1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * asb100.c - Part of lm_sensors, Linux kernel modules for hardware 4 * monitoring 5 * 6 * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> 7 * 8 * (derived from w83781d.c) 9 * 10 * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, 11 * Philip Edelbrock <phil@netroedge.com>, and 12 * Mark Studebaker <mdsxyz123@yahoo.com> 13 */ 14 15 /* 16 * This driver supports the hardware sensor chips: Asus ASB100 and 17 * ASB100-A "BACH". 18 * 19 * ASB100-A supports pwm1, while plain ASB100 does not. There is no known 20 * way for the driver to tell which one is there. 21 * 22 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 23 * asb100 7 3 1 4 0x31 0x0694 yes no 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/slab.h> 30 #include <linux/i2c.h> 31 #include <linux/hwmon.h> 32 #include <linux/hwmon-sysfs.h> 33 #include <linux/hwmon-vid.h> 34 #include <linux/err.h> 35 #include <linux/init.h> 36 #include <linux/jiffies.h> 37 #include <linux/mutex.h> 38 #include "lm75.h" 39 40 /* I2C addresses to scan */ 41 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; 42 43 static unsigned short force_subclients[4]; 44 module_param_array(force_subclients, short, NULL, 0); 45 MODULE_PARM_DESC(force_subclients, 46 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); 47 48 /* Voltage IN registers 0-6 */ 49 #define ASB100_REG_IN(nr) (0x20 + (nr)) 50 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) 51 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) 52 53 /* FAN IN registers 1-3 */ 54 #define ASB100_REG_FAN(nr) (0x28 + (nr)) 55 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) 56 57 /* TEMPERATURE registers 1-4 */ 58 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; 59 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; 60 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; 61 62 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) 63 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) 64 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) 65 66 #define ASB100_REG_TEMP2_CONFIG 0x0152 67 #define ASB100_REG_TEMP3_CONFIG 0x0252 68 69 70 #define ASB100_REG_CONFIG 0x40 71 #define ASB100_REG_ALARM1 0x41 72 #define ASB100_REG_ALARM2 0x42 73 #define ASB100_REG_SMIM1 0x43 74 #define ASB100_REG_SMIM2 0x44 75 #define ASB100_REG_VID_FANDIV 0x47 76 #define ASB100_REG_I2C_ADDR 0x48 77 #define ASB100_REG_CHIPID 0x49 78 #define ASB100_REG_I2C_SUBADDR 0x4a 79 #define ASB100_REG_PIN 0x4b 80 #define ASB100_REG_IRQ 0x4c 81 #define ASB100_REG_BANK 0x4e 82 #define ASB100_REG_CHIPMAN 0x4f 83 84 #define ASB100_REG_WCHIPID 0x58 85 86 /* bit 7 -> enable, bits 0-3 -> duty cycle */ 87 #define ASB100_REG_PWM1 0x59 88 89 /* 90 * CONVERSIONS 91 * Rounding and limit checking is only done on the TO_REG variants. 92 */ 93 94 /* These constants are a guess, consistent w/ w83781d */ 95 #define ASB100_IN_MIN 0 96 #define ASB100_IN_MAX 4080 97 98 /* 99 * IN: 1/1000 V (0V to 4.08V) 100 * REG: 16mV/bit 101 */ 102 static u8 IN_TO_REG(unsigned val) 103 { 104 unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX); 105 return (nval + 8) / 16; 106 } 107 108 static unsigned IN_FROM_REG(u8 reg) 109 { 110 return reg * 16; 111 } 112 113 static u8 FAN_TO_REG(long rpm, int div) 114 { 115 if (rpm == -1) 116 return 0; 117 if (rpm == 0) 118 return 255; 119 rpm = clamp_val(rpm, 1, 1000000); 120 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 121 } 122 123 static int FAN_FROM_REG(u8 val, int div) 124 { 125 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); 126 } 127 128 /* These constants are a guess, consistent w/ w83781d */ 129 #define ASB100_TEMP_MIN -128000 130 #define ASB100_TEMP_MAX 127000 131 132 /* 133 * TEMP: 0.001C/bit (-128C to +127C) 134 * REG: 1C/bit, two's complement 135 */ 136 static u8 