xref: /linux/drivers/hwmon/mr75203.c (revision 3c4fc7bf4c9e66fe71abcbf93f62f4ddb89b7f15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020 MaxLinear, Inc.
4  *
5  * This driver is a hardware monitoring driver for PVT controller
6  * (MR75203) which is used to configure & control Moortec embedded
7  * analog IP to enable multiple embedded temperature sensor(TS),
8  * voltage monitor(VM) & process detector(PD) modules.
9  */
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/hwmon.h>
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/mutex.h>
16 #include <linux/platform_device.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/reset.h>
20 #include <linux/units.h>
21 
22 /* PVT Common register */
23 #define PVT_IP_CONFIG	0x04
24 #define TS_NUM_MSK	GENMASK(4, 0)
25 #define TS_NUM_SFT	0
26 #define PD_NUM_MSK	GENMASK(12, 8)
27 #define PD_NUM_SFT	8
28 #define VM_NUM_MSK	GENMASK(20, 16)
29 #define VM_NUM_SFT	16
30 #define CH_NUM_MSK	GENMASK(31, 24)
31 #define CH_NUM_SFT	24
32 
33 /* Macro Common Register */
34 #define CLK_SYNTH		0x00
35 #define CLK_SYNTH_LO_SFT	0
36 #define CLK_SYNTH_HI_SFT	8
37 #define CLK_SYNTH_HOLD_SFT	16
38 #define CLK_SYNTH_EN		BIT(24)
39 #define CLK_SYS_CYCLES_MAX	514
40 #define CLK_SYS_CYCLES_MIN	2
41 
42 #define SDIF_DISABLE	0x04
43 
44 #define SDIF_STAT	0x08
45 #define SDIF_BUSY	BIT(0)
46 #define SDIF_LOCK	BIT(1)
47 
48 #define SDIF_W		0x0c
49 #define SDIF_PROG	BIT(31)
50 #define SDIF_WRN_W	BIT(27)
51 #define SDIF_WRN_R	0x00
52 #define SDIF_ADDR_SFT	24
53 
54 #define SDIF_HALT	0x10
55 #define SDIF_CTRL	0x14
56 #define SDIF_SMPL_CTRL	0x20
57 
58 /* TS & PD Individual Macro Register */
59 #define COM_REG_SIZE	0x40
60 
61 #define SDIF_DONE(n)	(COM_REG_SIZE + 0x14 + 0x40 * (n))
62 #define SDIF_SMPL_DONE	BIT(0)
63 
64 #define SDIF_DATA(n)	(COM_REG_SIZE + 0x18 + 0x40 * (n))
65 #define SAMPLE_DATA_MSK	GENMASK(15, 0)
66 
67 #define HILO_RESET(n)	(COM_REG_SIZE + 0x2c + 0x40 * (n))
68 
69 /* VM Individual Macro Register */
70 #define VM_COM_REG_SIZE	0x200
71 #define VM_SDIF_DONE(vm)	(VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
72 #define VM_SDIF_DATA(vm, ch)	\
73 	(VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
74 
75 /* SDA Slave Register */
76 #define IP_CTRL			0x00
77 #define IP_RST_REL		BIT(1)
78 #define IP_RUN_CONT		BIT(3)
79 #define IP_AUTO			BIT(8)
80 #define IP_VM_MODE		BIT(10)
81 
82 #define IP_CFG			0x01
83 #define CFG0_MODE_2		BIT(0)
84 #define CFG0_PARALLEL_OUT	0
85 #define CFG0_12_BIT		0
86 #define CFG1_VOL_MEAS_MODE	0
87 #define CFG1_PARALLEL_OUT	0
88 #define CFG1_14_BIT		0
89 
90 #define IP_DATA		0x03
91 
92 #define IP_POLL		0x04
93 #define VM_CH_INIT	BIT(20)
94 #define VM_CH_REQ	BIT(21)
95 
96 #define IP_TMR			0x05
97 #define POWER_DELAY_CYCLE_256	0x100
98 #define POWER_DELAY_CYCLE_64	0x40
99 
100 #define PVT_POLL_DELAY_US	20
101 #define PVT_POLL_TIMEOUT_US	20000
102 #define PVT_H_CONST		100000
103 #define PVT_CAL5_CONST		2047
104 #define PVT_G_CONST		40000
