xref: /linux/drivers/hwmon/asus-ec-sensors.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * HWMON driver for ASUS motherboards that publish some sensor values
4  * via the embedded controller registers.
5  *
6  * Copyright (C) 2021 Eugene Shalygin <eugene.shalygin@gmail.com>
7 
8  * EC provides:
9  * - Chipset temperature
10  * - CPU temperature
11  * - Motherboard temperature
12  * - T_Sensor temperature
13  * - VRM temperature
14  * - Water In temperature
15  * - Water Out temperature
16  * - CPU Optional fan RPM
17  * - Chipset fan RPM
18  * - VRM Heat Sink fan RPM
19  * - Water Flow fan RPM
20  * - CPU current
21  * - CPU core voltage
22  */
23 
24 #include <linux/acpi.h>
25 #include <linux/bitops.h>
26 #include <linux/dev_printk.h>
27 #include <linux/dmi.h>
28 #include <linux/hwmon.h>
29 #include <linux/init.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/platform_device.h>
34 #include <linux/sort.h>
35 #include <linux/units.h>
36 
37 #include <asm/unaligned.h>
38 
39 static char *mutex_path_override;
40 
41 /* Writing to this EC register switches EC bank */
42 #define ASUS_EC_BANK_REGISTER	0xff
43 #define SENSOR_LABEL_LEN	16
44 
45 /*
46  * Arbitrary set max. allowed bank number. Required for sorting banks and
47  * currently is overkill with just 2 banks used at max, but for the sake
48  * of alignment let's set it to a higher value.
49  */
50 #define ASUS_EC_MAX_BANK	3
51 
52 #define ACPI_LOCK_DELAY_MS	500
53 
54 /* ACPI mutex for locking access to the EC for the firmware */
55 #define ASUS_HW_ACCESS_MUTEX_ASMX	"\\AMW0.ASMX"
56 
57 #define MAX_IDENTICAL_BOARD_VARIATIONS	3
58 
59 /* Moniker for the ACPI global lock (':' is not allowed in ASL identifiers) */
60 #define ACPI_GLOBAL_LOCK_PSEUDO_PATH	":GLOBAL_LOCK"
61 
62 typedef union {
63 	u32 value;
64 	struct {
65 		u8 index;
66 		u8 bank;
67 		u8 size;
68 		u8 dummy;
69 	} components;
70 } sensor_address;
71 
72 #define MAKE_SENSOR_ADDRESS(size, bank, index) {                               \
73 		.value = (size << 16) + (bank << 8) + index                    \
74 	}
75 
76 static u32 hwmon_attributes[hwmon_max] = {
77 	[hwmon_chip] = HWMON_C_REGISTER_TZ,
78 	[hwmon_temp] = HWMON_T_INPUT | HWMON_T_LABEL,
79 	[hwmon_in] = HWMON_I_INPUT | HWMON_I_LABEL,
80 	[hwmon_curr] = HWMON_C_INPUT | HWMON_C_LABEL,
81 	[hwmon_fan] = HWMON_F_INPUT | HWMON_F_LABEL,
82 };
83 
84 struct ec_sensor_info {
85 	char label[SENSOR_LABEL_LEN];
86 	enum hwmon_sensor_types type;
87 	sensor_address addr;
88 };
89 
90 #define EC_SENSOR(sensor_label, sensor_type, size, bank, index) {              \
91 		.label = sensor_label, .type = sensor_type,                    \
92 		.addr = MAKE_SENSOR_ADDRESS(size, bank, index),                \
93 	}
94 
95 enum ec_sensors {
96 	/* chipset temperature [℃] */
97 	ec_sensor_temp_chipset,
98 	/* CPU temperature [℃] */
99 	ec_sensor_temp_cpu,
100 	/* motherboard temperature [℃] */
101 	ec_sensor_temp_mb,
102 	/* "T_Sensor" temperature sensor reading [℃] */
103 	ec_sensor_temp_t_sensor,
104 	/* VRM temperature [℃] */
105 	ec_sensor_temp_vrm,
106 	/* CPU Core voltage [mV] */
107 	ec_sensor_in_cpu_core,
108 	/* CPU_Opt fan [RPM] */
109 	ec_sensor_fan_cpu_opt,
110 	/* VRM heat sink fan [RPM] */
111 	ec_sensor_fan_vrm_hs,
112 	/* Chipset fan [RPM] */
113 	ec_sensor_fan_chipset,
114 	/* Water flow sensor reading [RPM] */
115 	ec_sensor_fan_water_flow,
116 	/* CPU current [A] */
117 	ec_sensor_curr_cpu,
118 	/* "Water_In" temperature sensor reading [℃] */
119 	ec_sensor_temp_water_in,
120 	/* "Water_Out" temperature sensor reading [℃] */
121 	ec_sensor_temp_water_out,
122 };
123 
124 #define SENSOR_TEMP_CHIPSET BIT(ec_sensor_temp_chipset)
125 #define SENSOR_TEMP_CPU BIT(ec_sensor_temp_cpu)
126 #define SENSOR_TEMP_MB BIT(ec_sensor_temp_mb)
127 #define SENSOR_TEMP_T_SENSOR BIT(ec_sensor_temp_t_sensor)
128 #define SENSOR_TEMP_VRM BIT(ec_sensor_temp_vrm)
129 #define SENSOR_IN_CPU_CORE BIT(ec_sensor_in_cpu_core)