TEMP_TO_REG(long temp) 137 { 138 int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); 139 ntemp += (ntemp < 0 ? -500 : 500); 140 return (u8)(ntemp / 1000); 141 } 142 143 static int TEMP_FROM_REG(u8 reg) 144 { 145 return (s8)reg * 1000; 146 } 147 148 /* 149 * PWM: 0 - 255 per sensors documentation 150 * REG: (6.25% duty cycle per bit) 151 */ 152 static u8 ASB100_PWM_TO_REG(int pwm) 153 { 154 pwm = clamp_val(pwm, 0, 255); 155 return (u8)(pwm / 16); 156 } 157 158 static int ASB100_PWM_FROM_REG(u8 reg) 159 { 160 return reg * 16; 161 } 162 163 #define DIV_FROM_REG(val) (1 << (val)) 164 165 /* 166 * FAN DIV: 1, 2, 4, or 8 (defaults to 2) 167 * REG: 0, 1, 2, or 3 (respectively) (defaults to 1) 168 */ 169 static u8 DIV_TO_REG(long val) 170 { 171 return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1; 172 } 173 174 /* 175 * For each registered client, we need to keep some data in memory. That 176 * data is pointed to by client->data. The structure itself is 177 * dynamically allocated, at the same time the client itself is allocated. 178 */ 179 struct asb100_data { 180 struct device *hwmon_dev; 181 struct mutex lock; 182 183 struct mutex update_lock; 184 unsigned long last_updated; /* In jiffies */ 185 186 /* array of 2 pointers to subclients */ 187 struct i2c_client *lm75[2]; 188 189 char valid; /* !=0 if following fields are valid */ 190 u8 in[7]; /* Register value */ 191 u8 in_max[7]; /* Register value */ 192 u8 in_min[7]; /* Register value */ 193 u8 fan[3]; /* Register value */ 194 u8 fan_min[3]; /* Register value */ 195 u16 temp[4]; /* Register value (0 and 3 are u8 only) */ 196 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ 197 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ 198 u8 fan_div[3]; /* Register encoding, right justified */ 199 u8 pwm; /* Register encoding */ 200 u8 vid; /* Register encoding, combined */ 201 u32 alarms; /* Register encoding, combined */ 202 u8 vrm; 203 }; 204 205 static int asb100_read_value(struct i2c_client *client, u16 reg); 206 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); 207 208 static int asb100_probe(struct i2c_client *client); 209 static int asb100_detect(struct i2c_client *client, 210 struct i2c_board_info *info); 211 static int asb100_remove(struct i2c_client *client); 212 static struct asb100_data *asb100_update_device(struct device *dev); 213 static void asb100_init_client(struct i2c_client *client); 214 215 static const struct i2c_device_id asb100_id[] = { 216 { "asb100", 0 }, 217 { } 218 }; 219 MODULE_DEVICE_TABLE(i2c, asb100_id); 220 221 static struct i2c_driver asb100_driver = { 222 .class = I2C_CLASS_HWMON, 223 .driver = { 224 .name = "asb100", 225 }, 226 .probe_new = asb100_probe, 227 .remove = asb100_remove, 228 .id_table = asb100_id, 229 .detect = asb100_detect, 230 .address_list = normal_i2c, 231 }; 232 233 /* 7 Voltages */ 234 #define show_in_reg(reg) \ 235 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 236 char *buf) \ 237 { \ 238 int nr = to_sensor_dev_attr(attr)->index; \ 239 struct asb100_data *data = asb100_update_device(dev); \ 240 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 241 } 242 243 show_in_reg(in) 244 show_in_reg(in_min) 245 show_in_reg(in_max) 246 247 #define set_in_reg(REG, reg) \ 248 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \ 249 const char *buf, size_t count) \ 250 { \ 251 int nr = to_sensor_dev_attr(attr)->index; \ 252 struct i2c_client *client = to_i2c_client(dev); \ 253 struct asb100_data *data = i2c_get_clientdata(client); \ 254 unsigned long val; \ 255 int err = kstrtoul(buf, 10, &val); \ 256 if (err) \ 257 return err; \ 258 mutex_lock(&data->update_lock); \ 259 data->in_##reg[nr] = IN_TO_REG(val); \ 260 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ 261 data->in_##reg[nr]); \ 262 mutex_unlock(&data->update_lock); \ 