xref: /linux/drivers/hwmon/bt1-pvt.c (revision bd476c1306ea989d6d9eb65295572e98d93edeb6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
4  *
5  * Authors:
6  *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
7  *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
8  *
9  * Baikal-T1 Process, Voltage, Temperature sensor driver
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bitops.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/hwmon.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/limits.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/polynomial.h>
30 #include <linux/seqlock.h>
31 #include <linux/sysfs.h>
32 #include <linux/types.h>
33 
34 #include "bt1-pvt.h"
35 
36 /*
37  * For the sake of the code simplification we created the sensors info table
38  * with the sensor names, activation modes, threshold registers base address
39  * and the thresholds bit fields.
40  */
41 static const struct pvt_sensor_info pvt_info[] = {
42 	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
43 	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
44 	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
45 	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
46 	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
47 };
48 
49 /*
50  * The original translation formulae of the temperature (in degrees of Celsius)
51  * to PVT data and vice-versa are following:
52  * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
53  *     1.7204e2,
54  * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
55  *     3.1020e-1*(N^1) - 4.838e1,
56  * where T = [-48.380, 147.438]C and N = [0, 1023].
57  * They must be accordingly altered to be suitable for the integer arithmetics.
58  * The technique is called 'factor redistribution', which just makes sure the
59  * multiplications and divisions are made so to have a result of the operations
60  * within the integer numbers limit. In addition we need to translate the
61  * formulae to accept millidegrees of Celsius. Here what they look like after
62  * the alterations:
63  * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
64  *     17204e2) / 1e4,
65  * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
66  *     48380,
67  * where T = [-48380, 147438] mC and N = [0, 1023].
68  */
69 static const struct polynomial __maybe_unused poly_temp_to_N = {
70 	.total_divider = 10000,
71 	.terms = {
72 		{4, 18322, 10000, 10000},
73 		{3, 2343, 10000, 10},
74 		{2, 87018, 10000, 10},
75 		{1, 39269, 1000, 1},
76 		{0, 1720400, 1, 1}
77 	}
78 };
79 
80 static const struct polynomial poly_N_to_temp = {
81 	.total_divider = 1,
82 	.terms = {
83 		{4, -16743, 1000, 1},
84 		{3, 81542, 1000, 1},
85 		{2, -182010, 1000, 1},
86 		{1, 310200, 1000, 1},
87 		{0, -48380, 1, 1}
88 	}
89 };
90 
91 /*
92  * Similar alterations are performed for the voltage conversion equations.
93  * The original formulae are:
94  * N = 1.8658e3*V - 1.1572e3,
95  * V = (N + 1.1572e3) / 1.8658e3,
96  * where V = [0.620, 1.168] V and N = [0, 1023].
97  * After the optimization they looks as follows:
98  * N = (18658e-3*V - 11572) / 10,
99  * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
100  */
101 static const struct polynomial __maybe_unused poly_volt_to_N = {
102 	.total_divider = 10,
103 	.terms = {
104 		{1, 18658, 1000, 1},
105 		{0, -11572, 1, 1}
106 	}
107 };
108 
109 static const struct polynomial poly_N_to_volt = {
110 	.total_divider = 10,
111 	.terms = {
112 		{1, 100000, 18658, 1},
113 		{0, 115720000, 1, 18658}
114 	}
115 };
116 
117 static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
118 {
119 	u32 old;
120 
121 	old = readl_relaxed(reg);
122 	writel((old & ~mask) | (data & mask), reg);
123 
124 	return old & mask;
125 }
126 
127 /*
128  * Baikal-T1 PVT mode can be updated only when the controller is disabled.
129  * So first we disable it, then set the new mode together with the controller
130  * getting back enabled. The same concerns the temperature trim and
131  * measurements timeout. If it is necessary the interface mutex is supposed
132  * to be locked at the time the operations are performed.
133  */
134 static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
135 {
136 	u32 old;
137 
138 	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
139 
140 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
141 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
142 		   mode | old);
143 }
144 
145 static inline u32 pvt_calc_trim(long temp)
146 {
147 	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
148 
149 	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
150 }
151 
152 static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
153 {
154 	u32 old;
155 
156 	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
157 
158 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
159 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
160 		   trim | old);
161 }
162 
163 static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
164 {
165 	u32 old;
166 
167 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
168 	writel(tout, pvt->regs + PVT_TTIMEOUT);
169 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
170 }
171 
172 /*
173  * This driver can optionally provide the hwmon alarms for each sensor the PVT
174  * controller supports. The alarms functionality is made compile-time
175  * configurable due to the hardware interface implementation peculiarity
176  * described further in this comment. So in case if alarms are unnecessary in
177  * your system design it's recommended to have them disabled to prevent the PVT
178  * IRQs being periodically raised to get the data cache/alarms status up to
179  * date.
