xref: /linux/drivers/hwmon/coretemp.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * coretemp.c - Linux kernel module for hardware monitoring
3  *
4  * Copyright (C) 2007 Rudolf Marek <r.marek@assembler.cz>
5  *
6  * Inspired from many hwmon drivers
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301 USA.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/jiffies.h>
29 #include <linux/hwmon.h>
30 #include <linux/sysfs.h>
31 #include <linux/hwmon-sysfs.h>
32 #include <linux/err.h>
33 #include <linux/mutex.h>
34 #include <linux/list.h>
35 #include <linux/platform_device.h>
36 #include <linux/cpu.h>
37 #include <linux/smp.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <asm/msr.h>
41 #include <asm/processor.h>
42 #include <asm/cpu_device_id.h>
43 
44 #define DRVNAME	"coretemp"
45 
46 /*
47  * force_tjmax only matters when TjMax can't be read from the CPU itself.
48  * When set, it replaces the driver's suboptimal heuristic.
49  */
50 static int force_tjmax;
51 module_param_named(tjmax, force_tjmax, int, 0444);
52 MODULE_PARM_DESC(tjmax, "TjMax value in degrees Celsius");
53 
54 #define BASE_SYSFS_ATTR_NO	2	/* Sysfs Base attr no for coretemp */
55 #define NUM_REAL_CORES		32	/* Number of Real cores per cpu */
56 #define CORETEMP_NAME_LENGTH	19	/* String Length of attrs */
57 #define MAX_CORE_ATTRS		4	/* Maximum no of basic attrs */
58 #define TOTAL_ATTRS		(MAX_CORE_ATTRS + 1)
59 #define MAX_CORE_DATA		(NUM_REAL_CORES + BASE_SYSFS_ATTR_NO)
60 
61 #define TO_PHYS_ID(cpu)		(cpu_data(cpu).phys_proc_id)
62 #define TO_CORE_ID(cpu)		(cpu_data(cpu).cpu_core_id)
63 #define TO_ATTR_NO(cpu)		(TO_CORE_ID(cpu) + BASE_SYSFS_ATTR_NO)
64 
65 #ifdef CONFIG_SMP
66 #define for_each_sibling(i, cpu)	for_each_cpu(i, cpu_sibling_mask(cpu))
67 #else
68 #define for_each_sibling(i, cpu)	for (i = 0; false; )
69 #endif
70 
71 /*
72  * Per-Core Temperature Data
73  * @last_updated: The time when the current temperature value was updated
74  *		earlier (in jiffies).
75  * @cpu_core_id: The CPU Core from which temperature values should be read
76  *		This value is passed as "id" field to rdmsr/wrmsr functions.
77  * @status_reg: One of IA32_THERM_STATUS or IA32_PACKAGE_THERM_STATUS,
78  *		from where the temperature values should be read.
79  * @attr_size:  Total number of pre-core attrs displayed in the sysfs.
80  * @is_pkg_data: If this is 1, the temp_data holds pkgtemp data.
81  *		Otherwise, temp_data holds coretemp data.
82  * @valid: If this is 1, the current temperature is valid.
