xref: /linux/drivers/hwmon/lm75.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm75.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	 monitoring
5  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/jiffies.h>
12 #include <linux/i2c.h>
13 #include <linux/hwmon.h>
14 #include <linux/hwmon-sysfs.h>
15 #include <linux/err.h>
16 #include <linux/of_device.h>
17 #include <linux/of.h>
18 #include <linux/regmap.h>
19 #include <linux/util_macros.h>
20 #include <linux/regulator/consumer.h>
21 #include "lm75.h"
22 
23 /*
24  * This driver handles the LM75 and compatible digital temperature sensors.
25  */
26 
27 enum lm75_type {		/* keep sorted in alphabetical order */
28 	adt75,
29 	at30ts74,
30 	ds1775,
31 	ds75,
32 	ds7505,
33 	g751,
34 	lm75,
35 	lm75a,
36 	lm75b,
37 	max6625,
38 	max6626,
39 	max31725,
40 	mcp980x,
41 	pct2075,
42 	stds75,
43 	stlm75,
44 	tcn75,
45 	tmp100,
46 	tmp101,
47 	tmp105,
48 	tmp112,
49 	tmp175,
50 	tmp275,
51 	tmp75,
52 	tmp75b,
53 	tmp75c,
54 	tmp1075,
55 };
56 
57 /**
58  * struct lm75_params - lm75 configuration parameters.
59  * @set_mask:		Bits to set in configuration register when configuring
60  *			the chip.
61  * @clr_mask:		Bits to clear in configuration register when configuring
62  *			the chip.
63  * @default_resolution:	Default number of bits to represent the temperature
64  *			value.
65  * @resolution_limits:	Limit register resolution. Optional. Should be set if
66  *			the resolution of limit registers does not match the
67  *			resolution of the temperature register.
68  * @resolutions:	List of resolutions associated with sample times.
69  *			Optional. Should be set if num_sample_times is larger
70  *			than 1, and if the resolution changes with sample times.
71  *			If set, number of entries must match num_sample_times.
72  * @default_sample_time:Sample time to be set by default.
73  * @num_sample_times:	Number of possible sample times to be set. Optional.
74  *			Should be set if the number of sample times is larger
75  *			than one.
76  * @sample_times:	All the possible sample times to be set. Mandatory if
77  *			num_sample_times is larger than 1. If set, number of
78  *			entries must match num_sample_times.
79  */
80 
81 struct lm75_params {
82 	u8			set_mask;
83 	u8			clr_mask;
84 	u8			default_resolution;
85 	u8			resolution_limits;
86 	const u8		*resolutions;
87 	unsigned int		default_sample_time;
88 	u8			num_sample_times;
89 	const unsigned int	*sample_times;
90 };
91 
92 /* Addresses scanned */
93 static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4b, 0x4c,
94 					0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
95 
96 /* The LM75 registers */
97 #define LM75_REG_TEMP		0x00
98 #define LM75_REG_CONF		0x01
99 #define LM75_REG_HYST		0x02
100 #define LM75_REG_MAX		0x03
101 #define PCT2075_REG_IDLE	0x04
102 
103 /* Each client has this additional data */
104 struct lm75_data {
105 	struct i2c_client		*client;
106 	struct regmap			*regmap;
107 	struct regulator		*vs;
108 	u8				orig_conf;
109 	u8				current_conf;
110 	u8				resolution;	/* In bits, 9 to 16 */
111 	unsigned int			sample_time;	/* In ms */
112 	enum lm75_type			kind;
113 	const struct lm75_params	*params;
114 };
115 
116 /*-----------------------------------------------------------------------*/
117 
118 static const u8 lm75_sample_set_masks[] = { 0 << 5, 1 << 5, 2 << 5, 3 << 5 };
119 
120 #define LM75_SAMPLE_CLEAR_MASK	(3 << 5)
121 
122 /* The structure below stores the configuration values of the supported devices.
