xref: /linux/drivers/hwmon/mlxreg-fan.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 //
3 // Copyright (c) 2018 Mellanox Technologies. All rights reserved.
4 // Copyright (c) 2018 Vadim Pasternak <vadimp@mellanox.com>
5 
6 #include <linux/bitops.h>
7 #include <linux/device.h>
8 #include <linux/hwmon.h>
9 #include <linux/module.h>
10 #include <linux/platform_data/mlxreg.h>
11 #include <linux/platform_device.h>
12 #include <linux/regmap.h>
13 #include <linux/thermal.h>
14 
15 #define MLXREG_FAN_MAX_TACHO		12
16 #define MLXREG_FAN_MAX_STATE		10
17 #define MLXREG_FAN_MIN_DUTY		51	/* 20% */
18 #define MLXREG_FAN_MAX_DUTY		255	/* 100% */
19 /*
20  * Minimum and maximum FAN allowed speed in percent: from 20% to 100%. Values
21  * MLXREG_FAN_MAX_STATE + x, where x is between 2 and 10 are used for
22  * setting FAN speed dynamic minimum. For example, if value is set to 14 (40%)
23  * cooling levels vector will be set to 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 10 to
24  * introduce PWM speed in percent: 40, 40, 40, 40, 40, 50, 60. 70, 80, 90, 100.
25  */
26 #define MLXREG_FAN_SPEED_MIN			(MLXREG_FAN_MAX_STATE + 2)
27 #define MLXREG_FAN_SPEED_MAX			(MLXREG_FAN_MAX_STATE * 2)
28 #define MLXREG_FAN_SPEED_MIN_LEVEL		2	/* 20 percent */
29 #define MLXREG_FAN_TACHO_SAMPLES_PER_PULSE_DEF	44
30 #define MLXREG_FAN_TACHO_DIV_MIN		283
31 #define MLXREG_FAN_TACHO_DIV_DEF		(MLXREG_FAN_TACHO_DIV_MIN * 4)
32 #define MLXREG_FAN_TACHO_DIV_SCALE_MAX	64
33 /*
34  * FAN datasheet defines the formula for RPM calculations as RPM = 15/t-high.
35  * The logic in a programmable device measures the time t-high by sampling the
36  * tachometer every t-sample (with the default value 11.32 uS) and increment
37  * a counter (N) as long as the pulse has not change:
38  * RPM = 15 / (t-sample * (K + Regval)), where:
39  * Regval: is the value read from the programmable device register;
40  *  - 0xff - represents tachometer fault;
41  *  - 0xfe - represents tachometer minimum value , which is 4444 RPM;
42  *  - 0x00 - represents tachometer maximum value , which is 300000 RPM;
43  * K: is 44 and it represents the minimum allowed samples per pulse;
44  * N: is equal K + Regval;
45  * In order to calculate RPM from the register value the following formula is
46  * used: RPM = 15 / ((Regval + K) * 11.32) * 10^(-6)), which in  the
47  * default case is modified to:
48  * RPM = 15000000 * 100 / ((Regval + 44) * 1132);
49  * - for Regval 0x00, RPM will be 15000000 * 100 / (44 * 1132) = 30115;
50  * - for Regval 0xfe, RPM will be 15000000 * 100 / ((254 + 44) * 1132) = 4446;
51  * In common case the formula is modified to:
52  * RPM = 15000000 * 100 / ((Regval + samples) * divider).