83  */
84 struct temp_data {
85 	int temp;
86 	int ttarget;
87 	int tjmax;
88 	unsigned long last_updated;
89 	unsigned int cpu;
90 	u32 cpu_core_id;
91 	u32 status_reg;
92 	int attr_size;
93 	bool is_pkg_data;
94 	bool valid;
95 	struct sensor_device_attribute sd_attrs[TOTAL_ATTRS];
96 	char attr_name[TOTAL_ATTRS][CORETEMP_NAME_LENGTH];
97 	struct attribute *attrs[TOTAL_ATTRS + 1];
98 	struct attribute_group attr_group;
99 	struct mutex update_lock;
100 };
101 
102 /* Platform Data per Physical CPU */
103 struct platform_data {
104 	struct device *hwmon_dev;
105 	u16 phys_proc_id;
106 	struct temp_data *core_data[MAX_CORE_DATA];
107 	struct device_attribute name_attr;
108 };
109 
110 struct pdev_entry {
111 	struct list_head list;
112 	struct platform_device *pdev;
113 	u16 phys_proc_id;
114 };
115 
116 static LIST_HEAD(pdev_list);
117 static DEFINE_MUTEX(pdev_list_mutex);
118 
119 static ssize_t show_label(struct device *dev,
120 				struct device_attribute *devattr, char *buf)
121 {
122 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
123 	struct platform_data *pdata = dev_get_drvdata(dev);
124 	struct temp_data *tdata = pdata->core_data[attr->index];
125 
126 	if (tdata->is_pkg_data)
127 		return sprintf(buf, "Physical id %u\n", pdata->phys_proc_id);
128 
129 	return sprintf(buf, "Core %u\n", tdata->cpu_core_id);
130 }
131 
132 static ssize_t show_crit_alarm(struct device *dev,
133 				struct device_attribute *devattr, char *buf)
134 {
135 	u32 eax, edx;
136 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
137 	struct platform_data *pdata = dev_get_drvdata(dev);
138 	struct temp_data *tdata = pdata->core_data[attr->index];
139 
140 	rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx);
141 
142 	return sprintf(buf, "%d\n", (eax >> 5) & 1);
143 }
144 
145 static ssize_t show_tjmax(struct device *dev,
146 			struct device_attribute *devattr, char *buf)
147 {
148 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
149 	struct platform_data *pdata = dev_get_drvdata(dev);
150 
151 	return sprintf(buf, "%d\n", pdata->core_data[attr->index]->tjmax);
152 }
153 
154 static ssize_t show_ttarget(struct device *dev,
155 				struct device_attribute *devattr, char *buf)
156 {
157 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
158 	struct platform_data *pdata = dev_get_drvdata(dev);
159 
160 	return sprintf(buf, "%d\n", pdata->core_data[attr->index]->ttarget);
161 }
162 
163 static ssize_t show_temp(struct device *dev,
164 			struct device_attribute *devattr, char *buf)
165 {
166 	u32 eax, edx;
167 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
168 	struct platform_data *pdata = dev_get_drvdata(dev);
169 	struct temp_data *tdata = pdata->core_data[attr->index];
170 
171 	mutex_lock(&tdata->update_lock);
172 
173 	/* Check whether the time interval has elapsed */
174 	if (!tdata->valid || time_after(jiffies, tdata->last_updated + HZ)) {
175 		rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx);
176 		/*
177 		 * Ignore the valid bit. In all observed cases the register
178 		 * value is either low or zero if the valid bit is 0.
179 		 * Return it instead of reporting an error which doesn't
180 		 * really help at all.
181 		 */
182 		tdata->temp = tdata->tjmax - ((eax >> 16) & 0x7f) * 1000;
183 		tdata->valid = 1;
184 		tdata->last_updated = jiffies;
185 	}
186 
187 	mutex_unlock(&tdata->update_lock);
188 	return sprintf(buf, "%d\n", tdata->temp);
189 }
190 
191 struct tjmax_pci {
192 	unsigned int device;
193 	int tjmax;
194 };
195 
196 static const struct tjmax_pci tjmax_pci_table[] = {
