xref: /linux/drivers/hwmon/lm90.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3  *          monitoring
4  * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
5  *
6  * Based on the lm83 driver. The LM90 is a sensor chip made by National
7  * Semiconductor. It reports up to two temperatures (its own plus up to
8  * one external one) with a 0.125 deg resolution (1 deg for local
9  * temperature) and a 3-4 deg accuracy.
10  *
11  * This driver also supports the LM89 and LM99, two other sensor chips
12  * made by National Semiconductor. Both have an increased remote
13  * temperature measurement accuracy (1 degree), and the LM99
14  * additionally shifts remote temperatures (measured and limits) by 16
15  * degrees, which allows for higher temperatures measurement.
16  * Note that there is no way to differentiate between both chips.
17  * When device is auto-detected, the driver will assume an LM99.
18  *
19  * This driver also supports the LM86, another sensor chip made by
20  * National Semiconductor. It is exactly similar to the LM90 except it
21  * has a higher accuracy.
22  *
23  * This driver also supports the ADM1032, a sensor chip made by Analog
24  * Devices. That chip is similar to the LM90, with a few differences
25  * that are not handled by this driver. Among others, it has a higher
26  * accuracy than the LM90, much like the LM86 does.
27  *
28  * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29  * chips made by Maxim. These chips are similar to the LM86.
30  * Note that there is no easy way to differentiate between the three
31  * variants. We use the device address to detect MAX6659, which will result
32  * in a detection as max6657 if it is on address 0x4c. The extra address
33  * and features of the MAX6659 are only supported if the chip is configured
34  * explicitly as max6659, or if its address is not 0x4c.
35  * These chips lack the remote temperature offset feature.
36  *
37  * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38  * MAX6692 chips made by Maxim.  These are again similar to the LM86,
39  * but they use unsigned temperature values and can report temperatures
40  * from 0 to 145 degrees.
41  *
42  * This driver also supports the MAX6680 and MAX6681, two other sensor
43  * chips made by Maxim. These are quite similar to the other Maxim
44  * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45  * be treated identically.
46  *
47  * This driver also supports the MAX6695 and MAX6696, two other sensor
48  * chips made by Maxim. These are also quite similar to other Maxim
49  * chips, but support three temperature sensors instead of two. MAX6695
50  * and MAX6696 only differ in the pinout so they can be treated identically.
51  *
52  * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53  * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54  * and extended mode. They are mostly compatible with LM90 except for a data
55  * format difference for the temperature value registers.
56  *
57  * This driver also supports the SA56004 from Philips. This device is
58  * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59  *
60  * This driver also supports the G781 from GMT. This device is compatible
61  * with the ADM1032.
62  *
63  * This driver also supports TMP451 from Texas Instruments. This device is
64  * supported in both compatibility and extended mode. It's mostly compatible
65  * with ADT7461 except for local temperature low byte register and max
66  * conversion rate.
67  *
68  * Since the LM90 was the first chipset supported by this driver, most
69  * comments will refer to this chipset, but are actually general and
70  * concern all supported chipsets, unless mentioned otherwise.
71  *
72  * This program is free software; you can redistribute it and/or modify
73  * it under the terms of the GNU General Public License as published by
74  * the Free Software Foundation; either version 2 of the License, or
75  * (at your option) any later version.
76  *
77  * This program is distributed in the hope that it will be useful,
78  * but WITHOUT ANY WARRANTY; without even the implied warranty of
79  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
80  * GNU General Public License for more details.
81  *
82  * You should have received a copy of the GNU General Public License
83  * along with this program; if not, write to the Free Software
84  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
85  */
86 
87 #include <linux/module.h>
88 #include <linux/init.h>
89 #include <linux/slab.h>
90 #include <linux/jiffies.h>
91 #include <linux/i2c.h>
92 #include <linux/hwmon-sysfs.h>
93 #include <linux/hwmon.h>
94 #include <linux/err.h>
95 #include <linux/mutex.h>
96 #include <linux/sysfs.h>
97 #include <linux/interrupt.h>
98 #include <linux/regulator/consumer.h>
99 
100 /*
101  * Addresses to scan
102  * Address is fully defined internally and cannot be changed except for
103  * MAX6659, MAX6680 and MAX6681.
104  * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
105  * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
106  * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
107  * have address 0x4d.
108  * MAX6647 has address 0x4e.
109  * MAX6659 can have address 0x4c, 0x4d or 0x4e.
110  * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
111  * 0x4c, 0x4d or 0x4e.
112  * SA56004 can have address 0x48 through 0x4F.
113  */
114 
115 static const unsigned short normal_i2c[] = {
116 	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
117 	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
118 
119 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
120 	max6646, w83l771, max6696, sa56004, g781, tmp451 };
121 
122 /*
123  * The LM90 registers
124  */
125 
126 #define LM90_REG_R_MAN_ID		0xFE
127 #define LM90_REG_R_CHIP_ID		0xFF
128 #define LM90_REG_R_CONFIG1		0x03
129 #define LM90_REG_W_CONFIG1		0x09
130 #define LM90_REG_R_CONFIG2		0xBF
131 #define LM90_REG_W_CONFIG2		0xBF
132 #define LM90_REG_R_CONVRATE		0x04
133 #define LM90_REG_W_CONVRATE		0x0A
134 #define LM90_REG_R_STATUS		0x02
135 #define LM90_REG_R_LOCAL_TEMP		0x00
136 #define LM90_REG_R_LOCAL_HIGH		0x05
137 #define LM90_REG_W_LOCAL_HIGH		0x0B
138 #define LM90_REG_R_LOCAL_LOW		0x06
139 #define LM90_REG_W_LOCAL_LOW		0x0C
140 #define LM90_REG_R_LOCAL_CRIT		0x20
141 #define LM90_REG_W_LOCAL_CRIT		0x20
142 #define LM90_REG_R_REMOTE_TEMPH		0x01
143 #define LM90_REG_R_REMOTE_TEMPL		0x10
144 #define LM90_REG_R_REMOTE_OFFSH		0x11
145 #define LM90_REG_W_REMOTE_OFFSH		0x11
146 #define LM90_REG_R_REMOTE_OFFSL		0x12
147 #define LM90_REG_W_REMOTE_OFFSL		0x12
148 #define LM90_REG_R_REMOTE_HIGHH		0x07
149 #define LM90_REG_W_REMOTE_HIGHH		0x0D
150 #define LM90_REG_R_REMOTE_HIGHL		0x13
151 #define LM90_REG_W_REMOTE_HIGHL		0x13
152 #define LM90_REG_R_REMOTE_LOWH		0x08
153 #define LM90_REG_W_REMOTE_LOWH		0x0E
154 #define LM90_REG_R_REMOTE_LOWL		0x14
155 #define LM90_REG_W_REMOTE_LOWL		0x14
156 #define LM90_REG_R_REMOTE_CRIT		0x19
157 #define LM90_REG_W_REMOTE_CRIT		0x19
158 #define LM90_REG_R_TCRIT_HYST		0x21
159 #define LM90_REG_W_TCRIT_HYST		0x21
160 
161 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
162 
163 #define MAX6657_REG_R_LOCAL_TEMPL	0x11
164 #define MAX6696_REG_R_STATUS2		0x12
165 #define MAX6659_REG_R_REMOTE_EMERG	0x16
166 #define MAX6659_REG_W_REMOTE_EMERG	0x16
167 #define MAX6659_REG_R_LOCAL_EMERG	0x17
168 #define MAX6659_REG_W_LOCAL_EMERG	0x17