105 #define PVT_CONV_BITS		10
106 #define PVT_N_CONST		90
107 #define PVT_R_CONST		245805
108 
109 struct pvt_device {
110 	struct regmap		*c_map;
111 	struct regmap		*t_map;
112 	struct regmap		*p_map;
113 	struct regmap		*v_map;
114 	struct clk		*clk;
115 	struct reset_control	*rst;
116 	u32			t_num;
117 	u32			p_num;
118 	u32			v_num;
119 	u32			c_num;
120 	u32			ip_freq;
121 	u8			*vm_idx;
122 };
123 
124 static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
125 			      u32 attr, int channel)
126 {
127 	switch (type) {
128 	case hwmon_temp:
129 		if (attr == hwmon_temp_input)
130 			return 0444;
131 		break;
132 	case hwmon_in:
133 		if (attr == hwmon_in_input)
134 			return 0444;
135 		break;
136 	default:
137 		break;
138 	}
139 	return 0;
140 }
141 
142 static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
143 {
144 	struct pvt_device *pvt = dev_get_drvdata(dev);
145 	struct regmap *t_map = pvt->t_map;
146 	u32 stat, nbs;
147 	int ret;
148 	u64 tmp;
149 
150 	switch (attr) {
151 	case hwmon_temp_input:
152 		ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
153 					       stat, stat & SDIF_SMPL_DONE,
154 					       PVT_POLL_DELAY_US,
155 					       PVT_POLL_TIMEOUT_US);
156 		if (ret)
157 			return ret;
158 
159 		ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
160 		if(ret < 0)
161 			return ret;
162 
163 		nbs &= SAMPLE_DATA_MSK;
164 
165 		/*
166 		 * Convert the register value to
167 		 * degrees centigrade temperature
168 		 */
169 		tmp = nbs * PVT_H_CONST;
170 		do_div(tmp, PVT_CAL5_CONST);
171 		*val = tmp - PVT_G_CONST - pvt->ip_freq;
172 
173 		return 0;
174 	default:
175 		return -EOPNOTSUPP;
176 	}
177 }
178 
179 static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
180 {
181 	struct pvt_device *pvt = dev_get_drvdata(dev);
182 	struct regmap *v_map = pvt->v_map;
183 	u8 vm_idx, ch_idx;
184 	u32 n, stat;
185 	int ret;
186 
187 	if (channel >= pvt->v_num * pvt->c_num)
188 		return -EINVAL;
189 
190 	vm_idx = pvt->vm_idx[channel / pvt->c_num];
191 	ch_idx = channel % pvt->c_num;
192 
193 	switch (attr) {
194 	case hwmon_in_input:
195 		ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
196 					       stat, stat & SDIF_SMPL_DONE,
197 					       PVT_POLL_DELAY_US,
198 					       PVT_POLL_TIMEOUT_US);
199 		if (ret)
200 			return ret;
201 
202 		ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
203 		if(ret < 0)
204 			return ret;
205 
206 		n &= SAMPLE_DATA_MSK;
207 		/*
208 		 * Convert the N bitstream count into voltage.
209 		 * To support negative voltage calculation for 64bit machines
210 		 * n must be cast to long, since n and *val differ both in
211 		 * signedness and in size.
212 		 * Division is used instead of right shift, because for signed
213 		 * numbers, the sign bit is used to fill the vacated bit
214 		 * positions, and if the number is negative, 1 is used.
215 		 * BIT(x) may not be used instead of (1 << x) because it's
216 		 * unsigned.