53  */
54 #define MLXREG_FAN_GET_RPM(rval, d, s)	(DIV_ROUND_CLOSEST(15000000 * 100, \
55 					 ((rval) + (s)) * (d)))
56 #define MLXREG_FAN_GET_FAULT(val, mask) ((val) == (mask))
57 #define MLXREG_FAN_PWM_DUTY2STATE(duty)	(DIV_ROUND_CLOSEST((duty) *	\
58 					 MLXREG_FAN_MAX_STATE,		\
59 					 MLXREG_FAN_MAX_DUTY))
60 #define MLXREG_FAN_PWM_STATE2DUTY(stat)	(DIV_ROUND_CLOSEST((stat) *	\
61 					 MLXREG_FAN_MAX_DUTY,		\
62 					 MLXREG_FAN_MAX_STATE))
63 
64 /*
65  * struct mlxreg_fan_tacho - tachometer data (internal use):
66  *
67  * @connected: indicates if tachometer is connected;
68  * @reg: register offset;
69  * @mask: fault mask;
70  */
71 struct mlxreg_fan_tacho {
72 	bool connected;
73 	u32 reg;
74 	u32 mask;
75 };
76 
77 /*
78  * struct mlxreg_fan_pwm - PWM data (internal use):
79  *
80  * @connected: indicates if PWM is connected;
81  * @reg: register offset;
82  */
83 struct mlxreg_fan_pwm {
84 	bool connected;
85 	u32 reg;
86 };
87 
88 /*
89  * struct mlxreg_fan - private data (internal use):
90  *
91  * @dev: basic device;
92  * @regmap: register map of parent device;
93  * @tacho: tachometer data;
94  * @pwm: PWM data;
95  * @samples: minimum allowed samples per pulse;
96  * @divider: divider value for tachometer RPM calculation;
97  * @cooling: cooling device levels;
98  * @cdev: cooling device;
99  */
100 struct mlxreg_fan {
101 	struct device *dev;
102 	void *regmap;
103 	struct mlxreg_core_platform_data *pdata;
104 	struct mlxreg_fan_tacho tacho[MLXREG_FAN_MAX_TACHO];
105 	struct mlxreg_fan_pwm pwm;
106 	int samples;
107 	int divider;
108 	u8 cooling_levels[MLXREG_FAN_MAX_STATE + 1];
109 	struct thermal_cooling_device *cdev;
110 };
111 
112 static int
113 mlxreg_fan_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
114 		int channel, long *val)
115 {
116 	struct mlxreg_fan *fan = dev_get_drvdata(dev);
117 	struct mlxreg_fan_tacho *tacho;
118 	u32 regval;
119 	int err;
120 
121 	switch (type) {
122 	case hwmon_fan:
123 		tacho = &fan->tacho[channel];
124 		switch (attr) {
125 		case hwmon_fan_input:
126 			err = regmap_read(fan->regmap, tacho->reg, &regval);
127 			if (err)
128 				return err;
129 
130 			*val = MLXREG_FAN_GET_RPM(regval, fan->divider,
131 						  fan->samples);
132 			break;
133 
134 		case hwmon_fan_fault:
135 			err = regmap_read(fan->regmap, tacho->reg, &regval);
136 			if (err)
137 				return err;
138 
139 			*val = MLXREG_FAN_GET_FAULT(regval, tacho->mask);
140 			break;
141 
142 		default:
143 			return -EOPNOTSUPP;
144 		}
145 		break;
146 
147 	case hwmon_pwm:
148 		switch (attr) {
149 		case hwmon_pwm_input:
150 			err = regmap_read(fan->regmap, fan->pwm.reg, &regval);
151 			if (err)
152 				return err;
153 
154 			*val = regval;
155 			break;
156 
157 		default:
158 			return -EOPNOTSUPP;
159 		}
160 		break;
161 
162 	default:
163 		return -EOPNOTSUPP;
164 	}
165 
166 	return 0;
167 }
168 
169 static int
170 mlxreg_fan_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
171 		 int channel, long val)
172 {
173 	struct mlxreg_fan *fan = dev_get_drvdata(dev);
174 
175 	switch (type) {
176 	case hwmon_pwm:
177 		switch (attr) {
178 		case hwmon_pwm_input:
179 			if (val < MLXREG_FAN_MIN_DUTY ||
180 			    val > MLXREG_FAN_MAX_DUTY)
181 				return -EINVAL;