123  * In case of being supported multiple configurations, the default one must
124  * always be the first element of the array
125  */
126 static const struct lm75_params device_params[] = {
127 	[adt75] = {
128 		.clr_mask = 1 << 5,	/* not one-shot mode */
129 		.default_resolution = 12,
130 		.default_sample_time = MSEC_PER_SEC / 10,
131 	},
132 	[at30ts74] = {
133 		.set_mask = 3 << 5,	/* 12-bit mode*/
134 		.default_resolution = 12,
135 		.default_sample_time = 200,
136 		.num_sample_times = 4,
137 		.sample_times = (unsigned int []){ 25, 50, 100, 200 },
138 		.resolutions = (u8 []) {9, 10, 11, 12 },
139 	},
140 	[ds1775] = {
141 		.clr_mask = 3 << 5,
142 		.set_mask = 2 << 5,	/* 11-bit mode */
143 		.default_resolution = 11,
144 		.default_sample_time = 500,
145 		.num_sample_times = 4,
146 		.sample_times = (unsigned int []){ 125, 250, 500, 1000 },
147 		.resolutions = (u8 []) {9, 10, 11, 12 },
148 	},
149 	[ds75] = {
150 		.clr_mask = 3 << 5,
151 		.set_mask = 2 << 5,	/* 11-bit mode */
152 		.default_resolution = 11,
153 		.default_sample_time = 600,
154 		.num_sample_times = 4,
155 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
156 		.resolutions = (u8 []) {9, 10, 11, 12 },
157 	},
158 	[stds75] = {
159 		.clr_mask = 3 << 5,
160 		.set_mask = 2 << 5,	/* 11-bit mode */
161 		.default_resolution = 11,
162 		.default_sample_time = 600,
163 		.num_sample_times = 4,
164 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
165 		.resolutions = (u8 []) {9, 10, 11, 12 },
166 	},
167 	[stlm75] = {
168 		.default_resolution = 9,
169 		.default_sample_time = MSEC_PER_SEC / 6,
170 	},
171 	[ds7505] = {
172 		.set_mask = 3 << 5,	/* 12-bit mode*/
173 		.default_resolution = 12,
174 		.default_sample_time = 200,
175 		.num_sample_times = 4,
176 		.sample_times = (unsigned int []){ 25, 50, 100, 200 },
177 		.resolutions = (u8 []) {9, 10, 11, 12 },
178 	},
179 	[g751] = {
180 		.default_resolution = 9,
181 		.default_sample_time = MSEC_PER_SEC / 10,
182 	},
183 	[lm75] = {
184 		.default_resolution = 9,
185 		.default_sample_time = MSEC_PER_SEC / 10,
186 	},
187 	[lm75a] = {
188 		.default_resolution = 9,
189 		.default_sample_time = MSEC_PER_SEC / 10,
190 	},
191 	[lm75b] = {
192 		.default_resolution = 11,
193 		.default_sample_time = MSEC_PER_SEC / 10,
194 	},
195 	[max6625] = {
196 		.default_resolution = 9,
197 		.default_sample_time = MSEC_PER_SEC / 7,
198 	},
199 	[max6626] = {
200 		.default_resolution = 12,
201 		.default_sample_time = MSEC_PER_SEC / 7,
202 		.resolution_limits = 9,
203 	},
204 	[max31725] = {
205 		.default_resolution = 16,
206 		.default_sample_time = MSEC_PER_SEC / 20,
207 	},
208 	[tcn75] = {
209 		.default_resolution = 9,
210 		.default_sample_time = MSEC_PER_SEC / 18,
211 	},
212 	[pct2075] = {
213 		.default_resolution = 11,
214 		.default_sample_time = MSEC_PER_SEC / 10,
215 		.num_sample_times = 31,
216 		.sample_times = (unsigned int []){ 100, 200, 300, 400, 500, 600,
217 		700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
218 		1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700,
219 		2800, 2900, 3000, 3100 },
220 	},
221 	[mcp980x] = {
222 		.set_mask = 3 << 5,	/* 12-bit mode */
223 		.clr_mask = 1 << 7,	/* not one-shot mode */
224 		.default_resolution = 12,
225 		.resolution_limits = 9,
226 		.default_sample_time = 240,
227 		.num_sample_times = 4,
228 		.sample_times = (unsigned int []){ 30, 60, 120, 240 },
229 		.resolutions = (u8 []) {9, 10, 11, 12 },
230 	},
231 	[tmp100] = {
232 		.set_mask = 3 << 5,	/* 12-bit mode */