263 return count; \ 264 } 265 266 set_in_reg(MIN, min) 267 set_in_reg(MAX, max) 268 269 #define sysfs_in(offset) \ 270 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 271 show_in, NULL, offset); \ 272 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 273 show_in_min, set_in_min, offset); \ 274 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 275 show_in_max, set_in_max, offset) 276 277 sysfs_in(0); 278 sysfs_in(1); 279 sysfs_in(2); 280 sysfs_in(3); 281 sysfs_in(4); 282 sysfs_in(5); 283 sysfs_in(6); 284 285 /* 3 Fans */ 286 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 287 char *buf) 288 { 289 int nr = to_sensor_dev_attr(attr)->index; 290 struct asb100_data *data = asb100_update_device(dev); 291 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 292 DIV_FROM_REG(data->fan_div[nr]))); 293 } 294 295 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 int nr = to_sensor_dev_attr(attr)->index; 299 struct asb100_data *data = asb100_update_device(dev); 300 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 301 DIV_FROM_REG(data->fan_div[nr]))); 302 } 303 304 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 305 char *buf) 306 { 307 int nr = to_sensor_dev_attr(attr)->index; 308 struct asb100_data *data = asb100_update_device(dev); 309 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 310 } 311 312 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int nr = to_sensor_dev_attr(attr)->index; 316 struct i2c_client *client = to_i2c_client(dev); 317 struct asb100_data *data = i2c_get_clientdata(client); 318 unsigned long val; 319 int err; 320 321 err = kstrtoul(buf, 10, &val); 322 if (err) 323 return err; 324 325 mutex_lock(&data->update_lock); 326 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 327 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 328 mutex_unlock(&data->update_lock); 329 return count; 330 } 331 332 /* 333 * Note: we save and restore the fan minimum here, because its value is 334 * determined in part by the fan divisor. This follows the principle of 335 * least surprise; the user doesn't expect the fan minimum to change just 336 * because the divisor changed. 337 */ 338 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, 339 const char *buf, size_t count) 340 { 341 int nr = to_sensor_dev_attr(attr)->index; 342 struct i2c_client *client = to_i2c_client(dev); 343 struct asb100_data *data = i2c_get_clientdata(client); 344 unsigned long min; 345 int reg; 346 unsigned long val; 347 int err; 348 349 err = kstrtoul(buf, 10, &val); 350 if (err) 351 return err; 352 353 mutex_lock(&data->update_lock); 354 355 min = FAN_FROM_REG(data->fan_min[nr], 356 DIV_FROM_REG(data->fan_div[nr])); 357 data->fan_div[nr] = DIV_TO_REG(val); 358 359 switch (nr) { 360 case 0: /* fan 1 */ 361 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 362 reg = (reg & 0xcf) | (data->fan_div[0] << 4); 363 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 364 break; 365 366 case 1: /* fan 2 */ 367 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 368 reg = (reg & 0x3f) | (data->fan_div[1] << 6); 369 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 370 break; 371 372 case 2: /* fan 3 */ 373 reg = asb100_read_value(client, ASB100_REG_PIN); 374 reg = (reg & 0x3f) | (data->fan_div[2] << 6); 375 asb100_write_value(client, ASB100_REG_PIN, reg); 376 break; 377 } 378 379 data->fan_min[nr] = 380 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 381 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 382 383 mutex_unlock(&data->update_lock); 384 385 return count; 386 } 387 388 #define sysfs_fan(offset) \ 389 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 390 show_fan, NULL, offset - 1); \ 391 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 392 show_fan_min, set_fan_min, offset - 1); \ 393 