xref: /linux/drivers/hwmon/corsair-psu.c (revision f2527d8f566a45fa00ee5abd04d1c9476d4d704f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * corsair-psu.c - Linux driver for Corsair power supplies with HID sensors interface
4  * Copyright (C) 2020 Wilken Gottwalt <wilken.gottwalt@posteo.net>
5  */
6 
7 #include <linux/completion.h>
8 #include <linux/debugfs.h>
9 #include <linux/errno.h>
10 #include <linux/hid.h>
11 #include <linux/hwmon.h>
12 #include <linux/hwmon-sysfs.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 
20 /*
21  * Corsair protocol for PSUs
22  *
23  * message size = 64 bytes (request and response, little endian)
24  * request:
25  *	[length][command][param0][param1][paramX]...
26  * reply:
27  *	[echo of length][echo of command][data0][data1][dataX]...
28  *
29  *	- commands are byte sized opcodes
30  *	- length is the sum of all bytes of the commands/params
31  *	- the micro-controller of most of these PSUs support concatenation in the request and reply,
32  *	  but it is better to not rely on this (it is also hard to parse)
33  *	- the driver uses raw events to be accessible from userspace (though this is not really
34  *	  supported, it is just there for convenience, may be removed in the future)
35  *	- a reply always start with the length and command in the same order the request used it
36  *	- length of the reply data is specific to the command used
37  *	- some of the commands work on a rail and can be switched to a specific rail (0 = 12v,
38  *	  1 = 5v, 2 = 3.3v)
39  *	- the format of the init command 0xFE is swapped length/command bytes
40  *	- parameter bytes amount and values are specific to the command (rail setting is the only
41  *	  for now that uses non-zero values)
42  *	- there are much more commands, especially for configuring the device, but they are not
43  *	  supported because a wrong command/length can lockup the micro-controller
44  *	- the driver supports debugfs for values not fitting into the hwmon class
45  *	- not every device class (HXi, RMi or AXi) supports all commands
46  *	- it is a pure sensors reading driver (will not support configuring)
47  */
48 
49 #define DRIVER_NAME		"corsair-psu"
50 
51 #define REPLY_SIZE		16 /* max length of a reply to a single command */
52 #define CMD_BUFFER_SIZE		64
53 #define CMD_TIMEOUT_MS		250
54 #define SECONDS_PER_HOUR	(60 * 60)
55 #define SECONDS_PER_DAY		(SECONDS_PER_HOUR * 24)
56 #define RAIL_COUNT		3 /* 3v3 + 5v + 12v */
57 #define TEMP_COUNT		2
58 #define OCP_MULTI_RAIL		0x02
59 
60 #define PSU_CMD_SELECT_RAIL	0x00 /* expects length 2 */
61 #define PSU_CMD_RAIL_VOLTS_HCRIT 0x40 /* the rest of the commands expect length 3 */
62 #define PSU_CMD_RAIL_VOLTS_LCRIT 0x44
63 #define PSU_CMD_RAIL_AMPS_HCRIT	0x46
64 #define PSU_CMD_TEMP_HCRIT	0x4F
65 #define PSU_CMD_IN_VOLTS	0x88
66 #define PSU_CMD_IN_AMPS		0x89
67 #define PSU_CMD_RAIL_VOLTS	0x8B
68 #define PSU_CMD_RAIL_AMPS	0x8C
69 #define PSU_CMD_TEMP0		0x8D
70 #define PSU_CMD_TEMP1		0x8E
71 #define PSU_CMD_FAN		0x90
72 #define PSU_CMD_RAIL_WATTS	0x96
73 #define PSU_CMD_VEND_STR	0x99
74 #define PSU_CMD_PROD_STR	0x9A
75 #define PSU_CMD_TOTAL_UPTIME	0xD1
76 #define PSU_CMD_UPTIME		0xD2
77 #define PSU_CMD_OCPMODE		0xD8
78 #define PSU_CMD_TOTAL_WATTS	0xEE
79 #define PSU_CMD_INIT		0xFE
80 
81 #define L_IN_VOLTS		"v_in"
82 #define L_OUT_VOLTS_12V		"v_out +12v"
83 #define L_OUT_VOLTS_5V		"v_out +5v"
84 #define L_OUT_VOLTS_3_3V	"v_out +3.3v"
