1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fschmd.c 4 * 5 * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com> 6 */ 7 8 /* 9 * Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes, 10 * Scylla, Heracles, Heimdall, Hades and Syleus chips 11 * 12 * Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6 13 * (candidate) fschmd drivers: 14 * Copyright (C) 2006 Thilo Cestonaro 15 * <thilo.cestonaro.external@fujitsu-siemens.com> 16 * Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch> 17 * Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de> 18 * Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de> 19 * Copyright (C) 2000 Hermann Jung <hej@odn.de> 20 */ 21 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/i2c.h> 27 #include <linux/hwmon.h> 28 #include <linux/hwmon-sysfs.h> 29 #include <linux/err.h> 30 #include <linux/mutex.h> 31 #include <linux/sysfs.h> 32 #include <linux/dmi.h> 33 #include <linux/fs.h> 34 #include <linux/watchdog.h> 35 #include <linux/miscdevice.h> 36 #include <linux/uaccess.h> 37 #include <linux/kref.h> 38 39 /* Addresses to scan */ 40 static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END }; 41 42 /* Insmod parameters */ 43 static bool nowayout = WATCHDOG_NOWAYOUT; 44 module_param(nowayout, bool, 0); 45 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" 46 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); 47 48 enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl }; 49 50 /* 51 * The FSCHMD registers and other defines 52 */ 53 54 /* chip identification */ 55 #define FSCHMD_REG_IDENT_0 0x00 56 #define FSCHMD_REG_IDENT_1 0x01 57 #define FSCHMD_REG_IDENT_2 0x02 58 #define FSCHMD_REG_REVISION 0x03 59 60 /* global control and status */ 61 #define FSCHMD_REG_EVENT_STATE 0x04 62 #define FSCHMD_REG_CONTROL 0x05 63 64 #define FSCHMD_CONTROL_ALERT_LED 0x01 65 66 /* watchdog */ 67 static const u8 FSCHMD_REG_WDOG_CONTROL[7] = { 68 0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 }; 69 static const u8 FSCHMD_REG_WDOG_STATE[7] = { 70 0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 }; 71 static const u8 FSCHMD_REG_WDOG_PRESET[7] = { 72 0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a }; 73 74 #define FSCHMD_WDOG_CONTROL_TRIGGER 0x10 75 #define FSCHMD_WDOG_CONTROL_STARTED 0x10 /* the same as trigger */ 76 #define FSCHMD_WDOG_CONTROL_STOP 0x20 77 #define FSCHMD_WDOG_CONTROL_RESOLUTION 0x40 78 79 #define FSCHMD_WDOG_STATE_CARDRESET 0x02 80 81 /* voltages, weird order is to keep the same order as the old drivers */ 82 static const u8 FSCHMD_REG_VOLT[7][6] = { 83 { 0x45, 0x42, 0x48 }, /* pos */ 84 { 0x45, 0x42, 0x48 }, /* her */ 85 { 0x45, 0x42, 0x48 }, /* scy */ 86 { 0x45, 0x42, 0x48 }, /* hrc */ 87 { 0x45, 0x42, 0x48 }, /* hmd */ 88 { 0x21, 0x20, 0x22 }, /* hds */ 89 { 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 }, /* syl */ 90 }; 91 92 static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 }; 93 94 /* 95 * minimum pwm at which the fan is driven (pwm can be increased depending on 96 * the temp. Notice that for the scy some fans share there minimum speed. 97 * Also notice that with the scy the sensor order is different than with the 98 * other chips, this order was in the 2.4 driver and kept for consistency. 99 */ 100 static const u8 FSCHMD_REG_FAN_MIN[7][7] = { 101 { 0x55, 0x65 }, /* pos */ 102 { 0x55, 0x65, 0xb5 }, /* her */ 103 { 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 }, /* scy */ 104 { 0x55, 0x65, 0xa5, 0xb5 }, /* hrc */ 105 { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hmd */ 106 { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hds */ 107 { 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 }, /* syl */ 108 }; 109 110 /* actual fan speed */ 111 static const u8 FSCHMD_REG_FAN_ACT[7][7] = { 112 { 0x0e, 0x6b, 0xab }, /* pos */ 113 { 0x0e, 0x6b, 0xbb }, /* her */ 114 { 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb }, /* scy */ 115 { 0x0e, 0x6b, 0xab, 0xbb }, /* hrc */ 116 { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hmd */ 117 { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hds */ 118 { 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 }, /* syl */ 119 }; 120 121 /* fan status registers */ 122 static const u8 FSCHMD_REG_FAN_STATE[7][7] = { 123 { 0x0d, 0x62, 0xa2 }, /* pos */ 124 { 0x0d, 0x62, 0xb2 }, /* her */ 125 { 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 }, /* scy */ 126 { 0x0d, 0x62, 0xa2, 0xb2 }, /* hrc */ 127 { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hmd */ 128 { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hds */ 129 { 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 }, /* syl */ 130 }; 131 132 /* fan ripple / divider registers */ 133 static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = { 134 { 0x0f, 0x6f, 0xaf }, /* pos */ 135 { 0x0f, 0x6f, 0xbf }, /* her */ 136 { 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf }, /* scy */ 137 { 0x0f, 0x6f, 0xaf, 0xbf }, /* hrc */ 138 { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hmd */ 139 { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hds */ 140 { 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 }, /* syl */ 141 }; 142 143 static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 }; 144 145 /* Fan status register bitmasks */ 146 #define FSCHMD_FAN_ALARM 0x04 /* called fault by FSC! */ 147 #define FSCHMD_FAN_NOT_PRESENT 0x08 148 #define FSCHMD_FAN_DISABLED 0x80 149 150 151 /* actual