233 		.clr_mask = 1 << 7,	/* not one-shot mode */
234 		.default_resolution = 12,
235 		.default_sample_time = 320,
236 		.num_sample_times = 4,
237 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
238 		.resolutions = (u8 []) {9, 10, 11, 12 },
239 	},
240 	[tmp101] = {
241 		.set_mask = 3 << 5,	/* 12-bit mode */
242 		.clr_mask = 1 << 7,	/* not one-shot mode */
243 		.default_resolution = 12,
244 		.default_sample_time = 320,
245 		.num_sample_times = 4,
246 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
247 		.resolutions = (u8 []) {9, 10, 11, 12 },
248 	},
249 	[tmp105] = {
250 		.set_mask = 3 << 5,	/* 12-bit mode */
251 		.clr_mask = 1 << 7,	/* not one-shot mode*/
252 		.default_resolution = 12,
253 		.default_sample_time = 220,
254 		.num_sample_times = 4,
255 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
256 		.resolutions = (u8 []) {9, 10, 11, 12 },
257 	},
258 	[tmp112] = {
259 		.set_mask = 3 << 5,	/* 8 samples / second */
260 		.clr_mask = 1 << 7,	/* no one-shot mode*/
261 		.default_resolution = 12,
262 		.default_sample_time = 125,
263 		.num_sample_times = 4,
264 		.sample_times = (unsigned int []){ 125, 250, 1000, 4000 },
265 	},
266 	[tmp175] = {
267 		.set_mask = 3 << 5,	/* 12-bit mode */
268 		.clr_mask = 1 << 7,	/* not one-shot mode*/
269 		.default_resolution = 12,
270 		.default_sample_time = 220,
271 		.num_sample_times = 4,
272 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
273 		.resolutions = (u8 []) {9, 10, 11, 12 },
274 	},
275 	[tmp275] = {
276 		.set_mask = 3 << 5,	/* 12-bit mode */
277 		.clr_mask = 1 << 7,	/* not one-shot mode*/
278 		.default_resolution = 12,
279 		.default_sample_time = 220,
280 		.num_sample_times = 4,
281 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
282 		.resolutions = (u8 []) {9, 10, 11, 12 },
283 	},
284 	[tmp75] = {
285 		.set_mask = 3 << 5,	/* 12-bit mode */
286 		.clr_mask = 1 << 7,	/* not one-shot mode*/
287 		.default_resolution = 12,
288 		.default_sample_time = 220,
289 		.num_sample_times = 4,
290 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
291 		.resolutions = (u8 []) {9, 10, 11, 12 },
292 	},
293 	[tmp75b] = { /* not one-shot mode, Conversion rate 37Hz */
294 		.clr_mask = 1 << 7 | 3 << 5,
295 		.default_resolution = 12,
296 		.default_sample_time = MSEC_PER_SEC / 37,
297 		.sample_times = (unsigned int []){ MSEC_PER_SEC / 37,
298 			MSEC_PER_SEC / 18,
299 			MSEC_PER_SEC / 9, MSEC_PER_SEC / 4 },
300 		.num_sample_times = 4,
301 	},
302 	[tmp75c] = {
303 		.clr_mask = 1 << 5,	/*not one-shot mode*/
304 		.default_resolution = 12,
305 		.default_sample_time = MSEC_PER_SEC / 12,
306 	},
307 	[tmp1075] = { /* not one-shot mode, 27.5 ms sample rate */
308 		.clr_mask = 1 << 5 | 1 << 6 | 1 << 7,
309 		.default_resolution = 12,
310 		.default_sample_time = 28,
311 		.num_sample_times = 4,
312 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
313 	}
314 };
315 
316 static inline long lm75_reg_to_mc(s16 temp, u8 resolution)
317 {
318 	return ((temp >> (16 - resolution)) * 1000) >> (resolution - 8);
319 }
320 
321 static int lm75_write_config(struct lm75_data *data, u8 set_mask,
322 			     u8 clr_mask)
323 {
324 	u8 value;
325 
326 	clr_mask |= LM75_SHUTDOWN;
327 	value = data->current_conf & ~clr_mask;
328 	value |= set_mask;
329 
330 	if (data->current_conf != value) {
331 		s32 err;
332 
333 		err = i2c_smbus_write_byte_data(data->client, LM75_REG_CONF,
334 						value);
335 		if (err)
336 			return err;
337 		data->current_conf = value;