182 			return regmap_write(fan->regmap, fan->pwm.reg, val);
183 		default:
184 			return -EOPNOTSUPP;
185 		}
186 		break;
187 
188 	default:
189 		return -EOPNOTSUPP;
190 	}
191 
192 	return -EOPNOTSUPP;
193 }
194 
195 static umode_t
196 mlxreg_fan_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr,
197 		      int channel)
198 {
199 	switch (type) {
200 	case hwmon_fan:
201 		if (!(((struct mlxreg_fan *)data)->tacho[channel].connected))
202 			return 0;
203 
204 		switch (attr) {
205 		case hwmon_fan_input:
206 		case hwmon_fan_fault:
207 			return 0444;
208 		default:
209 			break;
210 		}
211 		break;
212 
213 	case hwmon_pwm:
214 		if (!(((struct mlxreg_fan *)data)->pwm.connected))
215 			return 0;
216 
217 		switch (attr) {
218 		case hwmon_pwm_input:
219 			return 0644;
220 		default:
221 			break;
222 		}
223 		break;
224 
225 	default:
226 		break;
227 	}
228 
229 	return 0;
230 }
231 
232 static const struct hwmon_channel_info *mlxreg_fan_hwmon_info[] = {
233 	HWMON_CHANNEL_INFO(fan,
234 			   HWMON_F_INPUT | HWMON_F_FAULT,
235 			   HWMON_F_INPUT | HWMON_F_FAULT,
236 			   HWMON_F_INPUT | HWMON_F_FAULT,
237 			   HWMON_F_INPUT | HWMON_F_FAULT,
238 			   HWMON_F_INPUT | HWMON_F_FAULT,
239 			   HWMON_F_INPUT | HWMON_F_FAULT,
240 			   HWMON_F_INPUT | HWMON_F_FAULT,
241 			   HWMON_F_INPUT | HWMON_F_FAULT,
242 			   HWMON_F_INPUT | HWMON_F_FAULT,
243 			   HWMON_F_INPUT | HWMON_F_FAULT,
244 			   HWMON_F_INPUT | HWMON_F_FAULT,
245 			   HWMON_F_INPUT | HWMON_F_FAULT),
246 	HWMON_CHANNEL_INFO(pwm,
247 			   HWMON_PWM_INPUT),
248 	NULL
249 };
250 
251 static const struct hwmon_ops mlxreg_fan_hwmon_hwmon_ops = {
252 	.is_visible = mlxreg_fan_is_visible,
253 	.read = mlxreg_fan_read,
254 	.write = mlxreg_fan_write,
255 };
256 
257 static const struct hwmon_chip_info mlxreg_fan_hwmon_chip_info = {
258 	.ops = &mlxreg_fan_hwmon_hwmon_ops,
259 	.info = mlxreg_fan_hwmon_info,
260 };
261 
262 static int mlxreg_fan_get_max_state(struct thermal_cooling_device *cdev,
263 				    unsigned long *state)
264 {
265 	*state = MLXREG_FAN_MAX_STATE;
266 	return 0;
267 }
268 
269 static int mlxreg_fan_get_cur_state(struct thermal_cooling_device *cdev,
270 				    unsigned long *state)
271 
272 {
273 	struct mlxreg_fan *fan = cdev->devdata;
274 	u32 regval;
275 	int err;
276 
277 	err = regmap_read(fan->regmap, fan->pwm.reg, &regval);
278 	if (err) {
279 		dev_err(fan->dev, "Failed to query PWM duty\n");
280 		return err;
281 	}
282 
283 	*state = MLXREG_FAN_PWM_DUTY2STATE(regval);
284 
285 	return 0;
286 }
287 
288 static int mlxreg_fan_set_cur_state(struct thermal_cooling_device *cdev,
289 				    unsigned long state)
290 
291 {
292 	struct mlxreg_fan *fan = cdev->devdata;
293 	unsigned long cur_state;
294 	u32 regval;
295 	int i;
296 	int err;
297 
298 	/*
299 	 * Verify if this request is for changing allowed FAN dynamical
300 	 * minimum. If it is - update cooling levels accordingly and update
301 	 * state, if current state is below the newly requested minimum state.
302 	 * For example, if current state is 5, and minimal state is to be
303 	 * changed from 4 to 6, fan->cooling_levels[0 to 5] will be changed all
304 	 * from 4 to 6. And state 5 (fan->cooling_levels[4]) should be
305 	 * overwritten.