temperature registers */ 152 static const u8 FSCHMD_REG_TEMP_ACT[7][11] = { 153 { 0x64, 0x32, 0x35 }, /* pos */ 154 { 0x64, 0x32, 0x35 }, /* her */ 155 { 0x64, 0xD0, 0x32, 0x35 }, /* scy */ 156 { 0x64, 0x32, 0x35 }, /* hrc */ 157 { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hmd */ 158 { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hds */ 159 { 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8, /* syl */ 160 0xb8, 0xc8, 0xd8, 0xe8, 0xf8 }, 161 }; 162 163 /* temperature state registers */ 164 static const u8 FSCHMD_REG_TEMP_STATE[7][11] = { 165 { 0x71, 0x81, 0x91 }, /* pos */ 166 { 0x71, 0x81, 0x91 }, /* her */ 167 { 0x71, 0xd1, 0x81, 0x91 }, /* scy */ 168 { 0x71, 0x81, 0x91 }, /* hrc */ 169 { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hmd */ 170 { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hds */ 171 { 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9, /* syl */ 172 0xb9, 0xc9, 0xd9, 0xe9, 0xf9 }, 173 }; 174 175 /* 176 * temperature high limit registers, FSC does not document these. Proven to be 177 * there with field testing on the fscher and fschrc, already supported / used 178 * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers 179 * at these addresses, but doesn't want to confirm they are the same as with 180 * the fscher?? 181 */ 182 static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = { 183 { 0, 0, 0 }, /* pos */ 184 { 0x76, 0x86, 0x96 }, /* her */ 185 { 0x76, 0xd6, 0x86, 0x96 }, /* scy */ 186 { 0x76, 0x86, 0x96 }, /* hrc */ 187 { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hmd */ 188 { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hds */ 189 { 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa, /* syl */ 190 0xba, 0xca, 0xda, 0xea, 0xfa }, 191 }; 192 193 /* 194 * These were found through experimenting with an fscher, currently they are 195 * not used, but we keep them around for future reference. 196 * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc), 197 * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence 198 * the fan speed. 199 * static const u8 FSCHER_REG_TEMP_AUTOP1[] = { 0x73, 0x83, 0x93 }; 200 * static const u8 FSCHER_REG_TEMP_AUTOP2[] = { 0x75, 0x85, 0x95 }; 201 */ 202 203 static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 }; 204 205 /* temp status register bitmasks */ 206 #define FSCHMD_TEMP_WORKING 0x01 207 #define FSCHMD_TEMP_ALERT 0x02 208 #define FSCHMD_TEMP_DISABLED 0x80 209 /* there only really is an alarm if the sensor is working and alert == 1 */ 210 #define FSCHMD_TEMP_ALARM_MASK \ 211 (FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT) 212 213 /* 214 * Functions declarations 215 */ 216 217 static int fschmd_probe(struct i2c_client *client, 218 const struct i2c_device_id *id); 219 static int fschmd_detect(struct i2c_client *client, 220 struct i2c_board_info *info); 221 static int fschmd_remove(struct i2c_client *client); 222 static struct fschmd_data *fschmd_update_device(struct device *dev); 223 224 /* 225 * Driver data (common to all clients) 226 */ 227 228 static const struct i2c_device_id fschmd_id[] = { 229 { "fscpos", fscpos }, 230 { "fscher", fscher }, 231 { "fscscy", fscscy }, 232 { "fschrc", fschrc }, 233 { "fschmd", fschmd }, 234 { "fschds", fschds }, 235 { "fscsyl", fscsyl }, 236 { } 237 }; 238 MODULE_DEVICE_TABLE(i2c, fschmd_id); 239 240 static struct i2c_driver fschmd_driver = { 241 .class = I2C_CLASS_HWMON, 242 .driver = { 243 .name = "fschmd", 244 }, 245 .probe = fschmd_probe, 246 .remove = fschmd_remove, 247 .id_table = fschmd_id, 248 .detect = fschmd_detect, 249 .address_list = normal_i2c, 250 }; 251 252 /* 253 * Client data (each client gets its own) 254 */ 255 256 struct fschmd_data { 257 struct i2c_client *client; 258 struct device *hwmon_dev; 259 struct mutex update_lock; 260 struct mutex watchdog_lock; 261 struct list_head list; /* member of the watchdog_data_list */ 262 struct kref kref; 263 struct miscdevice watchdog_miscdev; 264 enum chips kind; 265 unsigned long watchdog_is_open; 266 char watchdog_expect_close; 267 char watchdog_name[10]; /* must be unique to avoid sysfs conflict */ 268 char valid; /* zero until following fields are valid */ 269 unsigned long last_updated; /* in jiffies */ 270 271 /* register values */ 272 u8 revision; /* chip revision */ 273 u8 global_control; /* global control register */ 274 u8 watchdog_control; /* watchdog control register */ 275 u8 watchdog_state; /* watchdog status register */ 276 u8 watchdog_preset; /* watchdog counter preset on trigger val */ 277 u8 volt[6]; /* voltage */ 278 u8 temp_act[11]; /* temperature */ 279 u8 temp_status[11]; /* status of sensor */ 280 u8 temp_max[11]; /* high temp limit, notice: undocumented! */ 281 u8 fan_act[7]; /* fans revolutions per second */ 282 u8 fan_status[7]; /* fan status */ 283 u8 fan_min[7]; /* fan min value for rps */ 284 u8 fan_ripple[7]; /* divider for rps */ 285 }; 286 287 /* 288 * Global variables to hold information read from special DMI tables, which are 289 * available on FSC machines with an fscher or later chip. There is no need to 290 * protect these with a lock as they are only modified from our attach function 291 * which always gets called with the i2c-core lock held and never accessed 292 * before the attach function is done with them. 293 */ 294 static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 }; 295 static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 }; 296 static int