197 	{ 0x0708, 110000 },	/* CE41x0 (Sodaville ) */
198 	{ 0x0c72, 102000 },	/* Atom S1240 (Centerton) */
199 	{ 0x0c73, 95000 },	/* Atom S1220 (Centerton) */
200 	{ 0x0c75, 95000 },	/* Atom S1260 (Centerton) */
201 };
202 
203 struct tjmax {
204 	char const *id;
205 	int tjmax;
206 };
207 
208 static const struct tjmax tjmax_table[] = {
209 	{ "CPU  230", 100000 },		/* Model 0x1c, stepping 2	*/
210 	{ "CPU  330", 125000 },		/* Model 0x1c, stepping 2	*/
211 };
212 
213 struct tjmax_model {
214 	u8 model;
215 	u8 mask;
216 	int tjmax;
217 };
218 
219 #define ANY 0xff
220 
221 static const struct tjmax_model tjmax_model_table[] = {
222 	{ 0x1c, 10, 100000 },	/* D4xx, K4xx, N4xx, D5xx, K5xx, N5xx */
223 	{ 0x1c, ANY, 90000 },	/* Z5xx, N2xx, possibly others
224 				 * Note: Also matches 230 and 330,
225 				 * which are covered by tjmax_table
226 				 */
227 	{ 0x26, ANY, 90000 },	/* Atom Tunnel Creek (Exx), Lincroft (Z6xx)
228 				 * Note: TjMax for E6xxT is 110C, but CPU type
229 				 * is undetectable by software
230 				 */
231 	{ 0x27, ANY, 90000 },	/* Atom Medfield (Z2460) */
232 	{ 0x35, ANY, 90000 },	/* Atom Clover Trail/Cloverview (Z27x0) */
233 	{ 0x36, ANY, 100000 },	/* Atom Cedar Trail/Cedarview (N2xxx, D2xxx)
234 				 * Also matches S12x0 (stepping 9), covered by
235 				 * PCI table
236 				 */
237 };
238 
239 static int adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev)
240 {
241 	/* The 100C is default for both mobile and non mobile CPUs */
242 
243 	int tjmax = 100000;
244 	int tjmax_ee = 85000;
245 	int usemsr_ee = 1;
246 	int err;
247 	u32 eax, edx;
248 	int i;
249 	struct pci_dev *host_bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
250 
251 	/*
252 	 * Explicit tjmax table entries override heuristics.
253 	 * First try PCI host bridge IDs, followed by model ID strings
254 	 * and model/stepping information.
255 	 */
256 	if (host_bridge && host_bridge->vendor == PCI_VENDOR_ID_INTEL) {
257 		for (i = 0; i < ARRAY_SIZE(tjmax_pci_table); i++) {
258 			if (host_bridge->device == tjmax_pci_table[i].device)
259 				return tjmax_pci_table[i].tjmax;
260 		}
261 	}
262 
263 	for (i = 0; i < ARRAY_SIZE(tjmax_table); i++) {
264 		if (strstr(c->x86_model_id, tjmax_table[i].id))
265 			return tjmax_table[i].tjmax;
266 	}
267 
268 	for (i = 0; i < ARRAY_SIZE(tjmax_model_table); i++) {
269 		const struct tjmax_model *tm = &tjmax_model_table[i];
270 		if (c->x86_model == tm->model &&
271 		    (tm->mask == ANY || c->x86_mask == tm->mask))
272 			return tm->tjmax;
273 	}
274 
275 	/* Early chips have no MSR for TjMax */
276 
277 	if (c->x86_model == 0xf && c->x86_mask < 4)
278 		usemsr_ee = 0;
279 
280 	if (c->x86_model > 0xe && usemsr_ee) {
281 		u8 platform_id;
282 
283 		/*
284 		 * Now we can detect the mobile CPU using Intel provided table
285 		 * http://softwarecommunity.intel.com/Wiki/Mobility/720.htm
286 		 * For Core2 cores, check MSR 0x17, bit 28 1 = Mobile CPU
287 		 */
288 		err = rdmsr_safe_on_cpu(id, 0x17, &eax, &edx);
289 		if (err) {
290 			dev_warn(dev,
291 				 "Unable to access MSR 0x17, assuming desktop"
292 				 " CPU\n");
293 			usemsr_ee = 0;
294 		} else if (c->x86_model < 0x17 && !(eax & 0x10000000)) {
295 			/*
296 			 * Trust bit 28 up to Penryn, I could not find any
297 			 * documentation on that; if you happen to know
298 			 * someone at Intel please ask
299 			 */
300 			usemsr_ee = 0;
301 		} else {
302 			/* Platform ID bits 52:50 (EDX starts at bit 32) */
303 			platform_id = (edx >> 18) & 0x7;
304 
305 			/*
306 			 * Mobile Penryn CPU seems to be platform ID 7 or 5