85 #define L_IN_AMPS		"curr in"
86 #define L_AMPS_12V		"curr +12v"
87 #define L_AMPS_5V		"curr +5v"
88 #define L_AMPS_3_3V		"curr +3.3v"
89 #define L_FAN			"psu fan"
90 #define L_TEMP0			"vrm temp"
91 #define L_TEMP1			"case temp"
92 #define L_WATTS			"power total"
93 #define L_WATTS_12V		"power +12v"
94 #define L_WATTS_5V		"power +5v"
95 #define L_WATTS_3_3V		"power +3.3v"
96 
97 static const char *const label_watts[] = {
98 	L_WATTS,
99 	L_WATTS_12V,
100 	L_WATTS_5V,
101 	L_WATTS_3_3V
102 };
103 
104 static const char *const label_volts[] = {
105 	L_IN_VOLTS,
106 	L_OUT_VOLTS_12V,
107 	L_OUT_VOLTS_5V,
108 	L_OUT_VOLTS_3_3V
109 };
110 
111 static const char *const label_amps[] = {
112 	L_IN_AMPS,
113 	L_AMPS_12V,
114 	L_AMPS_5V,
115 	L_AMPS_3_3V
116 };
117 
118 struct corsairpsu_data {
119 	struct hid_device *hdev;
120 	struct device *hwmon_dev;
121 	struct dentry *debugfs;
122 	struct completion wait_completion;
123 	struct mutex lock; /* for locking access to cmd_buffer */
124 	u8 *cmd_buffer;
125 	char vendor[REPLY_SIZE];
126 	char product[REPLY_SIZE];
127 	long temp_crit[TEMP_COUNT];
128 	long in_crit[RAIL_COUNT];
129 	long in_lcrit[RAIL_COUNT];
130 	long curr_crit[RAIL_COUNT];
131 	u8 temp_crit_support;
132 	u8 in_crit_support;
133 	u8 in_lcrit_support;
134 	u8 curr_crit_support;
135 	bool in_curr_cmd_support; /* not all commands are supported on every PSU */
136 };
137 
138 /* some values are SMBus LINEAR11 data which need a conversion */
139 static int corsairpsu_linear11_to_int(const u16 val, const int scale)
140 {
141 	const int exp = ((s16)val) >> 11;
142 	const int mant = (((s16)(val & 0x7ff)) << 5) >> 5;
143 	const int result = mant * scale;
144 
145 	return (exp >= 0) ? (result << exp) : (result >> -exp);
146 }
147 
148 static int corsairpsu_usb_cmd(struct corsairpsu_data *priv, u8 p0, u8 p1, u8 p2, void *data)
149 {
150 	unsigned long time;
151 	int ret;
152 
153 	memset(priv->cmd_buffer, 0, CMD_BUFFER_SIZE);
154 	priv->cmd_buffer[0] = p0;
155 	priv->cmd_buffer[1] = p1;
156 	priv->cmd_buffer[2] = p2;
157 
158 	reinit_completion(&priv->wait_completion);
159 
160 	ret = hid_hw_output_report(priv->hdev, priv->cmd_buffer, CMD_BUFFER_SIZE);
161 	if (ret < 0)
162 		return ret;
163 
164 	time = wait_for_completion_timeout(&priv->wait_completion,
165 					   msecs_to_jiffies(CMD_TIMEOUT_MS));
166 	if (!time)
167 		return -ETIMEDOUT;
168 
169 	/*
170 	 * at the start of the reply is an echo of the send command/length in the same order it
171 	 * was send, not every command is supported on every device class, if a command is not
172 	 * supported, the length value in the reply is okay, but the command value is set to 0
173 	 */
174 	if (p0 != priv->cmd_buffer[0] || p1 != priv->cmd_buffer[1])
175 		return -EOPNOTSUPP;
176 
177 	if (data)
178 		memcpy(data, priv->cmd_buffer + 2, REPLY_SIZE);
179 
180 	return 0;
181 }
182 
183 static int corsairpsu_init(struct corsairpsu_data *priv)
184 {
185 	/*
186 	 * PSU_CMD_INIT uses swapped length/command and expects 2 parameter bytes, this command
187 	 * actually generates a reply, but we don't need it
188 	 */
189 	return corsairpsu_usb_cmd(priv, PSU_CMD_INIT, 3, 0, NULL);
190 }
191 
192 static int corsairpsu_fwinfo(struct corsairpsu_data *priv)
193 {
194 	int ret;
195 
196 	ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_VEND_STR, 0, priv->vendor);
197 	if (ret < 0)
198 		return ret;