306 	 */
307 	if (state >= MLXREG_FAN_SPEED_MIN && state <= MLXREG_FAN_SPEED_MAX) {
308 		state -= MLXREG_FAN_MAX_STATE;
309 		for (i = 0; i < state; i++)
310 			fan->cooling_levels[i] = state;
311 		for (i = state; i <= MLXREG_FAN_MAX_STATE; i++)
312 			fan->cooling_levels[i] = i;
313 
314 		err = regmap_read(fan->regmap, fan->pwm.reg, &regval);
315 		if (err) {
316 			dev_err(fan->dev, "Failed to query PWM duty\n");
317 			return err;
318 		}
319 
320 		cur_state = MLXREG_FAN_PWM_DUTY2STATE(regval);
321 		if (state < cur_state)
322 			return 0;
323 
324 		state = cur_state;
325 	}
326 
327 	if (state > MLXREG_FAN_MAX_STATE)
328 		return -EINVAL;
329 
330 	/* Normalize the state to the valid speed range. */
331 	state = fan->cooling_levels[state];
332 	err = regmap_write(fan->regmap, fan->pwm.reg,
333 			   MLXREG_FAN_PWM_STATE2DUTY(state));
334 	if (err) {
335 		dev_err(fan->dev, "Failed to write PWM duty\n");
336 		return err;
337 	}
338 	return 0;
339 }
340 
341 static const struct thermal_cooling_device_ops mlxreg_fan_cooling_ops = {
342 	.get_max_state	= mlxreg_fan_get_max_state,
343 	.get_cur_state	= mlxreg_fan_get_cur_state,
344 	.set_cur_state	= mlxreg_fan_set_cur_state,
345 };
346 
347 static int mlxreg_fan_connect_verify(struct mlxreg_fan *fan,
348 				     struct mlxreg_core_data *data)
349 {
350 	u32 regval;
351 	int err;
352 
353 	err = regmap_read(fan->regmap, data->capability, &regval);
354 	if (err) {
355 		dev_err(fan->dev, "Failed to query capability register 0x%08x\n",
356 			data->capability);
357 		return err;
358 	}
359 
360 	return !!(regval & data->bit);
361 }
362 
363 static int mlxreg_fan_speed_divider_get(struct mlxreg_fan *fan,
364 					struct mlxreg_core_data *data)
365 {
366 	u32 regval;
367 	int err;
368 
369 	err = regmap_read(fan->regmap, data->capability, &regval);
370 	if (err) {
371 		dev_err(fan->dev, "Failed to query capability register 0x%08x\n",
372 			data->capability);
373 		return err;
374 	}
375 
376 	/*
377 	 * Set divider value according to the capability register, in case it
378 	 * contains valid value. Otherwise use default value. The purpose of
379 	 * this validation is to protect against the old hardware, in which
380 	 * this register can return zero.
381 	 */
382 	if (regval > 0 && regval <= MLXREG_FAN_TACHO_DIV_SCALE_MAX)
383 		fan->divider = regval * MLXREG_FAN_TACHO_DIV_MIN;
384 
385 	return 0;
386 }
387 
388 static int mlxreg_fan_config(struct mlxreg_fan *fan,
389 			     struct mlxreg_core_platform_data *pdata)
390 {
391 	struct mlxreg_core_data *data = pdata->data;
392 	bool configured = false;
393 	int tacho_num = 0, i;
394 	int err;
395 
396 	fan->samples = MLXREG_FAN_TACHO_SAMPLES_PER_PULSE_DEF;
397 	fan->divider = MLXREG_FAN_TACHO_DIV_DEF;
398 	for (i = 0; i < pdata->counter; i++, data++) {
399 		if (strnstr(data->label, "tacho", sizeof(data->label))) {
400 			if (tacho_num == MLXREG_FAN_MAX_TACHO) {
401 				dev_err(fan->dev, "too many tacho entries: %s\n",
402 					data->label);
403 				return -EINVAL;
404 			}
405 
406 			if (data->capability) {
407 				err = mlxreg_fan_connect_verify(fan, data);
408 				if (err < 0)
409 					return err;
410 				else if (!err) {
411 					tacho_num++;
