xref: /linux/drivers/hwmon/bt1-pvt.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
4  *
5  * Authors:
6  *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
7  *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
8  *
9  * Baikal-T1 Process, Voltage, Temperature sensor driver
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bitops.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/device.h>
17 #include <linux/hwmon-sysfs.h>
18 #include <linux/hwmon.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/ktime.h>
23 #include <linux/limits.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/seqlock.h>
29 #include <linux/sysfs.h>
30 #include <linux/types.h>
31 
32 #include "bt1-pvt.h"
33 
34 /*
35  * For the sake of the code simplification we created the sensors info table
36  * with the sensor names, activation modes, threshold registers base address
37  * and the thresholds bit fields.
38  */
39 static const struct pvt_sensor_info pvt_info[] = {
40 	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
41 	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
42 	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
43 	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
44 	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
45 };
46 
47 /*
48  * The original translation formulae of the temperature (in degrees of Celsius)
49  * to PVT data and vice-versa are following:
50  * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
51  *     1.7204e2,
52  * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
53  *     3.1020e-1*(N^1) - 4.838e1,
54  * where T = [-48.380, 147.438]C and N = [0, 1023].
55  * They must be accordingly altered to be suitable for the integer arithmetics.
56  * The technique is called 'factor redistribution', which just makes sure the
57  * multiplications and divisions are made so to have a result of the operations
58  * within the integer numbers limit. In addition we need to translate the
59  * formulae to accept millidegrees of Celsius. Here what they look like after
60  * the alterations:
61  * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
62  *     17204e2) / 1e4,
63  * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
64  *     48380,
65  * where T = [-48380, 147438] mC and N = [0, 1023].
66  */
67 static const struct pvt_poly poly_temp_to_N = {
68 	.total_divider = 10000,
69 	.terms = {
70 		{4, 18322, 10000, 10000},
71 		{3, 2343, 10000, 10},
72 		{2, 87018, 10000, 10},
73 		{1, 39269, 1000, 1},
74 		{0, 1720400, 1, 1}
75 	}
76 };
77 
78 static const struct pvt_poly poly_N_to_temp = {
79 	.total_divider = 1,
80 	.terms = {
81 		{4, -16743, 1000, 1},
82 		{3, 81542, 1000, 1},
83 		{2, -182010, 1000, 1},
84 		{1, 310200, 1000, 1},
85 		{0, -48380, 1, 1}
86 	}
87 };
88 
89 /*
90  * Similar alterations are performed for the voltage conversion equations.
91  * The original formulae are:
92  * N = 1.8658e3*V - 1.1572e3,
93  * V = (N + 1.1572e3) / 1.8658e3,
94  * where V = [0.620, 1.168] V and N = [0, 1023].
95  * After the optimization they looks as follows:
96  * N = (18658e-3*V - 11572) / 10,
97  * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
98  */
99 static const struct pvt_poly poly_volt_to_N = {
100 	.total_divider = 10,
101 	.terms = {
102 		{1, 18658, 1000, 1},
103 		{0, -11572, 1, 1}
104 	}
105 };
106 
107 static const struct pvt_poly poly_N_to_volt = {
108 	.total_divider = 10,
109 	.terms = {
110 		{1, 100000, 18658, 1},
111 		{0, 115720000, 1, 18658}
112 	}
113 };
114 
115 /*
116  * Here is the polynomial calculation function, which performs the
117  * redistributed terms calculations. It's pretty straightforward. We walk
118  * over each degree term up to the free one, and perform the redistributed
119  * multiplication of the term coefficient, its divider (as for the rationale
120  * fraction representation), data power and the rational fraction divider
121  * leftover. Then all of this is collected in a total sum variable, which
122  * value is normalized by the total divider before being returned.
123  */
124 static long pvt_calc_poly(const struct pvt_poly *poly, long data)
125 {
126 	const struct pvt_poly_term *term = poly->terms;
127 	long tmp, ret = 0;
128 	int deg;
129 
130 	do {
131 		tmp = term->coef;
132 		for (deg = 0; deg < term->deg; ++deg)
133 			tmp = mult_frac(tmp, data, term->divider);
134 		ret += tmp / term->divider_leftover;
135 	} while ((term++)->deg);
136 
137 	return ret / poly->total_divider;
138 }
139 
140 static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
141 {
142 	u32 old;
143 
144 	old = readl_relaxed(reg);
145 	writel((old & ~mask) | (data & mask), reg);
146 
147 	return old & mask;
148 }
149 
150 /*
151  * Baikal-T1 PVT mode can be updated only when the controller is disabled.