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 394 show_fan_div, set_fan_div, offset - 1) 395 396 sysfs_fan(1); 397 sysfs_fan(2); 398 sysfs_fan(3); 399 400 /* 4 Temp. Sensors */ 401 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) 402 { 403 int ret = 0; 404 405 switch (nr) { 406 case 1: case 2: 407 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); 408 break; 409 case 0: case 3: default: 410 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); 411 break; 412 } 413 return ret; 414 } 415 416 #define show_temp_reg(reg) \ 417 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 418 char *buf) \ 419 { \ 420 int nr = to_sensor_dev_attr(attr)->index; \ 421 struct asb100_data *data = asb100_update_device(dev); \ 422 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ 423 } 424 425 show_temp_reg(temp); 426 show_temp_reg(temp_max); 427 show_temp_reg(temp_hyst); 428 429 #define set_temp_reg(REG, reg) \ 430 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \ 431 const char *buf, size_t count) \ 432 { \ 433 int nr = to_sensor_dev_attr(attr)->index; \ 434 struct i2c_client *client = to_i2c_client(dev); \ 435 struct asb100_data *data = i2c_get_clientdata(client); \ 436 long val; \ 437 int err = kstrtol(buf, 10, &val); \ 438 if (err) \ 439 return err; \ 440 mutex_lock(&data->update_lock); \ 441 switch (nr) { \ 442 case 1: case 2: \ 443 data->reg[nr] = LM75_TEMP_TO_REG(val); \ 444 break; \ 445 case 0: case 3: default: \ 446 data->reg[nr] = TEMP_TO_REG(val); \ 447 break; \ 448 } \ 449 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ 450 data->reg[nr]); \ 451 mutex_unlock(&data->update_lock); \ 452 return count; \ 453 } 454 455 set_temp_reg(MAX, temp_max); 456 set_temp_reg(HYST, temp_hyst); 457 458 #define sysfs_temp(num) \ 459 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \ 460 show_temp, NULL, num - 1); \ 461 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ 462 show_temp_max, set_temp_max, num - 1); \ 463 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ 464 show_temp_hyst, set_temp_hyst, num - 1) 465 466 sysfs_temp(1); 467 sysfs_temp(2); 468 sysfs_temp(3); 469 sysfs_temp(4); 470 471 /* VID */ 472 static ssize_t cpu0_vid_show(struct device *dev, 473 struct device_attribute *attr, char *buf) 474 { 475 struct asb100_data *data = asb100_update_device(dev); 476 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 477 } 478 479 static DEVICE_ATTR_RO(cpu0_vid); 480 481 /* VRM */ 482 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, 483 char *buf) 484 { 485 struct asb100_data *data = dev_get_drvdata(dev); 486 return sprintf(buf, "%d\n", data->vrm); 487 } 488 489 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, 490 const char *buf, size_t count) 491 { 492 struct asb100_data *data = dev_get_drvdata(dev); 493 unsigned long val; 494 int err; 495 496 err = kstrtoul(buf, 10, &val); 497 if (err) 498 return err; 499 500 if (val > 255) 501 return -EINVAL; 502 503 data->vrm = val; 504 return count; 505 } 506 507 /* Alarms */ 508 static DEVICE_ATTR_RW(vrm); 509 510 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, 511 char *buf) 512 { 513 struct asb100_data *data = asb100_update_device(dev); 514 return sprintf(buf, "%u\n", data->alarms); 515 } 516 517 static DEVICE_ATTR_RO(alarms); 518 519 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 520 char *buf) 521 { 522 int bitnr = to_sensor_dev_attr(attr)->index; 523 struct asb100_data *data = asb100_update_device(dev); 524 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 525 } 526 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 527 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 528 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 529 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 530 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 