217 		 */
218 		*val = (PVT_N_CONST * (long)n - PVT_R_CONST) / (1 << PVT_CONV_BITS);
219 
220 		return 0;
221 	default:
222 		return -EOPNOTSUPP;
223 	}
224 }
225 
226 static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
227 		    u32 attr, int channel, long *val)
228 {
229 	switch (type) {
230 	case hwmon_temp:
231 		return pvt_read_temp(dev, attr, channel, val);
232 	case hwmon_in:
233 		return pvt_read_in(dev, attr, channel, val);
234 	default:
235 		return -EOPNOTSUPP;
236 	}
237 }
238 
239 static struct hwmon_channel_info pvt_temp = {
240 	.type = hwmon_temp,
241 };
242 
243 static struct hwmon_channel_info pvt_in = {
244 	.type = hwmon_in,
245 };
246 
247 static const struct hwmon_ops pvt_hwmon_ops = {
248 	.is_visible = pvt_is_visible,
249 	.read = pvt_read,
250 };
251 
252 static struct hwmon_chip_info pvt_chip_info = {
253 	.ops = &pvt_hwmon_ops,
254 };
255 
256 static int pvt_init(struct pvt_device *pvt)
257 {
258 	u16 sys_freq, key, middle, low = 4, high = 8;
259 	struct regmap *t_map = pvt->t_map;
260 	struct regmap *p_map = pvt->p_map;
261 	struct regmap *v_map = pvt->v_map;
262 	u32 t_num = pvt->t_num;
263 	u32 p_num = pvt->p_num;
264 	u32 v_num = pvt->v_num;
265 	u32 clk_synth, val;
266 	int ret;
267 
268 	sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
269 	while (high >= low) {
270 		middle = (low + high + 1) / 2;
271 		key = DIV_ROUND_CLOSEST(sys_freq, middle);
272 		if (key > CLK_SYS_CYCLES_MAX) {
273 			low = middle + 1;
274 			continue;
275 		} else if (key < CLK_SYS_CYCLES_MIN) {
276 			high = middle - 1;
277 			continue;
278 		} else {
279 			break;
280 		}
281 	}
282 
283 	/*
284 	 * The system supports 'clk_sys' to 'clk_ip' frequency ratios
285 	 * from 2:1 to 512:1
286 	 */
287 	key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
288 
289 	clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
290 		    (key >> 1) << CLK_SYNTH_HI_SFT |
291 		    (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
292 
293 	pvt->ip_freq = sys_freq * 100 / (key + 2);
294 
295 	if (t_num) {
296 		ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
297 		if(ret < 0)
298 			return ret;
299 
300 		ret = regmap_write(t_map, SDIF_HALT, 0x0);
301 		if(ret < 0)
302 			return ret;
303 
304 		ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
305 		if(ret < 0)
306 			return ret;
307 
308 		ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
309 		if(ret < 0)
310 			return ret;
311 
312 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
313 					       val, !(val & SDIF_BUSY),
314 					       PVT_POLL_DELAY_US,
315 					       PVT_POLL_TIMEOUT_US);
316 		if (ret)
317 			return ret;
318 
319 		val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
320 		      IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
321 		ret = regmap_write(t_map, SDIF_W, val);
322 		if(ret < 0)
323 			return ret;
324 
325 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
326 					       val, !(val & SDIF_BUSY),
327 					       PVT_POLL_DELAY_US,
328 					       PVT_POLL_TIMEOUT_US);
329 		if (ret)
330 			return ret;
331 
332 		val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
333 			      SDIF_WRN_W | SDIF_PROG;
334 		ret = regmap_write(t_map, SDIF_W, val);
335 		if(ret < 0)
336 			return ret;
337 
338 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
339 					       val, !(val & SDIF_BUSY),
340 					       PVT_POLL_DELAY_US,
341 					       PVT_POLL_TIMEOUT_US);
342 		if (ret)
343 			return ret;
344 
345 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
346 		      IP_CTRL << SDIF_ADDR_SFT |
347 		      SDIF_WRN_W | SDIF_PROG;
348 		ret = regmap_write(t_map, SDIF_W, val);
349 		if(ret < 0)
350 			return ret;
351 	}
352 
353 	if (p_num) {
354 		ret = regmap_write(p_map, SDIF_HALT, 0x0);
355 		if(ret < 0)
356 			return ret;
357 
358 		ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
359 		if(ret < 0)
360 			return ret;
361 
362 		ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
363 		if(ret < 0)
364 			return ret;
365 	}
366 
367 	if (v_num) {
368 		ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