180  *
181  * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
182  * but is equipped with a dedicated control wrapper. It exposes the PVT
183  * sub-block registers space via the APB3 bus. In addition the wrapper provides
184  * a common interrupt vector of the sensors conversion completion events and
185  * threshold value alarms. Alas the wrapper interface hasn't been fully thought
186  * through. There is only one sensor can be activated at a time, for which the
187  * thresholds comparator is enabled right after the data conversion is
188  * completed. Due to this if alarms need to be implemented for all available
189  * sensors we can't just set the thresholds and enable the interrupts. We need
190  * to enable the sensors one after another and let the controller to detect
191  * the alarms by itself at each conversion. This also makes pointless to handle
192  * the alarms interrupts, since in occasion they happen synchronously with
193  * data conversion completion. The best driver design would be to have the
194  * completion interrupts enabled only and keep the converted value in the
195  * driver data cache. This solution is implemented if hwmon alarms are enabled
196  * in this driver. In case if the alarms are disabled, the conversion is
197  * performed on demand at the time a sensors input file is read.
198  */
199 
200 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
201 
202 #define pvt_hard_isr NULL
203 
204 static irqreturn_t pvt_soft_isr(int irq, void *data)
205 {
206 	const struct pvt_sensor_info *info;
207 	struct pvt_hwmon *pvt = data;
208 	struct pvt_cache *cache;
209 	u32 val, thres_sts, old;
210 
211 	/*
212 	 * DVALID bit will be cleared by reading the data. We need to save the
213 	 * status before the next conversion happens. Threshold events will be
214 	 * handled a bit later.
215 	 */
216 	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
217 
218 	/*
219 	 * Then lets recharge the PVT interface with the next sampling mode.
220 	 * Lock the interface mutex to serialize trim, timeouts and alarm
221 	 * thresholds settings.
222 	 */
223 	cache = &pvt->cache[pvt->sensor];
224 	info = &pvt_info[pvt->sensor];
225 	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
226 		      PVT_SENSOR_FIRST : (pvt->sensor + 1);
227 
228 	/*
229 	 * For some reason we have to mask the interrupt before changing the
230 	 * mode, otherwise sometimes the temperature mode doesn't get
231 	 * activated even though the actual mode in the ctrl register
232 	 * corresponds to one. Then we read the data. By doing so we also
233 	 * recharge the data conversion. After this the mode corresponding
234 	 * to the next sensor in the row is set. Finally we enable the
235 	 * interrupts back.
236 	 */
237 	mutex_lock(&pvt->iface_mtx);
238 
239 	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
240 			 PVT_INTR_DVALID);
241 
242 	val = readl(pvt->regs + PVT_DATA);
243 
244 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
245 
246 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
247 
248 	mutex_unlock(&pvt->iface_mtx);
249 
250 	/*
251 	 * We can now update the data cache with data just retrieved from the
252 	 * sensor. Lock write-seqlock to make sure the reader has a coherent
253 	 * data.
254 	 */
255 	write_seqlock(&cache->data_seqlock);
256 
257 	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
258 
259 	write_sequnlock(&cache->data_seqlock);
260 
261 	/*
262 	 * While PVT core is doing the next mode data conversion, we'll check
263 	 * whether the alarms were triggered for the current sensor. Note that
264 	 * according to the documentation only one threshold IRQ status can be
265 	 * set at a time, that's why if-else statement is utilized.