169 
170 /*  SA56004 registers */
171 
172 #define SA56004_REG_R_LOCAL_TEMPL 0x22
173 
174 #define LM90_DEF_CONVRATE_RVAL	6	/* Def conversion rate register value */
175 #define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
176 
177 /* TMP451 registers */
178 #define TMP451_REG_R_LOCAL_TEMPL	0x15
179 
180 /*
181  * Device flags
182  */
183 #define LM90_FLAG_ADT7461_EXT	(1 << 0) /* ADT7461 extended mode	*/
184 /* Device features */
185 #define LM90_HAVE_OFFSET	(1 << 1) /* temperature offset register	*/
186 #define LM90_HAVE_REM_LIMIT_EXT	(1 << 3) /* extended remote limit	*/
187 #define LM90_HAVE_EMERGENCY	(1 << 4) /* 3rd upper (emergency) limit	*/
188 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm		*/
189 #define LM90_HAVE_TEMP3		(1 << 6) /* 3rd temperature sensor	*/
190 #define LM90_HAVE_BROKEN_ALERT	(1 << 7) /* Broken alert		*/
191 
192 /* LM90 status */
193 #define LM90_STATUS_LTHRM	(1 << 0) /* local THERM limit tripped */
194 #define LM90_STATUS_RTHRM	(1 << 1) /* remote THERM limit tripped */
195 #define LM90_STATUS_ROPEN	(1 << 2) /* remote is an open circuit */
196 #define LM90_STATUS_RLOW	(1 << 3) /* remote low temp limit tripped */
197 #define LM90_STATUS_RHIGH	(1 << 4) /* remote high temp limit tripped */
198 #define LM90_STATUS_LLOW	(1 << 5) /* local low temp limit tripped */
199 #define LM90_STATUS_LHIGH	(1 << 6) /* local high temp limit tripped */
200 
201 #define MAX6696_STATUS2_R2THRM	(1 << 1) /* remote2 THERM limit tripped */
202 #define MAX6696_STATUS2_R2OPEN	(1 << 2) /* remote2 is an open circuit */
203 #define MAX6696_STATUS2_R2LOW	(1 << 3) /* remote2 low temp limit tripped */
204 #define MAX6696_STATUS2_R2HIGH	(1 << 4) /* remote2 high temp limit tripped */
205 #define MAX6696_STATUS2_ROT2	(1 << 5) /* remote emergency limit tripped */
206 #define MAX6696_STATUS2_R2OT2	(1 << 6) /* remote2 emergency limit tripped */
207 #define MAX6696_STATUS2_LOT2	(1 << 7) /* local emergency limit tripped */
208 
209 /*
210  * Driver data (common to all clients)
211  */
212 
213 static const struct i2c_device_id lm90_id[] = {
214 	{ "adm1032", adm1032 },
215 	{ "adt7461", adt7461 },
216 	{ "adt7461a", adt7461 },
217 	{ "g781", g781 },
218 	{ "lm90", lm90 },
219 	{ "lm86", lm86 },
220 	{ "lm89", lm86 },
221 	{ "lm99", lm99 },
222 	{ "max6646", max6646 },
223 	{ "max6647", max6646 },
224 	{ "max6649", max6646 },
225 	{ "max6657", max6657 },
226 	{ "max6658", max6657 },
227 	{ "max6659", max6659 },
228 	{ "max6680", max6680 },
229 	{ "max6681", max6680 },
230 	{ "max6695", max6696 },
231 	{ "max6696", max6696 },
232 	{ "nct1008", adt7461 },
233 	{ "w83l771", w83l771 },
234 	{ "sa56004", sa56004 },
235 	{ "tmp451", tmp451 },
236 	{ }
237 };
238 MODULE_DEVICE_TABLE(i2c, lm90_id);
239 
240 /*
241  * chip type specific parameters
242  */
243 struct lm90_params {
244 	u32 flags;		/* Capabilities */
245 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
246 				/* Upper 8 bits for max6695/96 */
247 	u8 max_convrate;	/* Maximum conversion rate register value */
248 	u8 reg_local_ext;	/* Extended local temp register (optional) */
249 };
250 
251 static const struct lm90_params lm90_params[] = {
252 	[adm1032] = {
253 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
254 		  | LM90_HAVE_BROKEN_ALERT,
255 		.alert_alarms = 0x7c,
256 		.max_convrate = 10,
257 	},
258 	[adt7461] = {
259 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
260 		  | LM90_HAVE_BROKEN_ALERT,
261 		.alert_alarms = 0x7c,
262 		.max_convrate = 10,
263 	},
264 	[g781] = {
265 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
266 		  | LM90_HAVE_BROKEN_ALERT,
267 		.alert_alarms = 0x7c,
268 		.max_convrate = 8,
269 	},
270 	[lm86] = {
271 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
272 		.alert_alarms = 0x7b,
273 		.max_convrate = 9,
274 	},
275 	[lm90] = {
276 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
277 		.alert_alarms = 0x7b,
278 		.max_convrate = 9,
279 	},
280 	[lm99] = {
281 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
282 		.alert_alarms = 0x7b,
283 		.max_convrate = 9,
284 	},
285 	[max6646] = {
286 		.alert_alarms = 0x7c,
287 		.max_convrate = 6,
288 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
289 	},
290 	[max6657] = {
291 		.alert_alarms = 0x7c,
292 		.max_convrate = 8,
293 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
294 	},
295 	[max6659] = {
296 		.flags = LM90_HAVE_EMERGENCY,
297 		.alert_alarms = 0x7c,
298 		.max_convrate = 8,
299 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
300 	},
301 	[max6680] = {
302 		.flags = LM90_HAVE_OFFSET,
303 		.alert_alarms = 0x7c,
304 		.max_convrate = 7,
305 	},
306 	[max6696] = {
307 		.flags = LM90_HAVE_EMERGENCY
308 		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
309 		.alert_alarms = 0x1c7c,
310 		.max_convrate = 6,
311 		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
312 	},
313 	[w83l771] = {
314 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
315 		.alert_alarms = 0x7c,
316 		.max_convrate = 8,
317 	},
318 	[sa56004] = {
319 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
320 		.alert_alarms = 0x7b,
321 		.max_convrate = 9,
322 		.reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
323 	},
324 	[tmp451] = {
325 		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
326 		  | LM90_HAVE_BROKEN_ALERT,
327 		.alert_alarms = 0x7c,
328 		.max_convrate = 9,
329 		.reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
330 	}
331 };
332 
333 /*
334  * TEMP8 register index
335  */
336 enum lm90_temp8_reg_index {
337 	LOCAL_LOW = 0,
338 	LOCAL_HIGH,
339 	LOCAL_CRIT,
340 	REMOTE_CRIT,
341 	LOCAL_EMERG,	/* max6659 and max6695/96 */
342 	REMOTE_EMERG,	/* max6659 and max6695/96 */
343 	REMOTE2_CRIT,	/* max6695/96 only */
344 	REMOTE2_EMERG,	/* max6695/96 only */
345 	TEMP8_REG_NUM
346 };
347 
348 /*
349  * TEMP11 register index
350  */
351 enum lm90_temp11_reg_index {
352 	REMOTE_TEMP = 0,
353 	REMOTE_LOW,
354 	REMOTE_HIGH,
355 	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
356 	LOCAL_TEMP,
357 	REMOTE2_TEMP,	/* max6695/96 only */
358 	REMOTE2_LOW,	/* max6695/96 only */
359 	REMOTE2_HIGH,	/* max6695/96 only */
360 	TEMP11_REG_NUM
361 };
362 
363 /*
364  * Client data (each client gets its own)
365  */
366 
367 struct lm90_data {
368 	struct i2c_client *client;
369 	struct device *hwmon_dev;
370 	const struct attribute_group *groups[6];
371 	struct mutex update_lock;
372 	struct regulator *regulator;
373 	char valid; /* zero until following fields are valid */
374 	unsigned long last_updated; /* in jiffies */
375 	int kind;
376 	u32 flags;
377 
378 	unsigned int update_interval; /* in milliseconds */
379 
380 	u8 config_orig;		/* Original configuration register value */
381 	u8 convrate_orig;	/* Original conversion rate register value */
382 	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
383 				/* Upper 8 bits for max6695/96 */
384 	u8 max_convrate;	/* Maximum conversion rate */
385 	u8 reg_local_ext;	/* local extension register offset */
386 
387 	/* registers values */
388 	s8 temp8[TEMP8_REG_NUM];
389 	s16 temp11[TEMP11_REG_NUM];
390 	u8 temp_hyst;
391 	u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
392 };
393 
394 /*
395  * Support functions
396  */
397 
398 /*
399  * The ADM1032 supports PEC but not on write byte transactions, so we need
400  * to explicitly ask for a transaction without PEC.