369 		if(ret < 0)
370 			return ret;
371 
372 		ret = regmap_write(v_map, SDIF_HALT, 0x0);
373 		if(ret < 0)
374 			return ret;
375 
376 		ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
377 		if(ret < 0)
378 			return ret;
379 
380 		ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
381 		if(ret < 0)
382 			return ret;
383 
384 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
385 					       val, !(val & SDIF_BUSY),
386 					       PVT_POLL_DELAY_US,
387 					       PVT_POLL_TIMEOUT_US);
388 		if (ret)
389 			return ret;
390 
391 		val = (BIT(pvt->c_num) - 1) | VM_CH_INIT |
392 		      IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
393 		ret = regmap_write(v_map, SDIF_W, val);
394 		if (ret < 0)
395 			return ret;
396 
397 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
398 					       val, !(val & SDIF_BUSY),
399 					       PVT_POLL_DELAY_US,
400 					       PVT_POLL_TIMEOUT_US);
401 		if (ret)
402 			return ret;
403 
404 		val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
405 		      CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
406 		      SDIF_WRN_W | SDIF_PROG;
407 		ret = regmap_write(v_map, SDIF_W, val);
408 		if(ret < 0)
409 			return ret;
410 
411 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
412 					       val, !(val & SDIF_BUSY),
413 					       PVT_POLL_DELAY_US,
414 					       PVT_POLL_TIMEOUT_US);
415 		if (ret)
416 			return ret;
417 
418 		val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
419 		      SDIF_WRN_W | SDIF_PROG;
420 		ret = regmap_write(v_map, SDIF_W, val);
421 		if(ret < 0)
422 			return ret;
423 
424 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
425 					       val, !(val & SDIF_BUSY),
426 					       PVT_POLL_DELAY_US,
427 					       PVT_POLL_TIMEOUT_US);
428 		if (ret)
429 			return ret;
430 
431 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
432 		      IP_CTRL << SDIF_ADDR_SFT |
433 		      SDIF_WRN_W | SDIF_PROG;
434 		ret = regmap_write(v_map, SDIF_W, val);
435 		if(ret < 0)
436 			return ret;
437 	}
438 
439 	return 0;
440 }
441 
442 static struct regmap_config pvt_regmap_config = {
443 	.reg_bits = 32,
444 	.reg_stride = 4,
445 	.val_bits = 32,
446 };
447 
448 static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
449 			  struct pvt_device *pvt)
450 {
451 	struct device *dev = &pdev->dev;
452 	struct regmap **reg_map;
453 	void __iomem *io_base;
454 
455 	if (!strcmp(reg_name, "common"))
456 		reg_map = &pvt->c_map;
457 	else if (!strcmp(reg_name, "ts"))
458 		reg_map = &pvt->t_map;
459 	else if (!strcmp(reg_name, "pd"))
460 		reg_map = &pvt->p_map;
461 	else if (!strcmp(reg_name, "vm"))
462 		reg_map = &pvt->v_map;
463 	else
464 		return -EINVAL;
465 
466 	io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
467 	if (IS_ERR(io_base))
468 		return PTR_ERR(io_base);
469 
470 	pvt_regmap_config.name = reg_name;
471 	*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
472 	if (IS_ERR(*reg_map)) {
473 		dev_err(dev, "failed to init register map\n");
474 		return PTR_ERR(*reg_map);
475 	}
476 
477 	return 0;
478 }
479 
480 static void pvt_clk_disable(void *data)
481 {
482 	struct pvt_device *pvt = data;
483 
484 	clk_disable_unprepare(pvt->clk);
485 }
486 
487 static int pvt_clk_enable(struct device *dev, struct pvt_device *pvt)
488 {
489 	int ret;
490 
491 	ret = clk_prepare_enable(pvt->clk);
492 	if (ret)
493 		return ret;
494 
495 	return devm_add_action_or_reset(dev, pvt_clk_disable, pvt);
496 }
497 
498 static void pvt_reset_control_assert(void *data)
499 {
500 	struct pvt_device *pvt = data;
501 
502 	reset_control_assert(pvt->rst);
503 }
504 
505 static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
506 {
507 	int ret;
508 
509 	ret = reset_control_deassert(pvt->rst);
510 	if (ret)
511 		return ret;
512 
513 	return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
514 }
515 
516 static int mr75203_probe(struct platform_device *pdev)
517 {
518 	u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
519 	const struct hwmon_channel_info **pvt_info;
520 	struct device *dev = &pdev->dev;