266 	 */
267 	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
268 		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
269 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
270 				   info->channel);
271 	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
272 		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
273 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
274 				   info->channel);
275 	}
276 
277 	return IRQ_HANDLED;
278 }
279 
280 static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
281 {
282 	return 0644;
283 }
284 
285 static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
286 {
287 	return 0444;
288 }
289 
290 static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
291 			 long *val)
292 {
293 	struct pvt_cache *cache = &pvt->cache[type];
294 	unsigned int seq;
295 	u32 data;
296 
297 	do {
298 		seq = read_seqbegin(&cache->data_seqlock);
299 		data = cache->data;
300 	} while (read_seqretry(&cache->data_seqlock, seq));
301 
302 	if (type == PVT_TEMP)
303 		*val = polynomial_calc(&poly_N_to_temp, data);
304 	else
305 		*val = polynomial_calc(&poly_N_to_volt, data);
306 
307 	return 0;
308 }
309 
310 static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
311 			  bool is_low, long *val)
312 {
313 	u32 data;
314 
315 	/* No need in serialization, since it is just read from MMIO. */
316 	data = readl(pvt->regs + pvt_info[type].thres_base);
317 
318 	if (is_low)
319 		data = FIELD_GET(PVT_THRES_LO_MASK, data);
320 	else
321 		data = FIELD_GET(PVT_THRES_HI_MASK, data);
322 
323 	if (type == PVT_TEMP)
324 		*val = polynomial_calc(&poly_N_to_temp, data);
325 	else
326 		*val = polynomial_calc(&poly_N_to_volt, data);
327 
328 	return 0;
329 }
330 
331 static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
332 			   bool is_low, long val)
333 {
334 	u32 data, limit, mask;
335 	int ret;
336 
337 	if (type == PVT_TEMP) {
338 		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
339 		data = polynomial_calc(&poly_temp_to_N, val);
340 	} else {
341 		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
342 		data = polynomial_calc(&poly_volt_to_N, val);
343 	}
344 
345 	/* Serialize limit update, since a part of the register is changed. */
346 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
347 	if (ret)
348 		return ret;
349 
350 	/* Make sure the upper and lower ranges don't intersect. */
351 	limit = readl(pvt->regs + pvt_info[type].thres_base);
352 	if (is_low) {
353 		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
354 		data = clamp_val(data, PVT_DATA_MIN, limit);
355 		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
356 		mask = PVT_THRES_LO_MASK;
357 	} else {
358 		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
359 		data = clamp_val(data, limit, PVT_DATA_MAX);
360 		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
361 		mask = PVT_THRES_HI_MASK;
362 	}
363 
364 	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
365 
366 	mutex_unlock(&pvt->iface_mtx);
367 
368 	return 0;
369 }
370 
371 static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
372 			  bool is_low, long *val)
373 {
374 	if (is_low)
375 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
376 	else
377 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
378 
379 	return 0;
380 }
381 
382 static const struct hwmon_channel_info *pvt_channel_info[] = {
383 	HWMON_CHANNEL_INFO(chip,
384 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
385 	HWMON_CHANNEL_INFO(temp,
386 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
387 			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
388 			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
389 			   HWMON_T_OFFSET),
390 	HWMON_CHANNEL_INFO(in,
391 			   HWMON_I_INPUT | HWMON_I_LABEL |
392 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
393 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
394 			   HWMON_I_INPUT | HWMON_I_LABEL |
395 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
396 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
397 			   HWMON_I_INPUT | HWMON_I_LABEL |
398 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
399 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
400 			   HWMON_I_INPUT | HWMON_I_LABEL |
401 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
402 			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
403 	NULL
404 };
405 
406 #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
407 
408 static irqreturn_t pvt_hard_isr(int irq, void *data)
409 {
410 	struct pvt_hwmon *pvt = data;
411 	struct pvt_cache *cache;
412 	u32 val;
413 
414 	/*
415 	 * Mask the DVALID interrupt so after exiting from the handler a
416 	 * repeated conversion wouldn't happen.
417 	 */
418 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
419 		   PVT_INTR_DVALID);
420 
421 	/*
422 	 * Nothing special for alarm-less driver. Just read the data, update
423 	 * the cache and notify a waiter of this event.
424 	 */
425 	val = readl(pvt->regs + PVT_DATA);
426 	if (!(val & PVT_DATA_VALID)) {
427 		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
428 		return IRQ_HANDLED;
429 	}
430 
431 	cache = &pvt->cache[pvt->sensor];
432 
433 	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
434 
435 	complete(&cache->conversion);
436 
437 	return IRQ_HANDLED;
438 }
439 
440 #define pvt_soft_isr NULL
441 
442 static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
443 {
444 	return 0;
445 }
446 
447 static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
448 {
449 	return 0;
450 }
451 
452 static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
453 			 long *val)
454 {
455 	struct pvt_cache *cache = &pvt->cache[type];
456 	unsigned long timeout;
457 	u32 data;
458 	int ret;
459 
460 	/*
461 	 * Lock PVT conversion interface until data cache is updated. The
462 	 * data read procedure is following: set the requested PVT sensor
463 	 * mode, enable IRQ and conversion, wait until conversion is finished,
464 	 * then disable conversion and IRQ, and read the cached data.