401  */
402 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
403 {
404 	return i2c_smbus_xfer(client->adapter, client->addr,
405 			      client->flags & ~I2C_CLIENT_PEC,
406 			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
407 }
408 
409 /*
410  * It is assumed that client->update_lock is held (unless we are in
411  * detection or initialization steps). This matters when PEC is enabled,
412  * because we don't want the address pointer to change between the write
413  * byte and the read byte transactions.
414  */
415 static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
416 {
417 	int err;
418 
419 	if (client->flags & I2C_CLIENT_PEC) {
420 		err = adm1032_write_byte(client, reg);
421 		if (err >= 0)
422 			err = i2c_smbus_read_byte(client);
423 	} else
424 		err = i2c_smbus_read_byte_data(client, reg);
425 
426 	if (err < 0) {
427 		dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
428 			 reg, err);
429 		return err;
430 	}
431 	*value = err;
432 
433 	return 0;
434 }
435 
436 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
437 {
438 	int err;
439 	u8 oldh, newh, l;
440 
441 	/*
442 	 * There is a trick here. We have to read two registers to have the
443 	 * sensor temperature, but we have to beware a conversion could occur
444 	 * between the readings. The datasheet says we should either use
445 	 * the one-shot conversion register, which we don't want to do
446 	 * (disables hardware monitoring) or monitor the busy bit, which is
447 	 * impossible (we can't read the values and monitor that bit at the
448 	 * exact same time). So the solution used here is to read the high
449 	 * byte once, then the low byte, then the high byte again. If the new
450 	 * high byte matches the old one, then we have a valid reading. Else
451 	 * we have to read the low byte again, and now we believe we have a
452 	 * correct reading.
453 	 */
454 	if ((err = lm90_read_reg(client, regh, &oldh))
455 	 || (err = lm90_read_reg(client, regl, &l))
456 	 || (err = lm90_read_reg(client, regh, &newh)))
457 		return err;
458 	if (oldh != newh) {
459 		err = lm90_read_reg(client, regl, &l);
460 		if (err)
461 			return err;
462 	}
463 	*value = (newh << 8) | l;
464 
465 	return 0;
466 }
467 
468 /*
469  * client->update_lock must be held when calling this function (unless we are
470  * in detection or initialization steps), and while a remote channel other
471  * than channel 0 is selected. Also, calling code must make sure to re-select
472  * external channel 0 before releasing the lock. This is necessary because
473  * various registers have different meanings as a result of selecting a
474  * non-default remote channel.
475  */
476 static inline void lm90_select_remote_channel(struct i2c_client *client,
477 					      struct lm90_data *data,
478 					      int channel)
479 {
480 	u8 config;
481 
482 	if (data->kind == max6696) {
483 		lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
484 		config &= ~0x08;
485 		if (channel)
486 			config |= 0x08;
487 		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
488 					  config);
489 	}
490 }
491 
492 /*
493  * Set conversion rate.
494  * client->update_lock must be held when calling this function (unless we are
495  * in detection or initialization steps).
496  */
497 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
498 			      unsigned int interval)
499 {
500 	int i;
501 	unsigned int update_interval;
502 
503 	/* Shift calculations to avoid rounding errors */
504 	interval <<= 6;
505 
506 	/* find the nearest update rate */
507 	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
508 	     i < data->max_convrate; i++, update_interval >>= 1)
509 		if (interval >= update_interval * 3 / 4)
510 			break;
511 
512 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
513 	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
514 }
515 
516 static struct lm90_data *lm90_update_device(struct device *dev)
517 {
518 	struct lm90_data *data = dev_get_drvdata(dev);
519 	struct i2c_client *client = data->client;
520 	unsigned long next_update;
521 
522 	mutex_lock(&data->update_lock);
523 
524 	next_update = data->last_updated +
525 		      msecs_to_jiffies(data->update_interval);
526 	if (time_after(jiffies, next_update) || !data->valid) {
527 		u8 h, l;
528 		u8 alarms;
529 
530 		dev_dbg(&client->dev, "Updating lm90 data.\n");
531 		lm90_read_reg(client, LM90_REG_R_LOCAL_LOW,
532 			      &data->temp8[LOCAL_LOW]);
533 		lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH,
534 			      &data->temp8[LOCAL_HIGH]);
535 		lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT,
536 			      &data->temp8[LOCAL_CRIT]);
537 		lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
538 			      &data->temp8[REMOTE_CRIT]);
539 		lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
540 
541 		if (data->reg_local_ext) {
542 			lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
543 				    data->reg_local_ext,
544 				    &data->temp11[LOCAL_TEMP]);
545 		} else {
546 			if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
547 					  &h) == 0)
548 				data->temp11[LOCAL_TEMP] = h << 8;
549 		}
550 		lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
551 			    LM90_REG_R_REMOTE_TEMPL,
552 			    &data->temp11[REMOTE_TEMP]);
553 
554 		if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
555 			data->temp11[REMOTE_LOW] = h << 8;
556 			if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
557 			 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
558 					  &l) == 0)
559 				data->temp11[REMOTE_LOW] |= l;
560 		}
561 		if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
562 			data->temp11[REMOTE_HIGH] = h << 8;
563 			if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
564 			 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
565 					  &l) == 0)
566 				data->temp11[REMOTE_HIGH] |= l;
567 		}
568 
569 		if (data->flags & LM90_HAVE_OFFSET) {
570 			if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
571 					  &h) == 0
572 			 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
573 					  &l) == 0)
574 				data->temp11[REMOTE_OFFSET] = (h << 8) | l;
575 		}
576 		if (data->flags & LM90_HAVE_EMERGENCY) {
577 			lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
578 				      &data->temp8[LOCAL_EMERG]);
579 			lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
580 				      &data->temp8[REMOTE_EMERG]);
581 		}
582 		lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
583 		data->alarms = alarms;	/* save as 16 bit value */
584 
585 		if (data->kind == max6696) {
586 			lm90_select_remote_channel(client, data, 1);
587 			lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
588 				      &data->temp8[REMOTE2_CRIT]);
589 			lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
590 				      &data->temp8[REMOTE2_EMERG]);
591 			lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
592 				    LM90_REG_R_REMOTE_TEMPL,
593 				    &data->temp11[REMOTE2_TEMP]);
594 			if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
595 				data->temp11[REMOTE2_LOW] = h << 8;
596 			if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
597 				data->temp11[REMOTE2_HIGH] = h << 8;
