xref: /linux/drivers/hwmon/fam15h_power.c (revision 409c38d4f156740bf3165fd6ceae4fa6425eebf4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * fam15h_power.c - AMD Family 15h processor power monitoring
4  *
5  * Copyright (c) 2011-2016 Advanced Micro Devices, Inc.
6  * Author: Andreas Herrmann <herrmann.der.user@googlemail.com>
7  */
8 
9 #include <linux/err.h>
10 #include <linux/hwmon.h>
11 #include <linux/hwmon-sysfs.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/bitops.h>
16 #include <linux/cpu.h>
17 #include <linux/cpumask.h>
18 #include <linux/time.h>
19 #include <linux/sched.h>
20 #include <linux/topology.h>
21 #include <asm/processor.h>
22 #include <asm/msr.h>
23 
24 MODULE_DESCRIPTION("AMD Family 15h CPU processor power monitor");
25 MODULE_AUTHOR("Andreas Herrmann <herrmann.der.user@googlemail.com>");
26 MODULE_LICENSE("GPL");
27 
28 /* D18F3 */
29 #define REG_NORTHBRIDGE_CAP		0xe8
30 
31 /* D18F4 */
32 #define REG_PROCESSOR_TDP		0x1b8
33 
34 /* D18F5 */
35 #define REG_TDP_RUNNING_AVERAGE		0xe0
36 #define REG_TDP_LIMIT3			0xe8
37 
38 #define FAM15H_MIN_NUM_ATTRS		2
39 #define FAM15H_NUM_GROUPS		2
40 #define MAX_CUS				8
41 
42 /* set maximum interval as 1 second */
43 #define MAX_INTERVAL			1000
44 
45 #define PCI_DEVICE_ID_AMD_15H_M70H_NB_F4 0x15b4
46 
47 struct fam15h_power_data {
48 	struct pci_dev *pdev;
49 	unsigned int tdp_to_watts;
50 	unsigned int base_tdp;
51 	unsigned int processor_pwr_watts;
52 	unsigned int cpu_pwr_sample_ratio;
53 	const struct attribute_group *groups[FAM15H_NUM_GROUPS];
54 	struct attribute_group group;
55 	/* maximum accumulated power of a compute unit */
56 	u64 max_cu_acc_power;
57 	/* accumulated power of the compute units */
58 	u64 cu_acc_power[MAX_CUS];
59 	/* performance timestamp counter */
60 	u64 cpu_sw_pwr_ptsc[MAX_CUS];
61 	/* online/offline status of current compute unit */
62 	int cu_on[MAX_CUS];
63 	unsigned long power_period;
64 };
65 
66 static bool is_carrizo_or_later(void)
67 {
68 	return boot_cpu_data.x86 == 0x15 && boot_cpu_data.x86_model >= 0x60;
69 }
70 
71 static ssize_t power1_input_show(struct device *dev,
72 				 struct device_attribute *attr, char *buf)
73 {
74 	u32 val, tdp_limit, running_avg_range;
75 	s32 running_avg_capture;
76 	u64 curr_pwr_watts;
77 	struct fam15h_power_data *data = dev_get_drvdata(dev);
78 	struct pci_dev *f4 = data->pdev;
79 
80 	pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
81 				  REG_TDP_RUNNING_AVERAGE, &val);
82 
83 	/*
84 	 * On Carrizo and later platforms, TdpRunAvgAccCap bit field
85 	 * is extended to 4:31 from 4:25.
86 	 */
87 	if (is_carrizo_or_later()) {
88 		running_avg_capture = val >> 4;
89 		running_avg_capture = sign_extend32(running_avg_capture, 27);
90 	} else {
91 		running_avg_capture = (val >> 4) & 0x3fffff;
92 		running_avg_capture = sign_extend32(running_avg_capture, 21);
93 	}
94 
95 	running_avg_range = (val & 0xf) + 1;
96 
97 	pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
98 				  REG_TDP_LIMIT3, &val);
99 
100 	/*
101 	 * On Carrizo and later platforms, ApmTdpLimit bit field
102 	 * is extended to 16:31 from 16:28.