152  * So first we disable it, then set the new mode together with the controller
153  * getting back enabled. The same concerns the temperature trim and
154  * measurements timeout. If it is necessary the interface mutex is supposed
155  * to be locked at the time the operations are performed.
156  */
157 static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
158 {
159 	u32 old;
160 
161 	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
162 
163 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
164 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
165 		   mode | old);
166 }
167 
168 static inline u32 pvt_calc_trim(long temp)
169 {
170 	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
171 
172 	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
173 }
174 
175 static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
176 {
177 	u32 old;
178 
179 	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
180 
181 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
182 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
183 		   trim | old);
184 }
185 
186 static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
187 {
188 	u32 old;
189 
190 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
191 	writel(tout, pvt->regs + PVT_TTIMEOUT);
192 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
193 }
194 
195 /*
196  * This driver can optionally provide the hwmon alarms for each sensor the PVT
197  * controller supports. The alarms functionality is made compile-time
198  * configurable due to the hardware interface implementation peculiarity
199  * described further in this comment. So in case if alarms are unnecessary in
200  * your system design it's recommended to have them disabled to prevent the PVT
201  * IRQs being periodically raised to get the data cache/alarms status up to
202  * date.
203  *
204  * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
205  * but is equipped with a dedicated control wrapper. It exposes the PVT
206  * sub-block registers space via the APB3 bus. In addition the wrapper provides
207  * a common interrupt vector of the sensors conversion completion events and
208  * threshold value alarms. Alas the wrapper interface hasn't been fully thought
209  * through. There is only one sensor can be activated at a time, for which the
210  * thresholds comparator is enabled right after the data conversion is
211  * completed. Due to this if alarms need to be implemented for all available
212  * sensors we can't just set the thresholds and enable the interrupts. We need
213  * to enable the sensors one after another and let the controller to detect
214  * the alarms by itself at each conversion. This also makes pointless to handle
215  * the alarms interrupts, since in occasion they happen synchronously with
216  * data conversion completion. The best driver design would be to have the
217  * completion interrupts enabled only and keep the converted value in the
218  * driver data cache. This solution is implemented if hwmon alarms are enabled
219  * in this driver. In case if the alarms are disabled, the conversion is
220  * performed on demand at the time a sensors input file is read.
221  */
222 
223 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
224 
225 #define pvt_hard_isr NULL
226 
227 static irqreturn_t pvt_soft_isr(int irq, void *data)
228 {
229 	const struct pvt_sensor_info *info;
230 	struct pvt_hwmon *pvt = data;
231 	struct pvt_cache *cache;
232 	u32 val, thres_sts, old;
233 
234 	/*
235 	 * DVALID bit will be cleared by reading the data. We need to save the
236 	 * status before the next conversion happens. Threshold events will be
237 	 * handled a bit later.
238 	 */
239 	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
240 
241 	/*
242 	 * Then lets recharge the PVT interface with the next sampling mode.
243 	 * Lock the interface mutex to serialize trim, timeouts and alarm
244 	 * thresholds settings.
245 	 */
246 	cache = &pvt->cache[pvt->sensor];
247 	info = &pvt_info[pvt->sensor];
248 	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
249 		      PVT_SENSOR_FIRST : (pvt->sensor + 1);
250 
251 	/*
252 	 * For some reason we have to mask the interrupt before changing the
253 	 * mode, otherwise sometimes the temperature mode doesn't get
254 	 * activated even though the actual mode in the ctrl register
255 	 * corresponds to one. Then we read the data. By doing so we also
256 	 * recharge the data conversion. After this the mode corresponding
257 	 * to the next sensor in the row is set. Finally we enable the
258 	 * interrupts back.