199 
200 	ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_PROD_STR, 0, priv->product);
201 	if (ret < 0)
202 		return ret;
203 
204 	return 0;
205 }
206 
207 static int corsairpsu_request(struct corsairpsu_data *priv, u8 cmd, u8 rail, void *data)
208 {
209 	int ret;
210 
211 	mutex_lock(&priv->lock);
212 	switch (cmd) {
213 	case PSU_CMD_RAIL_VOLTS_HCRIT:
214 	case PSU_CMD_RAIL_VOLTS_LCRIT:
215 	case PSU_CMD_RAIL_AMPS_HCRIT:
216 	case PSU_CMD_RAIL_VOLTS:
217 	case PSU_CMD_RAIL_AMPS:
218 	case PSU_CMD_RAIL_WATTS:
219 		ret = corsairpsu_usb_cmd(priv, 2, PSU_CMD_SELECT_RAIL, rail, NULL);
220 		if (ret < 0)
221 			goto cmd_fail;
222 		break;
223 	default:
224 		break;
225 	}
226 
227 	ret = corsairpsu_usb_cmd(priv, 3, cmd, 0, data);
228 
229 cmd_fail:
230 	mutex_unlock(&priv->lock);
231 	return ret;
232 }
233 
234 static int corsairpsu_get_value(struct corsairpsu_data *priv, u8 cmd, u8 rail, long *val)
235 {
236 	u8 data[REPLY_SIZE];
237 	long tmp;
238 	int ret;
239 
240 	ret = corsairpsu_request(priv, cmd, rail, data);
241 	if (ret < 0)
242 		return ret;
243 
244 	/*
245 	 * the biggest value here comes from the uptime command and to exceed MAXINT total uptime
246 	 * needs to be about 68 years, the rest are u16 values and the biggest value coming out of
247 	 * the LINEAR11 conversion are the watts values which are about 1200 for the strongest psu
248 	 * supported (HX1200i)
249 	 */
250 	tmp = ((long)data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
251 	switch (cmd) {
252 	case PSU_CMD_RAIL_VOLTS_HCRIT:
253 	case PSU_CMD_RAIL_VOLTS_LCRIT:
254 	case PSU_CMD_RAIL_AMPS_HCRIT:
255 	case PSU_CMD_TEMP_HCRIT:
256 	case PSU_CMD_IN_VOLTS:
257 	case PSU_CMD_IN_AMPS:
258 	case PSU_CMD_RAIL_VOLTS:
259 	case PSU_CMD_RAIL_AMPS:
260 	case PSU_CMD_TEMP0:
261 	case PSU_CMD_TEMP1:
262 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000);
263 		break;
264 	case PSU_CMD_FAN:
265 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
266 		break;
267 	case PSU_CMD_RAIL_WATTS:
268 	case PSU_CMD_TOTAL_WATTS:
269 		*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000000);
270 		break;
271 	case PSU_CMD_TOTAL_UPTIME:
272 	case PSU_CMD_UPTIME:
273 	case PSU_CMD_OCPMODE:
274 		*val = tmp;
275 		break;
276 	default:
277 		ret = -EOPNOTSUPP;
278 		break;
279 	}
280 
281 	return ret;
282 }
283 
284 static void corsairpsu_get_criticals(struct corsairpsu_data *priv)
285 {
286 	long tmp;
287 	int rail;
288 
289 	for (rail = 0; rail < TEMP_COUNT; ++rail) {
290 		if (!corsairpsu_get_value(priv, PSU_CMD_TEMP_HCRIT, rail, &tmp)) {
291 			priv->temp_crit_support |= BIT(rail);
292 			priv->temp_crit[rail] = tmp;
293 		}
294 	}
295 
296 	for (rail = 0; rail < RAIL_COUNT; ++rail) {
297 		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_HCRIT, rail, &tmp)) {
298 			priv->in_crit_support |= BIT(rail);
299 			priv->in_crit[rail] = tmp;
300 		}
301 
302 		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_LCRIT, rail, &tmp)) {
303 			priv->in_lcrit_support |= BIT(rail);
304 			priv->in_lcrit[rail] = tmp;
305 		}
306 
307 		if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS_HCRIT, rail, &tmp)) {
308 			priv->curr_crit_support |= BIT(rail);
309 			priv->curr_crit[rail] = tmp;
310 		}
311 	}
312 }
313 
314 static void corsairpsu_check_cmd_support(struct corsairpsu_data *priv)
315 {
316 	long tmp;
317 
318 	priv->in_curr_cmd_support = !corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, &tmp);