103 	 */
104 	if (is_carrizo_or_later())
105 		tdp_limit = val >> 16;
106 	else
107 		tdp_limit = (val >> 16) & 0x1fff;
108 
109 	curr_pwr_watts = ((u64)(tdp_limit +
110 				data->base_tdp)) << running_avg_range;
111 	curr_pwr_watts -= running_avg_capture;
112 	curr_pwr_watts *= data->tdp_to_watts;
113 
114 	/*
115 	 * Convert to microWatt
116 	 *
117 	 * power is in Watt provided as fixed point integer with
118 	 * scaling factor 1/(2^16).  For conversion we use
119 	 * (10^6)/(2^16) = 15625/(2^10)
120 	 */
121 	curr_pwr_watts = (curr_pwr_watts * 15625) >> (10 + running_avg_range);
122 	return sprintf(buf, "%u\n", (unsigned int) curr_pwr_watts);
123 }
124 static DEVICE_ATTR_RO(power1_input);
125 
126 static ssize_t power1_crit_show(struct device *dev,
127 				struct device_attribute *attr, char *buf)
128 {
129 	struct fam15h_power_data *data = dev_get_drvdata(dev);
130 
131 	return sprintf(buf, "%u\n", data->processor_pwr_watts);
132 }
133 static DEVICE_ATTR_RO(power1_crit);
134 
135 static void do_read_registers_on_cu(void *_data)
136 {
137 	struct fam15h_power_data *data = _data;
138 	int cu;
139 
140 	/*
141 	 * With the new x86 topology modelling, cpu core id actually
142 	 * is compute unit id.
143 	 */
144 	cu = topology_core_id(smp_processor_id());
145 
146 	rdmsrl_safe(MSR_F15H_CU_PWR_ACCUMULATOR, &data->cu_acc_power[cu]);
147 	rdmsrl_safe(MSR_F15H_PTSC, &data->cpu_sw_pwr_ptsc[cu]);
148 
149 	data->cu_on[cu] = 1;
150 }
151 
152 /*
153  * This function is only able to be called when CPUID
154  * Fn8000_0007:EDX[12] is set.
155  */
156 static int read_registers(struct fam15h_power_data *data)
157 {
158 	int core, this_core;
159 	cpumask_var_t mask;
160 	int ret, cpu;
161 
162 	ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
163 	if (!ret)
164 		return -ENOMEM;
165 
166 	memset(data->cu_on, 0, sizeof(int) * MAX_CUS);
167 
168 	cpus_read_lock();
169 
170 	/*
171 	 * Choose the first online core of each compute unit, and then
172 	 * read their MSR value of power and ptsc in a single IPI,
173 	 * because the MSR value of CPU core represent the compute
174 	 * unit's.
175 	 */
176 	core = -1;
177 
178 	for_each_online_cpu(cpu) {
179 		this_core = topology_core_id(cpu);
180 
181 		if (this_core == core)
182 			continue;
183 
184 		core = this_core;
185 
186 		/* get any CPU on this compute unit */
187 		cpumask_set_cpu(cpumask_any(topology_sibling_cpumask(cpu)), mask);
188 	}
189 
190 	on_each_cpu_mask(mask, do_read_registers_on_cu, data, true);
191 
192 	cpus_read_unlock();
193 	free_cpumask_var(mask);
194 
195 	return 0;
196 }
197 
198 static ssize_t power1_average_show(struct device *dev,
199 				   struct device_attribute *attr, char *buf)
200 {
201 	struct fam15h_power_data *data = dev_get_drvdata(dev);
202 	u64 prev_cu_acc_power[MAX_CUS], prev_ptsc[MAX_CUS],
203 	    jdelta[MAX_CUS];
204 	u64 tdelta, avg_acc;
205 	int cu, cu_num, ret;
206 	signed long leftover;
207 
208 	/*
209 	 * With the new x86 topology modelling, x86_max_cores is the
210 	 * compute unit number.