465 	 */
466 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
467 	if (ret)
468 		return ret;
469 
470 	pvt->sensor = type;
471 	pvt_set_mode(pvt, pvt_info[type].mode);
472 
473 	/*
474 	 * Unmask the DVALID interrupt and enable the sensors conversions.
475 	 * Do the reverse procedure when conversion is done.
476 	 */
477 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
478 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
479 
480 	/*
481 	 * Wait with timeout since in case if the sensor is suddenly powered
482 	 * down the request won't be completed and the caller will hang up on
483 	 * this procedure until the power is back up again. Multiply the
484 	 * timeout by the factor of two to prevent a false timeout.
485 	 */
486 	timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout));
487 	ret = wait_for_completion_timeout(&cache->conversion, timeout);
488 
489 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
490 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
491 		   PVT_INTR_DVALID);
492 
493 	data = READ_ONCE(cache->data);
494 
495 	mutex_unlock(&pvt->iface_mtx);
496 
497 	if (!ret)
498 		return -ETIMEDOUT;
499 
500 	if (type == PVT_TEMP)
501 		*val = polynomial_calc(&poly_N_to_temp, data);
502 	else
503 		*val = polynomial_calc(&poly_N_to_volt, data);
504 
505 	return 0;
506 }
507 
508 static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
509 			  bool is_low, long *val)
510 {
511 	return -EOPNOTSUPP;
512 }
513 
514 static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
515 			   bool is_low, long val)
516 {
517 	return -EOPNOTSUPP;
518 }
519 
520 static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
521 			  bool is_low, long *val)
522 {
523 	return -EOPNOTSUPP;
524 }
525 
526 static const struct hwmon_channel_info *pvt_channel_info[] = {
527 	HWMON_CHANNEL_INFO(chip,
528 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
529 	HWMON_CHANNEL_INFO(temp,
530 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
531 			   HWMON_T_OFFSET),
532 	HWMON_CHANNEL_INFO(in,
533 			   HWMON_I_INPUT | HWMON_I_LABEL,
534 			   HWMON_I_INPUT | HWMON_I_LABEL,
535 			   HWMON_I_INPUT | HWMON_I_LABEL,
536 			   HWMON_I_INPUT | HWMON_I_LABEL),
537 	NULL
538 };
539 
540 #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
541 
542 static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
543 					      int ch)
544 {
545 	switch (type) {
546 	case hwmon_temp:
547 		if (ch < 0 || ch >= PVT_TEMP_CHS)
548 			return false;
549 		break;
550 	case hwmon_in:
551 		if (ch < 0 || ch >= PVT_VOLT_CHS)
552 			return false;
553 		break;
554 	default:
555 		break;
556 	}
557 
558 	/* The rest of the types are independent from the channel number. */
559 	return true;
560 }
561 
562 static umode_t pvt_hwmon_is_visible(const void *data,
563 				    enum hwmon_sensor_types type,
564 				    u32 attr, int ch)
565 {
566 	if (!pvt_hwmon_channel_is_valid(type, ch))
567 		return 0;
568 
569 	switch (type) {
570 	case hwmon_chip:
571 		switch (attr) {
572 		case hwmon_chip_update_interval:
573 			return 0644;
574 		}
575 		break;
576 	case hwmon_temp:
577 		switch (attr) {
578 		case hwmon_temp_input:
579 		case hwmon_temp_type:
580 		case hwmon_temp_label:
581 			return 0444;
582 		case hwmon_temp_min:
583 		case hwmon_temp_max:
584 			return pvt_limit_is_visible(ch);
585 		case hwmon_temp_min_alarm:
586 		case hwmon_temp_max_alarm:
587 			return pvt_alarm_is_visible(ch);
588 		case hwmon_temp_offset:
589 			return 0644;
590 		}
591 		break;
592 	case hwmon_in:
593 		switch (attr) {
594 		case hwmon_in_input:
595 		case hwmon_in_label:
596 			return 0444;
597 		case hwmon_in_min:
598 		case hwmon_in_max:
599 			return pvt_limit_is_visible(PVT_VOLT + ch);
600 		case hwmon_in_min_alarm:
601 		case hwmon_in_max_alarm:
602 			return pvt_alarm_is_visible(PVT_VOLT + ch);
603 		}
604 		break;
605 	default:
606 		break;
607 	}
608 
609 	return 0;
610 }
611 
612 static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
613 {
614 	u32 data;
615 
616 	data = readl(pvt->regs + PVT_CTRL);
617 	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
618 
619 	return 0;
620 }
621 
622 static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
623 {
624 	u32 trim;
625 	int ret;
626 
627 	/*
628 	 * Serialize trim update, since a part of the register is changed and
629 	 * the controller is supposed to be disabled during this operation.