338 	}
339 	return 0;
340 }
341 
342 static int lm75_read(struct device *dev, enum hwmon_sensor_types type,
343 		     u32 attr, int channel, long *val)
344 {
345 	struct lm75_data *data = dev_get_drvdata(dev);
346 	unsigned int regval;
347 	int err, reg;
348 
349 	switch (type) {
350 	case hwmon_chip:
351 		switch (attr) {
352 		case hwmon_chip_update_interval:
353 			*val = data->sample_time;
354 			break;
355 		default:
356 			return -EINVAL;
357 		}
358 		break;
359 	case hwmon_temp:
360 		switch (attr) {
361 		case hwmon_temp_input:
362 			reg = LM75_REG_TEMP;
363 			break;
364 		case hwmon_temp_max:
365 			reg = LM75_REG_MAX;
366 			break;
367 		case hwmon_temp_max_hyst:
368 			reg = LM75_REG_HYST;
369 			break;
370 		default:
371 			return -EINVAL;
372 		}
373 		err = regmap_read(data->regmap, reg, &regval);
374 		if (err < 0)
375 			return err;
376 
377 		*val = lm75_reg_to_mc(regval, data->resolution);
378 		break;
379 	default:
380 		return -EINVAL;
381 	}
382 	return 0;
383 }
384 
385 static int lm75_write_temp(struct device *dev, u32 attr, long temp)
386 {
387 	struct lm75_data *data = dev_get_drvdata(dev);
388 	u8 resolution;
389 	int reg;
390 
391 	switch (attr) {
392 	case hwmon_temp_max:
393 		reg = LM75_REG_MAX;
394 		break;
395 	case hwmon_temp_max_hyst:
396 		reg = LM75_REG_HYST;
397 		break;
398 	default:
399 		return -EINVAL;
400 	}
401 
402 	/*
403 	 * Resolution of limit registers is assumed to be the same as the
404 	 * temperature input register resolution unless given explicitly.
405 	 */
406 	if (data->params->resolution_limits)
407 		resolution = data->params->resolution_limits;
408 	else
409 		resolution = data->resolution;
410 
411 	temp = clamp_val(temp, LM75_TEMP_MIN, LM75_TEMP_MAX);
412 	temp = DIV_ROUND_CLOSEST(temp  << (resolution - 8),
413 				 1000) << (16 - resolution);
414 
415 	return regmap_write(data->regmap, reg, (u16)temp);
416 }
417 
418 static int lm75_update_interval(struct device *dev, long val)
419 {
420 	struct lm75_data *data = dev_get_drvdata(dev);
421 	unsigned int reg;
422 	u8 index;
423 	s32 err;
424 
425 	index = find_closest(val, data->params->sample_times,
426 			     (int)data->params->num_sample_times);
427 
428 	switch (data->kind) {
429 	default:
430 		err = lm75_write_config(data, lm75_sample_set_masks[index],
431 					LM75_SAMPLE_CLEAR_MASK);
432 		if (err)
433 			return err;
434 
435 		data->sample_time = data->params->sample_times[index];
436 		if (data->params->resolutions)
437 			data->resolution = data->params->resolutions[index];
438 		break;
439 	case tmp112:
440 		err = regmap_read(data->regmap, LM75_REG_CONF, &reg);
441 		if (err < 0)
442 			return err;
443 		reg &= ~0x00c0;
444 		reg |= (3 - index) << 6;
445 		err = regmap_write(data->regmap, LM75_REG_CONF, reg);
446 		if (err < 0)
447 			return err;
448 		data->sample_time = data->params->sample_times[index];
449 		break;
450 	case pct2075:
451 		err = i2c_smbus_write_byte_data(data->client, PCT2075_REG_IDLE,
452 						index + 1);
453 		if (err)
454 			return err;
455 		data->sample_time = data->params->sample_times[index];
456 		break;
457 	}
458 	return 0;
459 }
460 
461 static int lm75_write_chip(struct device *dev, u32 attr, long val)
462 {
463 	switch (attr) {
464 	case hwmon_chip_update_interval:
465 		return lm75_update_interval(dev, val);
466 	default:
467 		return -EINVAL;
468 	}
469 	return 0;
470 }
471 
472 static int lm75_write(struct device *dev, enum hwmon_sensor_types type,
473 		      u32 attr, int channel, long val)