130 #define SENSOR_FAN_CPU_OPT BIT(ec_sensor_fan_cpu_opt)
131 #define SENSOR_FAN_VRM_HS BIT(ec_sensor_fan_vrm_hs)
132 #define SENSOR_FAN_CHIPSET BIT(ec_sensor_fan_chipset)
133 #define SENSOR_FAN_WATER_FLOW BIT(ec_sensor_fan_water_flow)
134 #define SENSOR_CURR_CPU BIT(ec_sensor_curr_cpu)
135 #define SENSOR_TEMP_WATER_IN BIT(ec_sensor_temp_water_in)
136 #define SENSOR_TEMP_WATER_OUT BIT(ec_sensor_temp_water_out)
137 
138 enum board_family {
139 	family_unknown,
140 	family_amd_400_series,
141 	family_amd_500_series,
142 };
143 
144 /* All the known sensors for ASUS EC controllers */
145 static const struct ec_sensor_info sensors_family_amd_400[] = {
146 	[ec_sensor_temp_chipset] =
147 		EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a),
148 	[ec_sensor_temp_cpu] =
149 		EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b),
150 	[ec_sensor_temp_mb] =
151 		EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c),
152 	[ec_sensor_temp_t_sensor] =
153 		EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d),
154 	[ec_sensor_temp_vrm] =
155 		EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e),
156 	[ec_sensor_in_cpu_core] =
157 		EC_SENSOR("CPU Core", hwmon_in, 2, 0x00, 0xa2),
158 	[ec_sensor_fan_cpu_opt] =
159 		EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xbc),
160 	[ec_sensor_fan_vrm_hs] =
161 		EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2),
162 	[ec_sensor_fan_chipset] =
163 		/* no chipset fans in this generation */
164 		EC_SENSOR("Chipset", hwmon_fan, 0, 0x00, 0x00),
165 	[ec_sensor_fan_water_flow] =
166 		EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xb4),
167 	[ec_sensor_curr_cpu] =
168 		EC_SENSOR("CPU", hwmon_curr, 1, 0x00, 0xf4),
169 	[ec_sensor_temp_water_in] =
170 		EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x0d),
171 	[ec_sensor_temp_water_out] =
172 		EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x0b),
173 };
174 
175 static const struct ec_sensor_info sensors_family_amd_500[] = {
176 	[ec_sensor_temp_chipset] =
177 		EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a),
178 	[ec_sensor_temp_cpu] = EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b),
179 	[ec_sensor_temp_mb] =
180 		EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c),
181 	[ec_sensor_temp_t_sensor] =
182 		EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d),
183 	[ec_sensor_temp_vrm] = EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e),
184 	[ec_sensor_in_cpu_core] =
185 		EC_SENSOR("CPU Core", hwmon_in, 2, 0x00, 0xa2),
186 	[ec_sensor_fan_cpu_opt] =
187 		EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xb0),
188 	[ec_sensor_fan_vrm_hs] = EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2),
189 	[ec_sensor_fan_chipset] =
190 		EC_SENSOR("Chipset", hwmon_fan, 2, 0x00, 0xb4),
191 	[ec_sensor_fan_water_flow] =
192 		EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xbc),
193 	[ec_sensor_curr_cpu] = EC_SENSOR("CPU", hwmon_curr, 1, 0x00, 0xf4),
194 	[ec_sensor_temp_water_in] =
195 		EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x00),
196 	[ec_sensor_temp_water_out] =
197 		EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x01),
198 };
199 
200 /* Shortcuts for common combinations */
201 #define SENSOR_SET_TEMP_CHIPSET_CPU_MB                                         \
202 	(SENSOR_TEMP_CHIPSET | SENSOR_TEMP_CPU | SENSOR_TEMP_MB)
203 #define SENSOR_SET_TEMP_WATER (SENSOR_TEMP_WATER_IN | SENSOR_TEMP_WATER_OUT)
204 
205 struct ec_board_info {
206 	const char *board_names[MAX_IDENTICAL_BOARD_VARIATIONS];
207 	unsigned long sensors;
208 	/*
209 	 * Defines which mutex to use for guarding access to the state and the
210 	 * hardware. Can be either a full path to an AML mutex or the
211 	 * pseudo-path ACPI_GLOBAL_LOCK_PSEUDO_PATH to use the global ACPI lock,
212 	 * or left empty to use a regular mutex object, in which case access to
213 	 * the hardware is not guarded.