dmi_vref = -1; 297 298 /* 299 * Somewhat ugly :( global data pointer list with all fschmd devices, so that 300 * we can find our device data as when using misc_register there is no other 301 * method to get to ones device data from the open fop. 302 */ 303 static LIST_HEAD(watchdog_data_list); 304 /* Note this lock not only protect list access, but also data.kref access */ 305 static DEFINE_MUTEX(watchdog_data_mutex); 306 307 /* 308 * Release our data struct when we're detached from the i2c client *and* all 309 * references to our watchdog device are released 310 */ 311 static void fschmd_release_resources(struct kref *ref) 312 { 313 struct fschmd_data *data = container_of(ref, struct fschmd_data, kref); 314 kfree(data); 315 } 316 317 /* 318 * Sysfs attr show / store functions 319 */ 320 321 static ssize_t in_value_show(struct device *dev, 322 struct device_attribute *devattr, char *buf) 323 { 324 const int max_reading[3] = { 14200, 6600, 3300 }; 325 int index = to_sensor_dev_attr(devattr)->index; 326 struct fschmd_data *data = fschmd_update_device(dev); 327 328 if (data->kind == fscher || data->kind >= fschrc) 329 return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref * 330 dmi_mult[index]) / 255 + dmi_offset[index]); 331 else 332 return sprintf(buf, "%d\n", (data->volt[index] * 333 max_reading[index] + 128) / 255); 334 } 335 336 337 #define TEMP_FROM_REG(val) (((val) - 128) * 1000) 338 339 static ssize_t temp_value_show(struct device *dev, 340 struct device_attribute *devattr, char *buf) 341 { 342 int index = to_sensor_dev_attr(devattr)->index; 343 struct fschmd_data *data = fschmd_update_device(dev); 344 345 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index])); 346 } 347 348 static ssize_t temp_max_show(struct device *dev, 349 struct device_attribute *devattr, char *buf) 350 { 351 int index = to_sensor_dev_attr(devattr)->index; 352 struct fschmd_data *data = fschmd_update_device(dev); 353 354 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index])); 355 } 356 357 static ssize_t temp_max_store(struct device *dev, 358 struct device_attribute *devattr, 359 const char *buf, size_t count) 360 { 361 int index = to_sensor_dev_attr(devattr)->index; 362 struct fschmd_data *data = dev_get_drvdata(dev); 363 long v; 364 int err; 365 366 err = kstrtol(buf, 10, &v); 367 if (err) 368 return err; 369 370 v = clamp_val(v / 1000, -128, 127) + 128; 371 372 mutex_lock(&data->update_lock); 373 i2c_smbus_write_byte_data(to_i2c_client(dev), 374 FSCHMD_REG_TEMP_LIMIT[data->kind][index], v); 375 data->temp_max[index] = v; 376 mutex_unlock(&data->update_lock); 377 378 return count; 379 } 380 381 static ssize_t temp_fault_show(struct device *dev, 382 struct device_attribute *devattr, char *buf) 383 { 384 int index = to_sensor_dev_attr(devattr)->index; 385 struct fschmd_data *data = fschmd_update_device(dev); 386 387 /* bit 0 set means sensor working ok, so no fault! */ 388 if (data->temp_status[index] & FSCHMD_TEMP_WORKING) 389 return sprintf(buf, "0\n"); 390 else 391 return sprintf(buf, "1\n"); 392 } 393 394 static ssize_t temp_alarm_show(struct device *dev, 395 struct device_attribute *devattr, char *buf) 396 { 397 int index = to_sensor_dev_attr(devattr)->index; 398 struct fschmd_data *data = fschmd_update_device(dev); 399 400 if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) == 401 FSCHMD_TEMP_ALARM_MASK) 402 return sprintf(buf, "1\n"); 403 else 404 return sprintf(buf, "0\n"); 405 } 406 407 408 #define RPM_FROM_REG(val) ((val) * 60) 409 410 static ssize_t fan_value_show(struct device *dev, 411 struct device_attribute *devattr, char *buf) 412 { 413 int index = to_sensor_dev_attr(devattr)->index; 414 struct fschmd_data *data = fschmd_update_device(dev); 415 416 return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index])); 417 } 418 419 static ssize_t fan_div_show(struct device *dev, 420 struct device_attribute *devattr, char *buf) 421 { 422 int index = to_sensor_dev_attr(devattr)->index; 423 struct fschmd_data *data = fschmd_update_device(dev); 424 425 /* bits 2..7 reserved => mask with 3 */ 426 return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3)); 427 } 428 429 static ssize_t fan_div_store(struct device *dev, 430 struct device_attribute *devattr, 431 const char *buf, size_t count) 432 { 433 u8 reg; 434 int index = to_sensor_dev_attr(devattr)->index; 435 struct fschmd_data *data = dev_get_drvdata(dev); 436 /* supported values: 2, 4, 8 */ 437 unsigned long v; 438 int err; 439 440 err = kstrtoul(buf, 10, &v); 441 if (err) 442 return err; 443 444 switch (v) { 445 case 2: 446 v = 1; 447 break; 448 case 4: 449 v = 2; 450 break; 451 case 8: 452 v = 3; 453 break; 454 default: 455 dev_err(dev, 456 "fan_div value %lu not supported. Choose one of 2, 4 or 8!