259 	 */
260 	mutex_lock(&pvt->iface_mtx);
261 
262 	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
263 			 PVT_INTR_DVALID);
264 
265 	val = readl(pvt->regs + PVT_DATA);
266 
267 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
268 
269 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
270 
271 	mutex_unlock(&pvt->iface_mtx);
272 
273 	/*
274 	 * We can now update the data cache with data just retrieved from the
275 	 * sensor. Lock write-seqlock to make sure the reader has a coherent
276 	 * data.
277 	 */
278 	write_seqlock(&cache->data_seqlock);
279 
280 	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
281 
282 	write_sequnlock(&cache->data_seqlock);
283 
284 	/*
285 	 * While PVT core is doing the next mode data conversion, we'll check
286 	 * whether the alarms were triggered for the current sensor. Note that
287 	 * according to the documentation only one threshold IRQ status can be
288 	 * set at a time, that's why if-else statement is utilized.
289 	 */
290 	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
291 		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
292 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
293 				   info->channel);
294 	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
295 		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
296 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
297 				   info->channel);
298 	}
299 
300 	return IRQ_HANDLED;
301 }
302 
303 inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
304 {
305 	return 0644;
306 }
307 
308 inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
309 {
310 	return 0444;
311 }
312 
313 static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
314 			 long *val)
315 {
316 	struct pvt_cache *cache = &pvt->cache[type];
317 	unsigned int seq;
318 	u32 data;
319 
320 	do {
321 		seq = read_seqbegin(&cache->data_seqlock);
322 		data = cache->data;
323 	} while (read_seqretry(&cache->data_seqlock, seq));
324 
325 	if (type == PVT_TEMP)
326 		*val = pvt_calc_poly(&poly_N_to_temp, data);
327 	else
328 		*val = pvt_calc_poly(&poly_N_to_volt, data);
329 
330 	return 0;
331 }
332 
333 static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
334 			  bool is_low, long *val)
335 {
336 	u32 data;
337 
338 	/* No need in serialization, since it is just read from MMIO. */
339 	data = readl(pvt->regs + pvt_info[type].thres_base);
340 
341 	if (is_low)
342 		data = FIELD_GET(PVT_THRES_LO_MASK, data);
343 	else
344 		data = FIELD_GET(PVT_THRES_HI_MASK, data);
345 
346 	if (type == PVT_TEMP)
347 		*val = pvt_calc_poly(&poly_N_to_temp, data);
348 	else
349 		*val = pvt_calc_poly(&poly_N_to_volt, data);
350 
351 	return 0;
352 }
353 
354 static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
355 			   bool is_low, long val)
356 {
357 	u32 data, limit, mask;
358 	int ret;
359 
360 	if (type == PVT_TEMP) {
361 		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
362 		data = pvt_calc_poly(&poly_temp_to_N, val);
363 	} else {
364 		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
365 		data = pvt_calc_poly(&poly_volt_to_N, val);
366 	}
367 
368 	/* Serialize limit update, since a part of the register is changed. */
369 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
370 	if (ret)
371 		return ret;
372 
373 	/* Make sure the upper and lower ranges don't intersect. */
374 	limit = readl(pvt->regs + pvt_info[type].thres_base);
375 	if (is_low) {
376 		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
377 		data = clamp_val(data, PVT_DATA_MIN, limit);
378 		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
379 		mask = PVT_THRES_LO_MASK;
380 	} else {
381 		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
382 		data = clamp_val(data, limit, PVT_DATA_MAX);
383 		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
384 		mask = PVT_THRES_HI_MASK;
385 	}
386 
387 	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
388 
389 	mutex_unlock(&pvt->iface_mtx);
390 
391 	return 0;
392 }
393 
394 static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
395 			  bool is_low, long *val)
396 {
397 	if (is_low)
398 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
399 	else
400 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
401 
402 	return 0;
403 }
404 
405 static const struct hwmon_channel_info *pvt_channel_info[] = {
406 	HWMON_CHANNEL_INFO(chip,
407 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
408 	HWMON_CHANNEL_INFO(temp,
409 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
410 			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
411 			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
412 			   HWMON_T_OFFSET),
413 	HWMON_CHANNEL_INFO(in,
414 			   HWMON_I_INPUT | HWMON_I_LABEL |
415 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
416 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
417 			   HWMON_I_INPUT | HWMON_I_LABEL |
418 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
419 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
420 			   HWMON_I_INPUT | HWMON_I_LABEL |
421 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
422 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
423 			   HWMON_I_INPUT | HWMON_I_LABEL |
424 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
425 			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
426 	NULL
427 };
428 
429 #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
430 
431 static irqreturn_t pvt_hard_isr(int irq, void *data)
432 {
433 	struct pvt_hwmon *pvt = data;
434 	struct pvt_cache *cache;
435 	u32 val;
436 
437 	/*
438 	 * Mask the DVALID interrupt so after exiting from the handler a
439 	 * repeated conversion wouldn't happen.
