1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Hardware monitoring driver for PMBus devices 4 * 5 * Copyright (c) 2010, 2011 Ericsson AB. 6 * Copyright (c) 2012 Guenter Roeck 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/kernel.h> 11 #include <linux/math64.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/slab.h> 16 #include <linux/i2c.h> 17 #include <linux/hwmon.h> 18 #include <linux/hwmon-sysfs.h> 19 #include <linux/pmbus.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include "pmbus.h" 23 24 /* 25 * Number of additional attribute pointers to allocate 26 * with each call to krealloc 27 */ 28 #define PMBUS_ATTR_ALLOC_SIZE 32 29 #define PMBUS_NAME_SIZE 24 30 31 struct pmbus_sensor { 32 struct pmbus_sensor *next; 33 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ 34 struct device_attribute attribute; 35 u8 page; /* page number */ 36 u8 phase; /* phase number, 0xff for all phases */ 37 u16 reg; /* register */ 38 enum pmbus_sensor_classes class; /* sensor class */ 39 bool update; /* runtime sensor update needed */ 40 bool convert; /* Whether or not to apply linear/vid/direct */ 41 int data; /* Sensor data. 42 Negative if there was a read error */ 43 }; 44 #define to_pmbus_sensor(_attr) \ 45 container_of(_attr, struct pmbus_sensor, attribute) 46 47 struct pmbus_boolean { 48 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ 49 struct sensor_device_attribute attribute; 50 struct pmbus_sensor *s1; 51 struct pmbus_sensor *s2; 52 }; 53 #define to_pmbus_boolean(_attr) \ 54 container_of(_attr, struct pmbus_boolean, attribute) 55 56 struct pmbus_label { 57 char name[PMBUS_NAME_SIZE]; /* sysfs label name */ 58 struct device_attribute attribute; 59 char label[PMBUS_NAME_SIZE]; /* label */ 60 }; 61 #define to_pmbus_label(_attr) \ 62 container_of(_attr, struct pmbus_label, attribute) 63 64 /* Macros for converting between sensor index and register/page/status mask */ 65 66 #define PB_STATUS_MASK 0xffff 67 #define PB_REG_SHIFT 16 68 #define PB_REG_MASK 0x3ff 69 #define PB_PAGE_SHIFT 26 70 #define PB_PAGE_MASK 0x3f 71 72 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ 73 ((reg) << PB_REG_SHIFT) | (mask)) 74 75 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) 76 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) 77 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) 78 79 struct pmbus_data { 80 struct device *dev; 81 struct device *hwmon_dev; 82 83 u32 flags; /* from platform data */ 84 85 int exponent[PMBUS_PAGES]; 86 /* linear mode: exponent for output voltages */ 87 88 const struct pmbus_driver_info *info; 89 90 int max_attributes; 91 int num_attributes; 92 struct attribute_group group; 93 const struct attribute_group **groups; 94 struct dentry *debugfs; /* debugfs device directory */ 95 96 struct pmbus_sensor *sensors; 97 98 struct mutex update_lock; 99 100 bool has_status_word; /* device uses STATUS_WORD register */ 101 int (*read_status)(struct i2c_client *client, int page); 102 103 s16 currpage; /* current page, -1 for unknown/unset */ 104 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ 105 }; 106 107 struct pmbus_debugfs_entry { 108 struct i2c_client *client; 109 u8 page; 110 u8 reg; 111 }; 112 113 static const int pmbus_fan_rpm_mask[] = { 114 PB_FAN_1_RPM, 115 PB_FAN_2_RPM, 116 PB_FAN_1_RPM, 117 PB_FAN_2_RPM, 118 }; 119 120 static const int pmbus_fan_config_registers[] = { 121 PMBUS_FAN_CONFIG_12, 122 PMBUS_FAN_CONFIG_12, 123 PMBUS_FAN_CONFIG_34, 124 PMBUS_FAN_CONFIG_34 125 }; 126 127 static const int pmbus_fan_command_registers[] = { 128 PMBUS_FAN_COMMAND_1, 129 PMBUS_FAN_COMMAND_2, 130 PMBUS_FAN_COMMAND_3, 131 PMBUS_FAN_COMMAND_4, 132 }; 133 134 void pmbus_clear_cache(struct i2c_client *client) 135 { 136 struct pmbus_data *data = i2c_get_clientdata(client); 137 struct pmbus_sensor *sensor; 138 139 for (sensor = data->sensors; sensor; sensor = sensor->next) 140 sensor->data = -ENODATA; 141 } 142 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS); 143 144 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update) 145 { 146 struct pmbus_data *data = i2c_get_clientdata(client); 147 struct pmbus_sensor *sensor; 148 149 for (sensor = data->sensors; sensor; sensor = sensor->next) 150 if (sensor->reg == reg) 151 sensor->update = update; 152 } 153 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS); 154 155 int pmbus_set_page(struct i2c_client *client, int page, int phase) 156 { 157 struct pmbus_data *data = i2c_get_clientdata(client); 158 int rv; 159 160 if (page < 0) 161 return 0; 162 163 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && 164 data->info->pages > 1 && page != data->currpage) { 165 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); 166 if (rv < 0) 167 return rv; 168 169 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); 170 if (rv < 0) 171 return rv; 172 173 if (rv != page) 174 return -EIO; 175 } 176 data->currpage = page; 177 178 if (data->info->phases[page] && data->currphase != phase && 179 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { 180 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, 181 phase); 182 if (rv) 183 return rv; 184 } 185 data->currphase = phase; 186 187 return 0; 188 } 189 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS); 190 191 int pmbus_write_byte(struct i2c_client *client, int page, u8 value) 192 { 193 int rv; 194 195 rv = pmbus_set_page(client, page, 0xff); 196 if (rv < 0) 197 return rv; 198 199 return i2c_smbus_write_byte(client, value); 200 } 201 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS); 202 203 /* 204 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if 205 * a device specific mapping function exists and calls it if necessary. 206 */ 207 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) 208 { 209 struct pmbus_data *data = i2c_get_clientdata(client); 210 const struct pmbus_driver_info *info = data->info; 211 int status; 212 213 if (info->write_byte) { 214 status = info->write_byte(client, page, value); 215 if (status != -ENODATA) 216 return status; 217 } 218 return pmbus_write_byte(client, page, value); 219 } 220 221 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, 222 u16 word) 223 { 224 int rv; 225 226 rv = pmbus_set_page(client, page, 0xff); 227 if (rv < 0) 228 return rv; 229 230 return i2c_smbus_write_word_data(client, reg, word); 231 } 232 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS); 233 234 235 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, 236 u16 word) 237 { 238 int bit; 239 int id; 240 int rv; 241 242 switch (reg) { 243 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 244 id = reg - PMBUS_VIRT_FAN_TARGET_1; 245 bit = pmbus_fan_rpm_mask[id]; 246 rv = pmbus_update_fan(client, page, id, bit, bit, word); 247 break; 248 default: 249 rv = -ENXIO; 250 break; 251 } 252 253 return rv; 254 } 255 256 /* 257 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if 258 * a device specific mapping function exists and calls it if necessary. 259 */ 260 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, 261 u16 word) 262 { 263 struct pmbus_data *data = i2c_get_clientdata(client); 264 const struct pmbus_driver_info *info = data->info; 265 int status; 266 267 if (info->write_word_data) { 268 status = info->write_word_data(client, page, reg, word); 269 if (status != -ENODATA) 270 return status; 271 } 272 273 if (reg >= PMBUS_VIRT_BASE) 274 return pmbus_write_virt_reg(client, page, reg, word); 275 276 return pmbus_write_word_data(client, page, reg, word); 277 } 278 279 int pmbus_update_fan(struct i2c_client *client, int page, int id, 280 u8 config, u8 mask, u16 command) 281 { 282 int from; 283 int rv; 284 u8 to; 285 286 from = pmbus_read_byte_data(client, page, 287 pmbus_fan_config_registers[id]); 288 if (from < 0) 289 return from; 290 291 to = (from & ~mask) | (config & mask); 292 if (to != from) { 293 rv = pmbus_write_byte_data(client, page, 294 pmbus_fan_config_registers[id], to); 295 if (rv < 0) 296 return rv; 297 } 298 299 return _pmbus_write_word_data(client, page, 300 pmbus_fan_command_registers[id], command); 301 } 302 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS); 303 304 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) 305 { 306 int rv; 307 308 rv = pmbus_set_page(client, page, phase); 309 if (rv < 0) 310 return rv; 311 312 return i2c_smbus_read_word_data(client, reg); 313 } 314 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS); 315 316 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) 317 { 318 int rv; 319 int id; 320 321 switch (reg) { 322 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: 323 id = reg - PMBUS_VIRT_FAN_TARGET_1; 324 rv = pmbus_get_fan_rate_device(client, page, id, rpm); 325 break; 326 default: 327 rv = -ENXIO; 328 break; 329 } 330 331 return rv; 332 } 333 334 /* 335 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if 336 * a device specific mapping function exists and calls it if necessary. 