630 	 */
631 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
632 	if (ret)
633 		return ret;
634 
635 	trim = pvt_calc_trim(val);
636 	pvt_set_trim(pvt, trim);
637 
638 	mutex_unlock(&pvt->iface_mtx);
639 
640 	return 0;
641 }
642 
643 static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
644 {
645 	int ret;
646 
647 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
648 	if (ret)
649 		return ret;
650 
651 	/* Return the result in msec as hwmon sysfs interface requires. */
652 	*val = ktime_to_ms(pvt->timeout);
653 
654 	mutex_unlock(&pvt->iface_mtx);
655 
656 	return 0;
657 }
658 
659 static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
660 {
661 	unsigned long rate;
662 	ktime_t kt, cache;
663 	u32 data;
664 	int ret;
665 
666 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
667 	if (!rate)
668 		return -ENODEV;
669 
670 	/*
671 	 * If alarms are enabled, the requested timeout must be divided
672 	 * between all available sensors to have the requested delay
673 	 * applicable to each individual sensor.
674 	 */
675 	cache = kt = ms_to_ktime(val);
676 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
677 	kt = ktime_divns(kt, PVT_SENSORS_NUM);
678 #endif
679 
680 	/*
681 	 * Subtract a constant lag, which always persists due to the limited
682 	 * PVT sampling rate. Make sure the timeout is not negative.
683 	 */
684 	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
685 	if (ktime_to_ns(kt) < 0)
686 		kt = ktime_set(0, 0);
687 
688 	/*
689 	 * Finally recalculate the timeout in terms of the reference clock
690 	 * period.
691 	 */
692 	data = ktime_divns(kt * rate, NSEC_PER_SEC);
693 
694 	/*
695 	 * Update the measurements delay, but lock the interface first, since
696 	 * we have to disable PVT in order to have the new delay actually
697 	 * updated.
698 	 */
699 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
700 	if (ret)
701 		return ret;
702 
703 	pvt_set_tout(pvt, data);
704 	pvt->timeout = cache;
705 
706 	mutex_unlock(&pvt->iface_mtx);
707 
708 	return 0;
709 }
710 
711 static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
712 			  u32 attr, int ch, long *val)
713 {
714 	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
715 
716 	if (!pvt_hwmon_channel_is_valid(type, ch))
717 		return -EINVAL;
718 
719 	switch (type) {
720 	case hwmon_chip:
721 		switch (attr) {
722 		case hwmon_chip_update_interval:
723 			return pvt_read_timeout(pvt, val);
724 		}
725 		break;
726 	case hwmon_temp:
727 		switch (attr) {
728 		case hwmon_temp_input:
729 			return pvt_read_data(pvt, ch, val);
730 		case hwmon_temp_type:
731 			*val = 1;
732 			return 0;
733 		case hwmon_temp_min:
734 			return pvt_read_limit(pvt, ch, true, val);
735 		case hwmon_temp_max:
736 			return pvt_read_limit(pvt, ch, false, val);
737 		case hwmon_temp_min_alarm:
738 			return pvt_read_alarm(pvt, ch, true, val);
739 		case hwmon_temp_max_alarm:
740 			return pvt_read_alarm(pvt, ch, false, val);
741 		case hwmon_temp_offset:
742 			return pvt_read_trim(pvt, val);
743 		}
744 		break;
745 	case hwmon_in:
746 		switch (attr) {
747 		case hwmon_in_input:
748 			return pvt_read_data(pvt, PVT_VOLT + ch, val);
749 		case hwmon_in_min:
750 			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
751 		case hwmon_in_max:
752 			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
753 		case hwmon_in_min_alarm:
754 			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
755 		case hwmon_in_max_alarm:
756 			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
757 		}
758 		break;
759 	default:
760 		break;
761 	}
762 
763 	return -EOPNOTSUPP;
764 }
765 
766 static int pvt_hwmon_read_string(struct device *dev,
767 				 enum hwmon_sensor_types type,
768 				 u32 attr, int ch, const char **str)
769 {
770 	if (!pvt_hwmon_channel_is_valid(type, ch))
771 		return -EINVAL;
772 
773 	switch (type) {
774 	case hwmon_temp:
775 		switch (attr) {
776 		case hwmon_temp_label:
777 			*str = pvt_info[ch].label;
778 			return 0;
779 		}
780 		break;
781 	case hwmon_in:
782 		switch (attr) {
783 		case hwmon_in_label:
784 			*str = pvt_info[PVT_VOLT + ch].label;
785 			return 0;
786 		}
787 		break;
788 	default:
789 		break;
790 	}
791 
792 	return -EOPNOTSUPP;