440 	 */
441 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
442 		   PVT_INTR_DVALID);
443 
444 	/*
445 	 * Nothing special for alarm-less driver. Just read the data, update
446 	 * the cache and notify a waiter of this event.
447 	 */
448 	val = readl(pvt->regs + PVT_DATA);
449 	if (!(val & PVT_DATA_VALID)) {
450 		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
451 		return IRQ_HANDLED;
452 	}
453 
454 	cache = &pvt->cache[pvt->sensor];
455 
456 	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
457 
458 	complete(&cache->conversion);
459 
460 	return IRQ_HANDLED;
461 }
462 
463 #define pvt_soft_isr NULL
464 
465 inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
466 {
467 	return 0;
468 }
469 
470 inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
471 {
472 	return 0;
473 }
474 
475 static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
476 			 long *val)
477 {
478 	struct pvt_cache *cache = &pvt->cache[type];
479 	u32 data;
480 	int ret;
481 
482 	/*
483 	 * Lock PVT conversion interface until data cache is updated. The
484 	 * data read procedure is following: set the requested PVT sensor
485 	 * mode, enable IRQ and conversion, wait until conversion is finished,
486 	 * then disable conversion and IRQ, and read the cached data.
487 	 */
488 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
489 	if (ret)
490 		return ret;
491 
492 	pvt->sensor = type;
493 	pvt_set_mode(pvt, pvt_info[type].mode);
494 
495 	/*
496 	 * Unmask the DVALID interrupt and enable the sensors conversions.
497 	 * Do the reverse procedure when conversion is done.
498 	 */
499 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
500 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
501 
502 	wait_for_completion(&cache->conversion);
503 
504 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
505 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
506 		   PVT_INTR_DVALID);
507 
508 	data = READ_ONCE(cache->data);
509 
510 	mutex_unlock(&pvt->iface_mtx);
511 
512 	if (type == PVT_TEMP)
513 		*val = pvt_calc_poly(&poly_N_to_temp, data);
514 	else
515 		*val = pvt_calc_poly(&poly_N_to_volt, data);
516 
517 	return 0;
518 }
519 
520 static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
521 			  bool is_low, long *val)
522 {
523 	return -EOPNOTSUPP;
524 }
525 
526 static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
527 			   bool is_low, long val)
528 {
529 	return -EOPNOTSUPP;
530 }
531 
532 static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
533 			  bool is_low, long *val)
534 {
535 	return -EOPNOTSUPP;
536 }
537 
538 static const struct hwmon_channel_info *pvt_channel_info[] = {
539 	HWMON_CHANNEL_INFO(chip,
540 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
541 	HWMON_CHANNEL_INFO(temp,
542 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
543 			   HWMON_T_OFFSET),
544 	HWMON_CHANNEL_INFO(in,
545 			   HWMON_I_INPUT | HWMON_I_LABEL,
546 			   HWMON_I_INPUT | HWMON_I_LABEL,
547 			   HWMON_I_INPUT | HWMON_I_LABEL,
548 			   HWMON_I_INPUT | HWMON_I_LABEL),
549 	NULL
550 };
551 
552 #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
553 
554 static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
555 					      int ch)
556 {
557 	switch (type) {
558 	case hwmon_temp:
559 		if (ch < 0 || ch >= PVT_TEMP_CHS)
560 			return false;
561 		break;
562 	case hwmon_in:
563 		if (ch < 0 || ch >= PVT_VOLT_CHS)
564 			return false;
565 		break;
566 	default:
567 		break;
568 	}
569 
570 	/* The rest of the types are independent from the channel number. */
571 	return true;
572 }
573 
574 static umode_t pvt_hwmon_is_visible(const void *data,
575 				    enum hwmon_sensor_types type,
576 				    u32 attr, int ch)
577 {