598 			lm90_select_remote_channel(client, data, 0);
599 
600 			if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
601 					   &alarms))
602 				data->alarms |= alarms << 8;
603 		}
604 
605 		/*
606 		 * Re-enable ALERT# output if it was originally enabled and
607 		 * relevant alarms are all clear
608 		 */
609 		if ((data->config_orig & 0x80) == 0
610 		 && (data->alarms & data->alert_alarms) == 0) {
611 			u8 config;
612 
613 			lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
614 			if (config & 0x80) {
615 				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
616 				i2c_smbus_write_byte_data(client,
617 							  LM90_REG_W_CONFIG1,
618 							  config & ~0x80);
619 			}
620 		}
621 
622 		data->last_updated = jiffies;
623 		data->valid = 1;
624 	}
625 
626 	mutex_unlock(&data->update_lock);
627 
628 	return data;
629 }
630 
631 /*
632  * Conversions
633  * For local temperatures and limits, critical limits and the hysteresis
634  * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
635  * For remote temperatures and limits, it uses signed 11-bit values with
636  * LSB = 0.125 degree Celsius, left-justified in 16-bit registers.  Some
637  * Maxim chips use unsigned values.
638  */
639 
640 static inline int temp_from_s8(s8 val)
641 {
642 	return val * 1000;
643 }
644 
645 static inline int temp_from_u8(u8 val)
646 {
647 	return val * 1000;
648 }
649 
650 static inline int temp_from_s16(s16 val)
651 {
652 	return val / 32 * 125;
653 }
654 
655 static inline int temp_from_u16(u16 val)
656 {
657 	return val / 32 * 125;
658 }
659 
660 static s8 temp_to_s8(long val)
661 {
662 	if (val <= -128000)
663 		return -128;
664 	if (val >= 127000)
665 		return 127;
666 	if (val < 0)
667 		return (val - 500) / 1000;
668 	return (val + 500) / 1000;
669 }
670 
671 static u8 temp_to_u8(long val)
672 {
673 	if (val <= 0)
674 		return 0;
675 	if (val >= 255000)
676 		return 255;
677 	return (val + 500) / 1000;
678 }
679 
680 static s16 temp_to_s16(long val)
681 {
682 	if (val <= -128000)
683 		return 0x8000;
684 	if (val >= 127875)
685 		return 0x7FE0;
686 	if (val < 0)
687 		return (val - 62) / 125 * 32;
688 	return (val + 62) / 125 * 32;
689 }
690 
691 static u8 hyst_to_reg(long val)
692 {
693 	if (val <= 0)
694 		return 0;
695 	if (val >= 30500)
696 		return 31;
697 	return (val + 500) / 1000;
698 }
699 
700 /*
701  * ADT7461 in compatibility mode is almost identical to LM90 except that
702  * attempts to write values that are outside the range 0 < temp < 127 are
703  * treated as the boundary value.
704  *
705  * ADT7461 in "extended mode" operation uses unsigned integers offset by
706  * 64 (e.g., 0 -> -64 degC).  The range is restricted to -64..191 degC.
707  */
708 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
709 {
710 	if (data->flags & LM90_FLAG_ADT7461_EXT)
711 		return (val - 64) * 1000;
712 	else
713 		return temp_from_s8(val);
714 }
715 
716 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
717 {
718 	if (data->flags & LM90_FLAG_ADT7461_EXT)
719 		return (val - 0x4000) / 64 * 250;
720 	else
721 		return temp_from_s16(val);
722 }
723 
724 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
725 {
726 	if (data->flags & LM90_FLAG_ADT7461_EXT) {
727 		if (val <= -64000)
728 			return 0;
729 		if (val >= 191000)
730 			return 0xFF;
731 		return (val + 500 + 64000) / 1000;
732 	} else {
733 		if (val <= 0)
734 			return 0;
735 		if (val >= 127000)
736 			return 127;
737 		return (val + 500) / 1000;
738 	}
739 }
740 
741 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
742 {
743 	if (data->flags & LM90_FLAG_ADT7461_EXT) {
744 		if (val <= -64000)
745 			return 0;
746 		if (val >= 191750)
747 			return 0xFFC0;
748 		return (val + 64000 + 125) / 250 * 64;
749 	} else {
750 		if (val <= 0)
751 			return 0;
752 		if (val >= 127750)
753 			return 0x7FC0;
754 		return (val + 125) / 250 * 64;
755 	}
756 }
757 
758 /*
759  * Sysfs stuff
760  */
761 
762 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
763 			  char *buf)
764 {
765 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
766 	struct lm90_data *data = lm90_update_device(dev);
767 	int temp;
768 
769 	if (data->kind == adt7461 || data->kind == tmp451)
770 		temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
771 	else if (data->kind == max6646)
772 		temp = temp_from_u8(data->temp8[attr->index]);
773 	else
774 		temp = temp_from_s8(data->temp8[attr->index]);
775 
776 	/* +16 degrees offset for temp2 for the LM99 */
777 	if (data->kind == lm99 && attr->index == 3)
778 		temp += 16000;
779 
780 	return sprintf(buf, "%d\n", temp);
781 }
782 
783 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
784 			 const char *buf, size_t count)
785 {
786 	static const u8 reg[TEMP8_REG_NUM] = {
787 		LM90_REG_W_LOCAL_LOW,
788 		LM90_REG_W_LOCAL_HIGH,
789 		LM90_REG_W_LOCAL_CRIT,
790 		LM90_REG_W_REMOTE_CRIT,
791 		MAX6659_REG_W_LOCAL_EMERG,
792 		MAX6659_REG_W_REMOTE_EMERG,
793 		LM90_REG_W_REMOTE_CRIT,
794 		MAX6659_REG_W_REMOTE_EMERG,
795 	};
796 
797 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
798 	struct lm90_data *data = dev_get_drvdata(dev);
799 	struct i2c_client *client = data->client;
800 	int nr = attr->index;
801 	long val;
802 	int err;
803 
804 	err = kstrtol(buf, 10, &val);
805 	if (err < 0)
806 		return err;
807 
808 	/* +16 degrees offset for temp2 for the LM99 */
809 	if (data->kind == lm99 && attr->index == 3)
810 		val -= 16000;
811 
812 	mutex_lock(&data->update_lock);
813 	if (data->kind == adt7461 || data->kind == tmp451)
814 		data->temp8[nr] = temp_to_u8_adt7461(data, val);
815 	else if (data->kind == max6646)
816 		data->temp8[nr] = temp_to_u8(val);
817 	else
818 		data->temp8[nr] = temp_to_s8(val);
819 
820 	lm90_select_remote_channel(client, data, nr >= 6);
821 	i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
822 	lm90_select_remote_channel(client, data, 0);
823 
824 	mutex_unlock(&data->update_lock);
825 	return count;
826 }
827 
828 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
829 			   char *buf)
830 {
831 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
832 	struct lm90_data *data = lm90_update_device(dev);
833 	int temp;
834 
835 	if (data->kind == adt7461 || data->kind == tmp451)
836 		temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
837 	else if (data->kind == max6646)
838 		temp = temp_from_u16(data->temp11[attr->index]);
839 	else
840 		temp = temp_from_s16(data->temp11[attr->index]);
841 
842 	/* +16 degrees offset for temp2 for the LM99 */
843 	if (data->kind == lm99 &&  attr->index <= 2)
844 		temp += 16000;
845 
846 	return sprintf(buf, "%d\n", temp);
847 }
848 
849 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
850 			  const char *buf, size_t count)
851 {
852 	struct {
853 		u8 high;
854 		u8 low;
855 		int channel;
856 	} reg[5] = {
857 		{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
858 		{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
859 		{ LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
860 		{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
861 		{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
862 	};
863 
864 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