793 }
794 
795 static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
796 			   u32 attr, int ch, long val)
797 {
798 	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
799 
800 	if (!pvt_hwmon_channel_is_valid(type, ch))
801 		return -EINVAL;
802 
803 	switch (type) {
804 	case hwmon_chip:
805 		switch (attr) {
806 		case hwmon_chip_update_interval:
807 			return pvt_write_timeout(pvt, val);
808 		}
809 		break;
810 	case hwmon_temp:
811 		switch (attr) {
812 		case hwmon_temp_min:
813 			return pvt_write_limit(pvt, ch, true, val);
814 		case hwmon_temp_max:
815 			return pvt_write_limit(pvt, ch, false, val);
816 		case hwmon_temp_offset:
817 			return pvt_write_trim(pvt, val);
818 		}
819 		break;
820 	case hwmon_in:
821 		switch (attr) {
822 		case hwmon_in_min:
823 			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
824 		case hwmon_in_max:
825 			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
826 		}
827 		break;
828 	default:
829 		break;
830 	}
831 
832 	return -EOPNOTSUPP;
833 }
834 
835 static const struct hwmon_ops pvt_hwmon_ops = {
836 	.is_visible = pvt_hwmon_is_visible,
837 	.read = pvt_hwmon_read,
838 	.read_string = pvt_hwmon_read_string,
839 	.write = pvt_hwmon_write
840 };
841 
842 static const struct hwmon_chip_info pvt_hwmon_info = {
843 	.ops = &pvt_hwmon_ops,
844 	.info = pvt_channel_info
845 };
846 
847 static void pvt_clear_data(void *data)
848 {
849 	struct pvt_hwmon *pvt = data;
850 #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
851 	int idx;
852 
853 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
854 		complete_all(&pvt->cache[idx].conversion);
855 #endif
856 
857 	mutex_destroy(&pvt->iface_mtx);
858 }
859 
860 static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
861 {
862 	struct device *dev = &pdev->dev;
863 	struct pvt_hwmon *pvt;
864 	int ret, idx;
865 
866 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
867 	if (!pvt)
868 		return ERR_PTR(-ENOMEM);
869 
870 	ret = devm_add_action(dev, pvt_clear_data, pvt);
871 	if (ret) {
872 		dev_err(dev, "Can't add PVT data clear action\n");
873 		return ERR_PTR(ret);
874 	}
875 
876 	pvt->dev = dev;
877 	pvt->sensor = PVT_SENSOR_FIRST;
878 	mutex_init(&pvt->iface_mtx);
879 
880 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
881 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
882 		seqlock_init(&pvt->cache[idx].data_seqlock);
883 #else
884 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
885 		init_completion(&pvt->cache[idx].conversion);
886 #endif
887 
888 	return pvt;
889 }
890 
891 static int pvt_request_regs(struct pvt_hwmon *pvt)
892 {
893 	struct platform_device *pdev = to_platform_device(pvt->dev);
894 	struct resource *res;
895 
896 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
897 	if (!res) {
898 		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
899 		return -EINVAL;
900 	}
901 
902 	pvt->regs = devm_ioremap_resource(pvt->dev, res);
903 	if (IS_ERR(pvt->regs))
904 		return PTR_ERR(pvt->regs);
905 
906 	return 0;
907 }
908 
909 static void pvt_disable_clks(void *data)
910 {
911 	struct pvt_hwmon *pvt = data;
912 
913 	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
914 }
915 
916 static int pvt_request_clks(struct pvt_hwmon *pvt)
917 {
918 	int ret;
919 
920 	pvt->clks[PVT_CLOCK_APB].id = "pclk";
921 	pvt->clks[PVT_CLOCK_REF].id = "ref";
922 
923 	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
924 	if (ret) {
925 		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
926 		return ret;
927 	}
928 
929 	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
930 	if (ret) {
931 		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
932 		return ret;
933 	}
934 
935 	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
936 	if (ret) {
937 		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
938 		return ret;
939 	}
940 
941 	return 0;
942 }
943 
944 static int pvt_check_pwr(struct pvt_hwmon *pvt)
945 {
946 	unsigned long tout;
947 	int ret = 0;
948 	u32 data;
949 
950 	/*
951 	 * Test out the sensor conversion functionality. If it is not done on
952 	 * time then the domain must have been unpowered and we won't be able
953 	 * to use the device later in this driver.