412 					continue;
413 				}
414 			}
415 
416 			fan->tacho[tacho_num].reg = data->reg;
417 			fan->tacho[tacho_num].mask = data->mask;
418 			fan->tacho[tacho_num++].connected = true;
419 		} else if (strnstr(data->label, "pwm", sizeof(data->label))) {
420 			if (fan->pwm.connected) {
421 				dev_err(fan->dev, "duplicate pwm entry: %s\n",
422 					data->label);
423 				return -EINVAL;
424 			}
425 			fan->pwm.reg = data->reg;
426 			fan->pwm.connected = true;
427 		} else if (strnstr(data->label, "conf", sizeof(data->label))) {
428 			if (configured) {
429 				dev_err(fan->dev, "duplicate conf entry: %s\n",
430 					data->label);
431 				return -EINVAL;
432 			}
433 			/* Validate that conf parameters are not zeros. */
434 			if (!data->mask && !data->bit && !data->capability) {
435 				dev_err(fan->dev, "invalid conf entry params: %s\n",
436 					data->label);
437 				return -EINVAL;
438 			}
439 			if (data->capability) {
440 				err = mlxreg_fan_speed_divider_get(fan, data);
441 				if (err)
442 					return err;
443 			} else {
444 				if (data->mask)
445 					fan->samples = data->mask;
446 				if (data->bit)
447 					fan->divider = data->bit;
448 			}
449 			configured = true;
450 		} else {
451 			dev_err(fan->dev, "invalid label: %s\n", data->label);
452 			return -EINVAL;
453 		}
454 	}
455 
456 	/* Init cooling levels per PWM state. */
457 	for (i = 0; i < MLXREG_FAN_SPEED_MIN_LEVEL; i++)
458 		fan->cooling_levels[i] = MLXREG_FAN_SPEED_MIN_LEVEL;
459 	for (i = MLXREG_FAN_SPEED_MIN_LEVEL; i <= MLXREG_FAN_MAX_STATE; i++)
460 		fan->cooling_levels[i] = i;
461 
462 	return 0;
463 }
464 
465 static int mlxreg_fan_probe(struct platform_device *pdev)
466 {
467 	struct mlxreg_core_platform_data *pdata;
468 	struct device *dev = &pdev->dev;
469 	struct mlxreg_fan *fan;
470 	struct device *hwm;
471 	int err;
472 
473 	pdata = dev_get_platdata(dev);
474 	if (!pdata) {
475 		dev_err(dev, "Failed to get platform data.\n");
476 		return -EINVAL;
477 	}
478 
479 	fan = devm_kzalloc(dev, sizeof(*fan), GFP_KERNEL);
480 	if (!fan)
481 		return -ENOMEM;
482 
483 	fan->dev = dev;
484 	fan->regmap = pdata->regmap;
485 
486 	err = mlxreg_fan_config(fan, pdata);
487 	if (err)
488 		return err;
489 
490 	hwm = devm_hwmon_device_register_with_info(dev, "mlxreg_fan",
491 						   fan,
492 						   &mlxreg_fan_hwmon_chip_info,
493 						   NULL);
494 	if (IS_ERR(hwm)) {
495 		dev_err(dev, "Failed to register hwmon device\n");
496 		return PTR_ERR(hwm);
497 	}
498 
499 	if (IS_REACHABLE(CONFIG_THERMAL)) {
500 		fan->cdev = devm_thermal_of_cooling_device_register(dev,
501 			NULL, "mlxreg_fan", fan, &mlxreg_fan_cooling_ops);
502 		if (IS_ERR(fan->cdev)) {
503 			dev_err(dev, "Failed to register cooling device\n");
504 			return PTR_ERR(fan->cdev);
505 		}
506 	}
507 
508 	return 0;
509 }
510 
511 static struct platform_driver mlxreg_fan_driver = {
512 	.driver = {
513 	    .name = "mlxreg-fan",
514 	},
515 	.probe = mlxreg_fan_probe,
516 };
517 
518 module_platform_driver(mlxreg_fan_driver);
519 
520 MODULE_AUTHOR("Vadim Pasternak <vadimp@mellanox.com>");
521 MODULE_DESCRIPTION("Mellanox FAN driver");
522 MODULE_LICENSE("GPL");
523 MODULE_ALIAS("platform:mlxreg-fan");
524