474 {
475 	switch (type) {
476 	case hwmon_chip:
477 		return lm75_write_chip(dev, attr, val);
478 	case hwmon_temp:
479 		return lm75_write_temp(dev, attr, val);
480 	default:
481 		return -EINVAL;
482 	}
483 	return 0;
484 }
485 
486 static umode_t lm75_is_visible(const void *data, enum hwmon_sensor_types type,
487 			       u32 attr, int channel)
488 {
489 	const struct lm75_data *config_data = data;
490 
491 	switch (type) {
492 	case hwmon_chip:
493 		switch (attr) {
494 		case hwmon_chip_update_interval:
495 			if (config_data->params->num_sample_times > 1)
496 				return 0644;
497 			return 0444;
498 		}
499 		break;
500 	case hwmon_temp:
501 		switch (attr) {
502 		case hwmon_temp_input:
503 			return 0444;
504 		case hwmon_temp_max:
505 		case hwmon_temp_max_hyst:
506 			return 0644;
507 		}
508 		break;
509 	default:
510 		break;
511 	}
512 	return 0;
513 }
514 
515 static const struct hwmon_channel_info *lm75_info[] = {
516 	HWMON_CHANNEL_INFO(chip,
517 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
518 	HWMON_CHANNEL_INFO(temp,
519 			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST),
520 	NULL
521 };
522 
523 static const struct hwmon_ops lm75_hwmon_ops = {
524 	.is_visible = lm75_is_visible,
525 	.read = lm75_read,
526 	.write = lm75_write,
527 };
528 
529 static const struct hwmon_chip_info lm75_chip_info = {
530 	.ops = &lm75_hwmon_ops,
531 	.info = lm75_info,
532 };
533 
534 static bool lm75_is_writeable_reg(struct device *dev, unsigned int reg)
535 {
536 	return reg != LM75_REG_TEMP;
537 }
538 
539 static bool lm75_is_volatile_reg(struct device *dev, unsigned int reg)
540 {
541 	return reg == LM75_REG_TEMP || reg == LM75_REG_CONF;
542 }
543 
544 static const struct regmap_config lm75_regmap_config = {
545 	.reg_bits = 8,
546 	.val_bits = 16,
547 	.max_register = PCT2075_REG_IDLE,
548 	.writeable_reg = lm75_is_writeable_reg,
549 	.volatile_reg = lm75_is_volatile_reg,
550 	.val_format_endian = REGMAP_ENDIAN_BIG,
551 	.cache_type = REGCACHE_RBTREE,
552 	.use_single_read = true,
553 	.use_single_write = true,
554 };
555 
556 static void lm75_disable_regulator(void *data)
557 {
558 	struct lm75_data *lm75 = data;
559 
560 	regulator_disable(lm75->vs);
561 }
562 
563 static void lm75_remove(void *data)
564 {
565 	struct lm75_data *lm75 = data;
566 	struct i2c_client *client = lm75->client;
567 
568 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, lm75->orig_conf);
569 }
570 
571 static const struct i2c_device_id lm75_ids[];
572 
573 static int lm75_probe(struct i2c_client *client)
574 {
575 	struct device *dev = &client->dev;
576 	struct device *hwmon_dev;
577 	struct lm75_data *data;
578 	int status, err;
579 	enum lm75_type kind;
580 
581 	if (client->dev.of_node)
582 		kind = (enum lm75_type)of_device_get_match_data(&client->dev);
583 	else
584 		kind = i2c_match_id(lm75_ids, client)->driver_data;
585 
586 	if (!i2c_check_functionality(client->adapter,
587 			I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA))
588 		return -EIO;
589 
590 	data = devm_kzalloc(dev, sizeof(struct lm75_data), GFP_KERNEL);
591 	if (!data)
592 		return -ENOMEM;
593 
594 	data->client = client;
595 	data->kind = kind;
596 
597 	data->vs = devm_regulator_get(dev, "vs");
598 	if (IS_ERR(data->vs))
599 		return PTR_ERR(data->vs);
600 
601 	data->regmap = devm_regmap_init_i2c(client, &lm75_regmap_config);
602 	if (IS_ERR(data->regmap))
603 		return PTR_ERR(data->regmap);
604 
605 	/* Set to LM75 resolution (9 bits, 1/2 degree C) and range.