319 }
320 
321 static umode_t corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data *priv, u32 attr,
322 						int channel)
323 {
324 	umode_t res = 0444;
325 
326 	switch (attr) {
327 	case hwmon_temp_input:
328 	case hwmon_temp_label:
329 	case hwmon_temp_crit:
330 		if (channel > 0 && !(priv->temp_crit_support & BIT(channel - 1)))
331 			res = 0;
332 		break;
333 	default:
334 		break;
335 	}
336 
337 	return res;
338 }
339 
340 static umode_t corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data *priv, u32 attr,
341 					       int channel)
342 {
343 	switch (attr) {
344 	case hwmon_fan_input:
345 	case hwmon_fan_label:
346 		return 0444;
347 	default:
348 		return 0;
349 	}
350 }
351 
352 static umode_t corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data *priv, u32 attr,
353 						 int channel)
354 {
355 	switch (attr) {
356 	case hwmon_power_input:
357 	case hwmon_power_label:
358 		return 0444;
359 	default:
360 		return 0;
361 	}
362 }
363 
364 static umode_t corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data *priv, u32 attr,
365 					      int channel)
366 {
367 	umode_t res = 0444;
368 
369 	switch (attr) {
370 	case hwmon_in_input:
371 	case hwmon_in_label:
372 	case hwmon_in_crit:
373 		if (channel > 0 && !(priv->in_crit_support & BIT(channel - 1)))
374 			res = 0;
375 		break;
376 	case hwmon_in_lcrit:
377 		if (channel > 0 && !(priv->in_lcrit_support & BIT(channel - 1)))
378 			res = 0;
379 		break;
380 	default:
381 		break;
382 	}
383 
384 	return res;
385 }
386 
387 static umode_t corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data *priv, u32 attr,
388 						int channel)
389 {
390 	umode_t res = 0444;
391 
392 	switch (attr) {
393 	case hwmon_curr_input:
394 		if (channel == 0 && !priv->in_curr_cmd_support)
395 			res = 0;
396 		break;
397 	case hwmon_curr_label:
398 	case hwmon_curr_crit:
399 		if (channel > 0 && !(priv->curr_crit_support & BIT(channel - 1)))
400 			res = 0;
401 		break;
402 	default:
403 		break;
404 	}
405 
406 	return res;
407 }
408 
409 static umode_t corsairpsu_hwmon_ops_is_visible(const void *data, enum hwmon_sensor_types type,
410 					       u32 attr, int channel)
411 {
412 	const struct corsairpsu_data *priv = data;
413 
414 	switch (type) {
415 	case hwmon_temp:
416 		return corsairpsu_hwmon_temp_is_visible(priv, attr, channel);
417 	case hwmon_fan:
418 		return corsairpsu_hwmon_fan_is_visible(priv, attr, channel);
419 	case hwmon_power:
420 		return corsairpsu_hwmon_power_is_visible(priv, attr, channel);
421 	case hwmon_in:
422 		return corsairpsu_hwmon_in_is_visible(priv, attr, channel);
423 	case hwmon_curr:
424 		return corsairpsu_hwmon_curr_is_visible(priv, attr, channel);
425 	default:
426 		return 0;
427 	}
428 }
429 
430 static int corsairpsu_hwmon_temp_read(struct corsairpsu_data *priv, u32 attr, int channel,
431 				      long *val)
432 {
433 	int err = -EOPNOTSUPP;
434 
435 	switch (attr) {
436 	case hwmon_temp_input:
437 		return corsairpsu_get_value(priv, channel ? PSU_CMD_TEMP1 : PSU_CMD_TEMP0,
438 					    channel, val);
439 	case hwmon_temp_crit:
440 		*val = priv->temp_crit[channel];
441 		err = 0;
442 		break;
443 	default:
444 		break;
445 	}
446 
447 	return err;
448 }
449 
450 static int corsairpsu_hwmon_power_read(struct corsairpsu_data *priv, u32 attr, int channel,
451 				       long *val)
452 {
453 	if (attr == hwmon_power_input) {