307 			 * (guesswork)
308 			 */
309 			if (c->x86_model == 0x17 &&
310 			    (platform_id == 5 || platform_id == 7)) {
311 				/*
312 				 * If MSR EE bit is set, set it to 90 degrees C,
313 				 * otherwise 105 degrees C
314 				 */
315 				tjmax_ee = 90000;
316 				tjmax = 105000;
317 			}
318 		}
319 	}
320 
321 	if (usemsr_ee) {
322 		err = rdmsr_safe_on_cpu(id, 0xee, &eax, &edx);
323 		if (err) {
324 			dev_warn(dev,
325 				 "Unable to access MSR 0xEE, for Tjmax, left"
326 				 " at default\n");
327 		} else if (eax & 0x40000000) {
328 			tjmax = tjmax_ee;
329 		}
330 	} else if (tjmax == 100000) {
331 		/*
332 		 * If we don't use msr EE it means we are desktop CPU
333 		 * (with exeception of Atom)
334 		 */
335 		dev_warn(dev, "Using relative temperature scale!\n");
336 	}
337 
338 	return tjmax;
339 }
340 
341 static bool cpu_has_tjmax(struct cpuinfo_x86 *c)
342 {
343 	u8 model = c->x86_model;
344 
345 	return model > 0xe &&
346 	       model != 0x1c &&
347 	       model != 0x26 &&
348 	       model != 0x27 &&
349 	       model != 0x35 &&
350 	       model != 0x36;
351 }
352 
353 static int get_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev)
354 {
355 	int err;
356 	u32 eax, edx;
357 	u32 val;
358 
359 	/*
360 	 * A new feature of current Intel(R) processors, the
361 	 * IA32_TEMPERATURE_TARGET contains the TjMax value
362 	 */
363 	err = rdmsr_safe_on_cpu(id, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
364 	if (err) {
365 		if (cpu_has_tjmax(c))
366 			dev_warn(dev, "Unable to read TjMax from CPU %u\n", id);
367 	} else {
368 		val = (eax >> 16) & 0xff;
369 		/*
370 		 * If the TjMax is not plausible, an assumption
371 		 * will be used
372 		 */
373 		if (val) {
374 			dev_dbg(dev, "TjMax is %d degrees C\n", val);
375 			return val * 1000;
376 		}
377 	}
378 
379 	if (force_tjmax) {
380 		dev_notice(dev, "TjMax forced to %d degrees C by user\n",
381 			   force_tjmax);
382 		return force_tjmax * 1000;
383 	}
384 
385 	/*
386 	 * An assumption is made for early CPUs and unreadable MSR.
387 	 * NOTE: the calculated value may not be correct.
388 	 */
389 	return adjust_tjmax(c, id, dev);
390 }
391 
392 static int create_core_attrs(struct temp_data *tdata, struct device *dev,
393 			     int attr_no)
394 {
395 	int i;
396 	static ssize_t (*const rd_ptr[TOTAL_ATTRS]) (struct device *dev,
397 			struct device_attribute *devattr, char *buf) = {
398 			show_label, show_crit_alarm, show_temp, show_tjmax,
399 			show_ttarget };
400 	static const char *const names[TOTAL_ATTRS] = {
401 					"temp%d_label", "temp%d_crit_alarm",
402 					"temp%d_input", "temp%d_crit",
403 					"temp%d_max" };
404 
405 	for (i = 0; i < tdata->attr_size; i++) {
406 		snprintf(tdata->attr_name[i], CORETEMP_NAME_LENGTH, names[i],
407 			attr_no);
408 		sysfs_attr_init(&tdata->sd_attrs[i].dev_attr.attr);
409 		tdata->sd_attrs[i].dev_attr.attr.name = tdata->attr_name[i];
410 		tdata->sd_attrs[i].dev_attr.attr.mode = S_IRUGO;
411 		tdata->sd_attrs[i].dev_attr.show = rd_ptr[i];
412 		tdata->sd_attrs[i].index = attr_no;
413 		tdata->attrs[i] = &tdata->sd_attrs[i].dev_attr.attr;
414 	}
415 	tdata->attr_group.attrs = tdata->attrs;
416 	return sysfs_create_group(&dev->kobj, &tdata->attr_group);
417 }
418 
419 
420 static int chk_ucode_version(unsigned int cpu)
421 {
422 	struct cpuinfo_x86 *c = &cpu_data(cpu);
423 
424 	/*
425 	 * Check if we have problem with errata AE18 of Core processors:
426 	 * Readings might stop update when processor visited too deep sleep,
427 	 * fixed for stepping D0 (6EC).
