } 3647 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS); 3648 3649 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 3650 { 3651 struct pmbus_data *data = i2c_get_clientdata(client); 3652 3653 return data->debugfs; 3654 } 3655 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS); 3656 3657 int pmbus_lock_interruptible(struct i2c_client *client) 3658 { 3659 struct pmbus_data *data = i2c_get_clientdata(client); 3660 3661 return mutex_lock_interruptible(&data->update_lock); 3662 } 3663 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS); 3664 3665 void pmbus_unlock(struct i2c_client *client) 3666 { 3667 struct pmbus_data *data = i2c_get_clientdata(client); 3668 3669 mutex_unlock(&data->update_lock); 3670 } 3671 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS); 3672 3673 static int __init pmbus_core_init(void) 3674 { 3675 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 3676 if (IS_ERR(pmbus_debugfs_dir)) 3677 pmbus_debugfs_dir = NULL; 3678 3679 return 0; 3680 } 3681 3682 static void __exit pmbus_core_exit(void) 3683 { 3684 debugfs_remove_recursive(pmbus_debugfs_dir); 3685 } 3686 3687 module_init(pmbus_core_init); 3688 module_exit(pmbus_core_exit); 3689 3690 MODULE_AUTHOR("Guenter Roeck"); 3691 MODULE_DESCRIPTION("PMBus core driver"); 3692 MODULE_LICENSE("GPL"); 3693