606 	 * Then tweak to be more precise when appropriate.
607 	 */
608 
609 	data->params = &device_params[data->kind];
610 
611 	/* Save default sample time and resolution*/
612 	data->sample_time = data->params->default_sample_time;
613 	data->resolution = data->params->default_resolution;
614 
615 	/* Enable the power */
616 	err = regulator_enable(data->vs);
617 	if (err) {
618 		dev_err(dev, "failed to enable regulator: %d\n", err);
619 		return err;
620 	}
621 
622 	err = devm_add_action_or_reset(dev, lm75_disable_regulator, data);
623 	if (err)
624 		return err;
625 
626 	/* Cache original configuration */
627 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
628 	if (status < 0) {
629 		dev_dbg(dev, "Can't read config? %d\n", status);
630 		return status;
631 	}
632 	data->orig_conf = status;
633 	data->current_conf = status;
634 
635 	err = lm75_write_config(data, data->params->set_mask,
636 				data->params->clr_mask);
637 	if (err)
638 		return err;
639 
640 	err = devm_add_action_or_reset(dev, lm75_remove, data);
641 	if (err)
642 		return err;
643 
644 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
645 							 data, &lm75_chip_info,
646 							 NULL);
647 	if (IS_ERR(hwmon_dev))
648 		return PTR_ERR(hwmon_dev);
649 
650 	dev_info(dev, "%s: sensor '%s'\n", dev_name(hwmon_dev), client->name);
651 
652 	return 0;
653 }
654 
655 static const struct i2c_device_id lm75_ids[] = {
656 	{ "adt75", adt75, },
657 	{ "at30ts74", at30ts74, },
658 	{ "ds1775", ds1775, },
659 	{ "ds75", ds75, },
660 	{ "ds7505", ds7505, },
661 	{ "g751", g751, },
662 	{ "lm75", lm75, },
663 	{ "lm75a", lm75a, },
664 	{ "lm75b", lm75b, },
665 	{ "max6625", max6625, },
666 	{ "max6626", max6626, },
667 	{ "max31725", max31725, },
668 	{ "max31726", max31725, },
669 	{ "mcp980x", mcp980x, },
670 	{ "pct2075", pct2075, },
671 	{ "stds75", stds75, },
672 	{ "stlm75", stlm75, },
673 	{ "tcn75", tcn75, },
674 	{ "tmp100", tmp100, },
675 	{ "tmp101", tmp101, },
676 	{ "tmp105", tmp105, },
677 	{ "tmp112", tmp112, },
678 	{ "tmp175", tmp175, },
679 	{ "tmp275", tmp275, },
680 	{ "tmp75", tmp75, },
681 	{ "tmp75b", tmp75b, },
682 	{ "tmp75c", tmp75c, },
683 	{ "tmp1075", tmp1075, },
684 	{ /* LIST END */ }
685 };
686 MODULE_DEVICE_TABLE(i2c, lm75_ids);
687 
688 static const struct of_device_id __maybe_unused lm75_of_match[] = {
689 	{
690 		.compatible = "adi,adt75",
691 		.data = (void *)adt75
692 	},
693 	{
694 		.compatible = "atmel,at30ts74",
695 		.data = (void *)at30ts74
696 	},
697 	{
698 		.compatible = "dallas,ds1775",
699 		.data = (void *)ds1775
700 	},
701 	{
702 		.compatible = "dallas,ds75",
703 		.data = (void *)ds75
704 	},
705 	{
706 		.compatible = "dallas,ds7505",
707 		.data = (void *)ds7505
708 	},
709 	{
710 		.compatible = "gmt,g751",
711 		.data = (void *)g751
712 	},
713 	{
714 		.compatible = "national,lm75",
715 		.data = (void *)lm75
716 	},
717 	{
718 		.compatible = "national,lm75a",
719 		.data = (void *)lm75a
720 	},
721 	{
722 		.compatible = "national,lm75b",
723 		.data = (void *)lm75b
724 	},
725 	{
726 		.compatible = "maxim,max6625",
727 		.data = (void *)max6625
728 	},
729 	{
730 		.compatible = "maxim,max6626",
731 		.data = (void *)max6626
732 	},
733 	{
734 		.compatible = "maxim,max31725",
735 		.data = (void *)max31725
736 	},
737 	{
738 		.compatible = "maxim,max31726",