428 	 */
429 	if (c->x86_model == 0xe && c->x86_mask < 0xc && c->microcode < 0x39) {
430 		pr_err("Errata AE18 not fixed, update BIOS or microcode of the CPU!\n");
431 		return -ENODEV;
432 	}
433 	return 0;
434 }
435 
436 static struct platform_device *coretemp_get_pdev(unsigned int cpu)
437 {
438 	u16 phys_proc_id = TO_PHYS_ID(cpu);
439 	struct pdev_entry *p;
440 
441 	mutex_lock(&pdev_list_mutex);
442 
443 	list_for_each_entry(p, &pdev_list, list)
444 		if (p->phys_proc_id == phys_proc_id) {
445 			mutex_unlock(&pdev_list_mutex);
446 			return p->pdev;
447 		}
448 
449 	mutex_unlock(&pdev_list_mutex);
450 	return NULL;
451 }
452 
453 static struct temp_data *init_temp_data(unsigned int cpu, int pkg_flag)
454 {
455 	struct temp_data *tdata;
456 
457 	tdata = kzalloc(sizeof(struct temp_data), GFP_KERNEL);
458 	if (!tdata)
459 		return NULL;
460 
461 	tdata->status_reg = pkg_flag ? MSR_IA32_PACKAGE_THERM_STATUS :
462 							MSR_IA32_THERM_STATUS;
463 	tdata->is_pkg_data = pkg_flag;
464 	tdata->cpu = cpu;
465 	tdata->cpu_core_id = TO_CORE_ID(cpu);
466 	tdata->attr_size = MAX_CORE_ATTRS;
467 	mutex_init(&tdata->update_lock);
468 	return tdata;
469 }
470 
471 static int create_core_data(struct platform_device *pdev, unsigned int cpu,
472 			    int pkg_flag)
473 {
474 	struct temp_data *tdata;
475 	struct platform_data *pdata = platform_get_drvdata(pdev);
476 	struct cpuinfo_x86 *c = &cpu_data(cpu);
477 	u32 eax, edx;
478 	int err, attr_no;
479 
480 	/*
481 	 * Find attr number for sysfs:
482 	 * We map the attr number to core id of the CPU
483 	 * The attr number is always core id + 2
484 	 * The Pkgtemp will always show up as temp1_*, if available
485 	 */
486 	attr_no = pkg_flag ? 1 : TO_ATTR_NO(cpu);
487 
488 	if (attr_no > MAX_CORE_DATA - 1)
489 		return -ERANGE;
490 
491 	/*
492 	 * Provide a single set of attributes for all HT siblings of a core
493 	 * to avoid duplicate sensors (the processor ID and core ID of all
494 	 * HT siblings of a core are the same).
495 	 * Skip if a HT sibling of this core is already registered.
496 	 * This is not an error.
497 	 */
498 	if (pdata->core_data[attr_no] != NULL)
499 		return 0;
500 
501 	tdata = init_temp_data(cpu, pkg_flag);
502 	if (!tdata)
503 		return -ENOMEM;
504 
505 	/* Test if we can access the status register */
506 	err = rdmsr_safe_on_cpu(cpu, tdata->status_reg, &eax, &edx);
507 	if (err)
508 		goto exit_free;
509 
510 	/* We can access status register. Get Critical Temperature */
511 	tdata->tjmax = get_tjmax(c, cpu, &pdev->dev);
512 
513 	/*
514 	 * Read the still undocumented bits 8:15 of IA32_TEMPERATURE_TARGET.