337 */ 338 static int _pmbus_read_word_data(struct i2c_client *client, int page, 339 int phase, int reg) 340 { 341 struct pmbus_data *data = i2c_get_clientdata(client); 342 const struct pmbus_driver_info *info = data->info; 343 int status; 344 345 if (info->read_word_data) { 346 status = info->read_word_data(client, page, phase, reg); 347 if (status != -ENODATA) 348 return status; 349 } 350 351 if (reg >= PMBUS_VIRT_BASE) 352 return pmbus_read_virt_reg(client, page, reg); 353 354 return pmbus_read_word_data(client, page, phase, reg); 355 } 356 357 /* Same as above, but without phase parameter, for use in check functions */ 358 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) 359 { 360 return _pmbus_read_word_data(client, page, 0xff, reg); 361 } 362 363 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) 364 { 365 int rv; 366 367 rv = pmbus_set_page(client, page, 0xff); 368 if (rv < 0) 369 return rv; 370 371 return i2c_smbus_read_byte_data(client, reg); 372 } 373 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS); 374 375 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) 376 { 377 int rv; 378 379 rv = pmbus_set_page(client, page, 0xff); 380 if (rv < 0) 381 return rv; 382 383 return i2c_smbus_write_byte_data(client, reg, value); 384 } 385 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS); 386 387 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, 388 u8 mask, u8 value) 389 { 390 unsigned int tmp; 391 int rv; 392 393 rv = pmbus_read_byte_data(client, page, reg); 394 if (rv < 0) 395 return rv; 396 397 tmp = (rv & ~mask) | (value & mask); 398 399 if (tmp != rv) 400 rv = pmbus_write_byte_data(client, page, reg, tmp); 401 402 return rv; 403 } 404 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS); 405 406 /* 407 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if 408 * a device specific mapping function exists and calls it if necessary. 409 */ 410 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) 411 { 412 struct pmbus_data *data = i2c_get_clientdata(client); 413 const struct pmbus_driver_info *info = data->info; 414 int status; 415 416 if (info->read_byte_data) { 417 status = info->read_byte_data(client, page, reg); 418 if (status != -ENODATA) 419 return status; 420 } 421 return pmbus_read_byte_data(client, page, reg); 422 } 423 424 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, 425 int reg) 426 { 427 struct pmbus_sensor *sensor; 428 429 for (sensor = data->sensors; sensor; sensor = sensor->next) { 430 if (sensor->page == page && sensor->reg == reg) 431 return sensor; 432 } 433 434 return ERR_PTR(-EINVAL); 435 } 436 437 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, 438 enum pmbus_fan_mode mode, 439 bool from_cache) 440 { 441 struct pmbus_data *data = i2c_get_clientdata(client); 442 bool want_rpm, have_rpm; 443 struct pmbus_sensor *s; 444 int config; 445 int reg; 446 447 want_rpm = (mode == rpm); 448 449 if (from_cache) { 450 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; 451 s = pmbus_find_sensor(data, page, reg + id); 452 if (IS_ERR(s)) 453 return PTR_ERR(s); 454 455 return s->data; 456 } 457 458 config = pmbus_read_byte_data(client, page, 459 pmbus_fan_config_registers[id]); 460 if (config < 0) 461 return config; 462 463 have_rpm = !!(config & pmbus_fan_rpm_mask[id]); 464 if (want_rpm == have_rpm) 465 return pmbus_read_word_data(client, page, 0xff, 466 pmbus_fan_command_registers[id]); 467 468 /* Can't sensibly map between RPM and PWM, just return zero */ 469 return 0; 470 } 471 472 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, 473 enum pmbus_fan_mode mode) 474 { 475 return pmbus_get_fan_rate(client, page, id, mode, false); 476 } 477 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS); 478 479 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, 480 enum pmbus_fan_mode mode) 481 { 482 return pmbus_get_fan_rate(client, page, id, mode, true); 483 } 484 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS); 485 486 static void pmbus_clear_fault_page(struct i2c_client *client, int page) 487 { 488 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); 489 } 490 491 void pmbus_clear_faults(struct i2c_client *client) 492 { 493 struct pmbus_data *data = i2c_get_clientdata(client); 494 int i; 495 496 for (i = 0; i < data->info->pages; i++) 497 pmbus_clear_fault_page(client, i); 498 } 499 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS); 500 501 static int pmbus_check_status_cml(struct i2c_client *client) 502 { 503 struct pmbus_data *data = i2c_get_clientdata(client); 504 int status, status2; 505 506 status = data->read_status(client, -1); 507 if (status < 0 || (status & PB_STATUS_CML)) { 508 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 509 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) 510 return -EIO; 511 } 512 return 0; 513 } 514 515 static bool pmbus_check_register(struct i2c_client *client, 516 int (*func)(struct i2c_client *client, 517 int page, int reg), 518 int page, int reg) 519 { 520 int rv; 521 struct pmbus_data *data = i2c_get_clientdata(client); 522 523 rv = func(client, page, reg); 524 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) 525 rv = pmbus_check_status_cml(client); 526 pmbus_clear_fault_page(client, -1); 527 return rv >= 0; 528 } 529 530 static bool pmbus_check_status_register(struct i2c_client *client, int page) 531 { 532 int status; 533 struct pmbus_data *data = i2c_get_clientdata(client); 534 535 status = data->read_status(client, page); 536 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && 537 (status & PB_STATUS_CML)) { 538 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); 539 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) 540 status = -EIO; 541 } 542 543 pmbus_clear_fault_page(client, -1); 544 return status >= 0; 545 } 546 547 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) 548 { 549 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); 550 } 551 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS); 552 553 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) 554 { 555 return pmbus_check_register(client, __pmbus_read_word_data, page, reg); 556 } 557 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS); 558 559 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) 560 { 561 struct pmbus_data *data = i2c_get_clientdata(client); 562 563 return data->info; 564 } 565 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS); 566 567 static int pmbus_get_status(struct i2c_client *client, int page, int reg) 568 { 569 struct pmbus_data *data = i2c_get_clientdata(client); 570 int status; 571 572 switch (reg) { 573 case PMBUS_STATUS_WORD: 574 status = data->read_status(client, page); 575 break; 576 default: 577 status = _pmbus_read_byte_data(client, page, reg); 578 break; 579 } 580 if (status < 0) 581 pmbus_clear_faults(client); 582 return status; 583 } 584 585 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) 586 { 587 if (sensor->data < 0 || sensor->update) 588 sensor->data = _pmbus_read_word_data(client, sensor->page, 589 sensor->phase, sensor->reg); 590 } 591 592 /* 593 * Convert linear sensor values to milli- or micro-units 594 * depending on sensor type. 595 */ 596 static s64 pmbus_reg2data_linear(struct pmbus_data *data, 597 struct pmbus_sensor *sensor) 598 { 599 s16 exponent; 600 s32 mantissa; 601 s64 val; 602 603 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ 604 exponent = data->exponent[sensor->page]; 605 mantissa = (u16) sensor->data; 606 } else { /* LINEAR11 */ 607 exponent = ((s16)sensor->data) >> 11; 608 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; 609 } 610 611 val = mantissa; 612 613 /* scale result to milli-units for all sensors except fans */ 614 if (sensor->class != PSC_FAN) 615 val = val * 1000LL; 616 617 /* scale result to micro-units for power sensors */ 618 if (sensor->class == PSC_POWER) 619 val = val * 1000LL; 620 621 if (exponent >= 0) 622 val <<= exponent; 623 else 624 val >>= -exponent; 625 626 return val; 627 } 628 629 /* 630 * Convert direct sensor values to milli- or micro-units 631 * depending on sensor type. 632 */ 633 static s64 pmbus_reg2data_direct(struct pmbus_data *data, 634 struct pmbus_sensor *sensor) 635 { 636 s64 b, val = (s16)sensor->data; 637 s32 m, R; 638 639 m = data->info->m[sensor->class]; 640 b = data->info->b[sensor->class]; 641 R = data->info->R[sensor->class]; 642 643 if (m == 0) 644 return 0; 645 646 /* X = 1/m * (Y * 10^-R - b) */ 647 R = -R; 648 /* scale result to milli-units for everything but fans */ 649 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 650 R += 3; 651 b *= 1000; 652 } 653 654 /* scale result to micro-units for power sensors */ 655 if (sensor->class == PSC_POWER) { 656 R += 3; 657 b *= 1000; 658 } 659 660 while (R > 0) { 661 val *= 10; 662 R--; 663 } 664 while (R < 0) { 665 val = div_s64(val + 5LL, 10L); /* round closest */ 666 R++; 667 } 668 669 val = div_s64(val - b, m); 670 return val; 671 } 672 673 /* 674 * Convert VID sensor values to milli- or micro-units 675 * depending on sensor type. 676 */ 677 static s64 pmbus_reg2data_vid(struct pmbus_data *data, 678 struct pmbus_sensor *sensor) 679 { 680 long val = sensor->data; 681 long rv = 0; 682 683 switch (data->info->vrm_version[sensor->page]) { 684 case vr11: 685 if (val >= 0x02 && val <= 0xb2) 686 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); 687 break; 688 case vr12: 689 if (val >= 0x01) 690 rv = 250 + (val - 1) * 5; 691 break; 692 case vr13: 693 if (val >= 0x01) 694 rv = 500 + (val - 1) * 10; 695 break; 696 case imvp9: 697 if (val >= 0x01) 698 rv = 200 + (val - 1) * 10; 699 break; 700 case amd625mv: 701 if (val >= 0x0 && val <= 0xd8) 702 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); 703 break; 704 } 705 return rv; 706 } 707 708 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) 709 { 710 s64 val; 711 712 if (!sensor->convert) 713 return sensor->data; 714 715 switch (data->info->format[sensor->class]) { 716 case direct: 717 val = pmbus_reg2data_direct(data, sensor); 718 break; 719 case vid: 720 val = pmbus_reg2data_vid(data, sensor); 721 break; 722 case linear: 723 default: 724 val = pmbus_reg2data_linear(data, sensor); 725 break; 726 } 727 return val; 728 } 729 730 #define MAX_MANTISSA (1023 * 1000) 731 #define MIN_MANTISSA (511 * 1000) 732 733 static u16 pmbus_data2reg_linear(struct pmbus_data *data, 734 struct pmbus_sensor *sensor, s64 val) 735 { 736 s16 exponent = 0, mantissa; 737 bool negative = false; 738 739 /* simple case */ 740 if (val == 0) 741 return 0; 742 743 if (sensor->class == PSC_VOLTAGE_OUT) { 744 /* LINEAR16 does not support negative voltages */ 745 if (val < 0) 746 return 0; 747 748 /* 749 * For a static exponents, we don't have a choice 750 * but to adjust the value to it. 751 */ 752 if (data->exponent[sensor->page] < 0) 753 val <<= -data->exponent[sensor->page]; 754 else 755 val >>= data->exponent[sensor->page]; 756 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 757 return clamp_val(val, 0, 0xffff); 758 } 759 760 if (val < 0) { 761 negative = true; 762 val = -val; 763 } 764 765 /* Power is in uW. Convert to mW before converting. */ 766 if (sensor->class == PSC_POWER) 767 val = DIV_ROUND_CLOSEST_ULL(val, 1000); 768 769 /* 770 * For simplicity, convert fan data to milli-units 771 * before calculating the exponent. 772 */ 773 if (sensor->class == PSC_FAN) 774 val = val * 1000LL; 775 776 /* Reduce large mantissa until it fits into 10 bit */ 777 while (val >= MAX_MANTISSA && exponent < 15) { 778 exponent++; 779 val >>= 1; 780 } 781 /* Increase small mantissa to improve precision */ 782 while (val < MIN_MANTISSA && exponent > -15) { 783 exponent--; 784 val <<= 1; 785 } 786 787 /* Convert mantissa from milli-units to units */ 788 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); 789 790 /* restore sign */ 791 if (negative) 792 mantissa = -mantissa; 793 794 /* Convert to 5 bit exponent, 11 bit mantissa */ 795 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); 796 } 797 798 static u16 pmbus_data2reg_direct(struct pmbus_data *data, 799 struct pmbus_sensor *sensor, s64 val) 800 { 801 s64 b; 802 s32 m, R; 803 804 m = data->info->m[sensor->class]; 805 b = data->info->b[sensor->class]; 806 R = data->info->R[sensor->class]; 807 808 /* Power is in uW. Adjust R and b. */ 809 if (sensor->class == PSC_POWER) { 810 R -= 3; 811 b *= 1000; 812 } 813 814 /* Calculate Y = (m * X + b) * 10^R */ 815 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { 816 R -= 3; /* Adjust R and b for data in milli-units */ 817 b *= 1000; 818 } 819 val = val * m + b; 820 821 while (R > 0) { 822 val *= 10; 823 R--; 824 } 825 while (R < 0) { 826 val = div_s64(val + 5LL, 10L); /* round closest */ 827 R++; 828 } 829 830 return (u16)clamp_val(val, S16_MIN, S16_MAX); 831 } 832 833 static u16 pmbus_data2reg_vid(struct pmbus_data *data, 834 struct pmbus_sensor *sensor, s64 val) 835 { 836 val = clamp_val(val, 500, 1600); 837 838 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); 839 } 840 841 static u16 pmbus_data2reg(struct pmbus_data *data, 842 struct pmbus_sensor *sensor, s64 val) 843 { 844 u16 regval; 845 846 if (!sensor->convert) 847 return val; 848 849 switch (data->info->format[sensor->class]) { 850 case direct: 851 regval = pmbus_data2reg_direct(data, sensor, val); 852 break; 853 case vid: 854 regval = pmbus_data2reg_vid(data, sensor, val); 855 break; 856 case linear: 857 default: 858 regval = pmbus_data2reg_linear(data, sensor, val); 859 break; 860 } 861 return regval; 862 } 863 864 /* 865 * Return boolean calculated from converted data. 866 * <index> defines a status register index and mask. 867 * The mask is in the lower 8 bits, the register index is in bits 8..23. 868 * 869 * The associated pmbus_boolean structure contains optional pointers to two 870 * sensor attributes. If specified, those attributes are compared against each 871 * other to determine if a limit has been exceeded. 872 * 873 * If the sensor attribute pointers are NULL, the function returns true if 874 * (status[reg] & mask) is true. 875 * 876 * If sensor attribute pointers are provided, a comparison against a specified 877 * limit has to be performed to determine the boolean result. 878 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are 879 * sensor values referenced by sensor attribute pointers s1 and s2). 880 * 881 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>. 882 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>. 883 * 884 * If a negative value is stored in any of the referenced registers, this value 885 * reflects an error code which will be returned. 886 */ 887 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, 888 int index) 889 { 890 struct pmbus_data *data = i2c_get_clientdata(client); 891 struct pmbus_sensor *s1 = b->s1; 892 struct pmbus_sensor *s2 = b->s2; 893 u16 mask = pb_index_to_mask(index); 894 u8 page = pb_index_to_page(index); 895 u16 reg = pb_index_to_reg(index); 896 int ret, status; 897 u16 regval; 898 899 mutex_lock(&data->update_lock); 900 status = pmbus_get_status(client, page, reg); 901 if (status < 0) { 902 ret = status; 903 goto unlock; 904 } 905 906 if (s1) 907 pmbus_update_sensor_data(client, s1); 908 if (s2) 909 pmbus_update_sensor_data(client, s2); 910 911 regval = status & mask; 912 if (s1 && s2) { 913 s64 v1, v2; 914 915 if (s1->data < 0) { 916 ret = s1->data; 917 goto unlock; 918 } 919 if (s2->data < 0) { 920 ret = s2->data; 921 goto unlock; 922 } 923 924 v1 = pmbus_reg2data(data, s1); 925 v2 = pmbus_reg2data(data, s2); 926 ret = !!(regval && v1 >= v2); 927 } else { 928 ret = !!regval; 929 } 930 unlock: 931 mutex_unlock(&data->update_lock); 932 return ret; 933 } 934 935 static ssize_t pmbus_show_boolean(struct device *dev, 936 struct device_attribute *da, char *buf) 937 { 938 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); 939 struct pmbus_boolean *boolean = to_pmbus_boolean(attr); 940 struct i2c_client *client = to_i2c_client(dev->parent); 941 int val; 942 943 val = pmbus_get_boolean(client, boolean, attr->index); 944 if (val < 0) 945 return val; 946 return sysfs_emit(buf, "%d\n", val); 947 } 948 949 static ssize_t pmbus_show_sensor(struct device *dev, 950 struct device_attribute *devattr, char *buf) 951 { 952 struct i2c_client *client = to_i2c_client(dev->parent); 953 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 954 struct pmbus_data *data = i2c_get_clientdata(client); 955 ssize_t ret; 956 957 mutex_lock(&data->update_lock); 958 pmbus_update_sensor_data(client, sensor); 959 if (sensor->data < 0) 960 ret = sensor->data; 961 else 962 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor)); 963 mutex_unlock(&data->update_lock); 964 return ret; 965 } 966 967 static ssize_t pmbus_set_sensor(struct device *dev, 968 struct device_attribute *devattr, 969 const char *buf, size_t count) 970 { 971 struct i2c_client *client = to_i2c_client(dev->parent); 972 struct pmbus_data *data = i2c_get_clientdata(client); 973 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); 974 ssize_t rv = count; 975 s64 val; 976 int ret; 977 u16 regval; 978 979 if (kstrtos64(buf, 10, &val) < 0) 980 return -EINVAL; 981 982 mutex_lock(&data->update_lock); 983 regval = pmbus_data2reg(data, sensor, val); 984 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); 985 if (ret < 0) 986 rv = ret; 987 else 988 sensor->data = -ENODATA; 989 mutex_unlock(&data->update_lock); 990 return rv; 991 } 992 993 static ssize_t pmbus_show_label(struct device *dev, 994 struct device_attribute *da, char *buf) 995 { 996 struct pmbus_label *label = to_pmbus_label(da); 997 998 return sysfs_emit(buf, "%s\n", label->label); 999 } 1000 1001 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) 1002 { 1003 if (data->num_attributes >= data->max_attributes - 1) { 1004 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; 1005 void *new_attrs = devm_krealloc(data->dev, data->group.attrs, 1006 new_max_attrs * sizeof(void *), 1007 GFP_KERNEL); 1008 if (!new_attrs) 1009 return -ENOMEM; 1010 data->group.attrs = new_attrs; 1011 data->max_attributes = new_max_attrs; 1012 } 1013 1014 data->group.attrs[data->num_attributes++] = attr; 1015 data->group.attrs[data->num_attributes] = NULL; 1016 return 0; 1017 } 1018 1019 static void pmbus_dev_attr_init(struct device_attribute *dev_attr, 1020 const char *name, 1021 umode_t mode, 1022 ssize_t (*show)(struct device *dev, 1023 struct device_attribute *attr, 1024 char *buf), 1025 ssize_t (*store)(struct device *dev, 1026 struct device_attribute *attr, 1027 const char *buf, size_t count)) 1028 { 1029 sysfs_attr_init(&dev_attr->attr); 1030 dev_attr->attr.name = name; 1031 dev_attr->attr.mode = mode; 1032 dev_attr->show = show; 1033 dev_attr->store = store; 1034 } 1035 1036 static void pmbus_attr_init(struct sensor_device_attribute *a, 1037 const char *name, 1038 umode_t mode, 1039 ssize_t (*show)(struct device *dev, 1040 struct device_attribute *attr, 1041 char *buf), 1042 ssize_t (*store)(struct device *dev, 1043 struct device_attribute *attr, 1044 const char *buf, size_t count), 1045 int idx) 1046 { 1047 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); 1048 a->index = idx; 1049 } 1050 1051 static int pmbus_add_boolean(struct pmbus_data *data, 1052 const char *name, const char *type, int seq, 1053 struct pmbus_sensor *s1, 1054 struct pmbus_sensor *s2, 1055 u8 page, u16 reg, u16 mask) 1056 { 1057 struct pmbus_boolean *boolean; 1058 struct sensor_device_attribute *a; 1059 1060 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) 1061 return -EINVAL; 1062 1063 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); 1064 if (!boolean) 1065 return -ENOMEM; 1066 1067 a = &boolean->attribute; 1068 1069 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", 1070 name, seq, type); 1071 boolean->s1 = s1; 1072 boolean->s2 = s2; 1073 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, 1074 pb_reg_to_index(page, reg, mask)); 1075 1076 return pmbus_add_attribute(data, &a->dev_attr.attr); 1077 } 1078 1079 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, 1080 const char *name, const char *type, 1081 int seq, int page, int phase, 1082 int reg, 1083 enum pmbus_sensor_classes class, 1084 bool update, bool readonly, 1085 bool convert) 1086 { 1087 struct pmbus_sensor *sensor; 1088 struct device_attribute *a; 1089 1090 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); 1091 if (!sensor) 1092 return NULL; 1093 a = &sensor->attribute; 1094 1095 if (type) 1096 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", 1097 name, seq, type); 1098 else 1099 snprintf(sensor->name, sizeof(sensor->name), "%s%d", 1100 name, seq); 1101 1102 if (data->flags & PMBUS_WRITE_PROTECTED) 1103 readonly = true; 1104 1105 sensor->page = page; 1106 sensor->phase = phase; 1107 sensor->reg = reg; 1108 sensor->class = class; 1109 sensor->update = update; 1110 sensor->convert = convert; 1111 sensor->data = -ENODATA; 1112 pmbus_dev_attr_init(a, sensor->name, 1113 readonly ? 0444 : 0644, 1114 pmbus_show_sensor, pmbus_set_sensor); 1115 1116 if (pmbus_add_attribute(data, &a->attr)) 1117 return NULL; 1118 1119 sensor->next = data->sensors; 1120 data->sensors = sensor; 1121 1122 return sensor; 1123 } 1124 1125 static int pmbus_add_label(struct pmbus_data *data, 1126 const char *name, int seq, 1127 const char *lstring, int index, int phase) 1128 { 1129 struct pmbus_label *label; 1130 struct device_attribute *a; 1131 1132 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); 1133 if (!label) 1134 return -ENOMEM; 1135 1136 a = &label->attribute; 1137 1138 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); 1139 if (!index) { 1140 if (phase == 0xff) 1141 strncpy(label->label, lstring, 1142 sizeof(label->label) - 1); 1143 else 1144 snprintf(label->label, sizeof(label->label), "%s.%d", 1145 lstring, phase); 1146 } else { 1147 if (phase == 0xff) 1148 snprintf(label->label, sizeof(label->label), "%s%d", 1149 lstring, index); 1150 else 1151 snprintf(label->label, sizeof(label->label), "%s%d.%d", 1152 lstring, index, phase); 1153 } 1154 1155 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); 1156 return pmbus_add_attribute(data, &a->attr); 1157 } 1158 1159 /* 1160 * Search for attributes. Allocate sensors, booleans, and labels as needed. 1161 */ 1162 1163 /* 1164 * The pmbus_limit_attr structure describes a single limit attribute 1165 * and its associated alarm attribute. 1166 */ 1167 struct pmbus_limit_attr { 1168 u16 reg; /* Limit register */ 1169 u16 sbit; /* Alarm attribute status bit */ 1170 bool update; /* True if register needs updates */ 1171 bool low; /* True if low limit; for limits with compare 1172 functions only */ 1173 const char *attr; /* Attribute name */ 1174 const char *alarm; /* Alarm attribute name */ 1175 }; 1176 1177 /* 1178 * The pmbus_sensor_attr structure describes one sensor attribute. This 1179 * description includes a reference to the associated limit attributes. 1180 */ 1181 struct pmbus_sensor_attr { 1182 u16 reg; /* sensor register */ 1183 u16 gbit; /* generic status bit */ 1184 u8 nlimit; /* # of limit registers */ 1185 enum pmbus_sensor_classes class;/* sensor class */ 1186 const char *label; /* sensor label */ 1187 bool paged; /* true if paged sensor */ 1188 bool update; /* true if update needed */ 1189 bool compare; /* true if compare function needed */ 1190 u32 func; /* sensor mask */ 1191 u32 sfunc; /* sensor status mask */ 1192 int sreg; /* status register */ 1193 const struct pmbus_limit_attr *limit;/* limit registers */ 1194 }; 1195 1196 /* 1197 * Add a set of limit attributes and, if supported, the associated 1198 * alarm attributes. 1199 * returns 0 if no alarm register found, 1 if an alarm register was found, 1200 * < 0 on errors. 1201 */ 1202 static int pmbus_add_limit_attrs(struct i2c_client *client, 1203 struct pmbus_data *data, 1204 const struct pmbus_driver_info *info, 1205 const char *name, int index, int page, 1206 struct pmbus_sensor *base, 1207 const struct pmbus_sensor_attr *attr) 1208 { 1209 const struct pmbus_limit_attr *l = attr->limit; 1210 int nlimit = attr->nlimit; 1211 int have_alarm = 0; 1212 int i, ret; 1213 struct pmbus_sensor *curr; 1214 1215 for (i = 0; i < nlimit; i++) { 1216 if (pmbus_check_word_register(client, page, l->reg)) { 1217 curr = pmbus_add_sensor(data, name, l->attr, index, 1218 page, 0xff, l->reg, attr->class, 1219 attr->update || l->update, 1220 false, true); 1221 if (!curr) 1222 return -ENOMEM; 1223 if (l->sbit && (info->func[page] & attr->sfunc)) { 1224 ret = pmbus_add_boolean(data, name, 1225 l->alarm, index, 1226 attr->compare ? l->low ? curr : base 1227 : NULL, 1228 attr->compare ? l->low ? base : curr 1229 : NULL, 1230 page, attr->sreg, l->sbit); 1231 if (ret) 1232 return ret; 1233 have_alarm = 1; 1234 } 1235 } 1236 l++; 1237 } 1238 return have_alarm; 1239 } 1240 1241 static int pmbus_add_sensor_attrs_one(struct i2c_client *client, 1242 struct pmbus_data *data, 1243 const struct pmbus_driver_info *info, 1244 const char *name, 1245 int index, int page, int phase, 1246 const struct pmbus_sensor_attr *attr, 1247 bool paged) 1248 { 1249 struct pmbus_sensor *base; 1250 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ 1251 int ret; 1252 1253 if (attr->label) { 1254 ret = pmbus_add_label(data, name, index, attr->label, 1255 paged ? page + 1 : 0, phase); 1256 if (ret) 1257 return ret; 1258 } 1259 base = pmbus_add_sensor(data, name, "input", index, page, phase, 1260 attr->reg, attr->class, true, true, true); 1261 if (!base) 1262 return -ENOMEM; 1263 /* No limit and alarm attributes for phase specific sensors */ 1264 if (attr->sfunc && phase == 0xff) { 1265 ret = pmbus_add_limit_attrs(client, data, info, name, 1266 index, page, base, attr); 1267 if (ret < 0) 1268 return ret; 1269 /* 1270 * Add generic alarm attribute only if there are no individual 1271 * alarm attributes, if there is a global alarm bit, and if 1272 * the generic status register (word or byte, depending on 1273 * which global bit is set) for this page is accessible. 1274 */ 1275 if (!ret && attr->gbit && 1276 (!upper || data->has_status_word) && 1277 pmbus_check_status_register(client, page)) { 1278 ret = pmbus_add_boolean(data, name, "alarm", index, 1279 NULL, NULL, 1280 page, PMBUS_STATUS_WORD, 1281 attr->gbit); 1282 if (ret) 1283 return ret; 1284 } 1285 } 1286 return 0; 1287 } 1288 1289 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, 1290 const struct pmbus_sensor_attr *attr) 1291 { 1292 int p; 1293 1294 if (attr->paged) 1295 return true; 1296 1297 /* 1298 * Some attributes may be present on more than one page despite 1299 * not being marked with the paged attribute. If that is the case, 1300 * then treat the sensor as being paged and add the page suffix to the 1301 * attribute name. 1302 * We don't just add the paged attribute to all such attributes, in 1303 * order to maintain the un-suffixed labels in the case where the 1304 * attribute is only on page 0. 1305 */ 1306 for (p = 1; p < info->pages; p++) { 1307 if (info->func[p] & attr->func) 1308 return true; 1309 } 1310 return false; 1311 } 1312 1313 static int pmbus_add_sensor_attrs(struct i2c_client *client, 1314 struct pmbus_data *data, 1315 const char *name, 1316 const struct pmbus_sensor_attr *attrs, 1317 int nattrs) 1318 { 1319 const struct pmbus_driver_info *info = data->info; 1320 int index, i; 1321 int ret; 1322 1323 index = 1; 1324 for (i = 0; i < nattrs; i++) { 1325 int page, pages; 1326 bool paged = pmbus_sensor_is_paged(info, attrs); 1327 1328 pages = paged ? info->pages : 1; 1329 for (page = 0; page < pages; page++) { 1330 if (!