214 	 */
215 	const char *mutex_path;
216 	enum board_family family;
217 };
218 
219 static const struct ec_board_info board_info[] = {
220 	{
221 		.board_names = {"PRIME X470-PRO"},
222 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
223 			SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
224 			SENSOR_FAN_CPU_OPT |
225 			SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
226 		.mutex_path = ACPI_GLOBAL_LOCK_PSEUDO_PATH,
227 		.family = family_amd_400_series,
228 	},
229 	{
230 		.board_names = {"PRIME X570-PRO"},
231 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM |
232 			SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET,
233 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
234 		.family = family_amd_500_series,
235 	},
236 	{
237 		.board_names = {"ProArt X570-CREATOR WIFI"},
238 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM |
239 			SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CPU_OPT |
240 			SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
241 	},
242 	{
243 		.board_names = {"Pro WS X570-ACE"},
244 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM |
245 			SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET |
246 			SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
247 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
248 		.family = family_amd_500_series,
249 	},
250 	{
251 		.board_names = {"ROG CROSSHAIR VIII DARK HERO"},
252 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
253 			SENSOR_TEMP_T_SENSOR |
254 			SENSOR_TEMP_VRM | SENSOR_SET_TEMP_WATER |
255 			SENSOR_FAN_CPU_OPT | SENSOR_FAN_WATER_FLOW |
256 			SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE,
257 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
258 		.family = family_amd_500_series,
259 	},
260 	{
261 		.board_names = {
262 			"ROG CROSSHAIR VIII FORMULA"
263 			"ROG CROSSHAIR VIII HERO",
264 			"ROG CROSSHAIR VIII HERO (WI-FI)",
265 		},
266 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
267 			SENSOR_TEMP_T_SENSOR |
268 			SENSOR_TEMP_VRM | SENSOR_SET_TEMP_WATER |
269 			SENSOR_FAN_CPU_OPT | SENSOR_FAN_CHIPSET |
270 			SENSOR_FAN_WATER_FLOW | SENSOR_CURR_CPU |
271 			SENSOR_IN_CPU_CORE,
272 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
273 		.family = family_amd_500_series,
274 	},
275 	{
276 		.board_names = {"ROG CROSSHAIR VIII IMPACT"},
277 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
278 			SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
279 			SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU |
280 			SENSOR_IN_CPU_CORE,
281 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
282 		.family = family_amd_500_series,
283 	},
284 	{
285 		.board_names = {"ROG STRIX B550-E GAMING"},
286 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
287 			SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
288 			SENSOR_FAN_CPU_OPT,
289 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
290 		.family = family_amd_500_series,
291 	},
292 	{
293 		.board_names = {"ROG STRIX B550-I GAMING"},
294 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
295 			SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
296 			SENSOR_FAN_VRM_HS | SENSOR_CURR_CPU |
297 			SENSOR_IN_CPU_CORE,
298 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
299 		.family = family_amd_500_series,
300 	},
301 	{
302 		.board_names = {"ROG STRIX X570-E GAMING"},
303 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