515 	 * The target temperature is available on older CPUs but not in this
516 	 * register. Atoms don't have the register at all.
517 	 */
518 	if (c->x86_model > 0xe && c->x86_model != 0x1c) {
519 		err = rdmsr_safe_on_cpu(cpu, MSR_IA32_TEMPERATURE_TARGET,
520 					&eax, &edx);
521 		if (!err) {
522 			tdata->ttarget
523 			  = tdata->tjmax - ((eax >> 8) & 0xff) * 1000;
524 			tdata->attr_size++;
525 		}
526 	}
527 
528 	pdata->core_data[attr_no] = tdata;
529 
530 	/* Create sysfs interfaces */
531 	err = create_core_attrs(tdata, pdata->hwmon_dev, attr_no);
532 	if (err)
533 		goto exit_free;
534 
535 	return 0;
536 exit_free:
537 	pdata->core_data[attr_no] = NULL;
538 	kfree(tdata);
539 	return err;
540 }
541 
542 static void coretemp_add_core(unsigned int cpu, int pkg_flag)
543 {
544 	struct platform_device *pdev = coretemp_get_pdev(cpu);
545 	int err;
546 
547 	if (!pdev)
548 		return;
549 
550 	err = create_core_data(pdev, cpu, pkg_flag);
551 	if (err)
552 		dev_err(&pdev->dev, "Adding Core %u failed\n", cpu);
553 }
554 
555 static void coretemp_remove_core(struct platform_data *pdata,
556 				 int indx)
557 {
558 	struct temp_data *tdata = pdata->core_data[indx];
559 
560 	/* Remove the sysfs attributes */
561 	sysfs_remove_group(&pdata->hwmon_dev->kobj, &tdata->attr_group);
562 
563 	kfree(pdata->core_data[indx]);
564 	pdata->core_data[indx] = NULL;
565 }
566 
567 static int coretemp_probe(struct platform_device *pdev)
568 {
569 	struct device *dev = &pdev->dev;
570 	struct platform_data *pdata;
571 
572 	/* Initialize the per-package data structures */
573 	pdata = devm_kzalloc(dev, sizeof(struct platform_data), GFP_KERNEL);
574 	if (!pdata)
575 		return -ENOMEM;
576 
577 	pdata->phys_proc_id = pdev->id;
578 	platform_set_drvdata(pdev, pdata);
579 
580 	pdata->hwmon_dev = devm_hwmon_device_register_with_groups(dev, DRVNAME,
581 								  pdata, NULL);
582 	return PTR_ERR_OR_ZERO(pdata->hwmon_dev);
583 }
584 
585 static int coretemp_remove(struct platform_device *pdev)
586 {
587 	struct platform_data *pdata = platform_get_drvdata(pdev);
588 	int i;
589 
590 	for (i = MAX_CORE_DATA - 1; i >= 0; --i)
591 		if (pdata->core_data[i])
592 			coretemp_remove_core(pdata, i);
593 
594 	return 0;
595 }
596 
597 static struct platform_driver coretemp_driver = {
598 	.driver = {
599 		.name = DRVNAME,
600 	},
601 	.probe = coretemp_probe,
602 	.remove = coretemp_remove,
603 };
604 
605 static int coretemp_device_add(unsigned int cpu)
606 {
607 	int err;
608 	struct platform_device *pdev;
609 	struct pdev_entry *pdev_entry;
610 
611 	mutex_lock(&pdev_list_mutex);
612 
613 	pdev = platform_device_alloc(DRVNAME, TO_PHYS_ID(cpu));
614 	if (!pdev) {
615 		err = -ENOMEM;
616 		pr_err("Device allocation failed\n");
617 		goto exit;
618 	}
619 
620 	pdev_entry = kzalloc(sizeof(struct pdev_entry), GFP_KERNEL);
621 	if (!pdev_entry) {
622 		err = -ENOMEM;
623 		goto exit_device_put;
624 	}
625 
626 	err = platform_device_add(pdev);
627 	if (err) {
628 		pr_err("Device addition failed (%d)\n", err);
629 		goto exit_device_free;