\n", 457 v); 458 return -EINVAL; 459 } 460 461 mutex_lock(&data->update_lock); 462 463 reg = i2c_smbus_read_byte_data(to_i2c_client(dev), 464 FSCHMD_REG_FAN_RIPPLE[data->kind][index]); 465 466 /* bits 2..7 reserved => mask with 0x03 */ 467 reg &= ~0x03; 468 reg |= v; 469 470 i2c_smbus_write_byte_data(to_i2c_client(dev), 471 FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg); 472 473 data->fan_ripple[index] = reg; 474 475 mutex_unlock(&data->update_lock); 476 477 return count; 478 } 479 480 static ssize_t fan_alarm_show(struct device *dev, 481 struct device_attribute *devattr, char *buf) 482 { 483 int index = to_sensor_dev_attr(devattr)->index; 484 struct fschmd_data *data = fschmd_update_device(dev); 485 486 if (data->fan_status[index] & FSCHMD_FAN_ALARM) 487 return sprintf(buf, "1\n"); 488 else 489 return sprintf(buf, "0\n"); 490 } 491 492 static ssize_t fan_fault_show(struct device *dev, 493 struct device_attribute *devattr, char *buf) 494 { 495 int index = to_sensor_dev_attr(devattr)->index; 496 struct fschmd_data *data = fschmd_update_device(dev); 497 498 if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT) 499 return sprintf(buf, "1\n"); 500 else 501 return sprintf(buf, "0\n"); 502 } 503 504 505 static ssize_t pwm_auto_point1_pwm_show(struct device *dev, 506 struct device_attribute *devattr, 507 char *buf) 508 { 509 int index = to_sensor_dev_attr(devattr)->index; 510 struct fschmd_data *data = fschmd_update_device(dev); 511 int val = data->fan_min[index]; 512 513 /* 0 = allow turning off (except on the syl), 1-255 = 50-100% */ 514 if (val || data->kind == fscsyl) 515 val = val / 2 + 128; 516 517 return sprintf(buf, "%d\n", val); 518 } 519 520 static ssize_t pwm_auto_point1_pwm_store(struct device *dev, 521 struct device_attribute *devattr, 522 const char *buf, size_t count) 523 { 524 int index = to_sensor_dev_attr(devattr)->index; 525 struct fschmd_data *data = dev_get_drvdata(dev); 526 unsigned long v; 527 int err; 528 529 err = kstrtoul(buf, 10, &v); 530 if (err) 531 return err; 532 533 /* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */ 534 if (v || data->kind == fscsyl) { 535 v = clamp_val(v, 128, 255); 536 v = (v - 128) * 2 + 1; 537 } 538 539 mutex_lock(&data->update_lock); 540 541 i2c_smbus_write_byte_data(to_i2c_client(dev), 542 FSCHMD_REG_FAN_MIN[data->kind][index], v); 543 data->fan_min[index] = v; 544 545 mutex_unlock(&data->update_lock); 546 547 return count; 548 } 549 550 551 /* 552 * The FSC hwmon family has the ability to force an attached alert led to flash 553 * from software, we export this as an alert_led sysfs attr 554 */ 555 static ssize_t alert_led_show(struct device *dev, 556 struct device_attribute *devattr, char *buf) 557 { 558 struct fschmd_data *data = fschmd_update_device(dev); 559 560 if (data->global_control & FSCHMD_CONTROL_ALERT_LED) 561 return sprintf(buf, "1\n"); 562 else 563 return sprintf(buf, "0\n"); 564 } 565 566 static ssize_t alert_led_store(struct device *dev, 567 struct device_attribute *devattr, const char *buf, size_t count) 568 { 569 u8 reg; 570 struct fschmd_data *data = dev_get_drvdata(dev); 571 unsigned long v; 572 int err; 573 574 err = kstrtoul(buf, 10, &v); 575 if (err) 576 return err; 577 578 mutex_lock(&data->update_lock); 579 580 reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL); 581 582 if (v) 583 reg |= FSCHMD_CONTROL_ALERT_LED; 584 else 585 reg &= ~FSCHMD_CONTROL_ALERT_LED; 586 587 i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg); 588 589 data->global_control = reg; 590 591 mutex_unlock(&data->update_lock); 592 593 return count; 594 } 595 596 static DEVICE_ATTR_RW(alert_led); 597 598 static struct sensor_device_attribute fschmd_attr[] = { 599 SENSOR_ATTR_RO(in0_input, in_value, 0), 600 SENSOR_ATTR_RO(in1_input, in_value, 1), 601 SENSOR_ATTR_RO(in2_input, in_value, 2), 602 SENSOR_ATTR_RO(in3_input, in_value, 3), 603 SENSOR_ATTR_RO(in4_input, in_value, 4), 604 SENSOR_ATTR_RO(in5_input, in_value, 5), 605 }; 606 607 static struct sensor_device_attribute fschmd_temp_attr[] = { 608 SENSOR_ATTR_RO(temp1_input, temp_value, 0), 609 SENSOR_ATTR_RW(temp1_max, temp_max, 0), 610 SENSOR_ATTR_RO(temp1_fault, temp_fault, 0), 611 SENSOR_ATTR_RO(temp1_alarm, temp_alarm, 0), 612 SENSOR_ATTR_RO(temp2_input, temp_value, 1), 613 SENSOR_ATTR_RW(temp2_max, temp_max, 1), 614 SENSOR_ATTR_RO(temp2_fault, temp_fault, 1), 615 SENSOR_ATTR_RO(temp2_alarm, temp_alarm, 1), 616 SENSOR_ATTR_RO(temp3_input, temp_value, 2), 617 SENSOR_ATTR_RW(temp3_max, temp_max, 2), 618 SENSOR_ATTR_RO(temp3_fault, temp_fault, 2), 619 SENSOR_ATTR_RO(temp3_alarm, temp_alarm, 2), 620 SENSOR_ATTR_RO(temp4_input, temp_value, 3), 621 SENSOR_ATTR_RW(temp4_max, temp_max, 3), 622 SENSOR_ATTR_RO(temp4_fault, temp_fault, 3), 623 SENSOR_ATTR_RO(temp4_alarm, temp_alarm, 3), 624 SENSOR_ATTR_RO(temp5_input, temp_value, 4), 625 SENSOR_ATTR_RW(temp5_max, temp_max, 4), 626 SENSOR_ATTR_RO(temp5_fault, temp_fault, 4), 627 SENSOR_ATTR_RO(temp5_alarm, temp_alarm, 4), 628 SENSOR_ATTR_RO(temp6_input, temp_value, 5), 629 SENSOR_ATTR_RW(temp6_max, temp_max, 5), 630 SENSOR_ATTR_RO(temp6_fault, temp_fault, 5), 631 SENSOR_ATTR_RO(temp6_alarm, temp_alarm, 5), 632 SENSOR_ATTR_RO(temp7_input, temp_value, 6), 633 SENSOR_ATTR_RW(temp7_max, temp_max, 6), 634 SENSOR_ATTR_RO(temp7_fault, temp_fault, 6), 635 SENSOR_ATTR_RO(temp7_alarm, temp_alarm, 6), 636 SENSOR_ATTR_RO(temp8_input, temp_value, 7), 637 SENSOR_ATTR_RW(temp8_max, temp_max, 7), 638 SENSOR_ATTR_RO(temp8_fault, temp_fault, 7), 639 SENSOR_ATTR_RO(temp8_alarm, temp_alarm, 7), 640 SENSOR_ATTR_RO(temp9_input, temp_value, 8), 641 SENSOR_ATTR_RW(temp9_max, temp_max, 8), 642 SENSOR_ATTR_RO(temp9_fault, temp_fault, 8), 643 SENSOR_ATTR_RO(temp9_alarm, temp_alarm, 8), 644 SENSOR_ATTR_RO(temp10_input, temp_value, 9), 645 SENSOR_ATTR_RW(temp10_max, temp_max, 9), 646 SENSOR_ATTR_RO(temp10_fault, temp_fault, 9), 647 SENSOR_ATTR_RO(temp10_alarm, temp_alarm, 9), 648 SENSOR_ATTR_RO(temp11_input, temp_value, 10), 649 SENSOR_ATTR_RW(temp11_max, temp_max, 10), 650 SENSOR_ATTR_RO(temp11_fault, temp_fault, 10), 651 SENSOR_ATTR_RO(temp11_alarm, temp_alarm, 10), 652 }; 653 654 static struct sensor_device_attribute fschmd_fan_attr[] = { 655 SENSOR_ATTR_RO(fan1_input, fan_value, 0), 656 SENSOR_ATTR_RW(fan1_div, fan_div, 0), 657 SENSOR_ATTR_RO(fan1_alarm, fan_alarm, 0), 658 SENSOR_ATTR_RO(fan1_fault, fan_fault, 0), 659 SENSOR_ATTR_RW(pwm1_auto_point1_pwm, pwm_auto_point1_pwm, 0), 660 SENSOR_ATTR_RO(fan2_input, fan_value, 1), 661 SENSOR_ATTR_RW(fan2_div, fan_div, 1), 662 SENSOR_ATTR_RO(fan2_alarm, fan_alarm, 1), 663 SENSOR_ATTR_RO(fan2_fault, fan_fault, 1), 664 SENSOR_ATTR_RW(pwm2_auto_point1_pwm, pwm_auto_point1_pwm, 1), 665 SENSOR_ATTR_RO(fan3_input, fan_value, 2), 666 SENSOR_ATTR_RW(fan3_div, fan_div, 2), 667 SENSOR_ATTR_RO(fan3_alarm, fan_alarm, 2), 668 SENSOR_ATTR_RO(fan3_fault, fan_fault, 2), 669 SENSOR_ATTR_RW(pwm3_auto_point1_pwm, pwm_auto_point1_pwm, 2), 670 SENSOR_ATTR_RO(fan4_input, fan_value, 3), 671 SENSOR_ATTR_RW(fan4_div, fan_div, 3), 672 SENSOR_ATTR_RO(fan4_alarm, fan_alarm, 3), 673 SENSOR_ATTR_RO(fan4_fault, fan_fault, 3), 674 SENSOR_ATTR_RW(pwm4_auto_point1_pwm, pwm_auto_point1_pwm, 3), 675 SENSOR_ATTR_RO(fan5_input, fan_value, 4), 676 SENSOR_ATTR_RW(fan5_div, fan_div, 4), 677 SENSOR_ATTR_RO(fan5_alarm, fan_alarm, 4), 678 SENSOR_ATTR_RO(fan5_fault, fan_fault, 4), 679 SENSOR_ATTR_RW(pwm5_auto_point1_pwm, pwm_auto_point1_pwm, 4), 680 SENSOR_ATTR_RO(fan6_input, fan_value, 5), 681 SENSOR_ATTR_RW(fan6_div, fan_div, 5), 682 SENSOR_ATTR_RO(fan6_alarm, fan_alarm, 5), 683 SENSOR_ATTR_RO(fan6_fault, fan_fault, 5), 684 SENSOR_ATTR_RW(pwm6_auto_point1_pwm, pwm_auto_point1_pwm, 5), 685 SENSOR_ATTR_RO(fan7_input, fan_value, 6), 686 SENSOR_ATTR_RW(fan7_div, fan_div, 6), 687 SENSOR_ATTR_RO(fan7_alarm, fan_alarm, 6), 688 SENSOR_ATTR_RO(fan7_fault, fan_fault, 6), 689 SENSOR_ATTR_RW(pwm7_auto_point1_pwm, pwm_auto_point1_pwm, 6), 690 }; 691 692 693 /* 694 * Watchdog routines 695 */ 696 697 static int watchdog_set_timeout(struct fschmd_data *data, int timeout) 698 { 699 int ret, resolution; 700 int kind = data->kind + 1; /* 0-x array index -> 1-x module param */ 701 702 /* 2 second or 60 second resolution? */ 703 if (timeout <= 510 || kind == fscpos || kind == fscscy) 704 resolution = 2; 705 else 706 resolution = 60; 707 708 if (timeout < resolution || timeout > (resolution * 255)) 709 return -EINVAL; 710 711 mutex_lock(&data->watchdog_lock); 712 if (!data->client) { 713 ret = -ENODEV; 714 goto leave; 715 } 716 717 if (resolution == 2) 718 data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION; 719 else 720 data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION; 721 722 data->watchdog_preset = DIV_ROUND_UP(timeout, resolution); 723 724 /* Write new timeout value */ 725 i2c_smbus_write_byte_data(data->client, 726 FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset); 727 /* Write new control register, do not trigger! */ 728 i2c_smbus_write_byte_data(data->client, 729 FSCHMD_REG_WDOG_CONTROL[data->kind], 730 data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER); 731 732 ret = data->watchdog_preset * resolution; 733 734 leave: 735 mutex_unlock(&data->watchdog_lock); 736 return ret; 737 } 738 739 static int watchdog_get_timeout(struct fschmd_data *data) 740 { 741 int timeout; 742 743 mutex_lock(&data->watchdog_lock); 744 if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION) 745 timeout = data->watchdog_preset * 60; 746 else 747 timeout = data->watchdog_preset * 2; 748 mutex_unlock(&data->watchdog_lock); 749 750 return timeout; 751 } 752 753 static int watchdog_trigger(struct fschmd_data *data) 754 { 755 int ret = 0; 756 757 mutex_lock(&data->watchdog_lock); 758 if (!data->client) { 759 ret = -ENODEV; 760 goto leave; 761 } 762 763 data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER; 764 i2c_smbus_write_byte_data(data->client, 765 FSCHMD_REG_WDOG_CONTROL[data->kind], 766 data->watchdog_control); 767 leave: 768 mutex_unlock(&data->watchdog_lock); 769 return ret; 770 } 771 772 static int watchdog_stop(struct fschmd_data *data) 773 { 774 int ret = 0; 775 776 mutex_lock(&data->watchdog_lock); 777 if (!data->client) { 778 ret = -ENODEV; 779 goto leave; 780 } 781 782 data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED; 783 /* 784 * Don't store the stop flag in our watchdog control register copy, as 785 * its a write only bit (read always returns 0) 786 */ 787 i2c_smbus_write_byte_data(data->client, 788 FSCHMD_REG_WDOG_CONTROL[data->kind], 789 data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP); 790 leave: 791 mutex_unlock(&data->watchdog_lock); 792 return ret; 793 } 794 795 static int watchdog_open(struct inode *inode, struct file *filp) 796 { 797 struct fschmd_data *pos, *data = NULL; 798 int watchdog_is_open; 799 800 /* 801 * We get called from drivers/char/misc.c with misc_mtx hold, and we 802 * call misc_register() from fschmd_probe() with watchdog_data_mutex 803 * hold, as misc_register() takes the misc_mtx lock, this is a possible 804 * deadlock, so we use mutex_trylock here. 805 */ 806 if (!mutex_trylock(&watchdog_data_mutex)) 807 return -ERESTARTSYS; 808 list_for_each_entry(pos, &watchdog_data_list, list) { 809 if (pos->watchdog_miscdev.minor == iminor(inode)) { 810 data = pos; 811 break; 812 } 813 } 814 /* Note we can never not have found data, so we don't check for this */ 815 watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open); 816 if (!watchdog_is_open) 817 kref_get(&data->kref); 818 mutex_unlock(&watchdog_data_mutex); 819 820 if (watchdog_is_open) 821 return -EBUSY; 822 823 /* Start the watchdog */ 824 watchdog_trigger(data); 825 filp->private_data = data; 826 827 return stream_open(inode, filp); 828 } 829 830 static int watchdog_release(struct inode *inode, struct file *filp) 831 { 832 struct fschmd_data *data = filp->private_data; 833 834 if (data->watchdog_expect_close) { 835 watchdog_stop(data); 836 data->watchdog_expect_close = 0; 837 } else { 838 watchdog_trigger(data); 839 dev_crit(&data->client->dev, 840 "unexpected close, not stopping watchdog!