865 	struct lm90_data *data = dev_get_drvdata(dev);
866 	struct i2c_client *client = data->client;
867 	int nr = attr->nr;
868 	int index = attr->index;
869 	long val;
870 	int err;
871 
872 	err = kstrtol(buf, 10, &val);
873 	if (err < 0)
874 		return err;
875 
876 	/* +16 degrees offset for temp2 for the LM99 */
877 	if (data->kind == lm99 && index <= 2)
878 		val -= 16000;
879 
880 	mutex_lock(&data->update_lock);
881 	if (data->kind == adt7461 || data->kind == tmp451)
882 		data->temp11[index] = temp_to_u16_adt7461(data, val);
883 	else if (data->kind == max6646)
884 		data->temp11[index] = temp_to_u8(val) << 8;
885 	else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
886 		data->temp11[index] = temp_to_s16(val);
887 	else
888 		data->temp11[index] = temp_to_s8(val) << 8;
889 
890 	lm90_select_remote_channel(client, data, reg[nr].channel);
891 	i2c_smbus_write_byte_data(client, reg[nr].high,
892 				  data->temp11[index] >> 8);
893 	if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
894 		i2c_smbus_write_byte_data(client, reg[nr].low,
895 					  data->temp11[index] & 0xff);
896 	lm90_select_remote_channel(client, data, 0);
897 
898 	mutex_unlock(&data->update_lock);
899 	return count;
900 }
901 
902 static ssize_t show_temphyst(struct device *dev,
903 			     struct device_attribute *devattr,
904 			     char *buf)
905 {
906 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
907 	struct lm90_data *data = lm90_update_device(dev);
908 	int temp;
909 
910 	if (data->kind == adt7461 || data->kind == tmp451)
911 		temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
912 	else if (data->kind == max6646)
913 		temp = temp_from_u8(data->temp8[attr->index]);
914 	else
915 		temp = temp_from_s8(data->temp8[attr->index]);
916 
917 	/* +16 degrees offset for temp2 for the LM99 */
918 	if (data->kind == lm99 && attr->index == 3)
919 		temp += 16000;
920 
921 	return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
922 }
923 
924 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
925 			    const char *buf, size_t count)
926 {
927 	struct lm90_data *data = dev_get_drvdata(dev);
928 	struct i2c_client *client = data->client;
929 	long val;
930 	int err;
931 	int temp;
932 
933 	err = kstrtol(buf, 10, &val);
934 	if (err < 0)
935 		return err;
936 
937 	mutex_lock(&data->update_lock);
938 	if (data->kind == adt7461 || data->kind == tmp451)
939 		temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
940 	else if (data->kind == max6646)
941 		temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
942 	else
943 		temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
944 
945 	data->temp_hyst = hyst_to_reg(temp - val);
946 	i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
947 				  data->temp_hyst);
948 	mutex_unlock(&data->update_lock);
949 	return count;
950 }
951 
952 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
953 			   char *buf)
954 {
955 	struct lm90_data *data = lm90_update_device(dev);
956 	return sprintf(buf, "%d\n", data->alarms);
957 }
958 
959 static ssize_t show_alarm(struct device *dev, struct device_attribute
960 			  *devattr, char *buf)
961 {
962 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
963 	struct lm90_data *data = lm90_update_device(dev);
964 	int bitnr = attr->index;
965 
966 	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
967 }
968 
969 static ssize_t show_update_interval(struct device *dev,
970 				    struct device_attribute *attr, char *buf)
971 {
972 	struct lm90_data *data = dev_get_drvdata(dev);
973 
974 	return sprintf(buf, "%u\n", data->update_interval);
975 }
976 
977 static ssize_t set_update_interval(struct device *dev,
978 				   struct device_attribute *attr,
979 				   const char *buf, size_t count)
980 {
981 	struct lm90_data *data = dev_get_drvdata(dev);
982 	struct i2c_client *client = data->client;
983 	unsigned long val;
984 	int err;
985 
986 	err = kstrtoul(buf, 10, &val);
987 	if (err)
988 		return err;
989 
990 	mutex_lock(&data->update_lock);
991 	lm90_set_convrate(client, data, clamp_val(val, 0, 100000));
992 	mutex_unlock(&data->update_lock);
993 
994 	return count;
995 }
996 
997 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL,
998 	0, LOCAL_TEMP);
999 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL,
1000 	0, REMOTE_TEMP);
1001 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
1002 	set_temp8, LOCAL_LOW);
1003 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
1004 	set_temp11, 0, REMOTE_LOW);
1005 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
1006 	set_temp8, LOCAL_HIGH);
1007 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
1008 	set_temp11, 1, REMOTE_HIGH);
1009 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
1010 	set_temp8, LOCAL_CRIT);
1011 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
1012 	set_temp8, REMOTE_CRIT);
1013 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
1014 	set_temphyst, LOCAL_CRIT);
1015 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL,
1016 	REMOTE_CRIT);
1017 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
1018 	set_temp11, 2, REMOTE_OFFSET);
1019 
1020 /* Individual alarm files */
1021 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
1022 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
1023 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
1024 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
1025 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
1026 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
1027 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
1028 /* Raw alarm file for compatibility */
1029 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
1030 
1031 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
1032 		   set_update_interval);
1033 
1034 static struct attribute *lm90_attributes[] = {
1035 	&sensor_dev_attr_temp1_input.dev_attr.attr,
1036 	&sensor_dev_attr_temp2_input.dev_attr.attr,
1037 	&sensor_dev_attr_temp1_min.dev_attr.attr,
1038 	&sensor_dev_attr_temp2_min.dev_attr.attr,
1039 	&sensor_dev_attr_temp1_max.dev_attr.attr,
1040 	&sensor_dev_attr_temp2_max.dev_attr.attr,
1041 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
1042 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
1043 	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
1044 	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
1045 
1046 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
1047 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
1048 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
1049 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
1050 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
1051 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
1052 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
1053 	&dev_attr_alarms.attr,
1054 	&dev_attr_update_interval.attr,
1055 	NULL
1056 };
1057 
1058 static const struct attribute_group lm90_group = {
1059 	.attrs = lm90_attributes,
1060 };
1061 
1062 static struct attribute *lm90_temp2_offset_attributes[] = {
1063 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
1064 	NULL
1065 };
1066 
1067 static const struct attribute_group lm90_temp2_offset_group = {