(info->func[page] & attrs->func)) 1331 continue; 1332 ret = pmbus_add_sensor_attrs_one(client, data, info, 1333 name, index, page, 1334 0xff, attrs, paged); 1335 if (ret) 1336 return ret; 1337 index++; 1338 if (info->phases[page]) { 1339 int phase; 1340 1341 for (phase = 0; phase < info->phases[page]; 1342 phase++) { 1343 if (!(info->pfunc[phase] & attrs->func)) 1344 continue; 1345 ret = pmbus_add_sensor_attrs_one(client, 1346 data, info, name, index, page, 1347 phase, attrs, paged); 1348 if (ret) 1349 return ret; 1350 index++; 1351 } 1352 } 1353 } 1354 attrs++; 1355 } 1356 return 0; 1357 } 1358 1359 static const struct pmbus_limit_attr vin_limit_attrs[] = { 1360 { 1361 .reg = PMBUS_VIN_UV_WARN_LIMIT, 1362 .attr = "min", 1363 .alarm = "min_alarm", 1364 .sbit = PB_VOLTAGE_UV_WARNING, 1365 }, { 1366 .reg = PMBUS_VIN_UV_FAULT_LIMIT, 1367 .attr = "lcrit", 1368 .alarm = "lcrit_alarm", 1369 .sbit = PB_VOLTAGE_UV_FAULT, 1370 }, { 1371 .reg = PMBUS_VIN_OV_WARN_LIMIT, 1372 .attr = "max", 1373 .alarm = "max_alarm", 1374 .sbit = PB_VOLTAGE_OV_WARNING, 1375 }, { 1376 .reg = PMBUS_VIN_OV_FAULT_LIMIT, 1377 .attr = "crit", 1378 .alarm = "crit_alarm", 1379 .sbit = PB_VOLTAGE_OV_FAULT, 1380 }, { 1381 .reg = PMBUS_VIRT_READ_VIN_AVG, 1382 .update = true, 1383 .attr = "average", 1384 }, { 1385 .reg = PMBUS_VIRT_READ_VIN_MIN, 1386 .update = true, 1387 .attr = "lowest", 1388 }, { 1389 .reg = PMBUS_VIRT_READ_VIN_MAX, 1390 .update = true, 1391 .attr = "highest", 1392 }, { 1393 .reg = PMBUS_VIRT_RESET_VIN_HISTORY, 1394 .attr = "reset_history", 1395 }, { 1396 .reg = PMBUS_MFR_VIN_MIN, 1397 .attr = "rated_min", 1398 }, { 1399 .reg = PMBUS_MFR_VIN_MAX, 1400 .attr = "rated_max", 1401 }, 1402 }; 1403 1404 static const struct pmbus_limit_attr vmon_limit_attrs[] = { 1405 { 1406 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, 1407 .attr = "min", 1408 .alarm = "min_alarm", 1409 .sbit = PB_VOLTAGE_UV_WARNING, 1410 }, { 1411 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, 1412 .attr = "lcrit", 1413 .alarm = "lcrit_alarm", 1414 .sbit = PB_VOLTAGE_UV_FAULT, 1415 }, { 1416 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, 1417 .attr = "max", 1418 .alarm = "max_alarm", 1419 .sbit = PB_VOLTAGE_OV_WARNING, 1420 }, { 1421 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, 1422 .attr = "crit", 1423 .alarm = "crit_alarm", 1424 .sbit = PB_VOLTAGE_OV_FAULT, 1425 } 1426 }; 1427 1428 static const struct pmbus_limit_attr vout_limit_attrs[] = { 1429 { 1430 .reg = PMBUS_VOUT_UV_WARN_LIMIT, 1431 .attr = "min", 1432 .alarm = "min_alarm", 1433 .sbit = PB_VOLTAGE_UV_WARNING, 1434 }, { 1435 .reg = PMBUS_VOUT_UV_FAULT_LIMIT, 1436 .attr = "lcrit", 1437 .alarm = "lcrit_alarm", 1438 .sbit = PB_VOLTAGE_UV_FAULT, 1439 }, { 1440 .reg = PMBUS_VOUT_OV_WARN_LIMIT, 1441 .attr = "max", 1442 .alarm = "max_alarm", 1443 .sbit = PB_VOLTAGE_OV_WARNING, 1444 }, { 1445 .reg = PMBUS_VOUT_OV_FAULT_LIMIT, 1446 .attr = "crit", 1447 .alarm = "crit_alarm", 1448 .sbit = PB_VOLTAGE_OV_FAULT, 1449 }, { 1450 .reg = PMBUS_VIRT_READ_VOUT_AVG, 1451 .update = true, 1452 .attr = "average", 1453 }, { 1454 .reg = PMBUS_VIRT_READ_VOUT_MIN, 1455 .update = true, 1456 .attr = "lowest", 1457 }, { 1458 .reg = PMBUS_VIRT_READ_VOUT_MAX, 1459 .update = true, 1460 .attr = "highest", 1461 }, { 1462 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, 1463 .attr = "reset_history", 1464 }, { 1465 .reg = PMBUS_MFR_VOUT_MIN, 1466 .attr = "rated_min", 1467 }, { 1468 .reg = PMBUS_MFR_VOUT_MAX, 1469 .attr = "rated_max", 1470 }, 1471 }; 1472 1473 static const struct pmbus_sensor_attr voltage_attributes[] = { 1474 { 1475 .reg = PMBUS_READ_VIN, 1476 .class = PSC_VOLTAGE_IN, 1477 .label = "vin", 1478 .func = PMBUS_HAVE_VIN, 1479 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1480 .sreg = PMBUS_STATUS_INPUT, 1481 .gbit = PB_STATUS_VIN_UV, 1482 .limit = vin_limit_attrs, 1483 .nlimit = ARRAY_SIZE(vin_limit_attrs), 1484 }, { 1485 .reg = PMBUS_VIRT_READ_VMON, 1486 .class = PSC_VOLTAGE_IN, 1487 .label = "vmon", 1488 .func = PMBUS_HAVE_VMON, 1489 .sfunc = PMBUS_HAVE_STATUS_VMON, 1490 .sreg = PMBUS_VIRT_STATUS_VMON, 1491 .limit = vmon_limit_attrs, 1492 .nlimit = ARRAY_SIZE(vmon_limit_attrs), 1493 }, { 1494 .reg = PMBUS_READ_VCAP, 1495 .class = PSC_VOLTAGE_IN, 1496 .label = "vcap", 1497 .func = PMBUS_HAVE_VCAP, 1498 }, { 1499 .reg = PMBUS_READ_VOUT, 1500 .class = PSC_VOLTAGE_OUT, 1501 .label = "vout", 1502 .paged = true, 1503 .func = PMBUS_HAVE_VOUT, 1504 .sfunc = PMBUS_HAVE_STATUS_VOUT, 1505 .sreg = PMBUS_STATUS_VOUT, 1506 .gbit = PB_STATUS_VOUT_OV, 1507 .limit = vout_limit_attrs, 1508 .nlimit = ARRAY_SIZE(vout_limit_attrs), 1509 } 1510 }; 1511 1512 /* Current attributes */ 1513 1514 static const struct pmbus_limit_attr iin_limit_attrs[] = { 1515 { 1516 .reg = PMBUS_IIN_OC_WARN_LIMIT, 1517 .attr = "max", 1518 .alarm = "max_alarm", 1519 .sbit = PB_IIN_OC_WARNING, 1520 }, { 1521 .reg = PMBUS_IIN_OC_FAULT_LIMIT, 1522 .attr = "crit", 1523 .alarm = "crit_alarm", 1524 .sbit = PB_IIN_OC_FAULT, 1525 }, { 1526 .reg = PMBUS_VIRT_READ_IIN_AVG, 1527 .update = true, 1528 .attr = "average", 1529 }, { 1530 .reg = PMBUS_VIRT_READ_IIN_MIN, 1531 .update = true, 1532 .attr = "lowest", 1533 }, { 1534 .reg = PMBUS_VIRT_READ_IIN_MAX, 1535 .update = true, 1536 .attr = "highest", 1537 }, { 1538 .reg = PMBUS_VIRT_RESET_IIN_HISTORY, 1539 .attr = "reset_history", 1540 }, { 1541 .reg = PMBUS_MFR_IIN_MAX, 1542 .attr = "rated_max", 1543 }, 1544 }; 1545 1546 static const struct pmbus_limit_attr iout_limit_attrs[] = { 1547 { 1548 .reg = PMBUS_IOUT_OC_WARN_LIMIT, 1549 .attr = "max", 1550 .alarm = "max_alarm", 1551 .sbit = PB_IOUT_OC_WARNING, 1552 }, { 1553 .reg = PMBUS_IOUT_UC_FAULT_LIMIT, 1554 .attr = "lcrit", 1555 .alarm = "lcrit_alarm", 1556 .sbit = PB_IOUT_UC_FAULT, 1557 }, { 1558 .reg = PMBUS_IOUT_OC_FAULT_LIMIT, 1559 .attr = "crit", 1560 .alarm = "crit_alarm", 1561 .sbit = PB_IOUT_OC_FAULT, 1562 }, { 1563 .reg = PMBUS_VIRT_READ_IOUT_AVG, 1564 .update = true, 1565 .attr = "average", 1566 }, { 1567 .reg = PMBUS_VIRT_READ_IOUT_MIN, 1568 .update = true, 1569 .attr = "lowest", 1570 }, { 1571 .reg = PMBUS_VIRT_READ_IOUT_MAX, 1572 .update = true, 1573 .attr = "highest", 1574 }, { 1575 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, 1576 .attr = "reset_history", 1577 }, { 1578 .reg = PMBUS_MFR_IOUT_MAX, 1579 .attr = "rated_max", 1580 }, 1581 }; 1582 1583 static const struct pmbus_sensor_attr current_attributes[] = { 1584 { 1585 .reg = PMBUS_READ_IIN, 1586 .class = PSC_CURRENT_IN, 1587 .label = "iin", 1588 .func = PMBUS_HAVE_IIN, 1589 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1590 .sreg = PMBUS_STATUS_INPUT, 1591 .gbit = PB_STATUS_INPUT, 1592 .limit = iin_limit_attrs, 1593 .nlimit = ARRAY_SIZE(iin_limit_attrs), 1594 }, { 1595 .reg = PMBUS_READ_IOUT, 1596 .class = PSC_CURRENT_OUT, 1597 .label = "iout", 1598 .paged = true, 1599 .func = PMBUS_HAVE_IOUT, 1600 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1601 .sreg = PMBUS_STATUS_IOUT, 1602 .gbit = PB_STATUS_IOUT_OC, 1603 .limit = iout_limit_attrs, 1604 .nlimit = ARRAY_SIZE(iout_limit_attrs), 1605 } 1606 }; 1607 1608 /* Power attributes */ 1609 1610 static const struct pmbus_limit_attr pin_limit_attrs[] = { 1611 { 1612 .reg = PMBUS_PIN_OP_WARN_LIMIT, 1613 .attr = "max", 1614 .alarm = "alarm", 1615 .sbit = PB_PIN_OP_WARNING, 1616 }, { 1617 .reg = PMBUS_VIRT_READ_PIN_AVG, 1618 .update = true, 1619 .attr = "average", 1620 }, { 1621 .reg = PMBUS_VIRT_READ_PIN_MIN, 1622 .update = true, 1623 .attr = "input_lowest", 1624 }, { 1625 .reg = PMBUS_VIRT_READ_PIN_MAX, 1626 .update = true, 1627 .attr = "input_highest", 1628 }, { 1629 .reg = PMBUS_VIRT_RESET_PIN_HISTORY, 1630 .attr = "reset_history", 1631 }, { 1632 .reg = PMBUS_MFR_PIN_MAX, 1633 .attr = "rated_max", 1634 }, 1635 }; 1636 1637 static const struct pmbus_limit_attr pout_limit_attrs[] = { 1638 { 1639 .reg = PMBUS_POUT_MAX, 1640 .attr = "cap", 1641 .alarm = "cap_alarm", 1642 .sbit = PB_POWER_LIMITING, 1643 }, { 1644 .reg = PMBUS_POUT_OP_WARN_LIMIT, 1645 .attr = "max", 1646 .alarm = "max_alarm", 1647 .sbit = PB_POUT_OP_WARNING, 1648 }, { 1649 .reg = PMBUS_POUT_OP_FAULT_LIMIT, 1650 .attr = "crit", 1651 .alarm = "crit_alarm", 1652 .sbit = PB_POUT_OP_FAULT, 1653 }, { 1654 .reg = PMBUS_VIRT_READ_POUT_AVG, 1655 .update = true, 1656 .attr = "average", 1657 }, { 1658 .reg = PMBUS_VIRT_READ_POUT_MIN, 1659 .update = true, 1660 .attr = "input_lowest", 1661 }, { 1662 .reg = PMBUS_VIRT_READ_POUT_MAX, 1663 .update = true, 1664 .attr = "input_highest", 1665 }, { 1666 .reg = PMBUS_VIRT_RESET_POUT_HISTORY, 1667 .attr = "reset_history", 1668 }, { 1669 .reg = PMBUS_MFR_POUT_MAX, 1670 .attr = "rated_max", 1671 }, 1672 }; 1673 1674 static const struct pmbus_sensor_attr power_attributes[] = { 1675 { 1676 .reg = PMBUS_READ_PIN, 1677 .class = PSC_POWER, 1678 .label = "pin", 1679 .func = PMBUS_HAVE_PIN, 1680 .sfunc = PMBUS_HAVE_STATUS_INPUT, 1681 .sreg = PMBUS_STATUS_INPUT, 1682 .gbit = PB_STATUS_INPUT, 1683 .limit = pin_limit_attrs, 