\n"); 841 } 842 843 clear_bit(0, &data->watchdog_is_open); 844 845 mutex_lock(&watchdog_data_mutex); 846 kref_put(&data->kref, fschmd_release_resources); 847 mutex_unlock(&watchdog_data_mutex); 848 849 return 0; 850 } 851 852 static ssize_t watchdog_write(struct file *filp, const char __user *buf, 853 size_t count, loff_t *offset) 854 { 855 int ret; 856 struct fschmd_data *data = filp->private_data; 857 858 if (count) { 859 if (!nowayout) { 860 size_t i; 861 862 /* Clear it in case it was set with a previous write */ 863 data->watchdog_expect_close = 0; 864 865 for (i = 0; i != count; i++) { 866 char c; 867 if (get_user(c, buf + i)) 868 return -EFAULT; 869 if (c == 'V') 870 data->watchdog_expect_close = 1; 871 } 872 } 873 ret = watchdog_trigger(data); 874 if (ret < 0) 875 return ret; 876 } 877 return count; 878 } 879 880 static long watchdog_ioctl(struct file *filp, unsigned int cmd, 881 unsigned long arg) 882 { 883 struct watchdog_info ident = { 884 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | 885 WDIOF_CARDRESET, 886 .identity = "FSC watchdog" 887 }; 888 int i, ret = 0; 889 struct fschmd_data *data = filp->private_data; 890 891 switch (cmd) { 892 case WDIOC_GETSUPPORT: 893 ident.firmware_version = data->revision; 894 if (!nowayout) 895 ident.options |= WDIOF_MAGICCLOSE; 896 if (copy_to_user((void __user *)arg, &ident, sizeof(ident))) 897 ret = -EFAULT; 898 break; 899 900 case WDIOC_GETSTATUS: 901 ret = put_user(0, (int __user *)arg); 902 break; 903 904 case WDIOC_GETBOOTSTATUS: 905 if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET) 906 ret = put_user(WDIOF_CARDRESET, (int __user *)arg); 907 else 908 ret = put_user(0, (int __user *)arg); 909 break; 910 911 case WDIOC_KEEPALIVE: 912 ret = watchdog_trigger(data); 913 break; 914 915 case WDIOC_GETTIMEOUT: 916 i = watchdog_get_timeout(data); 917 ret = put_user(i, (int __user *)arg); 918 break; 919 920 case WDIOC_SETTIMEOUT: 921 if (get_user(i, (int __user *)arg)) { 922 ret = -EFAULT; 923 break; 924 } 925 ret = watchdog_set_timeout(data, i); 926 if (ret > 0) 927 ret = put_user(ret, (int __user *)arg); 928 break; 929 930 case WDIOC_SETOPTIONS: 931 if (get_user(i, (int __user *)arg)) { 932 ret = -EFAULT; 933 break; 934 } 935 936 if (i & WDIOS_DISABLECARD) 937 ret = watchdog_stop(data); 938 else if (i & WDIOS_ENABLECARD) 939 ret = watchdog_trigger(data); 940 else 941 ret = -EINVAL; 942 943 break; 944 default: 945 ret = -ENOTTY; 946 } 947 return ret; 948 } 949 950 static const struct file_operations watchdog_fops = { 951 .owner = THIS_MODULE, 952 .llseek = no_llseek, 953 .open = watchdog_open, 954 .release = watchdog_release, 955 .write = watchdog_write, 956 .unlocked_ioctl = watchdog_ioctl, 957 }; 958 959 960 /* 961 * Detect, register, unregister and update device functions 962 */ 963 964 /* 965 * DMI decode routine to read voltage scaling factors from special DMI tables, 966 * which are available on FSC machines with an fscher or later chip. 967 */ 968 static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy) 969 { 970 int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0; 971 972 /* 973 * dmi code ugliness, we get passed the address of the contents of 974 * a complete DMI record, but in the form of a dmi_header pointer, in 975 * reality this address holds header->length bytes of which the header 976 * are the first 4 bytes 977 */ 978 u8 *dmi_data = (u8 *)header; 979 980 /* We are looking for OEM-specific type 185 */ 981 if (header->type != 185) 982 return; 983 984 /* 985 * we are looking for what Siemens calls "subtype" 19, the subtype 986 * is stored in byte 5 of the dmi block 987 */ 988 if (header->length < 5 || dmi_data[4] != 19) 989 return; 990 991 /* 992 * After the subtype comes 1 unknown byte and then blocks of 5 bytes, 993 * consisting of what Siemens calls an "Entity" number, followed by 994 * 2 16-bit words in LSB first order 995 */ 996 for (i = 6; (i + 4) < header->length; i += 5) { 997 /* entity 1 - 3: voltage multiplier and offset */ 998 if (dmi_data[i] >= 1 && dmi_data[i] <= 3) { 999 /* Our in sensors order and the DMI order differ */ 1000 const int shuffle[3] = { 1, 0, 2 }; 1001 int in = shuffle[dmi_data[i] - 1]; 1002 1003 /* Check for twice the same entity */ 1004 if (found & (1 << in)) 1005 return; 1006 1007 mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8); 1008 offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8); 1009 1010 found |= 1 << in; 1011 } 1012 1013 /* entity 7: reference voltage */ 1014 if (dmi_data[i] == 7) { 1015 /* Check for twice the same entity */ 1016 if (found & 0x08) 1017 return; 1018 1019 vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8); 1020 1021 found |= 0x08; 1022 } 1023 } 1024 1025 if (found == 0x0F) { 1026 for (i = 0; i < 3; i++) { 1027 dmi_mult[i] = mult[i] * 10; 1028 dmi_offset[i] = offset[i] * 10; 1029 } 1030 /* 1031 * According to the docs there should be separate dmi entries 1032 * for the