954 	 * Note If the power source is lost during the normal driver work the
955 	 * data read procedure will either return -ETIMEDOUT (for the
956 	 * alarm-less driver configuration) or just stop the repeated
957 	 * conversion. In the later case alas we won't be able to detect the
958 	 * problem.
959 	 */
960 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
961 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
962 	pvt_set_tout(pvt, 0);
963 	readl(pvt->regs + PVT_DATA);
964 
965 	tout = PVT_TOUT_MIN / NSEC_PER_USEC;
966 	usleep_range(tout, 2 * tout);
967 
968 	data = readl(pvt->regs + PVT_DATA);
969 	if (!(data & PVT_DATA_VALID)) {
970 		ret = -ENODEV;
971 		dev_err(pvt->dev, "Sensor is powered down\n");
972 	}
973 
974 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
975 
976 	return ret;
977 }
978 
979 static int pvt_init_iface(struct pvt_hwmon *pvt)
980 {
981 	unsigned long rate;
982 	u32 trim, temp;
983 
984 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
985 	if (!rate) {
986 		dev_err(pvt->dev, "Invalid reference clock rate\n");
987 		return -ENODEV;
988 	}
989 
990 	/*
991 	 * Make sure all interrupts and controller are disabled so not to
992 	 * accidentally have ISR executed before the driver data is fully
993 	 * initialized. Clear the IRQ status as well.
994 	 */
995 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
996 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
997 	readl(pvt->regs + PVT_CLR_INTR);
998 	readl(pvt->regs + PVT_DATA);
999 
1000 	/* Setup default sensor mode, timeout and temperature trim. */
1001 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
1002 	pvt_set_tout(pvt, PVT_TOUT_DEF);
1003 
1004 	/*
1005 	 * Preserve the current ref-clock based delay (Ttotal) between the
1006 	 * sensors data samples in the driver data so not to recalculate it
1007 	 * each time on the data requests and timeout reads. It consists of the
1008 	 * delay introduced by the internal ref-clock timer (N / Fclk) and the
1009 	 * constant timeout caused by each conversion latency (Tmin):
1010 	 *   Ttotal = N / Fclk + Tmin
1011 	 * If alarms are enabled the sensors are polled one after another and
1012 	 * in order to get the next measurement of a particular sensor the
1013 	 * caller will have to wait for at most until all the others are
1014 	 * polled. In that case the formulae will look a bit different:
1015 	 *   Ttotal = 5 * (N / Fclk + Tmin)
1016 	 */
1017 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1018 	pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0);
1019 	pvt->timeout = ktime_divns(pvt->timeout, rate);
1020 	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN);
1021 #else
1022 	pvt->timeout = ktime_set(PVT_TOUT_DEF, 0);
1023 	pvt->timeout = ktime_divns(pvt->timeout, rate);
1024 	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN);
1025 #endif
1026 
1027 	trim = PVT_TRIM_DEF;
1028 	if (!of_property_read_u32(pvt->dev->of_node,
1029 	     "baikal,pvt-temp-offset-millicelsius", &temp))
1030 		trim = pvt_calc_trim(temp);
1031 
1032 	pvt_set_trim(pvt, trim);
1033 
1034 	return 0;
1035 }
1036 
1037 static int pvt_request_irq(struct pvt_hwmon *pvt)
1038 {
1039 	struct platform_device *pdev = to_platform_device(pvt->dev);
1040 	int ret;
1041 
1042 	pvt->irq = platform_get_irq(pdev, 0);
1043 	if (pvt->irq < 0)
1044 		return pvt->irq;
1045 