521 	u32 *temp_config, *in_config;
522 	struct device *hwmon_dev;
523 	struct pvt_device *pvt;
524 	int ret;
525 
526 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
527 	if (!pvt)
528 		return -ENOMEM;
529 
530 	ret = pvt_get_regmap(pdev, "common", pvt);
531 	if (ret)
532 		return ret;
533 
534 	pvt->clk = devm_clk_get(dev, NULL);
535 	if (IS_ERR(pvt->clk))
536 		return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
537 
538 	ret = pvt_clk_enable(dev, pvt);
539 	if (ret) {
540 		dev_err(dev, "failed to enable clock\n");
541 		return ret;
542 	}
543 
544 	pvt->rst = devm_reset_control_get_exclusive(dev, NULL);
545 	if (IS_ERR(pvt->rst))
546 		return dev_err_probe(dev, PTR_ERR(pvt->rst),
547 				     "failed to get reset control\n");
548 
549 	ret = pvt_reset_control_deassert(dev, pvt);
550 	if (ret)
551 		return dev_err_probe(dev, ret, "cannot deassert reset control\n");
552 
553 	ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
554 	if(ret < 0)
555 		return ret;
556 
557 	ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
558 	pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
559 	vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
560 	ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
561 	pvt->t_num = ts_num;
562 	pvt->p_num = pd_num;
563 	pvt->v_num = vm_num;
564 	pvt->c_num = ch_num;
565 	val = 0;
566 	if (ts_num)
567 		val++;
568 	if (vm_num)
569 		val++;
570 	if (!val)
571 		return -ENODEV;
572 
573 	pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
574 	if (!pvt_info)
575 		return -ENOMEM;
576 	pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
577 	index = 1;
578 
579 	if (ts_num) {
580 		ret = pvt_get_regmap(pdev, "ts", pvt);
581 		if (ret)
582 			return ret;
583 
584 		temp_config = devm_kcalloc(dev, ts_num + 1,
585 					   sizeof(*temp_config), GFP_KERNEL);
586 		if (!temp_config)
587 			return -ENOMEM;
588 
589 		memset32(temp_config, HWMON_T_INPUT, ts_num);
590 		pvt_temp.config = temp_config;
591 		pvt_info[index++] = &pvt_temp;
592 	}
593 
594 	if (pd_num) {
595 		ret = pvt_get_regmap(pdev, "pd", pvt);
596 		if (ret)
597 			return ret;
598 	}
599 
600 	if (vm_num) {
601 		u32 total_ch;
602 
603 		ret = pvt_get_regmap(pdev, "vm", pvt);
604 		if (ret)
605 			return ret;
606 
607 		pvt->vm_idx = devm_kcalloc(dev, vm_num, sizeof(*pvt->vm_idx),
608 					   GFP_KERNEL);
609 		if (!pvt->vm_idx)
610 			return -ENOMEM;
611 
612 		ret = device_property_read_u8_array(dev, "intel,vm-map",
613 						    pvt->vm_idx, vm_num);
614 		if (ret) {
615 			/*
616 			 * Incase intel,vm-map property is not defined, we
617 			 * assume incremental channel numbers.
618 			 */
619 			for (i = 0; i < vm_num; i++)
620 				pvt->vm_idx[i] = i;
621 		} else {
622 			for (i = 0; i < vm_num; i++)
623 				if (pvt->vm_idx[i] >= vm_num ||
624 				    pvt->vm_idx[i] == 0xff) {
625 					pvt->v_num = i;
626 					vm_num = i;
627 					break;
628 				}
629 		}
630 
631 		total_ch = ch_num * vm_num;
632 		in_config = devm_kcalloc(dev, total_ch + 1,
633 					 sizeof(*in_config), GFP_KERNEL);
634 		if (!in_config)
635 			return -ENOMEM;
636 
637 		memset32(in_config, HWMON_I_INPUT, total_ch);
638 		in_config[total_ch] = 0;
639 		pvt_in.config = in_config;
640 
641 		pvt_info[index++] = &pvt_in;
642 	}
643 
644 	ret = pvt_init(pvt);
645 	if (ret) {
646 		dev_err(dev, "failed to init pvt: %d\n", ret);
647 		return ret;
648 	}
649 
650 	pvt_chip_info.info = pvt_info;
651 	hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
652 							 pvt,
653 							 &pvt_chip_info,
654 							 NULL);
655 
656 	return PTR_ERR_OR_ZERO(hwmon_dev);
657 }
658 
659 static const struct of_device_id moortec_pvt_of_match[] = {
660 	{ .compatible = "moortec,mr75203" },
661 	{ }
662 };
663 MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
664 
665 static struct platform_driver moortec_pvt_driver = {
666 	.driver = {
667 		.name = "moortec-pvt",
668 		.of_match_table = moortec_pvt_of_match,
669 	},
670 	.probe = mr75203_probe,
671 };
672 module_platform_driver(moortec_pvt_driver);
673 
674 MODULE_LICENSE("GPL v2");
675