1684 .nlimit = ARRAY_SIZE(pin_limit_attrs), 1685 }, { 1686 .reg = PMBUS_READ_POUT, 1687 .class = PSC_POWER, 1688 .label = "pout", 1689 .paged = true, 1690 .func = PMBUS_HAVE_POUT, 1691 .sfunc = PMBUS_HAVE_STATUS_IOUT, 1692 .sreg = PMBUS_STATUS_IOUT, 1693 .limit = pout_limit_attrs, 1694 .nlimit = ARRAY_SIZE(pout_limit_attrs), 1695 } 1696 }; 1697 1698 /* Temperature atributes */ 1699 1700 static const struct pmbus_limit_attr temp_limit_attrs[] = { 1701 { 1702 .reg = PMBUS_UT_WARN_LIMIT, 1703 .low = true, 1704 .attr = "min", 1705 .alarm = "min_alarm", 1706 .sbit = PB_TEMP_UT_WARNING, 1707 }, { 1708 .reg = PMBUS_UT_FAULT_LIMIT, 1709 .low = true, 1710 .attr = "lcrit", 1711 .alarm = "lcrit_alarm", 1712 .sbit = PB_TEMP_UT_FAULT, 1713 }, { 1714 .reg = PMBUS_OT_WARN_LIMIT, 1715 .attr = "max", 1716 .alarm = "max_alarm", 1717 .sbit = PB_TEMP_OT_WARNING, 1718 }, { 1719 .reg = PMBUS_OT_FAULT_LIMIT, 1720 .attr = "crit", 1721 .alarm = "crit_alarm", 1722 .sbit = PB_TEMP_OT_FAULT, 1723 }, { 1724 .reg = PMBUS_VIRT_READ_TEMP_MIN, 1725 .attr = "lowest", 1726 }, { 1727 .reg = PMBUS_VIRT_READ_TEMP_AVG, 1728 .attr = "average", 1729 }, { 1730 .reg = PMBUS_VIRT_READ_TEMP_MAX, 1731 .attr = "highest", 1732 }, { 1733 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, 1734 .attr = "reset_history", 1735 }, { 1736 .reg = PMBUS_MFR_MAX_TEMP_1, 1737 .attr = "rated_max", 1738 }, 1739 }; 1740 1741 static const struct pmbus_limit_attr temp_limit_attrs2[] = { 1742 { 1743 .reg = PMBUS_UT_WARN_LIMIT, 1744 .low = true, 1745 .attr = "min", 1746 .alarm = "min_alarm", 1747 .sbit = PB_TEMP_UT_WARNING, 1748 }, { 1749 .reg = PMBUS_UT_FAULT_LIMIT, 1750 .low = true, 1751 .attr = "lcrit", 1752 .alarm = "lcrit_alarm", 1753 .sbit = PB_TEMP_UT_FAULT, 1754 }, { 1755 .reg = PMBUS_OT_WARN_LIMIT, 1756 .attr = "max", 1757 .alarm = "max_alarm", 1758 .sbit = PB_TEMP_OT_WARNING, 1759 }, { 1760 .reg = PMBUS_OT_FAULT_LIMIT, 1761 .attr = "crit", 1762 .alarm = "crit_alarm", 1763 .sbit = PB_TEMP_OT_FAULT, 1764 }, { 1765 .reg = PMBUS_VIRT_READ_TEMP2_MIN, 1766 .attr = "lowest", 1767 }, { 1768 .reg = PMBUS_VIRT_READ_TEMP2_AVG, 1769 .attr = "average", 1770 }, { 1771 .reg = PMBUS_VIRT_READ_TEMP2_MAX, 1772 .attr = "highest", 1773 }, { 1774 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, 1775 .attr = "reset_history", 1776 }, { 1777 .reg = PMBUS_MFR_MAX_TEMP_2, 1778 .attr = "rated_max", 1779 }, 1780 }; 1781 1782 static const struct pmbus_limit_attr temp_limit_attrs3[] = { 1783 { 1784 .reg = PMBUS_UT_WARN_LIMIT, 1785 .low = true, 1786 .attr = "min", 1787 .alarm = "min_alarm", 1788 .sbit = PB_TEMP_UT_WARNING, 1789 }, { 1790 .reg = PMBUS_UT_FAULT_LIMIT, 1791 .low = true, 1792 .attr = "lcrit", 1793 .alarm = "lcrit_alarm", 1794 .sbit = PB_TEMP_UT_FAULT, 1795 }, { 1796 .reg = PMBUS_OT_WARN_LIMIT, 1797 .attr = "max", 1798 .alarm = "max_alarm", 1799 .sbit = PB_TEMP_OT_WARNING, 1800 }, { 1801 .reg = PMBUS_OT_FAULT_LIMIT, 1802 .attr = "crit", 1803 .alarm = "crit_alarm", 1804 .sbit = PB_TEMP_OT_FAULT, 1805 }, { 1806 .reg = PMBUS_MFR_MAX_TEMP_3, 1807 .attr = "rated_max", 1808 }, 1809 }; 1810 1811 static const struct pmbus_sensor_attr temp_attributes[] = { 1812 { 1813 .reg = PMBUS_READ_TEMPERATURE_1, 1814 .class = PSC_TEMPERATURE, 1815 .paged = true, 1816 .update = true, 1817 .compare = true, 1818 .func = PMBUS_HAVE_TEMP, 1819 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1820 .sreg = PMBUS_STATUS_TEMPERATURE, 1821 .gbit = PB_STATUS_TEMPERATURE, 1822 .limit = temp_limit_attrs, 1823 .nlimit = ARRAY_SIZE(temp_limit_attrs), 1824 }, { 1825 .reg = PMBUS_READ_TEMPERATURE_2, 1826 .class = PSC_TEMPERATURE, 1827 .paged = true, 1828 .update = true, 1829 .compare = true, 1830 .func = PMBUS_HAVE_TEMP2, 1831 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1832 .sreg = PMBUS_STATUS_TEMPERATURE, 1833 .gbit = PB_STATUS_TEMPERATURE, 1834 .limit = temp_limit_attrs2, 1835 .nlimit = ARRAY_SIZE(temp_limit_attrs2), 1836 }, { 1837 .reg = PMBUS_READ_TEMPERATURE_3, 1838 .class = PSC_TEMPERATURE, 1839 .paged = true, 1840 .update = true, 1841 .compare = true, 1842 .func = PMBUS_HAVE_TEMP3, 1843 .sfunc = PMBUS_HAVE_STATUS_TEMP, 1844 .sreg = PMBUS_STATUS_TEMPERATURE, 1845 .gbit = PB_STATUS_TEMPERATURE, 1846 .limit = temp_limit_attrs3, 1847 .nlimit = ARRAY_SIZE(temp_limit_attrs3), 1848 } 1849 }; 1850 1851 static const int pmbus_fan_registers[] = { 1852 PMBUS_READ_FAN_SPEED_1, 1853 PMBUS_READ_FAN_SPEED_2, 1854 PMBUS_READ_FAN_SPEED_3, 1855 PMBUS_READ_FAN_SPEED_4 1856 }; 1857 1858 static const int pmbus_fan_status_registers[] = { 1859 PMBUS_STATUS_FAN_12, 1860 PMBUS_STATUS_FAN_12, 1861 PMBUS_STATUS_FAN_34, 1862 PMBUS_STATUS_FAN_34 1863 }; 1864 1865 static const u32 pmbus_fan_flags[] = { 1866 PMBUS_HAVE_FAN12, 1867 PMBUS_HAVE_FAN12, 1868 PMBUS_HAVE_FAN34, 1869 PMBUS_HAVE_FAN34 1870 }; 1871 1872 static const u32 pmbus_fan_status_flags[] = { 1873 PMBUS_HAVE_STATUS_FAN12, 1874 PMBUS_HAVE_STATUS_FAN12, 1875 PMBUS_HAVE_STATUS_FAN34, 1876 PMBUS_HAVE_STATUS_FAN34 1877 }; 1878 1879 /* Fans */ 1880 1881 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ 1882 static int pmbus_add_fan_ctrl(struct i2c_client *client, 1883 struct pmbus_data *data, int index, int page, int id, 1884 u8 config) 1885 { 1886 struct pmbus_sensor *sensor; 1887 1888 sensor = pmbus_add_sensor(data, "fan", "target", index, page, 1889 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, 1890 false, false, true); 1891 1892 if (!sensor) 1893 return -ENOMEM; 1894 1895 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || 1896 (data->info->func[page] & PMBUS_HAVE_PWM34))) 1897 return 0; 1898 1899 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 1900 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, 1901 false, false, true); 1902 1903 if (!sensor) 1904 return -ENOMEM; 1905 1906 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 1907 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, 1908 true, false, false); 1909 1910 if (!sensor) 1911 return -ENOMEM; 1912 1913 return 0; 1914 } 1915 1916 static int pmbus_add_fan_attributes(struct i2c_client *client, 1917 struct pmbus_data *data) 1918 { 1919 const struct pmbus_driver_info *info = data->info; 1920 int index = 1; 1921 int page; 1922 int ret; 1923 1924 for (page = 0; page < info->pages; page++) { 1925 int f; 1926 1927 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { 1928 int regval; 1929 1930 if (!(info->func[page] & pmbus_fan_flags[f])) 1931 break; 1932 1933 if (!pmbus_check_word_register(client, page, 1934 pmbus_fan_registers[f])) 1935 break; 1936 1937 /* 1938 * Skip fan if not installed. 1939 * Each fan configuration register covers multiple fans, 1940 * so we have to do some magic. 1941 */ 1942 regval = _pmbus_read_byte_data(client, page, 1943 pmbus_fan_config_registers[f]); 1944 if (regval < 0 || 1945 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) 1946 continue; 1947 1948 if (pmbus_add_sensor(data, "fan", "input", index, 1949 page, 0xff, pmbus_fan_registers[f], 1950 PSC_FAN, true, true, true) == NULL) 1951 return -ENOMEM; 1952 1953 /* Fan control */ 1954 if (pmbus_check_word_register(client, page, 1955 pmbus_fan_command_registers[f])) { 1956 ret = pmbus_add_fan_ctrl(client, data, index, 1957 page, f, regval); 1958 if (ret < 0) 1959 return ret; 1960 } 1961 1962 /* 1963 * Each fan status register covers multiple fans, 1964 * so we have to do some magic. 1965 */ 1966 if ((info->func[page] & pmbus_fan_status_flags[f]) && 1967 pmbus_check_byte_register(client, 1968 page, pmbus_fan_status_registers[f])) { 1969 int reg; 1970 1971 if (f > 1) /* fan 3, 4 */ 1972 reg = PMBUS_STATUS_FAN_34; 1973 else 1974 reg = PMBUS_STATUS_FAN_12; 1975 ret = pmbus_add_boolean(data, "fan", 1976 "alarm", index, NULL, NULL, page, reg, 1977 PB_FAN_FAN1_WARNING >> (f & 1)); 1978 if (ret) 1979 return ret; 1980 ret = pmbus_add_boolean(data, "fan", 1981 "fault", index, NULL, NULL, page, reg, 1982 PB_FAN_FAN1_FAULT >> (f & 1)); 1983 if (ret) 1984 return ret; 1985 } 1986 index++; 1987 } 1988 } 1989 return 0; 1990 } 1991 1992 struct pmbus_samples_attr { 1993 int reg; 1994 char *name; 1995 }; 1996 1997 struct pmbus_samples_reg { 1998 int page; 1999 struct pmbus_samples_attr *attr; 2000 struct device_attribute dev_attr; 2001 }; 2002 2003 static struct pmbus_samples_attr pmbus_samples_registers[] = { 2004 { 2005 .reg = PMBUS_VIRT_SAMPLES, 2006 .name = "samples", 2007 }, { 2008 .reg = PMBUS_VIRT_IN_SAMPLES, 2009 .name = "in_samples", 2010 }, { 2011 .reg = PMBUS_VIRT_CURR_SAMPLES, 2012 .name = "curr_samples", 2013 }, { 2014 .reg = PMBUS_VIRT_POWER_SAMPLES, 2015 .name = "power_samples", 2016 }, { 2017 .reg = PMBUS_VIRT_TEMP_SAMPLES, 2018 .name = "temp_samples", 2019 } 2020 }; 2021 2022 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) 2023 2024 static ssize_t pmbus_show_samples(struct device *dev, 2025 struct device_attribute *devattr, char *buf) 2026 { 2027 int val; 2028 struct i2c_client *client = to_i2c_client(dev->parent); 2029 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2030 struct pmbus_data *data = i2c_get_clientdata(client); 2031 2032 mutex_lock(&data->update_lock); 