630 	}
631 
632 	pdev_entry->pdev = pdev;
633 	pdev_entry->phys_proc_id = pdev->id;
634 
635 	list_add_tail(&pdev_entry->list, &pdev_list);
636 	mutex_unlock(&pdev_list_mutex);
637 
638 	return 0;
639 
640 exit_device_free:
641 	kfree(pdev_entry);
642 exit_device_put:
643 	platform_device_put(pdev);
644 exit:
645 	mutex_unlock(&pdev_list_mutex);
646 	return err;
647 }
648 
649 static void coretemp_device_remove(unsigned int cpu)
650 {
651 	struct pdev_entry *p, *n;
652 	u16 phys_proc_id = TO_PHYS_ID(cpu);
653 
654 	mutex_lock(&pdev_list_mutex);
655 	list_for_each_entry_safe(p, n, &pdev_list, list) {
656 		if (p->phys_proc_id != phys_proc_id)
657 			continue;
658 		platform_device_unregister(p->pdev);
659 		list_del(&p->list);
660 		kfree(p);
661 	}
662 	mutex_unlock(&pdev_list_mutex);
663 }
664 
665 static bool is_any_core_online(struct platform_data *pdata)
666 {
667 	int i;
668 
669 	/* Find online cores, except pkgtemp data */
670 	for (i = MAX_CORE_DATA - 1; i >= 0; --i) {
671 		if (pdata->core_data[i] &&
672 			!pdata->core_data[i]->is_pkg_data) {
673 			return true;
674 		}
675 	}
676 	return false;
677 }
678 
679 static void get_core_online(unsigned int cpu)
680 {
681 	struct cpuinfo_x86 *c = &cpu_data(cpu);
682 	struct platform_device *pdev = coretemp_get_pdev(cpu);
683 	int err;
684 
685 	/*
686 	 * CPUID.06H.EAX[0] indicates whether the CPU has thermal
687 	 * sensors. We check this bit only, all the early CPUs
688 	 * without thermal sensors will be filtered out.
689 	 */
690 	if (!cpu_has(c, X86_FEATURE_DTHERM))
691 		return;
692 
693 	if (!pdev) {
694 		/* Check the microcode version of the CPU */
695 		if (chk_ucode_version(cpu))
696 			return;
697 
698 		/*
699 		 * Alright, we have DTS support.
700 		 * We are bringing the _first_ core in this pkg
701 		 * online. So, initialize per-pkg data structures and
702 		 * then bring this core online.
703 		 */
704 		err = coretemp_device_add(cpu);
705 		if (err)
706 			return;
707 		/*
708 		 * Check whether pkgtemp support is available.
709 		 * If so, add interfaces for pkgtemp.
710 		 */
711 		if (cpu_has(c, X86_FEATURE_PTS))
712 			coretemp_add_core(cpu, 1);
713 	}
714 	/*
715 	 * Physical CPU device already exists.
716 	 * So, just add interfaces for this core.
717 	 */
718 	coretemp_add_core(cpu, 0);
719 }
720 
721 static void put_core_offline(unsigned int cpu)
722 {
723 	int i, indx;
724 	struct platform_data *pdata;
725 	struct platform_device *pdev = coretemp_get_pdev(cpu);
726 
727 	/* If the physical CPU device does not exist, just return */
728 	if (!pdev)
729 		return;
730 
731 	pdata = platform_get_drvdata(pdev);
732 
733 	indx = TO_ATTR_NO(cpu);
734 
735 	/* The core id is too big, just return */
736 	if (indx > MAX_CORE_DATA - 1)
737 		return;
738 
739 	if (pdata->core_data[indx] && pdata->core_data[indx]->cpu == cpu)
740 		coretemp_remove_core(pdata, indx);
741 
742 	/*
743 	 * If a HT sibling of a core is taken offline, but another HT sibling
744 	 * of the same core is still online, register the alternate sibling.