454 		switch (channel) {
455 		case 0:
456 			return corsairpsu_get_value(priv, PSU_CMD_TOTAL_WATTS, 0, val);
457 		case 1 ... 3:
458 			return corsairpsu_get_value(priv, PSU_CMD_RAIL_WATTS, channel - 1, val);
459 		default:
460 			break;
461 		}
462 	}
463 
464 	return -EOPNOTSUPP;
465 }
466 
467 static int corsairpsu_hwmon_in_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
468 {
469 	int err = -EOPNOTSUPP;
470 
471 	switch (attr) {
472 	case hwmon_in_input:
473 		switch (channel) {
474 		case 0:
475 			return corsairpsu_get_value(priv, PSU_CMD_IN_VOLTS, 0, val);
476 		case 1 ... 3:
477 			return corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS, channel - 1, val);
478 		default:
479 			break;
480 		}
481 		break;
482 	case hwmon_in_crit:
483 		*val = priv->in_crit[channel - 1];
484 		err = 0;
485 		break;
486 	case hwmon_in_lcrit:
487 		*val = priv->in_lcrit[channel - 1];
488 		err = 0;
489 		break;
490 	}
491 
492 	return err;
493 }
494 
495 static int corsairpsu_hwmon_curr_read(struct corsairpsu_data *priv, u32 attr, int channel,
496 				      long *val)
497 {
498 	int err = -EOPNOTSUPP;
499 
500 	switch (attr) {
501 	case hwmon_curr_input:
502 		switch (channel) {
503 		case 0:
504 			return corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, val);
505 		case 1 ... 3:
506 			return corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS, channel - 1, val);
507 		default:
508 			break;
509 		}
510 		break;
511 	case hwmon_curr_crit:
512 		*val = priv->curr_crit[channel - 1];
513 		err = 0;
514 		break;
515 	default:
516 		break;
517 	}
518 
519 	return err;
520 }
521 
522 static int corsairpsu_hwmon_ops_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
523 				     int channel, long *val)
524 {
525 	struct corsairpsu_data *priv = dev_get_drvdata(dev);
526 
527 	switch (type) {
528 	case hwmon_temp:
529 		return corsairpsu_hwmon_temp_read(priv, attr, channel, val);
530 	case hwmon_fan:
531 		if (attr == hwmon_fan_input)
532 			return corsairpsu_get_value(priv, PSU_CMD_FAN, 0, val);
533 		return -EOPNOTSUPP;
534 	case hwmon_power:
535 		return corsairpsu_hwmon_power_read(priv, attr, channel, val);
536 	case hwmon_in:
537 		return corsairpsu_hwmon_in_read(priv, attr, channel, val);
538 	case hwmon_curr:
539 		return corsairpsu_hwmon_curr_read(priv, attr, channel, val);
540 	default:
541 		return -EOPNOTSUPP;
542 	}
543 }
544 
545 static int corsairpsu_hwmon_ops_read_string(struct device *dev, enum hwmon_sensor_types type,
546 					    u32 attr, int channel, const char **str)
547 {
548 	if (type == hwmon_temp && attr == hwmon_temp_label) {
549 		*str = channel ? L_TEMP1 : L_TEMP0;
550 		return 0;
551 	} else if (type == hwmon_fan && attr == hwmon_fan_label) {
552 		*str = L_FAN;
553 		return 0;
554 	} else if (type == hwmon_power && attr == hwmon_power_label && channel < 4) {
555 		*str = label_watts[channel];
556 		return 0;
557 	} else if (type == hwmon_in && attr == hwmon_in_label && channel < 4) {
558 		*str = label_volts[channel];
559 		return 0;
560 	} else if (type == hwmon_curr && attr == hwmon_curr_label && channel < 4) {
561 		*str = label_amps[channel];
562 		return 0;
563 	}
564 
565 	return -EOPNOTSUPP;
566 }
567 
568 static const struct hwmon_ops corsairpsu_hwmon_ops = {
569 	.is_visible	= corsairpsu_hwmon_ops_is_visible,
570 	.read		= corsairpsu_hwmon_ops_read,
571 	.read_string	= corsairpsu_hwmon_ops_read_string,