739 		.data = (void *)max31725
740 	},
741 	{
742 		.compatible = "maxim,mcp980x",
743 		.data = (void *)mcp980x
744 	},
745 	{
746 		.compatible = "nxp,pct2075",
747 		.data = (void *)pct2075
748 	},
749 	{
750 		.compatible = "st,stds75",
751 		.data = (void *)stds75
752 	},
753 	{
754 		.compatible = "st,stlm75",
755 		.data = (void *)stlm75
756 	},
757 	{
758 		.compatible = "microchip,tcn75",
759 		.data = (void *)tcn75
760 	},
761 	{
762 		.compatible = "ti,tmp100",
763 		.data = (void *)tmp100
764 	},
765 	{
766 		.compatible = "ti,tmp101",
767 		.data = (void *)tmp101
768 	},
769 	{
770 		.compatible = "ti,tmp105",
771 		.data = (void *)tmp105
772 	},
773 	{
774 		.compatible = "ti,tmp112",
775 		.data = (void *)tmp112
776 	},
777 	{
778 		.compatible = "ti,tmp175",
779 		.data = (void *)tmp175
780 	},
781 	{
782 		.compatible = "ti,tmp275",
783 		.data = (void *)tmp275
784 	},
785 	{
786 		.compatible = "ti,tmp75",
787 		.data = (void *)tmp75
788 	},
789 	{
790 		.compatible = "ti,tmp75b",
791 		.data = (void *)tmp75b
792 	},
793 	{
794 		.compatible = "ti,tmp75c",
795 		.data = (void *)tmp75c
796 	},
797 	{
798 		.compatible = "ti,tmp1075",
799 		.data = (void *)tmp1075
800 	},
801 	{ },
802 };
803 MODULE_DEVICE_TABLE(of, lm75_of_match);
804 
805 #define LM75A_ID 0xA1
806 
807 /* Return 0 if detection is successful, -ENODEV otherwise */
808 static int lm75_detect(struct i2c_client *new_client,
809 		       struct i2c_board_info *info)
810 {
811 	struct i2c_adapter *adapter = new_client->adapter;
812 	int i;
813 	int conf, hyst, os;
814 	bool is_lm75a = 0;
815 
816 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
817 				     I2C_FUNC_SMBUS_WORD_DATA))
818 		return -ENODEV;
819 
820 	/*
821 	 * Now, we do the remaining detection. There is no identification-
822 	 * dedicated register so we have to rely on several tricks:
823 	 * unused bits, registers cycling over 8-address boundaries,
824 	 * addresses 0x04-0x07 returning the last read value.
825 	 * The cycling+unused addresses combination is not tested,
826 	 * since it would significantly slow the detection down and would
827 	 * hardly add any value.
828 	 *
829 	 * The National Semiconductor LM75A is different than earlier
830 	 * LM75s.  It has an ID byte of 0xaX (where X is the chip
831 	 * revision, with 1 being the only revision in existence) in
832 	 * register 7, and unused registers return 0xff rather than the
833 	 * last read value.
834 	 *
835 	 * Note that this function only detects the original National
836 	 * Semiconductor LM75 and the LM75A. Clones from other vendors
837 	 * aren't detected, on purpose, because they are typically never
838 	 * found on PC hardware. They are found on embedded designs where
839 	 * they can be instantiated explicitly so detection is not needed.
840 	 * The absence of identification registers on all these clones
841 	 * would make their exhaustive detection very difficult and weak,
842 	 * and odds are that the driver would bind to unsupported devices.
843 	 */
844 
845 	/* Unused bits */
846 	conf = i2c_smbus_read_byte_data(new_client, 1);
847 	if (conf & 0xe0)
848 		return -ENODEV;
849 
850 	/* First check for LM75A */
851 	if (i2c_smbus_read_byte_data(new_client, 7) == LM75A_ID) {
852 		/*
853 		 * LM75A returns 0xff on unused registers so
854 		 * just to be sure we check for that too.