2033 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); 2034 mutex_unlock(&data->update_lock); 2035 if (val < 0) 2036 return val; 2037 2038 return sysfs_emit(buf, "%d\n", val); 2039 } 2040 2041 static ssize_t pmbus_set_samples(struct device *dev, 2042 struct device_attribute *devattr, 2043 const char *buf, size_t count) 2044 { 2045 int ret; 2046 long val; 2047 struct i2c_client *client = to_i2c_client(dev->parent); 2048 struct pmbus_samples_reg *reg = to_samples_reg(devattr); 2049 struct pmbus_data *data = i2c_get_clientdata(client); 2050 2051 if (kstrtol(buf, 0, &val) < 0) 2052 return -EINVAL; 2053 2054 mutex_lock(&data->update_lock); 2055 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); 2056 mutex_unlock(&data->update_lock); 2057 2058 return ret ? : count; 2059 } 2060 2061 static int pmbus_add_samples_attr(struct pmbus_data *data, int page, 2062 struct pmbus_samples_attr *attr) 2063 { 2064 struct pmbus_samples_reg *reg; 2065 2066 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); 2067 if (!reg) 2068 return -ENOMEM; 2069 2070 reg->attr = attr; 2071 reg->page = page; 2072 2073 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, 2074 pmbus_show_samples, pmbus_set_samples); 2075 2076 return pmbus_add_attribute(data, ®->dev_attr.attr); 2077 } 2078 2079 static int pmbus_add_samples_attributes(struct i2c_client *client, 2080 struct pmbus_data *data) 2081 { 2082 const struct pmbus_driver_info *info = data->info; 2083 int s; 2084 2085 if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) 2086 return 0; 2087 2088 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { 2089 struct pmbus_samples_attr *attr; 2090 int ret; 2091 2092 attr = &pmbus_samples_registers[s]; 2093 if (!pmbus_check_word_register(client, 0, attr->reg)) 2094 continue; 2095 2096 ret = pmbus_add_samples_attr(data, 0, attr); 2097 if (ret) 2098 return ret; 2099 } 2100 2101 return 0; 2102 } 2103 2104 static int pmbus_find_attributes(struct i2c_client *client, 2105 struct pmbus_data *data) 2106 { 2107 int ret; 2108 2109 /* Voltage sensors */ 2110 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, 2111 ARRAY_SIZE(voltage_attributes)); 2112 if (ret) 2113 return ret; 2114 2115 /* Current sensors */ 2116 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, 2117 ARRAY_SIZE(current_attributes)); 2118 if (ret) 2119 return ret; 2120 2121 /* Power sensors */ 2122 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, 2123 ARRAY_SIZE(power_attributes)); 2124 if (ret) 2125 return ret; 2126 2127 /* Temperature sensors */ 2128 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, 2129 ARRAY_SIZE(temp_attributes)); 2130 if (ret) 2131 return ret; 2132 2133 /* Fans */ 2134 ret = pmbus_add_fan_attributes(client, data); 2135 if (ret) 2136 return ret; 2137 2138 ret = pmbus_add_samples_attributes(client, data); 2139 return ret; 2140 } 2141 2142 /* 2143 * Identify chip parameters. 2144 * This function is called for all chips. 2145 */ 2146 static int pmbus_identify_common(struct i2c_client *client, 2147 struct pmbus_data *data, int page) 2148 { 2149 int vout_mode = -1; 2150 2151 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) 2152 vout_mode = _pmbus_read_byte_data(client, page, 2153 PMBUS_VOUT_MODE); 2154 if (vout_mode >= 0 && vout_mode != 0xff) { 2155 /* 2156 * Not all chips support the VOUT_MODE command, 2157 * so a failure to read it is not an error. 2158 */ 2159 switch (vout_mode >> 5) { 2160 case 0: /* linear mode */ 2161 if (data->info->format[PSC_VOLTAGE_OUT] != linear) 2162 return -ENODEV; 2163 2164 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; 2165 break; 2166 case 1: /* VID mode */ 2167 if (data->info->format[PSC_VOLTAGE_OUT] != vid) 2168 return -ENODEV; 2169 break; 2170 case 2: /* direct mode */ 2171 if (data->info->format[PSC_VOLTAGE_OUT] != direct) 2172 return -ENODEV; 2173 break; 2174 default: 2175 return -ENODEV; 2176 } 2177 } 2178 2179 pmbus_clear_fault_page(client, page); 2180 return 0; 2181 } 2182 2183 static int pmbus_read_status_byte(struct i2c_client *client, int page) 2184 { 2185 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); 2186 } 2187 2188 static int pmbus_read_status_word(struct i2c_client *client, int page) 2189 { 2190 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); 2191 } 2192 2193 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, 2194 struct pmbus_driver_info *info) 2195 { 2196 struct device *dev = &client->dev; 2197 int page, ret; 2198 2199 /* 2200 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try 2201 * to use PMBUS_STATUS_BYTE instead if that is the case. 2202 * Bail out if both registers are not supported. 2203 */ 2204 data->read_status = pmbus_read_status_word; 2205 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); 2206 if (ret < 0 || ret == 0xffff) { 2207 data->read_status = pmbus_read_status_byte; 2208 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); 2209 if (ret < 0 || ret == 0xff) { 2210 dev_err(dev, "PMBus status register not found\n"); 2211 return -ENODEV; 2212 } 2213 } else { 2214 data->has_status_word = true; 2215 } 2216 2217 /* Enable PEC if the controller supports it */ 2218 if (!(data->flags & PMBUS_NO_CAPABILITY)) { 2219 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2220 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) 2221 client->flags |= I2C_CLIENT_PEC; 2222 } 2223 2224 /* 2225 * Check if the chip is write protected. If it is, we can not clear 2226 * faults, and we should not try it. Also, in that case, writes into 2227 * limit registers need to be disabled. 2228 */ 2229 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); 2230 if (ret > 0 && (ret & PB_WP_ANY)) 2231 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; 2232 2233 if (data->info->pages) 2234 pmbus_clear_faults(client); 2235 else 2236 pmbus_clear_fault_page(client, -1); 2237 2238 if (info->identify) { 2239 ret = (*info->identify)(client, info); 2240 if (ret < 0) { 2241 dev_err(dev, "Chip identification failed\n"); 2242 return ret; 2243 } 2244 } 2245 2246 if (info->pages <= 0 || info->pages > PMBUS_PAGES) { 2247 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); 2248 return -ENODEV; 2249 } 2250 2251 for (page = 0; page < info->pages; page++) { 2252 ret = pmbus_identify_common(client, data, page); 2253 if (ret < 0) { 2254 dev_err(dev, "Failed to identify chip capabilities\n"); 2255 return ret; 2256 } 2257 } 2258 return 0; 2259 } 2260 2261 #if IS_ENABLED(CONFIG_REGULATOR) 2262 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) 2263 { 2264 struct device *dev = rdev_get_dev(rdev); 2265 struct i2c_client *client = to_i2c_client(dev->parent); 2266 u8 page = rdev_get_id(rdev); 2267 int ret; 2268 2269 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION); 2270 if (ret < 0) 2271 return ret; 2272 2273 return !!(ret & PB_OPERATION_CONTROL_ON); 2274 } 2275 2276 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) 2277 { 2278 struct device *dev = rdev_get_dev(rdev); 2279 struct i2c_client *client = to_i2c_client(dev->parent); 2280 u8 page = rdev_get_id(rdev); 2281 2282 return pmbus_update_byte_data(client, page, PMBUS_OPERATION, 2283 PB_OPERATION_CONTROL_ON, 2284 enable ? PB_OPERATION_CONTROL_ON : 0); 2285 } 2286 2287 static int pmbus_regulator_enable(struct regulator_dev *rdev) 2288 { 2289 return _pmbus_regulator_on_off(rdev, 1); 2290 } 2291 2292 static int pmbus_regulator_disable(struct regulator_dev *rdev) 2293 { 2294 return _pmbus_regulator_on_off(rdev, 0); 2295 } 2296 2297 const struct regulator_ops pmbus_regulator_ops = { 2298 .enable = pmbus_regulator_enable, 2299 .disable = pmbus_regulator_disable, 2300 .is_enabled = pmbus_regulator_is_enabled, 2301 }; 2302 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS); 2303 2304 static int pmbus_regulator_register(struct pmbus_data *data) 2305 { 2306 struct device *dev = data->dev; 2307 const struct pmbus_driver_info *info = data->info; 2308 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2309 struct regulator_dev *rdev; 2310 int i; 2311 2312 for (i = 0; i < info->num_regulators; i++) { 2313 struct regulator_config config = { }; 2314 2315 config.dev = dev; 2316 config.driver_data = data; 2317 2318 if (pdata && pdata->reg_init_data) 2319 config.init_data = &pdata->reg_init_data[i]; 2320 2321 rdev = devm_regulator_register(dev, &info->reg_desc[i], 2322 &config); 2323 if (IS_ERR(rdev)) { 2324 dev_err(dev, "Failed to register %s regulator\n", 2325 info->reg_desc[i].name); 2326 return PTR_ERR(rdev); 2327 } 2328 } 2329 2330 return 0; 2331 } 2332 #else 2333 static int pmbus_regulator_register(struct pmbus_data *data) 2334 { 2335 return 0; 2336 } 2337 #endif 2338 2339 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ 2340 2341 #if IS_ENABLED(CONFIG_DEBUG_FS) 2342 static int pmbus_debugfs_get(void *data, u64 *val) 2343 { 2344 int rc; 2345 struct pmbus_debugfs_entry *entry = data; 2346 2347 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); 2348 if (rc < 0) 2349 return rc; 2350 2351 *val = rc; 2352 2353 return 0; 2354 } 2355 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, 2356 "0x%02llx\n"); 2357 2358 static int pmbus_debugfs_get_status(void *data, u64 *val) 2359 { 2360 int rc; 2361 struct pmbus_debugfs_entry *entry = data; 2362 struct pmbus_data *pdata = i2c_get_clientdata(entry->client); 2363 2364 rc = pdata->read_status(entry->client, entry->page); 2365 if (rc < 0) 2366 return rc; 2367 2368 *val = rc; 2369 2370 return 0; 2371 } 2372 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, 2373 NULL, "0x%04llx\n"); 2374 2375 static int pmbus_debugfs_get_pec(void *data, u64 *val) 2376 { 2377 struct i2c_client *client = data; 2378 2379 *val = !!