1068 	.attrs = lm90_temp2_offset_attributes,
1069 };
1070 
1071 /*
1072  * Additional attributes for devices with emergency sensors
1073  */
1074 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1075 	set_temp8, LOCAL_EMERG);
1076 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1077 	set_temp8, REMOTE_EMERG);
1078 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1079 			  NULL, LOCAL_EMERG);
1080 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1081 			  NULL, REMOTE_EMERG);
1082 
1083 static struct attribute *lm90_emergency_attributes[] = {
1084 	&sensor_dev_attr_temp1_emergency.dev_attr.attr,
1085 	&sensor_dev_attr_temp2_emergency.dev_attr.attr,
1086 	&sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1087 	&sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1088 	NULL
1089 };
1090 
1091 static const struct attribute_group lm90_emergency_group = {
1092 	.attrs = lm90_emergency_attributes,
1093 };
1094 
1095 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1096 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1097 
1098 static struct attribute *lm90_emergency_alarm_attributes[] = {
1099 	&sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1100 	&sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1101 	NULL
1102 };
1103 
1104 static const struct attribute_group lm90_emergency_alarm_group = {
1105 	.attrs = lm90_emergency_alarm_attributes,
1106 };
1107 
1108 /*
1109  * Additional attributes for devices with 3 temperature sensors
1110  */
1111 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL,
1112 	0, REMOTE2_TEMP);
1113 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1114 	set_temp11, 3, REMOTE2_LOW);
1115 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1116 	set_temp11, 4, REMOTE2_HIGH);
1117 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1118 	set_temp8, REMOTE2_CRIT);
1119 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL,
1120 	REMOTE2_CRIT);
1121 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1122 	set_temp8, REMOTE2_EMERG);
1123 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1124 			  NULL, REMOTE2_EMERG);
1125 
1126 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1127 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1128 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1129 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1130 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1131 
1132 static struct attribute *lm90_temp3_attributes[] = {
1133 	&sensor_dev_attr_temp3_input.dev_attr.attr,
1134 	&sensor_dev_attr_temp3_min.dev_attr.attr,
1135 	&sensor_dev_attr_temp3_max.dev_attr.attr,
1136 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
1137 	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1138 	&sensor_dev_attr_temp3_emergency.dev_attr.attr,
1139 	&sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1140 
1141 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1142 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1143 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1144 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1145 	&sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1146 	NULL
1147 };
1148 
1149 static const struct attribute_group lm90_temp3_group = {
1150 	.attrs = lm90_temp3_attributes,
1151 };
1152 
1153 /* pec used for ADM1032 only */
1154 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1155 			char *buf)
1156 {
1157 	struct i2c_client *client = to_i2c_client(dev);
1158 	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1159 }
1160 
1161 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1162 		       const char *buf, size_t count)
1163 {
1164 	struct i2c_client *client = to_i2c_client(dev);
1165 	long val;
1166 	int err;
1167 
1168 	err = kstrtol(buf, 10, &val);
1169 	if (err < 0)
1170 		return err;
1171 
1172 	switch (val) {
1173 	case 0:
1174 		client->flags &= ~I2C_CLIENT_PEC;
1175 		break;
1176 	case 1:
1177 		client->flags |= I2C_CLIENT_PEC;
1178 		break;
1179 	default:
1180 		return -EINVAL;
1181 	}
1182 
1183 	return count;
1184 }
1185 
1186 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1187 
1188 /*
1189  * Real code
1190  */
1191 
1192 /* Return 0 if detection is successful, -ENODEV otherwise */
1193 static int lm90_detect(struct i2c_client *client,
1194 		       struct i2c_board_info *info)
1195 {
1196 	struct i2c_adapter *adapter = client->adapter;
1197 	int address = client->addr;
1198 	const char *name = NULL;
1199 	int man_id, chip_id, config1, config2, convrate;
1200 
1201 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1202 		return -ENODEV;
1203 
1204 	/* detection and identification */
1205 	man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1206 	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1207 	config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1208 	convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1209 	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1210 		return -ENODEV;
1211 
1212 	if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1213 		config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1214 		if (config2 < 0)
1215 			return -ENODEV;
1216 	} else
1217 		config2 = 0;		/* Make compiler happy */
1218 
1219 	if ((address == 0x4C || address == 0x4D)
1220 	 && man_id == 0x01) { /* National Semiconductor */
1221 		if ((config1 & 0x2A) == 0x00
1222 		 && (config2 & 0xF8) == 0x00
1223 		 && convrate <= 0x09) {
1224 			if (address == 0x4C
1225 			 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1226 				name = "lm90";
1227 			} else
1228 			if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1229 				name = "lm99";
1230 				dev_info(&adapter->dev,
1231 					 "Assuming LM99 chip at 0x%02x\n",
1232 					 address);
1233 				dev_info(&adapter->dev,
1234 					 "If it is an LM89, instantiate it "
1235 					 "with the new_device sysfs "
1236 					 "interface\n");
1237 			} else
1238 			if (address == 0x4C
1239 			 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1240 				name = "lm86";
1241 			}
1242 		}
1243 	} else
1244 	if ((address == 0x4C || address == 0x4D)
1245 	 && man_id == 0x41) { /* Analog Devices */
1246 		if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1247 		 && (config1 & 0x3F) == 0x00
1248 		 && convrate <= 0x0A) {
1249 			name = "adm1032";
1250 			/*
1251 			 * The ADM1032 supports PEC, but only if combined
1252 			 * transactions are not used.
1253 			 */
1254 			if (i2c_check_functionality(adapter,
1255 						    I2C_FUNC_SMBUS_BYTE))
1256 				info->flags |= I2C_CLIENT_PEC;
1257 		} else
1258 		if (chip_id == 0x51 /* ADT7461 */
1259 		 && (config1 & 0x1B) == 0x00
1260 		 && convrate <= 0x0A) {
1261 			name = "adt7461";
1262 		} else
1263 		if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1264 		 && (config1 & 0x1B) == 0x00
1265 		 && convrate <= 0x0A) {
1266 			name = "adt7461a";
1267 		}
1268 	} else
1269 	if (man_id == 0x4D) { /* Maxim */
1270 		int emerg, emerg2, status2;
1271 
1272 		/*
1273 		 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1274 		 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1275 		 * exists, both readings will reflect the same value. Otherwise,
1276 		 * the readings will be different.