578 	if (!pvt_hwmon_channel_is_valid(type, ch))
579 		return 0;
580 
581 	switch (type) {
582 	case hwmon_chip:
583 		switch (attr) {
584 		case hwmon_chip_update_interval:
585 			return 0644;
586 		}
587 		break;
588 	case hwmon_temp:
589 		switch (attr) {
590 		case hwmon_temp_input:
591 		case hwmon_temp_type:
592 		case hwmon_temp_label:
593 			return 0444;
594 		case hwmon_temp_min:
595 		case hwmon_temp_max:
596 			return pvt_limit_is_visible(ch);
597 		case hwmon_temp_min_alarm:
598 		case hwmon_temp_max_alarm:
599 			return pvt_alarm_is_visible(ch);
600 		case hwmon_temp_offset:
601 			return 0644;
602 		}
603 		break;
604 	case hwmon_in:
605 		switch (attr) {
606 		case hwmon_in_input:
607 		case hwmon_in_label:
608 			return 0444;
609 		case hwmon_in_min:
610 		case hwmon_in_max:
611 			return pvt_limit_is_visible(PVT_VOLT + ch);
612 		case hwmon_in_min_alarm:
613 		case hwmon_in_max_alarm:
614 			return pvt_alarm_is_visible(PVT_VOLT + ch);
615 		}
616 		break;
617 	default:
618 		break;
619 	}
620 
621 	return 0;
622 }
623 
624 static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
625 {
626 	u32 data;
627 
628 	data = readl(pvt->regs + PVT_CTRL);
629 	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
630 
631 	return 0;
632 }
633 
634 static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
635 {
636 	u32 trim;
637 	int ret;
638 
639 	/*
640 	 * Serialize trim update, since a part of the register is changed and
641 	 * the controller is supposed to be disabled during this operation.
642 	 */
643 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
644 	if (ret)
645 		return ret;
646 
647 	trim = pvt_calc_trim(val);
648 	pvt_set_trim(pvt, trim);
649 
650 	mutex_unlock(&pvt->iface_mtx);
651 
652 	return 0;
653 }
654 
655 static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
656 {
657 	unsigned long rate;
658 	ktime_t kt;
659 	u32 data;
660 
661 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
662 	if (!rate)
663 		return -ENODEV;
664 
665 	/*
666 	 * Don't bother with mutex here, since we just read data from MMIO.
667 	 * We also have to scale the ticks timeout up to compensate the
668 	 * ms-ns-data translations.
669 	 */
670 	data = readl(pvt->regs + PVT_TTIMEOUT) + 1;
671 
672 	/*
673 	 * Calculate ref-clock based delay (Ttotal) between two consecutive
674 	 * data samples of the same sensor. So we first must calculate the
675 	 * delay introduced by the internal ref-clock timer (Tref * Fclk).
676 	 * Then add the constant timeout cuased by each conversion latency
677 	 * (Tmin). The basic formulae for each conversion is following:
678 	 *   Ttotal = Tref * Fclk + Tmin
679 	 * Note if alarms are enabled the sensors are polled one after
680 	 * another, so in order to have the delay being applicable for each
681 	 * sensor the requested value must be equally redistirbuted.
682 	 */
683 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
684 	kt = ktime_set(PVT_SENSORS_NUM * (u64)data, 0);
685 	kt = ktime_divns(kt, rate);
686 	kt = ktime_add_ns(kt, PVT_SENSORS_NUM * PVT_TOUT_MIN);
687 #else
688 	kt = ktime_set(data, 0);
689 	kt = ktime_divns(kt, rate);
690 	kt = ktime_add_ns(kt, PVT_TOUT_MIN);
691 #endif
692 
693 	/* Return the result in msec as hwmon sysfs interface requires. */
694 	*val = ktime_to_ms(kt);
695 
696 	return 0;
697 }
698 
699 static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
700 {
701 	unsigned long rate;
702 	ktime_t kt;
703 	u32 data;
704 	int ret;
705 
706 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
707 	if (!rate)
708 		return -ENODEV;
709 
710 	/*
711 	 * If alarms are enabled, the requested timeout must be divided
712 	 * between all available sensors to have the requested delay
713 	 * applicable to each individual sensor.