304 			SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM |
305 			SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU |
306 			SENSOR_IN_CPU_CORE,
307 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
308 		.family = family_amd_500_series,
309 	},
310 	{
311 		.board_names = {"ROG STRIX X570-E GAMING WIFI II"},
312 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
313 			SENSOR_TEMP_T_SENSOR | SENSOR_CURR_CPU |
314 			SENSOR_IN_CPU_CORE,
315 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
316 		.family = family_amd_500_series,
317 	},
318 	{
319 		.board_names = {"ROG STRIX X570-F GAMING"},
320 		.sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB |
321 			SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET,
322 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
323 		.family = family_amd_500_series,
324 	},
325 	{
326 		.board_names = {"ROG STRIX X570-I GAMING"},
327 		.sensors = SENSOR_TEMP_T_SENSOR | SENSOR_FAN_VRM_HS |
328 			SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU |
329 			SENSOR_IN_CPU_CORE,
330 		.mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX,
331 		.family = family_amd_500_series,
332 	},
333 	{}
334 };
335 
336 struct ec_sensor {
337 	unsigned int info_index;
338 	s32 cached_value;
339 };
340 
341 struct lock_data {
342 	union {
343 		acpi_handle aml;
344 		/* global lock handle */
345 		u32 glk;
346 	} mutex;
347 	bool (*lock)(struct lock_data *data);
348 	bool (*unlock)(struct lock_data *data);
349 };
350 
351 /*
352  * The next function pairs implement options for locking access to the
353  * state and the EC
354  */
355 static bool lock_via_acpi_mutex(struct lock_data *data)
356 {
357 	/*
358 	 * ASUS DSDT does not specify that access to the EC has to be guarded,
359 	 * but firmware does access it via ACPI
360 	 */
361 	return ACPI_SUCCESS(acpi_acquire_mutex(data->mutex.aml,
362 					       NULL, ACPI_LOCK_DELAY_MS));
363 }
364 
365 static bool unlock_acpi_mutex(struct lock_data *data)
366 {
367 	return ACPI_SUCCESS(acpi_release_mutex(data->mutex.aml, NULL));
368 }
369 
370 static bool lock_via_global_acpi_lock(struct lock_data *data)
371 {
372 	return ACPI_SUCCESS(acpi_acquire_global_lock(ACPI_LOCK_DELAY_MS,
373 						     &data->mutex.glk));
374 }
375 
376 static bool unlock_global_acpi_lock(struct lock_data *data)
377 {
378 	return ACPI_SUCCESS(acpi_release_global_lock(data->mutex.glk));
379 }
380 
381 struct ec_sensors_data {
382 	const struct ec_board_info *board_info;
383 	const struct ec_sensor_info *sensors_info;
384 	struct ec_sensor *sensors;
385 	/* EC registers to read from */
386 	u16 *registers;
387 	u8 *read_buffer;
388 	/* sorted list of unique register banks */
389 	u8 banks[ASUS_EC_MAX_BANK + 1];
390 	/* in jiffies */
391 	unsigned long last_updated;
392 	struct lock_data lock_data;
393 	/* number of board EC sensors */
394 	u8 nr_sensors;
395 	/*
396 	 * number of EC registers to read
397 	 * (sensor might span more than 1 register)
398 	 */
399 	u8 nr_registers;
400 	/* number of unique register banks */
401 	u8 nr_banks;
402 };
403 
404 static u8 register_bank(u16 reg)
405 {
406 	return reg >> 8;
407 }
408 
409 static u8 register_index(u16 reg)
410 {
411 	return reg & 0x00ff;
412 }
413 
414 static bool is_sensor_data_signed(const struct ec_sensor_info *si)
415 {
416 	/*
417 	 * guessed from WMI functions in DSDT code for boards
418 	 * of the X470 generation
419 	 */
420 	return si->type == hwmon_temp;
421 }
422 
423 static const struct ec_sensor_info *