572 };
573 
574 static const struct hwmon_channel_info *corsairpsu_info[] = {
575 	HWMON_CHANNEL_INFO(chip,
576 			   HWMON_C_REGISTER_TZ),
577 	HWMON_CHANNEL_INFO(temp,
578 			   HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
579 			   HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT),
580 	HWMON_CHANNEL_INFO(fan,
581 			   HWMON_F_INPUT | HWMON_F_LABEL),
582 	HWMON_CHANNEL_INFO(power,
583 			   HWMON_P_INPUT | HWMON_P_LABEL,
584 			   HWMON_P_INPUT | HWMON_P_LABEL,
585 			   HWMON_P_INPUT | HWMON_P_LABEL,
586 			   HWMON_P_INPUT | HWMON_P_LABEL),
587 	HWMON_CHANNEL_INFO(in,
588 			   HWMON_I_INPUT | HWMON_I_LABEL,
589 			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
590 			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
591 			   HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT),
592 	HWMON_CHANNEL_INFO(curr,
593 			   HWMON_C_INPUT | HWMON_C_LABEL,
594 			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
595 			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
596 			   HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT),
597 	NULL
598 };
599 
600 static const struct hwmon_chip_info corsairpsu_chip_info = {
601 	.ops	= &corsairpsu_hwmon_ops,
602 	.info	= corsairpsu_info,
603 };
604 
605 #ifdef CONFIG_DEBUG_FS
606 
607 static void print_uptime(struct seq_file *seqf, u8 cmd)
608 {
609 	struct corsairpsu_data *priv = seqf->private;
610 	long val;
611 	int ret;
612 
613 	ret = corsairpsu_get_value(priv, cmd, 0, &val);
614 	if (ret < 0) {
615 		seq_puts(seqf, "N/A\n");
616 		return;
617 	}
618 
619 	if (val > SECONDS_PER_DAY) {
620 		seq_printf(seqf, "%ld day(s), %02ld:%02ld:%02ld\n", val / SECONDS_PER_DAY,
621 			   val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60,
622 			   val % 60);
623 		return;
624 	}
625 
626 	seq_printf(seqf, "%02ld:%02ld:%02ld\n", val % SECONDS_PER_DAY / SECONDS_PER_HOUR,
627 		   val % SECONDS_PER_HOUR / 60, val % 60);
628 }
629 
630 static int uptime_show(struct seq_file *seqf, void *unused)
631 {
632 	print_uptime(seqf, PSU_CMD_UPTIME);
633 
634 	return 0;
635 }
636 DEFINE_SHOW_ATTRIBUTE(uptime);
637 
638 static int uptime_total_show(struct seq_file *seqf, void *unused)
639 {
640 	print_uptime(seqf, PSU_CMD_TOTAL_UPTIME);
641 
642 	return 0;
643 }
644 DEFINE_SHOW_ATTRIBUTE(uptime_total);
645 
646 static int vendor_show(struct seq_file *seqf, void *unused)
647 {
648 	struct corsairpsu_data *priv = seqf->private;
649 
650 	seq_printf(seqf, "%s\n", priv->vendor);
651 
652 	return 0;
653 }
654 DEFINE_SHOW_ATTRIBUTE(vendor);
655 
656 static int product_show(struct seq_file *seqf, void *unused)
657 {
658 	struct corsairpsu_data *priv = seqf->private;
659 
660 	seq_printf(seqf, "%s\n", priv->product);
661 
662 	return 0;
663 }
664 DEFINE_SHOW_ATTRIBUTE(product);
665 
666 static int ocpmode_show(struct seq_file *seqf, void *unused)
667 {
668 	struct corsairpsu_data *priv = seqf->private;
669 	long val;
670 	int ret;
671 
672 	/*
673 	 * The rail mode is switchable on the fly. The RAW interface can be used for this. But it
674 	 * will not be included here, because I consider it somewhat dangerous for the health of the
675 	 * PSU. The returned value can be a bogus one, if the PSU is in the process of switching and
676 	 * getting of the value itself can also fail during this. Because of this every other value
677 	 * than OCP_MULTI_RAIL can be considered as "single rail".