745 	 * This ensures that exactly one set of attributes is provided as long
746 	 * as at least one HT sibling of a core is online.
747 	 */
748 	for_each_sibling(i, cpu) {
749 		if (i != cpu) {
750 			get_core_online(i);
751 			/*
752 			 * Display temperature sensor data for one HT sibling
753 			 * per core only, so abort the loop after one such
754 			 * sibling has been found.
755 			 */
756 			break;
757 		}
758 	}
759 	/*
760 	 * If all cores in this pkg are offline, remove the device.
761 	 * coretemp_device_remove calls unregister_platform_device,
762 	 * which in turn calls coretemp_remove. This removes the
763 	 * pkgtemp entry and does other clean ups.
764 	 */
765 	if (!is_any_core_online(pdata))
766 		coretemp_device_remove(cpu);
767 }
768 
769 static int coretemp_cpu_callback(struct notifier_block *nfb,
770 				 unsigned long action, void *hcpu)
771 {
772 	unsigned int cpu = (unsigned long) hcpu;
773 
774 	switch (action) {
775 	case CPU_ONLINE:
776 	case CPU_DOWN_FAILED:
777 		get_core_online(cpu);
778 		break;
779 	case CPU_DOWN_PREPARE:
780 		put_core_offline(cpu);
781 		break;
782 	}
783 	return NOTIFY_OK;
784 }
785 
786 static struct notifier_block coretemp_cpu_notifier __refdata = {
787 	.notifier_call = coretemp_cpu_callback,
788 };
789 
790 static const struct x86_cpu_id __initconst coretemp_ids[] = {
791 	{ X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_DTHERM },
792 	{}
793 };
794 MODULE_DEVICE_TABLE(x86cpu, coretemp_ids);
795 
796 static int __init coretemp_init(void)
797 {
798 	int i, err;
799 
800 	/*
801 	 * CPUID.06H.EAX[0] indicates whether the CPU has thermal
802 	 * sensors. We check this bit only, all the early CPUs
803 	 * without thermal sensors will be filtered out.
804 	 */
805 	if (!x86_match_cpu(coretemp_ids))
806 		return -ENODEV;
807 
808 	err = platform_driver_register(&coretemp_driver);
809 	if (err)
810 		goto exit;
811 
812 	cpu_notifier_register_begin();
813 	for_each_online_cpu(i)
814 		get_core_online(i);
815 
816 #ifndef CONFIG_HOTPLUG_CPU
817 	if (list_empty(&pdev_list)) {
818 		cpu_notifier_register_done();
819 		err = -ENODEV;
820 		goto exit_driver_unreg;
821 	}
822 #endif
823 
824 	__register_hotcpu_notifier(&coretemp_cpu_notifier);
825 	cpu_notifier_register_done();
826 	return 0;
827 
828 #ifndef CONFIG_HOTPLUG_CPU
829 exit_driver_unreg:
830 	platform_driver_unregister(&coretemp_driver);
831 #endif
832 exit:
833 	return err;
834 }
835 
836 static void __exit coretemp_exit(void)
837 {
838 	struct pdev_entry *p, *n;
839 
840 	cpu_notifier_register_begin();
841 	__unregister_hotcpu_notifier(&coretemp_cpu_notifier);
842 	mutex_lock(&pdev_list_mutex);
843 	list_for_each_entry_safe(p, n, &pdev_list, list) {
844 		platform_device_unregister(p->pdev);
845 		list_del(&p->list);
846 		kfree(p);
847 	}
848 	mutex_unlock(&pdev_list_mutex);
849 	cpu_notifier_register_done();
850 	platform_driver_unregister(&coretemp_driver);
851 }
852 
853 MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
854 MODULE_DESCRIPTION("Intel Core temperature monitor");
855 MODULE_LICENSE("GPL");
856 
857 module_init(coretemp_init)
858 module_exit(coretemp_exit)
859