1277 		 */
1278 		emerg = i2c_smbus_read_byte_data(client,
1279 						 MAX6659_REG_R_REMOTE_EMERG);
1280 		man_id = i2c_smbus_read_byte_data(client,
1281 						  LM90_REG_R_MAN_ID);
1282 		emerg2 = i2c_smbus_read_byte_data(client,
1283 						  MAX6659_REG_R_REMOTE_EMERG);
1284 		status2 = i2c_smbus_read_byte_data(client,
1285 						   MAX6696_REG_R_STATUS2);
1286 		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1287 			return -ENODEV;
1288 
1289 		/*
1290 		 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1291 		 * register. Reading from that address will return the last
1292 		 * read value, which in our case is those of the man_id
1293 		 * register. Likewise, the config1 register seems to lack a
1294 		 * low nibble, so the value will be those of the previous
1295 		 * read, so in our case those of the man_id register.
1296 		 * MAX6659 has a third set of upper temperature limit registers.
1297 		 * Those registers also return values on MAX6657 and MAX6658,
1298 		 * thus the only way to detect MAX6659 is by its address.
1299 		 * For this reason it will be mis-detected as MAX6657 if its
1300 		 * address is 0x4C.
1301 		 */
1302 		if (chip_id == man_id
1303 		 && (address == 0x4C || address == 0x4D || address == 0x4E)
1304 		 && (config1 & 0x1F) == (man_id & 0x0F)
1305 		 && convrate <= 0x09) {
1306 			if (address == 0x4C)
1307 				name = "max6657";
1308 			else
1309 				name = "max6659";
1310 		} else
1311 		/*
1312 		 * Even though MAX6695 and MAX6696 do not have a chip ID
1313 		 * register, reading it returns 0x01. Bit 4 of the config1
1314 		 * register is unused and should return zero when read. Bit 0 of
1315 		 * the status2 register is unused and should return zero when
1316 		 * read.
1317 		 *
1318 		 * MAX6695 and MAX6696 have an additional set of temperature
1319 		 * limit registers. We can detect those chips by checking if
1320 		 * one of those registers exists.
1321 		 */
1322 		if (chip_id == 0x01
1323 		 && (config1 & 0x10) == 0x00
1324 		 && (status2 & 0x01) == 0x00
1325 		 && emerg == emerg2
1326 		 && convrate <= 0x07) {
1327 			name = "max6696";
1328 		} else
1329 		/*
1330 		 * The chip_id register of the MAX6680 and MAX6681 holds the
1331 		 * revision of the chip. The lowest bit of the config1 register
1332 		 * is unused and should return zero when read, so should the
1333 		 * second to last bit of config1 (software reset).
1334 		 */
1335 		if (chip_id == 0x01
1336 		 && (config1 & 0x03) == 0x00
1337 		 && convrate <= 0x07) {
1338 			name = "max6680";
1339 		} else
1340 		/*
1341 		 * The chip_id register of the MAX6646/6647/6649 holds the
1342 		 * revision of the chip. The lowest 6 bits of the config1
1343 		 * register are unused and should return zero when read.
1344 		 */
1345 		if (chip_id == 0x59
1346 		 && (config1 & 0x3f) == 0x00
1347 		 && convrate <= 0x07) {
1348 			name = "max6646";
1349 		}
1350 	} else
1351 	if (address == 0x4C
1352 	 && man_id == 0x5C) { /* Winbond/Nuvoton */
1353 		if ((config1 & 0x2A) == 0x00
1354 		 && (config2 & 0xF8) == 0x00) {
1355 			if (chip_id == 0x01 /* W83L771W/G */
1356 			 && convrate <= 0x09) {
1357 				name = "w83l771";
1358 			} else
1359 			if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1360 			 && convrate <= 0x08) {
1361 				name = "w83l771";
1362 			}
1363 		}
1364 	} else
1365 	if (address >= 0x48 && address <= 0x4F
1366 	 && man_id == 0xA1) { /*  NXP Semiconductor/Philips */
1367 		if (chip_id == 0x00
1368 		 && (config1 & 0x2A) == 0x00
1369 		 && (config2 & 0xFE) == 0x00
1370 		 && convrate <= 0x09) {
1371 			name = "sa56004";
1372 		}
1373 	} else
1374 	if ((address == 0x4C || address == 0x4D)
1375 	 && man_id == 0x47) { /* GMT */
1376 		if (chip_id == 0x01 /* G781 */
1377 		 && (config1 & 0x3F) == 0x00
1378 		 && convrate <= 0x08)
1379 			name = "g781";
1380 	} else
1381 	if (address == 0x4C
1382 	 && man_id == 0x55) { /* Texas Instruments */
1383 		int local_ext;
1384 
1385 		local_ext = i2c_smbus_read_byte_data(client,
1386 						     TMP451_REG_R_LOCAL_TEMPL);
1387 
1388 		if (chip_id == 0x00 /* TMP451 */
1389 		 && (config1 & 0x1B) == 0x00
1390 		 && convrate <= 0x09
1391 		 && (local_ext & 0x0F) == 0x00)
1392 			name = "tmp451";
1393 	}
1394 
1395 	if (!name) { /* identification failed */
1396 		dev_dbg(&adapter->dev,
1397 			"Unsupported chip at 0x%02x (man_id=0x%02X, "
1398 			"chip_id=0x%02X)\n", address, man_id, chip_id);
1399 		return -ENODEV;
1400 	}
1401 
1402 	strlcpy(info->type, name, I2C_NAME_SIZE);
1403 
1404 	return 0;
1405 }
1406 
1407 static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data)
1408 {
1409 	/* Restore initial configuration */
1410 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1411 				  data->convrate_orig);
1412 	i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1413 				  data->config_orig);
1414 }
1415 
1416 static void lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1417 {
1418 	u8 config, convrate;
1419 
1420 	if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
1421 		dev_warn(&client->dev, "Failed to read convrate register!\n");
1422 		convrate = LM90_DEF_CONVRATE_RVAL;
1423 	}
1424 	data->convrate_orig = convrate;
1425 
1426 	/*
1427 	 * Start the conversions.
1428 	 */
1429 	lm90_set_convrate(client, data, 500);	/* 500ms; 2Hz conversion rate */
1430 	if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
1431 		dev_warn(&client->dev, "Initialization failed!\n");
1432 		return;
1433 	}
1434 	data->config_orig = config;
1435 
1436 	/* Check Temperature Range Select */
1437 	if (data->kind == adt7461 || data->kind == tmp451) {
1438 		if (config & 0x04)
1439 			data->flags |= LM90_FLAG_ADT7461_EXT;
1440 	}
1441 
1442 	/*
1443 	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1444 	 * 0.125 degree resolution) and range (0x08, extend range
1445 	 * to -64 degree) mode for the remote temperature sensor.