714 	 */
715 	kt = ms_to_ktime(val);
716 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
717 	kt = ktime_divns(kt, PVT_SENSORS_NUM);
718 #endif
719 
720 	/*
721 	 * Subtract a constant lag, which always persists due to the limited
722 	 * PVT sampling rate. Make sure the timeout is not negative.
723 	 */
724 	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
725 	if (ktime_to_ns(kt) < 0)
726 		kt = ktime_set(0, 0);
727 
728 	/*
729 	 * Finally recalculate the timeout in terms of the reference clock
730 	 * period.
731 	 */
732 	data = ktime_divns(kt * rate, NSEC_PER_SEC);
733 
734 	/*
735 	 * Update the measurements delay, but lock the interface first, since
736 	 * we have to disable PVT in order to have the new delay actually
737 	 * updated.
738 	 */
739 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
740 	if (ret)
741 		return ret;
742 
743 	pvt_set_tout(pvt, data);
744 
745 	mutex_unlock(&pvt->iface_mtx);
746 
747 	return 0;
748 }
749 
750 static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
751 			  u32 attr, int ch, long *val)
752 {
753 	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
754 
755 	if (!pvt_hwmon_channel_is_valid(type, ch))
756 		return -EINVAL;
757 
758 	switch (type) {
759 	case hwmon_chip:
760 		switch (attr) {
761 		case hwmon_chip_update_interval:
762 			return pvt_read_timeout(pvt, val);
763 		}
764 		break;
765 	case hwmon_temp:
766 		switch (attr) {
767 		case hwmon_temp_input:
768 			return pvt_read_data(pvt, ch, val);
769 		case hwmon_temp_type:
770 			*val = 1;
771 			return 0;
772 		case hwmon_temp_min:
773 			return pvt_read_limit(pvt, ch, true, val);
774 		case hwmon_temp_max:
775 			return pvt_read_limit(pvt, ch, false, val);
776 		case hwmon_temp_min_alarm:
777 			return pvt_read_alarm(pvt, ch, true, val);
778 		case hwmon_temp_max_alarm:
779 			return pvt_read_alarm(pvt, ch, false, val);
780 		case hwmon_temp_offset:
781 			return pvt_read_trim(pvt, val);
782 		}
783 		break;
784 	case hwmon_in:
785 		switch (attr) {
786 		case hwmon_in_input:
787 			return pvt_read_data(pvt, PVT_VOLT + ch, val);
788 		case hwmon_in_min:
789 			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
790 		case hwmon_in_max:
791 			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
792 		case hwmon_in_min_alarm:
793 			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
794 		case hwmon_in_max_alarm:
795 			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
796 		}
797 		break;
798 	default:
799 		break;
800 	}
801 
802 	return -EOPNOTSUPP;
803 }
804 
805 static int pvt_hwmon_read_string(struct device *dev,
806 				 enum hwmon_sensor_types type,
807 				 u32 attr, int ch, const char **str)
808 {
809 	if (!pvt_hwmon_channel_is_valid(type, ch))
810 		return -EINVAL;
811 
812 	switch (type) {
813 	case hwmon_temp:
814 		switch (attr) {
815 		case hwmon_temp_label:
816 			*str = pvt_info[ch].label;
817 			return 0;
818 		}
819 		break;
820 	case hwmon_in:
821 		switch (attr) {
822 		case hwmon_in_label:
823 			*str = pvt_info[PVT_VOLT + ch].label;
824 			return 0;
825 		}
826 		break;
827 	default:
828 		break;
829 	}
830 
831 	return -EOPNOTSUPP;
832 }
833 
834 static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
835 			   u32 attr, int ch, long val)
836 {
837 	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
838 
839 	if (!pvt_hwmon_channel_is_valid(type, ch))
840 		return -EINVAL;
841 
842 	switch (type) {
843 	case hwmon_chip:
844 		switch (attr) {
845 		case hwmon_chip_update_interval:
846 			return pvt_write_timeout(pvt, val);
847 		}
848 		break;
849 	case hwmon_temp:
850 		switch (attr) {
851 		case hwmon_temp_min:
852 			return pvt_write_limit(pvt, ch, true, val);