424 get_sensor_info(const struct ec_sensors_data *state, int index)
425 {
426 	return state->sensors_info + state->sensors[index].info_index;
427 }
428 
429 static int find_ec_sensor_index(const struct ec_sensors_data *ec,
430 				enum hwmon_sensor_types type, int channel)
431 {
432 	unsigned int i;
433 
434 	for (i = 0; i < ec->nr_sensors; i++) {
435 		if (get_sensor_info(ec, i)->type == type) {
436 			if (channel == 0)
437 				return i;
438 			channel--;
439 		}
440 	}
441 	return -ENOENT;
442 }
443 
444 static int __init bank_compare(const void *a, const void *b)
445 {
446 	return *((const s8 *)a) - *((const s8 *)b);
447 }
448 
449 static void __init setup_sensor_data(struct ec_sensors_data *ec)
450 {
451 	struct ec_sensor *s = ec->sensors;
452 	bool bank_found;
453 	int i, j;
454 	u8 bank;
455 
456 	ec->nr_banks = 0;
457 	ec->nr_registers = 0;
458 
459 	for_each_set_bit(i, &ec->board_info->sensors,
460 			 BITS_PER_TYPE(ec->board_info->sensors)) {
461 		s->info_index = i;
462 		s->cached_value = 0;
463 		ec->nr_registers +=
464 			ec->sensors_info[s->info_index].addr.components.size;
465 		bank_found = false;
466 		bank = ec->sensors_info[s->info_index].addr.components.bank;
467 		for (j = 0; j < ec->nr_banks; j++) {
468 			if (ec->banks[j] == bank) {
469 				bank_found = true;
470 				break;
471 			}
472 		}
473 		if (!bank_found) {
474 			ec->banks[ec->nr_banks++] = bank;
475 		}
476 		s++;
477 	}
478 	sort(ec->banks, ec->nr_banks, 1, bank_compare, NULL);
479 }
480 
481 static void __init fill_ec_registers(struct ec_sensors_data *ec)
482 {
483 	const struct ec_sensor_info *si;
484 	unsigned int i, j, register_idx = 0;
485 
486 	for (i = 0; i < ec->nr_sensors; ++i) {
487 		si = get_sensor_info(ec, i);
488 		for (j = 0; j < si->addr.components.size; ++j, ++register_idx) {
489 			ec->registers[register_idx] =
490 				(si->addr.components.bank << 8) +
491 				si->addr.components.index + j;
492 		}
493 	}
494 }
495 
496 static int __init setup_lock_data(struct device *dev)
497 {
498 	const char *mutex_path;
499 	int status;
500 	struct ec_sensors_data *state = dev_get_drvdata(dev);
501 
502 	mutex_path = mutex_path_override ?
503 		mutex_path_override : state->board_info->mutex_path;
504 
505 	if (!mutex_path || !strlen(mutex_path)) {
506 		dev_err(dev, "Hardware access guard mutex name is empty");
507 		return -EINVAL;
508 	}
509 	if (!strcmp(mutex_path, ACPI_GLOBAL_LOCK_PSEUDO_PATH)) {
510 		state->lock_data.mutex.glk = 0;
511 		state->lock_data.lock = lock_via_global_acpi_lock;
512 		state->lock_data.unlock = unlock_global_acpi_lock;
513 	} else {
514 		status = acpi_get_handle(NULL, (acpi_string)mutex_path,
515 					 &state->lock_data.mutex.aml);
516 		if (ACPI_FAILURE(status)) {
517 			dev_err(dev,
518 				"Failed to get hardware access guard AML mutex '%s': error %d",
519 				mutex_path, status);
520 			return -ENOENT;
521 		}
522 		state->lock_data.lock = lock_via_acpi_mutex;
523 		state->lock_data.unlock = unlock_acpi_mutex;
524 	}
525 	return 0;
526 }
527 
528 static int asus_ec_bank_switch(u8 bank, u8 *old)
529 {
530 	int status = 0;
531 
532 	if (old) {
533 		status = ec_read(ASUS_EC_BANK_REGISTER, old);
534 	}
535 	if (status || (old && (*old == bank)))
536 		return status;
537 	return ec_write(ASUS_EC_BANK_REGISTER, bank);
538 }
539 
540 static int asus_ec_block_read(const struct device *dev,
541 			      struct ec_sensors_data *ec)
542 {
543 	int ireg, ibank, status;
544 	u8 bank, reg_bank, prev_bank;