mult's and offsets of in3-5 of the syl, but on 1033 * my test machine these are not present 1034 */ 1035 dmi_mult[3] = dmi_mult[2]; 1036 dmi_mult[4] = dmi_mult[1]; 1037 dmi_mult[5] = dmi_mult[2]; 1038 dmi_offset[3] = dmi_offset[2]; 1039 dmi_offset[4] = dmi_offset[1]; 1040 dmi_offset[5] = dmi_offset[2]; 1041 dmi_vref = vref; 1042 } 1043 } 1044 1045 static int fschmd_detect(struct i2c_client *client, 1046 struct i2c_board_info *info) 1047 { 1048 enum chips kind; 1049 struct i2c_adapter *adapter = client->adapter; 1050 char id[4]; 1051 1052 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1053 return -ENODEV; 1054 1055 /* Detect & Identify the chip */ 1056 id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0); 1057 id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1); 1058 id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2); 1059 id[3] = '\0'; 1060 1061 if (!strcmp(id, "PEG")) 1062 kind = fscpos; 1063 else if (!strcmp(id, "HER")) 1064 kind = fscher; 1065 else if (!strcmp(id, "SCY")) 1066 kind = fscscy; 1067 else if (!strcmp(id, "HRC")) 1068 kind = fschrc; 1069 else if (!strcmp(id, "HMD")) 1070 kind = fschmd; 1071 else if (!strcmp(id, "HDS")) 1072 kind = fschds; 1073 else if (!strcmp(id, "SYL")) 1074 kind = fscsyl; 1075 else 1076 return -ENODEV; 1077 1078 strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE); 1079 1080 return 0; 1081 } 1082 1083 static int fschmd_probe(struct i2c_client *client, 1084 const struct i2c_device_id *id) 1085 { 1086 struct fschmd_data *data; 1087 const char * const names[7] = { "Poseidon", "Hermes", "Scylla", 1088 "Heracles", "Heimdall", "Hades", "Syleus" }; 1089 const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 }; 1090 int i, err; 1091 enum chips kind = id->driver_data; 1092 1093 data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL); 1094 if (!data) 1095 return -ENOMEM; 1096 1097 i2c_set_clientdata(client, data); 1098 mutex_init(&data->update_lock); 1099 mutex_init(&data->watchdog_lock); 1100 INIT_LIST_HEAD(&data->list); 1101 kref_init(&data->kref); 1102 /* 1103 * Store client pointer in our data struct for watchdog usage 1104 * (where the client is found through a data ptr instead of the 1105 * otherway around) 1106 */ 1107 data->client = client; 1108 data->kind = kind; 1109 1110 if (kind == fscpos) { 1111 /* 1112 * The Poseidon has hardwired temp limits, fill these 1113 * in for the alarm resetting code 1114 */ 1115 data->temp_max[0] = 70 + 128; 1116 data->temp_max[1] = 50 + 128; 1117 data->temp_max[2] = 50 + 128; 1118 } 1119 1120 /* Read the special DMI table for fscher and newer chips */ 1121 if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) { 1122 dmi_walk(fschmd_dmi_decode, NULL); 1123 if (dmi_vref == -1) { 1124 dev_warn(&client->dev, 1125 "Couldn't get voltage scaling factors from " 1126 "BIOS DMI table, using builtin defaults\n"); 1127 dmi_vref = 33; 1128 } 1129 } 1130 1131 /* Read in some never changing registers */ 1132 data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION); 1133 data->global_control = i2c_smbus_read_byte_data(client, 1134 FSCHMD_REG_CONTROL); 1135 data->watchdog_control = i2c_smbus_read_byte_data(client, 1136 FSCHMD_REG_WDOG_CONTROL[data->kind]); 1137 data->watchdog_state = i2c_smbus_read_byte_data(client, 1138 FSCHMD_REG_WDOG_STATE[data->kind]); 1139 data->watchdog_preset = i2c_smbus_read_byte_data(client, 1140 FSCHMD_REG_WDOG_PRESET[data->kind]); 1141 1142 err = device_create_file(&client->dev, &dev_attr_alert_led); 1143 if (err) 1144 goto exit_detach; 1145 1146 for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) { 1147 err = device_create_file(&client->dev, 1148 &fschmd_attr[i].dev_attr); 1149 if (err) 1150 goto exit_detach; 1151 } 1152 1153 for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) { 1154 /* Poseidon doesn't have TEMP_LIMIT registers */ 1155 if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show == 1156 temp_max_show) 1157 continue; 1158 1159 if (kind == fscsyl) { 1160 if (i % 4 == 0) 1161 data->temp_status[i / 4] = 1162 i2c_smbus_read_byte_data(client, 1163 FSCHMD_REG_TEMP_STATE 1164 [data->kind][i / 4]); 1165 if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED) 1166 continue; 1167 } 1168 1169 err = device_create_file(&client->dev, 1170 &fschmd_temp_attr[i].dev_attr); 1171 if (err) 1172 goto exit_detach; 1173 } 1174 1175 for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) { 1176 /* Poseidon doesn't have a FAN_MIN register for its 3rd fan */ 1177 if (kind == fscpos && 1178 !strcmp(fschmd_fan_attr[i].dev_attr.attr.name, 1179 "pwm3_auto_point1_pwm")) 1180 continue; 1181 1182 if (kind == fscsyl) { 1183 if (i % 5 == 0) 1184 data->fan_status[i / 5] = 1185 i2c_smbus_read_byte_data(client, 1186 FSCHMD_REG_FAN_STATE 1187 [data->kind][i / 5]); 1188 if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED) 1189 continue; 1190 } 1191 1192 err = device_create_file(&client->dev, 1193 &fschmd_fan_attr[i].dev_attr); 1194 if (err) 1195 goto exit_detach; 1196 } 1197 1198 data->hwmon_dev = hwmon_device_register(&client->dev); 1199 if (IS_ERR(data->hwmon_dev)) { 1200 err = PTR_ERR(data->hwmon_dev); 1201 data->hwmon_dev = NULL; 1202 goto exit_detach; 1203 } 1204 1205 /* 1206 * We take the data_mutex lock early so that watchdog_open() cannot 1207 * run when misc_register() has completed, but we've not yet added 1208 * our data to the watchdog_data_list (and set the default timeout) 1209 */ 1210 