(client->flags & I2C_CLIENT_PEC); 2380 2381 return 0; 2382 } 2383 2384 static int pmbus_debugfs_set_pec(void *data, u64 val) 2385 { 2386 int rc; 2387 struct i2c_client *client = data; 2388 2389 if (!val) { 2390 client->flags &= ~I2C_CLIENT_PEC; 2391 return 0; 2392 } 2393 2394 if (val != 1) 2395 return -EINVAL; 2396 2397 rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); 2398 if (rc < 0) 2399 return rc; 2400 2401 if (!(rc & PB_CAPABILITY_ERROR_CHECK)) 2402 return -EOPNOTSUPP; 2403 2404 client->flags |= I2C_CLIENT_PEC; 2405 2406 return 0; 2407 } 2408 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec, 2409 pmbus_debugfs_set_pec, "%llu\n"); 2410 2411 static void pmbus_remove_debugfs(void *data) 2412 { 2413 struct dentry *entry = data; 2414 2415 debugfs_remove_recursive(entry); 2416 } 2417 2418 static int pmbus_init_debugfs(struct i2c_client *client, 2419 struct pmbus_data *data) 2420 { 2421 int i, idx = 0; 2422 char name[PMBUS_NAME_SIZE]; 2423 struct pmbus_debugfs_entry *entries; 2424 2425 if (!pmbus_debugfs_dir) 2426 return -ENODEV; 2427 2428 /* 2429 * Create the debugfs directory for this device. Use the hwmon device 2430 * name to avoid conflicts (hwmon numbers are globally unique). 2431 */ 2432 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), 2433 pmbus_debugfs_dir); 2434 if (IS_ERR_OR_NULL(data->debugfs)) { 2435 data->debugfs = NULL; 2436 return -ENODEV; 2437 } 2438 2439 /* Allocate the max possible entries we need. */ 2440 entries = devm_kcalloc(data->dev, 2441 data->info->pages * 10, sizeof(*entries), 2442 GFP_KERNEL); 2443 if (!entries) 2444 return -ENOMEM; 2445 2446 debugfs_create_file("pec", 0664, data->debugfs, client, 2447 &pmbus_debugfs_ops_pec); 2448 2449 for (i = 0; i < data->info->pages; ++i) { 2450 /* Check accessibility of status register if it's not page 0 */ 2451 if (!i || pmbus_check_status_register(client, i)) { 2452 /* No need to set reg as we have special read op. */ 2453 entries[idx].client = client; 2454 entries[idx].page = i; 2455 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); 2456 debugfs_create_file(name, 0444, data->debugfs, 2457 &entries[idx++], 2458 &pmbus_debugfs_ops_status); 2459 } 2460 2461 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { 2462 entries[idx].client = client; 2463 entries[idx].page = i; 2464 entries[idx].reg = PMBUS_STATUS_VOUT; 2465 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); 2466 debugfs_create_file(name, 0444, data->debugfs, 2467 &entries[idx++], 2468 &pmbus_debugfs_ops); 2469 } 2470 2471 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { 2472 entries[idx].client = client; 2473 entries[idx].page = i; 2474 entries[idx].reg = PMBUS_STATUS_IOUT; 2475 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); 2476 debugfs_create_file(name, 0444, data->debugfs, 2477 &entries[idx++], 2478 &pmbus_debugfs_ops); 2479 } 2480 2481 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { 2482 entries[idx].client = client; 2483 entries[idx].page = i; 2484 entries[idx].reg = PMBUS_STATUS_INPUT; 2485 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); 2486 debugfs_create_file(name, 0444, data->debugfs, 2487 &entries[idx++], 2488 &pmbus_debugfs_ops); 2489 } 2490 2491 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { 2492 entries[idx].client = client; 2493 entries[idx].page = i; 2494 entries[idx].reg = PMBUS_STATUS_TEMPERATURE; 2495 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); 2496 debugfs_create_file(name, 0444, data->debugfs, 2497 &entries[idx++], 2498 &pmbus_debugfs_ops); 2499 } 2500 2501 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { 2502 entries[idx].client = client; 2503 entries[idx].page = i; 2504 entries[idx].reg = PMBUS_STATUS_CML; 2505 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); 2506 debugfs_create_file(name, 0444, data->debugfs, 2507 &entries[idx++], 2508 &pmbus_debugfs_ops); 2509 } 2510 2511 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { 2512 entries[idx].client = client; 2513 entries[idx].page = i; 2514 entries[idx].reg = PMBUS_STATUS_OTHER; 2515 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); 2516 debugfs_create_file(name, 0444, data->debugfs, 2517 &entries[idx++], 2518 &pmbus_debugfs_ops); 2519 } 2520 2521 if (pmbus_check_byte_register(client, i, 2522 PMBUS_STATUS_MFR_SPECIFIC)) { 2523 entries[idx].client = client; 2524 entries[idx].page = i; 2525 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; 2526 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); 2527 debugfs_create_file(name, 0444, data->debugfs, 2528 &entries[idx++], 2529 &pmbus_debugfs_ops); 2530 } 2531 2532 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { 2533 entries[idx].client = client; 2534 entries[idx].page = i; 2535 entries[idx].reg = PMBUS_STATUS_FAN_12; 2536 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); 2537 debugfs_create_file(name, 0444, data->debugfs, 2538 &entries[idx++], 2539 &pmbus_debugfs_ops); 2540 } 2541 2542 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { 2543 entries[idx].client = client; 2544 entries[idx].page = i; 2545 entries[idx].reg = PMBUS_STATUS_FAN_34; 2546 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); 2547 debugfs_create_file(name, 0444, data->debugfs, 2548 &entries[idx++], 2549 &pmbus_debugfs_ops); 2550 } 2551 } 2552 2553 return devm_add_action_or_reset(data->dev, 2554 pmbus_remove_debugfs, data->debugfs); 2555 } 2556 #else 2557 static int pmbus_init_debugfs(struct i2c_client *client, 2558 struct pmbus_data *data) 2559 { 2560 return 0; 2561 } 2562 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ 2563 2564 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) 2565 { 2566 struct device *dev = &client->dev; 2567 const struct pmbus_platform_data *pdata = dev_get_platdata(dev); 2568 struct pmbus_data *data; 2569 size_t groups_num = 0; 2570 int ret; 2571 char *name; 2572 2573 if (!info) 2574 return -ENODEV; 2575 2576 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE 2577 | I2C_FUNC_SMBUS_BYTE_DATA 2578 | I2C_FUNC_SMBUS_WORD_DATA)) 2579 return -ENODEV; 2580 2581 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 2582 if (!data) 2583 return -ENOMEM; 2584 2585 if (info->groups) 2586 while (info->groups[groups_num]) 2587 groups_num++; 2588 2589 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), 2590 GFP_KERNEL); 2591 if (!data->groups) 2592 return -ENOMEM; 2593 2594 i2c_set_clientdata(client, data); 2595 mutex_init(&data->update_lock); 2596 data->dev = dev; 2597 2598 if (pdata) 2599 data->flags = pdata->flags; 2600 data->info = info; 2601 data->currpage = -1; 2602 data->currphase = -1; 2603 2604 ret = pmbus_init_common(client, data, info); 2605 if (ret < 0) 2606 return ret; 2607 2608 ret = pmbus_find_attributes(client, data); 2609 if (ret) 2610 return ret; 2611 2612 /* 2613 * If there are no attributes, something is wrong. 2614 * Bail out instead of trying to register nothing. 2615 */ 2616 if (!data->num_attributes) { 2617 dev_err(dev, "No attributes found\n"); 2618 return -ENODEV; 2619 } 2620 2621 name = devm_kstrdup(dev, client->name, GFP_KERNEL); 2622 if (!name) 2623 return -ENOMEM; 2624 strreplace(name, '-', '_'); 2625 2626 data->groups[0] = &data->group; 2627 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); 2628 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, 2629 name, data, data->groups); 2630 if (IS_ERR(data->hwmon_dev)) { 2631 dev_err(dev, "Failed to register hwmon device\n"); 2632 return PTR_ERR(data->hwmon_dev); 2633 } 2634 2635 ret = pmbus_regulator_register(data); 2636 if (ret) 2637 return ret; 2638 2639 ret = pmbus_init_debugfs(client, data); 2640 if (ret) 2641 dev_warn(dev, "Failed to register debugfs\n"); 2642 2643 return 0; 2644 } 2645 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS); 2646 2647 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) 2648 { 2649 struct pmbus_data *data = i2c_get_clientdata(client); 2650 2651 return data->debugfs; 2652 } 2653 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS); 2654 2655 static int __init pmbus_core_init(void) 2656 { 2657 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); 2658 if (IS_ERR(pmbus_debugfs_dir)) 2659 pmbus_debugfs_dir = NULL; 2660 2661 return 0; 2662 } 2663 2664 static void __exit pmbus_core_exit(void) 2665 { 2666 debugfs_remove_recursive(pmbus_debugfs_dir); 2667 } 2668 2669 module_init(pmbus_core_init); 2670 module_exit(pmbus_core_exit); 2671 2672 MODULE_AUTHOR("Guenter Roeck"); 2673 MODULE_DESCRIPTION("PMBus core driver"); 2674 MODULE_LICENSE("GPL"); 2675