853 		case hwmon_temp_max:
854 			return pvt_write_limit(pvt, ch, false, val);
855 		case hwmon_temp_offset:
856 			return pvt_write_trim(pvt, val);
857 		}
858 		break;
859 	case hwmon_in:
860 		switch (attr) {
861 		case hwmon_in_min:
862 			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
863 		case hwmon_in_max:
864 			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
865 		}
866 		break;
867 	default:
868 		break;
869 	}
870 
871 	return -EOPNOTSUPP;
872 }
873 
874 static const struct hwmon_ops pvt_hwmon_ops = {
875 	.is_visible = pvt_hwmon_is_visible,
876 	.read = pvt_hwmon_read,
877 	.read_string = pvt_hwmon_read_string,
878 	.write = pvt_hwmon_write
879 };
880 
881 static const struct hwmon_chip_info pvt_hwmon_info = {
882 	.ops = &pvt_hwmon_ops,
883 	.info = pvt_channel_info
884 };
885 
886 static void pvt_clear_data(void *data)
887 {
888 	struct pvt_hwmon *pvt = data;
889 #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
890 	int idx;
891 
892 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
893 		complete_all(&pvt->cache[idx].conversion);
894 #endif
895 
896 	mutex_destroy(&pvt->iface_mtx);
897 }
898 
899 static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
900 {
901 	struct device *dev = &pdev->dev;
902 	struct pvt_hwmon *pvt;
903 	int ret, idx;
904 
905 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
906 	if (!pvt)
907 		return ERR_PTR(-ENOMEM);
908 
909 	ret = devm_add_action(dev, pvt_clear_data, pvt);
910 	if (ret) {
911 		dev_err(dev, "Can't add PVT data clear action\n");
912 		return ERR_PTR(ret);
913 	}
914 
915 	pvt->dev = dev;
916 	pvt->sensor = PVT_SENSOR_FIRST;
917 	mutex_init(&pvt->iface_mtx);
918 
919 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
920 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
921 		seqlock_init(&pvt->cache[idx].data_seqlock);
922 #else
923 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
924 		init_completion(&pvt->cache[idx].conversion);
925 #endif
926 
927 	return pvt;
928 }
929 
930 static int pvt_request_regs(struct pvt_hwmon *pvt)
931 {
932 	struct platform_device *pdev = to_platform_device(pvt->dev);
933 	struct resource *res;
934 
935 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
936 	if (!res) {
937 		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
938 		return -EINVAL;
939 	}
940 
941 	pvt->regs = devm_ioremap_resource(pvt->dev, res);
942 	if (IS_ERR(pvt->regs)) {
943 		dev_err(pvt->dev, "Couldn't map PVT registers\n");
944 		return PTR_ERR(pvt->regs);
945 	}
946 
947 	return 0;
948 }
949 
950 static void pvt_disable_clks(void *data)
951 {
952 	struct pvt_hwmon *pvt = data;
953 
954 	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
955 }
956 
957 static int pvt_request_clks(struct pvt_hwmon *pvt)
958 {
959 	int ret;
960 
961 	pvt->clks[PVT_CLOCK_APB].id = "pclk";
962 	pvt->clks[PVT_CLOCK_REF].id = "ref";
963 
964 	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
965 	if (ret) {
966 		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
967 		return ret;
968 	}
969 
970 	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
971 	if (ret) {
972 		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
973 		return ret;
974 	}
975 
976 	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
977 	if (ret) {
978 		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
979 		return ret;
980 	}
981 
982 	return 0;
983 }
984 
985 static void pvt_init_iface(struct pvt_hwmon *pvt)
986 {
987 	u32 trim, temp;
988 
989 	/*
990 	 * Make sure all interrupts and controller are disabled so not to
991 	 * accidentally have ISR executed before the driver data is fully
992 	 * initialized. Clear the IRQ status as well.