545 
546 	bank = 0;
547 	status = asus_ec_bank_switch(bank, &prev_bank);
548 	if (status) {
549 		dev_warn(dev, "EC bank switch failed");
550 		return status;
551 	}
552 
553 	if (prev_bank) {
554 		/* oops... somebody else is working with the EC too */
555 		dev_warn(dev,
556 			"Concurrent access to the ACPI EC detected.\nRace condition possible.");
557 	}
558 
559 	/* read registers minimizing bank switches. */
560 	for (ibank = 0; ibank < ec->nr_banks; ibank++) {
561 		if (bank != ec->banks[ibank]) {
562 			bank = ec->banks[ibank];
563 			if (asus_ec_bank_switch(bank, NULL)) {
564 				dev_warn(dev, "EC bank switch to %d failed",
565 					 bank);
566 				break;
567 			}
568 		}
569 		for (ireg = 0; ireg < ec->nr_registers; ireg++) {
570 			reg_bank = register_bank(ec->registers[ireg]);
571 			if (reg_bank < bank) {
572 				continue;
573 			}
574 			ec_read(register_index(ec->registers[ireg]),
575 				ec->read_buffer + ireg);
576 		}
577 	}
578 
579 	status = asus_ec_bank_switch(prev_bank, NULL);
580 	return status;
581 }
582 
583 static inline s32 get_sensor_value(const struct ec_sensor_info *si, u8 *data)
584 {
585 	if (is_sensor_data_signed(si)) {
586 		switch (si->addr.components.size) {
587 		case 1:
588 			return (s8)*data;
589 		case 2:
590 			return (s16)get_unaligned_be16(data);
591 		case 4:
592 			return (s32)get_unaligned_be32(data);
593 		default:
594 			return 0;
595 		}
596 	} else {
597 		switch (si->addr.components.size) {
598 		case 1:
599 			return *data;
600 		case 2:
601 			return get_unaligned_be16(data);
602 		case 4:
603 			return get_unaligned_be32(data);
604 		default:
605 			return 0;
606 		}
607 	}
608 }
609 
610 static void update_sensor_values(struct ec_sensors_data *ec, u8 *data)
611 {
612 	const struct ec_sensor_info *si;
613 	struct ec_sensor *s, *sensor_end;
614 
615 	sensor_end = ec->sensors + ec->nr_sensors;
616 	for (s = ec->sensors; s != sensor_end; s++) {
617 		si = ec->sensors_info + s->info_index;
618 		s->cached_value = get_sensor_value(si, data);
619 		data += si->addr.components.size;
620 	}
621 }
622 
623 static int update_ec_sensors(const struct device *dev,
624 			     struct ec_sensors_data *ec)
625 {
626 	int status;
627 
628 	if (!ec->lock_data.lock(&ec->lock_data)) {
629 		dev_warn(dev, "Failed to acquire mutex");
630 		return -EBUSY;
631 	}
632 
633 	status = asus_ec_block_read(dev, ec);
634 
635 	if (!status) {
636 		update_sensor_values(ec, ec->read_buffer);
637 	}
638 
639 	if (!ec->lock_data.unlock(&ec->lock_data))
640 		dev_err(dev, "Failed to release mutex");
641 
642 	return status;
643 }
644 
645 static long scale_sensor_value(s32 value, int data_type)
646 {
647 	switch (data_type) {
648 	case hwmon_curr:
649 	case hwmon_temp:
650 		return value * MILLI;
651 	default:
652 		return value;
653 	}
654 }
655 
656 static int get_cached_value_or_update(const struct device *dev,
657 				      int sensor_index,
658 				      struct ec_sensors_data *state, s32 *value)
659 {
660 	if (time_after(jiffies, state->last_updated + HZ)) {
661 		if (update_ec_sensors(dev, state)) {
662 			dev_err(dev, "update_ec_sensors() failure\n");
663 			return -EIO;
664 		}
665 
666 		state->last_updated = jiffies;
667 	}
668 
669 	*value = state->sensors[sensor_index].cached_value;
670 	return 0;
671 }
672 
673 /*
674  * Now follow the functions that implement the hwmon interface
675  */
676 
677 static int asus_ec_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