678 	 */
679 	ret = corsairpsu_get_value(priv, PSU_CMD_OCPMODE, 0, &val);
680 	if (ret < 0)
681 		seq_puts(seqf, "N/A\n");
682 	else
683 		seq_printf(seqf, "%s\n", (val == OCP_MULTI_RAIL) ? "multi rail" : "single rail");
684 
685 	return 0;
686 }
687 DEFINE_SHOW_ATTRIBUTE(ocpmode);
688 
689 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
690 {
691 	char name[32];
692 
693 	scnprintf(name, sizeof(name), "%s-%s", DRIVER_NAME, dev_name(&priv->hdev->dev));
694 
695 	priv->debugfs = debugfs_create_dir(name, NULL);
696 	debugfs_create_file("uptime", 0444, priv->debugfs, priv, &uptime_fops);
697 	debugfs_create_file("uptime_total", 0444, priv->debugfs, priv, &uptime_total_fops);
698 	debugfs_create_file("vendor", 0444, priv->debugfs, priv, &vendor_fops);
699 	debugfs_create_file("product", 0444, priv->debugfs, priv, &product_fops);
700 	debugfs_create_file("ocpmode", 0444, priv->debugfs, priv, &ocpmode_fops);
701 }
702 
703 #else
704 
705 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
706 {
707 }
708 
709 #endif
710 
711 static int corsairpsu_probe(struct hid_device *hdev, const struct hid_device_id *id)
712 {
713 	struct corsairpsu_data *priv;
714 	int ret;
715 
716 	priv = devm_kzalloc(&hdev->dev, sizeof(struct corsairpsu_data), GFP_KERNEL);
717 	if (!priv)
718 		return -ENOMEM;
719 
720 	priv->cmd_buffer = devm_kmalloc(&hdev->dev, CMD_BUFFER_SIZE, GFP_KERNEL);
721 	if (!priv->cmd_buffer)
722 		return -ENOMEM;
723 
724 	ret = hid_parse(hdev);
725 	if (ret)
726 		return ret;
727 
728 	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
729 	if (ret)
730 		return ret;
731 
732 	ret = hid_hw_open(hdev);
733 	if (ret)
734 		goto fail_and_stop;
735 
736 	priv->hdev = hdev;
737 	hid_set_drvdata(hdev, priv);
738 	mutex_init(&priv->lock);
739 	init_completion(&priv->wait_completion);
740 
741 	hid_device_io_start(hdev);
742 
743 	ret = corsairpsu_init(priv);
744 	if (ret < 0) {
745 		dev_err(&hdev->dev, "unable to initialize device (%d)\n", ret);
746 		goto fail_and_stop;
747 	}
748 
749 	ret = corsairpsu_fwinfo(priv);
750 	if (ret < 0) {
751 		dev_err(&hdev->dev, "unable to query firmware (%d)\n", ret);
752 		goto fail_and_stop;
753 	}
754 
755 	corsairpsu_get_criticals(priv);
756 	corsairpsu_check_cmd_support(priv);
757 
758 	priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsairpsu", priv,
759 							  &corsairpsu_chip_info, NULL);
760 
761 	if (IS_ERR(priv->hwmon_dev)) {
762 		ret = PTR_ERR(priv->hwmon_dev);
763 		goto fail_and_close;
764 	}
765 
766 	corsairpsu_debugfs_init(priv);
767 
768 	return 0;
769 
770 fail_and_close:
771 	hid_hw_close(hdev);
772 fail_and_stop:
773 	hid_hw_stop(hdev);
774 	return ret;
775 }
776 
777 static void corsairpsu_remove(struct hid_device *hdev)
778 {
779 	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
780 
781 	debugfs_remove_recursive(priv->debugfs);
782 	hwmon_device_unregister(priv->hwmon_dev);
783 	hid_hw_close(hdev);
784 	hid_hw_stop(hdev);
785 }
786 
787 static int corsairpsu_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data,
788 				int size)
789 {
790 	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
791 
792 	if (completion_done(&priv->wait_completion))
793 		return 0;
794 
795 	memcpy(priv->cmd_buffer, data, min(CMD_BUFFER_SIZE, size));
796 	complete(&priv->wait_completion);
797 
798 	return 0;
799 }
800 
801 #ifdef CONFIG_PM
802 static int corsairpsu_resume(struct hid_device *hdev)
803 {
804 	struct corsairpsu_data *priv = hid_get_drvdata(hdev);
805 
806 	/* some PSUs turn off the microcontroller during standby, so a reinit is required */
807 	return corsairpsu_init(priv);
808 }
809 #endif
810 
811 static const struct hid_device_id corsairpsu_idtable[] = {
812 	{ HID_USB_DEVICE(0x1b1c, 0x1c03) }, /* Corsair HX550i */
813 	{ HID_USB_DEVICE(0x1b1c, 0x1c04) }, /* Corsair HX650i */
814 	{ HID_USB_DEVICE(0x1b1c, 0x1c05) }, /* Corsair HX750i */
815 	{ HID_USB_DEVICE(0x1b1c, 0x1c06) }, /* Corsair HX850i */
816 	{ HID_USB_DEVICE(0x1b1c, 0x1c07) }, /* Corsair HX1000i revision 1 */
817 	{ HID_USB_DEVICE(0x1b1c, 0x1c08) }, /* Corsair HX1200i */
818 	{ HID_USB_DEVICE(0x1b1c, 0x1c09) }, /* Corsair RM550i */
819 	{ HID_USB_DEVICE(0x1b1c, 0x1c0a) }, /* Corsair RM650i */
820 	{ HID_USB_DEVICE(0x1b1c, 0x1c0b) }, /* Corsair RM750i */
821 	{ HID_USB_DEVICE(0x1b1c, 0x1c0c) }, /* Corsair RM850i */
822 	{ HID_USB_DEVICE(0x1b1c, 0x1c0d) }, /* Corsair RM1000i */
823 	{ HID_USB_DEVICE(0x1b1c, 0x1c1e) }, /* Corsair HX1000i revision 2 */
824 	{ HID_USB_DEVICE(0x1b1c, 0x1c1f) }, /* Corsair HX1500i */
825 	{ },
826 };
827 MODULE_DEVICE_TABLE(hid, corsairpsu_idtable);
828 
829 static struct hid_driver corsairpsu_driver = {
830 	.name		= DRIVER_NAME,
831 	.id_table	= corsairpsu_idtable,
832 	.probe		= corsairpsu_probe,
833 	.remove		= corsairpsu_remove,
834 	.raw_event	= corsairpsu_raw_event,
835 #ifdef CONFIG_PM
836 	.resume		= corsairpsu_resume,
837 	.reset_resume	= corsairpsu_resume,
838 #endif
839 };
840 module_hid_driver(corsairpsu_driver);
841 
842 MODULE_LICENSE("GPL");
843 MODULE_AUTHOR("Wilken Gottwalt <wilken.gottwalt@posteo.net>");
844 MODULE_DESCRIPTION("Linux driver for Corsair power supplies with HID sensors interface");
845