993 	 */
994 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
995 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
996 	readl(pvt->regs + PVT_CLR_INTR);
997 	readl(pvt->regs + PVT_DATA);
998 
999 	/* Setup default sensor mode, timeout and temperature trim. */
1000 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
1001 	pvt_set_tout(pvt, PVT_TOUT_DEF);
1002 
1003 	trim = PVT_TRIM_DEF;
1004 	if (!of_property_read_u32(pvt->dev->of_node,
1005 	     "baikal,pvt-temp-offset-millicelsius", &temp))
1006 		trim = pvt_calc_trim(temp);
1007 
1008 	pvt_set_trim(pvt, trim);
1009 }
1010 
1011 static int pvt_request_irq(struct pvt_hwmon *pvt)
1012 {
1013 	struct platform_device *pdev = to_platform_device(pvt->dev);
1014 	int ret;
1015 
1016 	pvt->irq = platform_get_irq(pdev, 0);
1017 	if (pvt->irq < 0)
1018 		return pvt->irq;
1019 
1020 	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
1021 					pvt_hard_isr, pvt_soft_isr,
1022 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1023 					IRQF_SHARED | IRQF_TRIGGER_HIGH |
1024 					IRQF_ONESHOT,
1025 #else
1026 					IRQF_SHARED | IRQF_TRIGGER_HIGH,
1027 #endif
1028 					"pvt", pvt);
1029 	if (ret) {
1030 		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
1031 		return ret;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static int pvt_create_hwmon(struct pvt_hwmon *pvt)
1038 {
1039 	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
1040 		&pvt_hwmon_info, NULL);
1041 	if (IS_ERR(pvt->hwmon)) {
1042 		dev_err(pvt->dev, "Couldn't create hwmon device\n");
1043 		return PTR_ERR(pvt->hwmon);
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1050 
1051 static void pvt_disable_iface(void *data)
1052 {
1053 	struct pvt_hwmon *pvt = data;
1054 
1055 	mutex_lock(&pvt->iface_mtx);
1056 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1057 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
1058 		   PVT_INTR_DVALID);
1059 	mutex_unlock(&pvt->iface_mtx);
1060 }
1061 
1062 static int pvt_enable_iface(struct pvt_hwmon *pvt)
1063 {
1064 	int ret;
1065 
1066 	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
1067 	if (ret) {
1068 		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
1069 		return ret;
1070 	}
1071 
1072 	/*
1073 	 * Enable sensors data conversion and IRQ. We need to lock the
1074 	 * interface mutex since hwmon has just been created and the
1075 	 * corresponding sysfs files are accessible from user-space,
1076 	 * which theoretically may cause races.
1077 	 */
1078 	mutex_lock(&pvt->iface_mtx);
1079 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
1080 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
1081 	mutex_unlock(&pvt->iface_mtx);
1082 
1083 	return 0;
1084 }
1085 
1086 #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1087 
1088 static int pvt_enable_iface(struct pvt_hwmon *pvt)
1089 {
1090 	return 0;
1091 }
1092 
1093 #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1094 
1095 static int pvt_probe(struct platform_device *pdev)
1096 {
1097 	struct pvt_hwmon *pvt;
1098 	int ret;
1099 
1100 	pvt = pvt_create_data(pdev);
1101 	if (IS_ERR(pvt))
1102 		return PTR_ERR(pvt);
1103 
1104 	ret = pvt_request_regs(pvt);
1105 	if (ret)
1106 		return ret;
1107 
1108 	ret = pvt_request_clks(pvt);
1109 	if (ret)
1110 		return ret;
1111 
1112 	pvt_init_iface(pvt);
1113 
1114 	ret = pvt_request_irq(pvt);
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = pvt_create_hwmon(pvt);
1119 	if (ret)
1120 		return ret;
1121 
1122 	ret = pvt_enable_iface(pvt);
1123 	if (ret)
1124 		return ret;
1125 
1126 	return 0;
1127 }
1128 
1129 static const struct of_device_id pvt_of_match[] = {
1130 	{ .compatible = "baikal,bt1-pvt" },
1131 	{ }
1132 };
1133 MODULE_DEVICE_TABLE(of, pvt_of_match);
1134 
1135 static struct platform_driver pvt_driver = {
1136 	.probe = pvt_probe,
1137 	.driver = {
1138 		.name = "bt1-pvt",
1139 		.of_match_table = pvt_of_match
1140 	}
1141 };
1142 module_platform_driver(pvt_driver);
1143 
1144 MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
1145 MODULE_DESCRIPTION("Baikal-T1 PVT driver");
1146 MODULE_LICENSE("GPL v2");
1147