211 	 */
212 	cu_num = boot_cpu_data.x86_max_cores;
213 
214 	ret = read_registers(data);
215 	if (ret)
216 		return 0;
217 
218 	for (cu = 0; cu < cu_num; cu++) {
219 		prev_cu_acc_power[cu] = data->cu_acc_power[cu];
220 		prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu];
221 	}
222 
223 	leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period));
224 	if (leftover)
225 		return 0;
226 
227 	ret = read_registers(data);
228 	if (ret)
229 		return 0;
230 
231 	for (cu = 0, avg_acc = 0; cu < cu_num; cu++) {
232 		/* check if current compute unit is online */
233 		if (data->cu_on[cu] == 0)
234 			continue;
235 
236 		if (data->cu_acc_power[cu] < prev_cu_acc_power[cu]) {
237 			jdelta[cu] = data->max_cu_acc_power + data->cu_acc_power[cu];
238 			jdelta[cu] -= prev_cu_acc_power[cu];
239 		} else {
240 			jdelta[cu] = data->cu_acc_power[cu] - prev_cu_acc_power[cu];
241 		}
242 		tdelta = data->cpu_sw_pwr_ptsc[cu] - prev_ptsc[cu];
243 		jdelta[cu] *= data->cpu_pwr_sample_ratio * 1000;
244 		do_div(jdelta[cu], tdelta);
245 
246 		/* the unit is microWatt */
247 		avg_acc += jdelta[cu];
248 	}
249 
250 	return sprintf(buf, "%llu\n", (unsigned long long)avg_acc);
251 }
252 static DEVICE_ATTR_RO(power1_average);
253 
254 static ssize_t power1_average_interval_show(struct device *dev,
255 					    struct device_attribute *attr,
256 					    char *buf)
257 {
258 	struct fam15h_power_data *data = dev_get_drvdata(dev);
259 
260 	return sprintf(buf, "%lu\n", data->power_period);
261 }
262 
263 static ssize_t power1_average_interval_store(struct device *dev,
264 					     struct device_attribute *attr,
265 					     const char *buf, size_t count)
266 {
267 	struct fam15h_power_data *data = dev_get_drvdata(dev);
268 	unsigned long temp;
269 	int ret;
270 
271 	ret = kstrtoul(buf, 10, &temp);
272 	if (ret)
273 		return ret;
274 
275 	if (temp > MAX_INTERVAL)
276 		return -EINVAL;
277 
278 	/* the interval value should be greater than 0 */
279 	if (temp <= 0)
280 		return -EINVAL;
281 
282 	data->power_period = temp;
283 
284 	return count;
285 }
286 static DEVICE_ATTR_RW(power1_average_interval);
287 
288 static int fam15h_power_init_attrs(struct pci_dev *pdev,
289 				   struct fam15h_power_data *data)
290 {
291 	int n = FAM15H_MIN_NUM_ATTRS;
292 	struct attribute **fam15h_power_attrs;
293 	struct cpuinfo_x86 *c = &boot_cpu_data;
294 
295 	if (c->x86 == 0x15 &&
296 	    (c->x86_model <= 0xf ||
297 	     (c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
298 		n += 1;
299 
300 	/* check if processor supports accumulated power */
301 	if (boot_cpu_has(X86_FEATURE_ACC_POWER))
302 		n += 2;
303 
304 	fam15h_power_attrs = devm_kcalloc(&pdev->dev, n,
305 					  sizeof(*fam15h_power_attrs),
306 					  GFP_KERNEL);
307 
308 	if (!fam15h_power_attrs)
309 		return -ENOMEM;
310 
311 	n = 0;
312 	fam15h_power_attrs[n++] = &dev_attr_power1_crit.attr;
313 	if (c->x86 == 0x15 &&
314 	    (c->x86_model <= 0xf ||
315 	     (c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
316 		fam15h_power_attrs[n++] = &dev_attr_power1_input.attr;
317 
318 	if (boot_cpu_has(X86_FEATURE_ACC_POWER)) {
319 		fam15h_power_attrs[n++] = &dev_attr_power1_average.attr;
320 		fam15h_power_attrs[n++] = &dev_attr_power1_average_interval.attr;
321 	}
322 
323 	data->group.attrs = fam15h_power_attrs;
324 
325 	return 0;
326 }
327 
328 static bool should_load_on_this_node(struct pci_dev *f4)
329 {
330 	u32 val;
331 
332 	pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 3),
333 				  REG_NORTHBRIDGE_CAP, &val);
334 	if ((val & BIT(29)) && ((val >> 30) & 3))
335 		return false;
336 
337 	return true;
338 }
339 
340 /*
341  * Newer BKDG versions have an updated recommendation on how to properly
342  * initialize the running average range (was: 0xE, now: 0x9). This avoids
343  * counter saturations resulting in bogus power readings.
344  * We correct this value ourselves to cope with older BIOSes.