1446 	 */
1447 	if (data->kind == max6680)
1448 		config |= 0x18;
1449 
1450 	/*
1451 	 * Select external channel 0 for max6695/96
1452 	 */
1453 	if (data->kind == max6696)
1454 		config &= ~0x08;
1455 
1456 	config &= 0xBF;	/* run */
1457 	if (config != data->config_orig) /* Only write if changed */
1458 		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1459 }
1460 
1461 static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1462 {
1463 	struct lm90_data *data = i2c_get_clientdata(client);
1464 	u8 st, st2 = 0;
1465 
1466 	lm90_read_reg(client, LM90_REG_R_STATUS, &st);
1467 
1468 	if (data->kind == max6696)
1469 		lm90_read_reg(client, MAX6696_REG_R_STATUS2, &st2);
1470 
1471 	*status = st | (st2 << 8);
1472 
1473 	if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1474 		return false;
1475 
1476 	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1477 	    (st2 & MAX6696_STATUS2_LOT2))
1478 		dev_warn(&client->dev,
1479 			 "temp%d out of range, please check!\n", 1);
1480 	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1481 	    (st2 & MAX6696_STATUS2_ROT2))
1482 		dev_warn(&client->dev,
1483 			 "temp%d out of range, please check!\n", 2);
1484 	if (st & LM90_STATUS_ROPEN)
1485 		dev_warn(&client->dev,
1486 			 "temp%d diode open, please check!\n", 2);
1487 	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1488 		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1489 		dev_warn(&client->dev,
1490 			 "temp%d out of range, please check!\n", 3);
1491 	if (st2 & MAX6696_STATUS2_R2OPEN)
1492 		dev_warn(&client->dev,
1493 			 "temp%d diode open, please check!\n", 3);
1494 
1495 	return true;
1496 }
1497 
1498 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1499 {
1500 	struct i2c_client *client = dev_id;
1501 	u16 status;
1502 
1503 	if (lm90_is_tripped(client, &status))
1504 		return IRQ_HANDLED;
1505 	else
1506 		return IRQ_NONE;
1507 }
1508 
1509 static int lm90_probe(struct i2c_client *client,
1510 		      const struct i2c_device_id *id)
1511 {
1512 	struct device *dev = &client->dev;
1513 	struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1514 	struct lm90_data *data;
1515 	struct regulator *regulator;
1516 	int groups = 0;
1517 	int err;
1518 
1519 	regulator = devm_regulator_get(dev, "vcc");
1520 	if (IS_ERR(regulator))
1521 		return PTR_ERR(regulator);
1522 
1523 	err = regulator_enable(regulator);
1524 	if (err < 0) {
1525 		dev_err(dev, "Failed to enable regulator: %d\n", err);
1526 		return err;
1527 	}
1528 
1529 	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1530 	if (!data)
1531 		return -ENOMEM;
1532 
1533 	data->client = client;
1534 	i2c_set_clientdata(client, data);
1535 	mutex_init(&data->update_lock);
1536 
1537 	data->regulator = regulator;
1538 
1539 	/* Set the device type */
1540 	data->kind = id->driver_data;
1541 	if (data->kind == adm1032) {
1542 		if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1543 			client->flags &= ~I2C_CLIENT_PEC;
1544 	}
1545 
1546 	/*
1547 	 * Different devices have different alarm bits triggering the
1548 	 * ALERT# output
1549 	 */
1550 	data->alert_alarms = lm90_params[data->kind].alert_alarms;
1551 
1552 	/* Set chip capabilities */
1553 	data->flags = lm90_params[data->kind].flags;
1554 	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1555 
1556 	/* Set maximum conversion rate */
1557 	data->max_convrate = lm90_params[data->kind].max_convrate;
1558 
1559 	/* Initialize the LM90 chip */
1560 	lm90_init_client(client, data);
1561 
1562 	/* Register sysfs hooks */
1563 	data->groups[groups++] = &lm90_group;
1564 
1565 	if (data->flags & LM90_HAVE_OFFSET)
1566 		data->groups[groups++] = &lm90_temp2_offset_group;
1567 
1568 	if (data->flags & LM90_HAVE_EMERGENCY)
1569 		data->groups[groups++] = &lm90_emergency_group;
1570 
1571 	if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1572 		data->groups[groups++] = &lm90_emergency_alarm_group;
1573 
1574 	if (data->flags & LM90_HAVE_TEMP3)
1575 		data->groups[groups++] = &lm90_temp3_group;
1576 
1577 	if (client->flags & I2C_CLIENT_PEC) {
1578 		err = device_create_file(dev, &dev_attr_pec);
1579 		if (err)
1580 			goto exit_restore;
1581 	}
1582 
1583 	data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1584 							    data, data->groups);
1585 	if (IS_ERR(data->hwmon_dev)) {
1586 		err = PTR_ERR(data->hwmon_dev);
1587 		goto exit_remove_pec;
1588 	}
1589 
1590 	if (client->irq) {
1591 		dev_dbg(dev, "IRQ: %d\n", client->irq);
1592 		err = devm_request_threaded_irq(dev, client->irq,
1593 						NULL, lm90_irq_thread,
1594 						IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1595 						"lm90", client);
1596 		if (err < 0) {
1597 			dev_err(dev, "cannot request IRQ %d\n", client->irq);
1598 			goto exit_unregister;
1599 		}
1600 	}
1601 
1602 	return 0;
1603 
1604 exit_unregister:
1605 	hwmon_device_unregister(data->hwmon_dev);
1606 exit_remove_pec:
1607 	device_remove_file(dev, &dev_attr_pec);
1608 exit_restore:
1609 	lm90_restore_conf(client, data);
1610 	regulator_disable(data->regulator);
1611 
1612 	return err;
1613 }
1614 
1615 static int lm90_remove(struct i2c_client *client)
1616 {
1617 	struct lm90_data *data = i2c_get_clientdata(client);
1618 
1619 	hwmon_device_unregister(data->hwmon_dev);
1620 	device_remove_file(&client->dev, &dev_attr_pec);
1621 	lm90_restore_conf(client, data);
1622 	regulator_disable(data->regulator);
1623 
1624 	return 0;
1625 }
1626 
1627 static void lm90_alert(struct i2c_client *client, unsigned int flag)
1628 {
1629 	u16 alarms;
1630 
1631 	if (lm90_is_tripped(client, &alarms)) {
1632 		/*
1633 		 * Disable ALERT# output, because these chips don't implement
1634 		 * SMBus alert correctly; they should only hold the alert line
1635 		 * low briefly.
1636 		 */
1637 		struct lm90_data *data = i2c_get_clientdata(client);
1638 
1639 		if ((data->flags & LM90_HAVE_BROKEN_ALERT)
1640 		 && (alarms & data->alert_alarms)) {
1641 			u8 config;
1642 			dev_dbg(&client->dev, "Disabling ALERT#\n");
1643 			lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
1644 			i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1645 						  config | 0x80);
1646 		}
1647 	} else {
1648 		dev_info(&client->dev, "Everything OK\n");
1649 	}
1650 }
1651 
1652 static struct i2c_driver lm90_driver = {
1653 	.class		= I2C_CLASS_HWMON,
1654 	.driver = {
1655 		.name	= "lm90",
1656 	},
1657 	.probe		= lm90_probe,
1658 	.remove		= lm90_remove,
1659 	.alert		= lm90_alert,
1660 	.id_table	= lm90_id,
1661 	.detect		= lm90_detect,
1662 	.address_list	= normal_i2c,
1663 };
1664 
1665 module_i2c_driver(lm90_driver);
1666 
1667 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1668 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1669 MODULE_LICENSE("GPL");
1670