855 		 */
856 		if (i2c_smbus_read_byte_data(new_client, 4) != 0xff
857 		 || i2c_smbus_read_byte_data(new_client, 5) != 0xff
858 		 || i2c_smbus_read_byte_data(new_client, 6) != 0xff)
859 			return -ENODEV;
860 		is_lm75a = 1;
861 		hyst = i2c_smbus_read_byte_data(new_client, 2);
862 		os = i2c_smbus_read_byte_data(new_client, 3);
863 	} else { /* Traditional style LM75 detection */
864 		/* Unused addresses */
865 		hyst = i2c_smbus_read_byte_data(new_client, 2);
866 		if (i2c_smbus_read_byte_data(new_client, 4) != hyst
867 		 || i2c_smbus_read_byte_data(new_client, 5) != hyst
868 		 || i2c_smbus_read_byte_data(new_client, 6) != hyst
869 		 || i2c_smbus_read_byte_data(new_client, 7) != hyst)
870 			return -ENODEV;
871 		os = i2c_smbus_read_byte_data(new_client, 3);
872 		if (i2c_smbus_read_byte_data(new_client, 4) != os
873 		 || i2c_smbus_read_byte_data(new_client, 5) != os
874 		 || i2c_smbus_read_byte_data(new_client, 6) != os
875 		 || i2c_smbus_read_byte_data(new_client, 7) != os)
876 			return -ENODEV;
877 	}
878 	/*
879 	 * It is very unlikely that this is a LM75 if both
880 	 * hysteresis and temperature limit registers are 0.
881 	 */
882 	if (hyst == 0 && os == 0)
883 		return -ENODEV;
884 
885 	/* Addresses cycling */
886 	for (i = 8; i <= 248; i += 40) {
887 		if (i2c_smbus_read_byte_data(new_client, i + 1) != conf
888 		 || i2c_smbus_read_byte_data(new_client, i + 2) != hyst
889 		 || i2c_smbus_read_byte_data(new_client, i + 3) != os)
890 			return -ENODEV;
891 		if (is_lm75a && i2c_smbus_read_byte_data(new_client, i + 7)
892 				!= LM75A_ID)
893 			return -ENODEV;
894 	}
895 
896 	strlcpy(info->type, is_lm75a ? "lm75a" : "lm75", I2C_NAME_SIZE);
897 
898 	return 0;
899 }
900 
901 #ifdef CONFIG_PM
902 static int lm75_suspend(struct device *dev)
903 {
904 	int status;
905 	struct i2c_client *client = to_i2c_client(dev);
906 
907 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
908 	if (status < 0) {
909 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
910 		return status;
911 	}
912 	status = status | LM75_SHUTDOWN;
913 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
914 	return 0;
915 }
916 
917 static int lm75_resume(struct device *dev)
918 {
919 	int status;
920 	struct i2c_client *client = to_i2c_client(dev);
921 
922 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
923 	if (status < 0) {
924 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
925 		return status;
926 	}
927 	status = status & ~LM75_SHUTDOWN;
928 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
929 	return 0;
930 }
931 
932 static const struct dev_pm_ops lm75_dev_pm_ops = {
933 	.suspend	= lm75_suspend,
934 	.resume		= lm75_resume,
935 };
936 #define LM75_DEV_PM_OPS (&lm75_dev_pm_ops)
937 #else
938 #define LM75_DEV_PM_OPS NULL
939 #endif /* CONFIG_PM */
940 
941 static struct i2c_driver lm75_driver = {
942 	.class		= I2C_CLASS_HWMON,
943 	.driver = {
944 		.name	= "lm75",
945 		.of_match_table = of_match_ptr(lm75_of_match),
946 		.pm	= LM75_DEV_PM_OPS,
947 	},
948 	.probe_new	= lm75_probe,
949 	.id_table	= lm75_ids,
950 	.detect		= lm75_detect,
951 	.address_list	= normal_i2c,
952 };
953 
954 module_i2c_driver(lm75_driver);
955 
956 MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
957 MODULE_DESCRIPTION("LM75 driver");
958 MODULE_LICENSE("GPL");
959