678 			      u32 attr, int channel, long *val)
679 {
680 	int ret;
681 	s32 value = 0;
682 
683 	struct ec_sensors_data *state = dev_get_drvdata(dev);
684 	int sidx = find_ec_sensor_index(state, type, channel);
685 
686 	if (sidx < 0) {
687 		return sidx;
688 	}
689 
690 	ret = get_cached_value_or_update(dev, sidx, state, &value);
691 	if (!ret) {
692 		*val = scale_sensor_value(value,
693 					  get_sensor_info(state, sidx)->type);
694 	}
695 
696 	return ret;
697 }
698 
699 static int asus_ec_hwmon_read_string(struct device *dev,
700 				     enum hwmon_sensor_types type, u32 attr,
701 				     int channel, const char **str)
702 {
703 	struct ec_sensors_data *state = dev_get_drvdata(dev);
704 	int sensor_index = find_ec_sensor_index(state, type, channel);
705 	*str = get_sensor_info(state, sensor_index)->label;
706 
707 	return 0;
708 }
709 
710 static umode_t asus_ec_hwmon_is_visible(const void *drvdata,
711 					enum hwmon_sensor_types type, u32 attr,
712 					int channel)
713 {
714 	const struct ec_sensors_data *state = drvdata;
715 
716 	return find_ec_sensor_index(state, type, channel) >= 0 ? S_IRUGO : 0;
717 }
718 
719 static int __init
720 asus_ec_hwmon_add_chan_info(struct hwmon_channel_info *asus_ec_hwmon_chan,
721 			     struct device *dev, int num,
722 			     enum hwmon_sensor_types type, u32 config)
723 {
724 	int i;
725 	u32 *cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL);
726 
727 	if (!cfg)
728 		return -ENOMEM;
729 
730 	asus_ec_hwmon_chan->type = type;
731 	asus_ec_hwmon_chan->config = cfg;
732 	for (i = 0; i < num; i++, cfg++)
733 		*cfg = config;
734 
735 	return 0;
736 }
737 
738 static const struct hwmon_ops asus_ec_hwmon_ops = {
739 	.is_visible = asus_ec_hwmon_is_visible,
740 	.read = asus_ec_hwmon_read,
741 	.read_string = asus_ec_hwmon_read_string,
742 };
743 
744 static struct hwmon_chip_info asus_ec_chip_info = {
745 	.ops = &asus_ec_hwmon_ops,
746 };
747 
748 static const struct ec_board_info * __init get_board_info(void)
749 {
750 	const char *dmi_board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
751 	const char *dmi_board_name = dmi_get_system_info(DMI_BOARD_NAME);
752 	const struct ec_board_info *board;
753 
754 	if (!dmi_board_vendor || !dmi_board_name ||
755 	    strcasecmp(dmi_board_vendor, "ASUSTeK COMPUTER INC."))
756 		return NULL;
757 
758 	for (board = board_info; board->sensors; board++) {
759 		if (match_string(board->board_names,
760 				 MAX_IDENTICAL_BOARD_VARIATIONS,
761 				 dmi_board_name) >= 0)
762 			return board;
763 	}
764 
765 	return NULL;
766 }
767 
768 static int __init asus_ec_probe(struct platform_device *pdev)
769 {
770 	const struct hwmon_channel_info **ptr_asus_ec_ci;
771 	int nr_count[hwmon_max] = { 0 }, nr_types = 0;
772 	struct hwmon_channel_info *asus_ec_hwmon_chan;
773 	const struct ec_board_info *pboard_info;
774 	const struct hwmon_chip_info *chip_info;
775 	struct device *dev = &pdev->dev;
776 	struct ec_sensors_data *ec_data;
777 	const struct ec_sensor_info *si;
778 	enum hwmon_sensor_types type;
779 	struct device *hwdev;
780 	unsigned int i;
781 	int status;
782 
783 	pboard_info = get_board_info();
784 	if (!pboard_info)
785 		return -ENODEV;
786 
787 	ec_data = devm_kzalloc(dev, sizeof(struct ec_sensors_data),
788 			       GFP_KERNEL);
789 	if (!ec_data)
790 		return -ENOMEM;
791 
792 	dev_set_drvdata(dev, ec_data);
793 	ec_data->board_info = pboard_info;
794 
795 	switch (ec_data->board_info->family) {
796 	case family_amd_400_series:
797 		ec_data->sensors_info = sensors_family_amd_400;
798 		break;
799 	case family_amd_500_series:
800 		ec_data->sensors_info = sensors_family_amd_500;
801 		break;
802 	default:
803 		dev_err(dev, "Unknown board family: %d",
804 			ec_data->board_info->family);
805 		return -EINVAL;
806 	}
807 
808 	ec_data->nr_sensors = hweight_long(ec_data->board_info->sensors);
809 	ec_data->sensors = devm_kcalloc(dev, ec_data->nr_sensors,
810 					sizeof(struct ec_sensor), GFP_KERNEL);
811 
812 	status = setup_lock_data(dev);
813 	if (status) {
814 		dev_err(dev, "Failed to setup state/EC locking: %d", status);
815 		return status;
816 	}
817 
818 	setup_sensor_data(ec_data);
819 	ec_data->registers = devm_kcalloc(dev, ec_data->nr_registers,
820 					  sizeof(u16), GFP_KERNEL);
821 	ec_data->read_buffer = devm_kcalloc(dev, ec_data->nr_registers,
822 					    sizeof(u8), GFP_KERNEL);
823 
824 	if (!ec_data->registers || !ec_data->read_buffer)
825 		return -ENOMEM;
826 
827 	fill_ec_registers(ec_data);
828 
829 	for (i = 0; i < ec_data->nr_sensors; ++i) {
830 		si = get_sensor_info(ec_data, i);
831 		if (!nr_count[si->type])
832 			++nr_types;
833 		++nr_count[si->type];
834 	}
835 
836 	if (nr_count[hwmon_temp])
837 		nr_count[hwmon_chip]++, nr_types++;
838 
839 	asus_ec_hwmon_chan = devm_kcalloc(
840 		dev, nr_types, sizeof(*asus_ec_hwmon_chan), GFP_KERNEL);
841 	if (!asus_ec_hwmon_chan)
842 		return -ENOMEM;
843 
844 	ptr_asus_ec_ci = devm_kcalloc(dev, nr_types + 1,
845 				       sizeof(*ptr_asus_ec_ci), GFP_KERNEL);
846 	if (!ptr_asus_ec_ci)
847 		return -ENOMEM;
848 
849 	asus_ec_chip_info.info = ptr_asus_ec_ci;
850 	chip_info = &asus_ec_chip_info;
851 
852 	for (type = 0; type < hwmon_max; ++type) {
853 		if (!nr_count[type])
854 			continue;
855 
856 		asus_ec_hwmon_add_chan_info(asus_ec_hwmon_chan, dev,
857 					     nr_count[type], type,
858 					     hwmon_attributes[type]);
859 		*ptr_asus_ec_ci++ = asus_ec_hwmon_chan++;
860 	}
861 
862 	dev_info(dev, "board has %d EC sensors that span %d registers",
863 		 ec_data->nr_sensors, ec_data->nr_registers);
864 
865 	hwdev = devm_hwmon_device_register_with_info(dev, "asusec",
866 						     ec_data, chip_info, NULL);
867 
868 	return PTR_ERR_OR_ZERO(hwdev);
869 }
870 
871 
872 static const struct acpi_device_id acpi_ec_ids[] = {
873 	/* Embedded Controller Device */
874 	{ "PNP0C09", 0 },
875 	{}
876 };
877 
878 static struct platform_driver asus_ec_sensors_platform_driver = {
879 	.driver = {
880 		.name	= "asus-ec-sensors",
881 		.acpi_match_table = acpi_ec_ids,
882 	},
883 };
884 
885 MODULE_DEVICE_TABLE(acpi, acpi_ec_ids);
886 /*
887  * we use module_platform_driver_probe() rather than module_platform_driver()
888  * because the probe function (and its dependants) are marked with __init, which
889  * means we can't put it into the .probe member of the platform_driver struct
890  * above, and we can't mark the asus_ec_sensors_platform_driver object as __init
891  * because the object is referenced from the module exit code.
892  */
893 module_platform_driver_probe(asus_ec_sensors_platform_driver, asus_ec_probe);
894 
895 module_param_named(mutex_path, mutex_path_override, charp, 0);
896 MODULE_PARM_DESC(mutex_path,
897 		 "Override ACPI mutex path used to guard access to hardware");
898 
899 MODULE_AUTHOR("Eugene Shalygin <eugene.shalygin@gmail.com>");
900 MODULE_DESCRIPTION(
901 	"HWMON driver for sensors accessible via ACPI EC in ASUS motherboards");
902 MODULE_LICENSE("GPL");
903