1046 	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
1047 					pvt_hard_isr, pvt_soft_isr,
1048 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1049 					IRQF_SHARED | IRQF_TRIGGER_HIGH |
1050 					IRQF_ONESHOT,
1051 #else
1052 					IRQF_SHARED | IRQF_TRIGGER_HIGH,
1053 #endif
1054 					"pvt", pvt);
1055 	if (ret) {
1056 		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
1057 		return ret;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 static int pvt_create_hwmon(struct pvt_hwmon *pvt)
1064 {
1065 	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
1066 		&pvt_hwmon_info, NULL);
1067 	if (IS_ERR(pvt->hwmon)) {
1068 		dev_err(pvt->dev, "Couldn't create hwmon device\n");
1069 		return PTR_ERR(pvt->hwmon);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1076 
1077 static void pvt_disable_iface(void *data)
1078 {
1079 	struct pvt_hwmon *pvt = data;
1080 
1081 	mutex_lock(&pvt->iface_mtx);
1082 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1083 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
1084 		   PVT_INTR_DVALID);
1085 	mutex_unlock(&pvt->iface_mtx);
1086 }
1087 
1088 static int pvt_enable_iface(struct pvt_hwmon *pvt)
1089 {
1090 	int ret;
1091 
1092 	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
1093 	if (ret) {
1094 		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
1095 		return ret;
1096 	}
1097 
1098 	/*
1099 	 * Enable sensors data conversion and IRQ. We need to lock the
1100 	 * interface mutex since hwmon has just been created and the
1101 	 * corresponding sysfs files are accessible from user-space,
1102 	 * which theoretically may cause races.
1103 	 */
1104 	mutex_lock(&pvt->iface_mtx);
1105 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
1106 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
1107 	mutex_unlock(&pvt->iface_mtx);
1108 
1109 	return 0;
1110 }
1111 
1112 #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1113 
1114 static int pvt_enable_iface(struct pvt_hwmon *pvt)
1115 {
1116 	return 0;
1117 }
1118 
1119 #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1120 
1121 static int pvt_probe(struct platform_device *pdev)
1122 {
1123 	struct pvt_hwmon *pvt;
1124 	int ret;
1125 
1126 	pvt = pvt_create_data(pdev);
1127 	if (IS_ERR(pvt))
1128 		return PTR_ERR(pvt);
1129 
1130 	ret = pvt_request_regs(pvt);
1131 	if (ret)
1132 		return ret;
1133 
1134 	ret = pvt_request_clks(pvt);
1135 	if (ret)
1136 		return ret;
1137 
1138 	ret = pvt_check_pwr(pvt);
1139 	if (ret)
1140 		return ret;
1141 
1142 	ret = pvt_init_iface(pvt);
1143 	if (ret)
1144 		return ret;
1145 
1146 	ret = pvt_request_irq(pvt);
1147 	if (ret)
1148 		return ret;
1149 
1150 	ret = pvt_create_hwmon(pvt);
1151 	if (ret)
1152 		return ret;
1153 
1154 	ret = pvt_enable_iface(pvt);
1155 	if (ret)
1156 		return ret;
1157 
1158 	return 0;
1159 }
1160 
1161 static const struct of_device_id pvt_of_match[] = {
1162 	{ .compatible = "baikal,bt1-pvt" },
1163 	{ }
1164 };
1165 MODULE_DEVICE_TABLE(of, pvt_of_match);
1166 
1167 static struct platform_driver pvt_driver = {
1168 	.probe = pvt_probe,
1169 	.driver = {
1170 		.name = "bt1-pvt",
1171 		.of_match_table = pvt_of_match
1172 	}
1173 };
1174 module_platform_driver(pvt_driver);
1175 
1176 MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
1177 MODULE_DESCRIPTION("Baikal-T1 PVT driver");
1178 MODULE_LICENSE("GPL v2");
1179