mutex_lock(&watchdog_data_mutex); 1211 for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) { 1212 /* Register our watchdog part */ 1213 snprintf(data->watchdog_name, sizeof(data->watchdog_name), 1214 "watchdog%c", (i == 0) ? '\0' : ('0' + i)); 1215 data->watchdog_miscdev.name = data->watchdog_name; 1216 data->watchdog_miscdev.fops = &watchdog_fops; 1217 data->watchdog_miscdev.minor = watchdog_minors[i]; 1218 err = misc_register(&data->watchdog_miscdev); 1219 if (err == -EBUSY) 1220 continue; 1221 if (err) { 1222 data->watchdog_miscdev.minor = 0; 1223 dev_err(&client->dev, 1224 "Registering watchdog chardev: %d\n", err); 1225 break; 1226 } 1227 1228 list_add(&data->list, &watchdog_data_list); 1229 watchdog_set_timeout(data, 60); 1230 dev_info(&client->dev, 1231 "Registered watchdog chardev major 10, minor: %d\n", 1232 watchdog_minors[i]); 1233 break; 1234 } 1235 if (i == ARRAY_SIZE(watchdog_minors)) { 1236 data->watchdog_miscdev.minor = 0; 1237 dev_warn(&client->dev, 1238 "Couldn't register watchdog chardev (due to no free minor)\n"); 1239 } 1240 mutex_unlock(&watchdog_data_mutex); 1241 1242 dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n", 1243 names[data->kind], (int) data->revision); 1244 1245 return 0; 1246 1247 exit_detach: 1248 fschmd_remove(client); /* will also free data for us */ 1249 return err; 1250 } 1251 1252 static int fschmd_remove(struct i2c_client *client) 1253 { 1254 struct fschmd_data *data = i2c_get_clientdata(client); 1255 int i; 1256 1257 /* Unregister the watchdog (if registered) */ 1258 if (data->watchdog_miscdev.minor) { 1259 misc_deregister(&data->watchdog_miscdev); 1260 if (data->watchdog_is_open) { 1261 dev_warn(&client->dev, 1262 "i2c client detached with watchdog open! " 1263 "Stopping watchdog.\n"); 1264 watchdog_stop(data); 1265 } 1266 mutex_lock(&watchdog_data_mutex); 1267 list_del(&data->list); 1268 mutex_unlock(&watchdog_data_mutex); 1269 /* Tell the watchdog code the client is gone */ 1270 mutex_lock(&data->watchdog_lock); 1271 data->client = NULL; 1272 mutex_unlock(&data->watchdog_lock); 1273 } 1274 1275 /* 1276 * Check if registered in case we're called from fschmd_detect 1277 * to cleanup after an error 1278 */ 1279 if (data->hwmon_dev) 1280 hwmon_device_unregister(data->hwmon_dev); 1281 1282 device_remove_file(&client->dev, &dev_attr_alert_led); 1283 for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++) 1284 device_remove_file(&client->dev, &fschmd_attr[i].dev_attr); 1285 for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) 1286 device_remove_file(&client->dev, 1287 &fschmd_temp_attr[i].dev_attr); 1288 for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) 1289 device_remove_file(&client->dev, 1290 &fschmd_fan_attr[i].dev_attr); 1291 1292 mutex_lock(&watchdog_data_mutex); 1293 kref_put(&data->kref, fschmd_release_resources); 1294 mutex_unlock(&watchdog_data_mutex); 1295 1296 return 0; 1297 } 1298 1299 static struct fschmd_data *fschmd_update_device(struct device *dev) 1300 { 1301 struct i2c_client *client = to_i2c_client(dev); 1302 struct fschmd_data *data = i2c_get_clientdata(client); 1303 int i; 1304 1305 mutex_lock(&data->update_lock); 1306 1307 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { 1308 1309 for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) { 1310 data->temp_act[i] = i2c_smbus_read_byte_data(client, 1311 FSCHMD_REG_TEMP_ACT[data->kind][i]); 1312 data->temp_status[i] = i2c_smbus_read_byte_data(client, 1313 FSCHMD_REG_TEMP_STATE[data->kind][i]); 1314 1315 /* The fscpos doesn't have TEMP_LIMIT registers */ 1316 if (FSCHMD_REG_TEMP_LIMIT[data->kind][i]) 1317 data->temp_max[i] = i2c_smbus_read_byte_data( 1318 client, 1319 FSCHMD_REG_TEMP_LIMIT[data->kind][i]); 1320 1321 /* 1322 * reset alarm if the alarm condition is gone, 1323 * the chip doesn't do this itself 1324 */ 1325 if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) == 1326 FSCHMD_TEMP_ALARM_MASK && 1327 data->temp_act[i] < data->temp_max[i]) 1328 i2c_smbus_write_byte_data(client, 1329 FSCHMD_REG_TEMP_STATE[data->kind][i], 1330 data->temp_status[i]); 1331 } 1332 1333 for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) { 1334 data->fan_act[i] = i2c_smbus_read_byte_data(client, 1335 FSCHMD_REG_FAN_ACT[data->kind][i]); 1336 data->fan_status[i] = i2c_smbus_read_byte_data(client, 1337 FSCHMD_REG_FAN_STATE[data->kind][i]); 1338 data->fan_ripple[i] = i2c_smbus_read_byte_data(client, 1339 FSCHMD_REG_FAN_RIPPLE[data->kind][i]); 1340 1341 /* The fscpos third fan doesn't have a fan_min */ 1342 if (FSCHMD_REG_FAN_MIN[data->kind][i]) 1343 data->fan_min[i] = i2c_smbus_read_byte_data( 1344 client, 1345 FSCHMD_REG_FAN_MIN[data->kind][i]); 1346 1347 /* reset fan status if speed is back to > 0 */ 1348 if ((data->fan_status[i] & FSCHMD_FAN_ALARM) && 1349 data->fan_act[i]) 1350 i2c_smbus_write_byte_data(client, 1351 FSCHMD_REG_FAN_STATE[data->kind][i], 1352 data->fan_status[i]); 1353 } 1354 1355 for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) 1356 data->volt[i] = i2c_smbus_read_byte_data(client, 1357 FSCHMD_REG_VOLT[data->kind][i]); 1358 1359 data->last_updated = jiffies; 1360 data->valid = 1; 1361 } 1362 1363 mutex_unlock(&data->update_lock); 1364 1365 return data; 1366 } 1367 1368 module_i2c_driver(fschmd_driver); 1369 1370 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); 1371 MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades " 1372 "and Syleus driver"); 1373 MODULE_LICENSE("GPL"); 1374