345  */
346 static const struct pci_device_id affected_device[] = {
347 	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
348 	{ 0 }
349 };
350 
351 static void tweak_runavg_range(struct pci_dev *pdev)
352 {
353 	u32 val;
354 
355 	/*
356 	 * let this quirk apply only to the current version of the
357 	 * northbridge, since future versions may change the behavior
358 	 */
359 	if (!pci_match_id(affected_device, pdev))
360 		return;
361 
362 	pci_bus_read_config_dword(pdev->bus,
363 		PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
364 		REG_TDP_RUNNING_AVERAGE, &val);
365 	if ((val & 0xf) != 0xe)
366 		return;
367 
368 	val &= ~0xf;
369 	val |=  0x9;
370 	pci_bus_write_config_dword(pdev->bus,
371 		PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
372 		REG_TDP_RUNNING_AVERAGE, val);
373 }
374 
375 #ifdef CONFIG_PM
376 static int fam15h_power_resume(struct pci_dev *pdev)
377 {
378 	tweak_runavg_range(pdev);
379 	return 0;
380 }
381 #else
382 #define fam15h_power_resume NULL
383 #endif
384 
385 static int fam15h_power_init_data(struct pci_dev *f4,
386 				  struct fam15h_power_data *data)
387 {
388 	u32 val;
389 	u64 tmp;
390 	int ret;
391 
392 	pci_read_config_dword(f4, REG_PROCESSOR_TDP, &val);
393 	data->base_tdp = val >> 16;
394 	tmp = val & 0xffff;
395 
396 	pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
397 				  REG_TDP_LIMIT3, &val);
398 
399 	data->tdp_to_watts = ((val & 0x3ff) << 6) | ((val >> 10) & 0x3f);
400 	tmp *= data->tdp_to_watts;
401 
402 	/* result not allowed to be >= 256W */
403 	if ((tmp >> 16) >= 256)
404 		dev_warn(&f4->dev,
405 			 "Bogus value for ProcessorPwrWatts (processor_pwr_watts>=%u)\n",
406 			 (unsigned int) (tmp >> 16));
407 
408 	/* convert to microWatt */
409 	data->processor_pwr_watts = (tmp * 15625) >> 10;
410 
411 	ret = fam15h_power_init_attrs(f4, data);
412 	if (ret)
413 		return ret;
414 
415 
416 	/* CPUID Fn8000_0007:EDX[12] indicates to support accumulated power */
417 	if (!boot_cpu_has(X86_FEATURE_ACC_POWER))
418 		return 0;
419 
420 	/*
421 	 * determine the ratio of the compute unit power accumulator
422 	 * sample period to the PTSC counter period by executing CPUID
423 	 * Fn8000_0007:ECX
424 	 */
425 	data->cpu_pwr_sample_ratio = cpuid_ecx(0x80000007);
426 
427 	if (rdmsrl_safe(MSR_F15H_CU_MAX_PWR_ACCUMULATOR, &tmp)) {
428 		pr_err("Failed to read max compute unit power accumulator MSR\n");
429 		return -ENODEV;
430 	}
431 
432 	data->max_cu_acc_power = tmp;
433 
434 	/*
435 	 * Milliseconds are a reasonable interval for the measurement.
436 	 * But it shouldn't set too long here, because several seconds
437 	 * would cause the read function to hang. So set default
438 	 * interval as 10 ms.
439 	 */
440 	data->power_period = 10;
441 
442 	return read_registers(data);
443 }
444 
445 static int fam15h_power_probe(struct pci_dev *pdev,
446 			      const struct pci_device_id *id)
447 {
448 	struct fam15h_power_data *data;
449 	struct device *dev = &pdev->dev;
450 	struct device *hwmon_dev;
451 	int ret;
452 
453 	/*
454 	 * though we ignore every other northbridge, we still have to
455 	 * do the tweaking on _each_ node in MCM processors as the counters
456 	 * are working hand-in-hand
457 	 */
458 	tweak_runavg_range(pdev);
459 
460 	if (!should_load_on_this_node(pdev))
461 		return -ENODEV;
462 
463 	data = devm_kzalloc(dev, sizeof(struct fam15h_power_data), GFP_KERNEL);
464 	if (!data)
465 		return -ENOMEM;
466 
467 	ret = fam15h_power_init_data(pdev, data);
468 	if (ret)
469 		return ret;
470 
471 	data->pdev = pdev;
472 
473 	data->groups[0] = &data->group;
474 
475 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, "fam15h_power",
476 							   data,
477 							   &data->groups[0]);
478 	return PTR_ERR_OR_ZERO(hwmon_dev);
479 }
480 
481 static const struct pci_device_id fam15h_power_id_table[] = {
482 	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
483 	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) },
484 	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) },
485 	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F4) },
486 	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) },
487 	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) },
488 	{}
489 };
490 MODULE_DEVICE_TABLE(pci, fam15h_power_id_table);
491 
492 static struct pci_driver fam15h_power_driver = {
493 	.name = "fam15h_power",
494 	.id_table = fam15h_power_id_table,
495 	.probe = fam15h_power_probe,
496 	.resume = fam15h_power_resume,
497 };
498 
499 module_pci_driver(fam15h_power_driver);
500