531 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); 532 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); 533 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); 534 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 535 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 536 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13); 537 538 /* 1 PWM */ 539 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr, 540 char *buf) 541 { 542 struct asb100_data *data = asb100_update_device(dev); 543 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); 544 } 545 546 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr, 547 const char *buf, size_t count) 548 { 549 struct i2c_client *client = to_i2c_client(dev); 550 struct asb100_data *data = i2c_get_clientdata(client); 551 unsigned long val; 552 int err; 553 554 err = kstrtoul(buf, 10, &val); 555 if (err) 556 return err; 557 558 mutex_lock(&data->update_lock); 559 data->pwm &= 0x80; /* keep the enable bit */ 560 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); 561 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 562 mutex_unlock(&data->update_lock); 563 return count; 564 } 565 566 static ssize_t pwm1_enable_show(struct device *dev, 567 struct device_attribute *attr, char *buf) 568 { 569 struct asb100_data *data = asb100_update_device(dev); 570 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); 571 } 572 573 static ssize_t pwm1_enable_store(struct device *dev, 574 struct device_attribute *attr, 575 const char *buf, size_t count) 576 { 577 struct i2c_client *client = to_i2c_client(dev); 578 struct asb100_data *data = i2c_get_clientdata(client); 579 unsigned long val; 580 int err; 581 582 err = kstrtoul(buf, 10, &val); 583 if (err) 584 return err; 585 586 mutex_lock(&data->update_lock); 587 data->pwm &= 0x0f; /* keep the duty cycle bits */ 588 data->pwm |= (val ? 0x80 : 0x00); 589 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 590 mutex_unlock(&data->update_lock); 591 return count; 592 } 593 594 static DEVICE_ATTR_RW(pwm1); 595 static DEVICE_ATTR_RW(pwm1_enable); 596 597 static struct attribute *asb100_attributes[] = { 598 &sensor_dev_attr_in0_input.dev_attr.attr, 599 &sensor_dev_attr_in0_min.dev_attr.attr, 600 &sensor_dev_attr_in0_max.dev_attr.attr, 601 &sensor_dev_attr_in1_input.dev_attr.attr, 602 &sensor_dev_attr_in1_min.dev_attr.attr, 603 &sensor_dev_attr_in1_max.dev_attr.attr, 604 &sensor_dev_attr_in2_input.dev_attr.attr, 605 &sensor_dev_attr_in2_min.dev_attr.attr, 606 &sensor_dev_attr_in2_max.dev_attr.attr, 607 &sensor_dev_attr_in3_input.dev_attr.attr, 608 &sensor_dev_attr_in3_min.dev_attr.attr, 609 &sensor_dev_attr_in3_max.dev_attr.attr, 610 &sensor_dev_attr_in4_input.dev_attr.attr, 611 &sensor_dev_attr_in4_min.dev_attr.attr, 612 &sensor_dev_attr_in4_max.dev_attr.attr, 613 &sensor_dev_attr_in5_input.dev_attr.attr, 614 &sensor_dev_attr_in5_min.dev_attr.attr, 615 &sensor_dev_attr_in5_max.dev_attr.attr, 616 &sensor_dev_attr_in6_input.dev_attr.attr, 617 &sensor_dev_attr_in6_min.dev_attr.attr, 618 &sensor_dev_attr_in6_max.dev_attr.attr, 619 620 &sensor_dev_attr_fan1_input.dev_attr.attr, 621 &sensor_dev_attr_fan1_min.dev_attr.attr, 622 &sensor_dev_attr_fan1_div.dev_attr.attr, 623 &sensor_dev_attr_fan2_input.dev_attr.attr, 624 &sensor_dev_attr_fan2_min.dev_attr.attr, 625 &sensor_dev_attr_fan2_div.dev_attr.attr, 626 &sensor_dev_attr_fan3_input.dev_attr.attr, 627 &sensor_dev_attr_fan3_min.dev_attr.attr, 628 &sensor_dev_attr_fan3_div.dev_attr.attr, 629 630 &sensor_dev_attr_temp1_input.dev_attr.attr, 631 &sensor_dev_attr_temp1_max.dev_attr.attr, 632 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 633 &sensor_dev_attr_temp2_input.dev_attr.attr, 634 &sensor_dev_attr_temp2_max.dev_attr.attr, 635 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 636 &sensor_dev_attr_temp3_input.dev_attr.attr, 637 &sensor_dev_attr_temp3_max.dev_attr.attr, 638 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 639 &sensor_dev_attr_temp4_input.dev_attr.attr, 640 &sensor_dev_attr_temp4_max.dev_attr.attr, 641 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, 642 643 &sensor_dev_attr_in0_alarm.dev_attr.attr, 644 &sensor_dev_attr_in1_alarm.dev_attr.attr, 645 &sensor_dev_attr_in2_alarm.dev_attr.attr, 646 &sensor_dev_attr_in3_alarm.dev_attr.attr, 647 &sensor_dev_attr_in4_alarm.dev_attr.attr, 648 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 649 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 650 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 651 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 652 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 653 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 654 655 &dev_attr_cpu0_vid.attr, 656 &dev_attr_vrm.attr, 657 &dev_attr_alarms.attr, 658 &dev_attr_pwm1.attr, 659 &dev_attr_pwm1_enable.attr, 660 661 NULL 662 }; 663 664 static const struct attribute_group asb100_group = { 665 .attrs = asb100_attributes, 666 }; 667 668 static int asb100_detect_subclients(struct i2c_client *client) 669 { 670 int i, id, err; 671 int address = client->addr; 672 unsigned short sc_addr[2]; 673 struct asb100_data *data = i2c_get_clientdata(client); 674 struct i2c_adapter *adapter = client->adapter; 675 676 id = i2c_adapter_id(adapter); 677 678 if (force_subclients[0] == id && force_subclients[1] == address) { 679 for (i = 2; i <= 3; i++) { 680 if (force_subclients[i] < 0x48 || 681 force_subclients[i] > 0x4f) { 682 dev_err(&client->dev, 683 "invalid subclient address %d; must be 0x48-0x4f\n", 684 force_subclients[i]); 685 err = -ENODEV; 686 goto ERROR_SC_2; 687 } 688 } 689 asb100_write_value(client, ASB100_REG_I2C_SUBADDR, 690 (force_subclients[2] & 0x07) | 691 ((force_subclients[3] & 0x07) << 4)); 692 sc_addr[0] = force_subclients[2]; 693 sc_addr[1] = force_subclients[3]; 694 } else { 695 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR); 696 sc_addr[0] = 0x48 + (val & 0x07); 697 sc_addr[1] = 0x48 + ((val >> 4) & 0x07); 698 } 699 700 if (sc_addr[0] == sc_addr[1]) { 701 dev_err(&client->dev, 702 "duplicate addresses 0x%x for subclients\n", 703 sc_addr[0]); 704 err = -ENODEV; 705 goto ERROR_SC_2; 706 } 707 708 data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]); 709 if (IS_ERR(data->lm75[0])) { 710 dev_err(&client->dev, 711 "subclient %d registration at address 0x%x failed.\n", 712 1, sc_addr[0]); 713 err = PTR_ERR(data->lm75[0]); 714 goto ERROR_SC_2; 715 } 716 717 data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]); 718 if (IS_ERR(data->lm75[1])) { 719 dev_err(&client->dev, 720 "subclient %d registration at address 0x%x failed.\n", 721 2, sc_addr[1]); 722 err = PTR_ERR(data->lm75[1]); 723 goto ERROR_SC_3; 724 } 725 726 return 0; 727 728 /* Undo inits in case of errors */ 729 ERROR_SC_3: 730 i2c_unregister_device(data->lm75[0]); 731 ERROR_SC_2: 732 return err; 733 } 734 735 /* Return 0 if detection is successful, -ENODEV otherwise */ 736 static int asb100_detect(struct i2c_client *client, 737 struct i2c_board_info *info) 738 { 739 struct i2c_adapter *adapter = client->adapter; 740 int val1, val2; 741 742 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 743 pr_debug("detect failed, smbus byte data not supported!\n"); 744 return -ENODEV; 745 } 746 747 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK); 748 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 749 750 /* If we're in bank 0 */ 751 if ((!(val1 & 0x07)) && 752 /* Check for ASB100 ID (low byte) */ 753 (((!(val1 & 0x80)) && (val2 != 0x94)) || 754 /* Check for ASB100 ID (high byte ) */ 755 ((val1 & 0x80) && (val2 != 0x06)))) { 756 pr_debug("detect failed, bad chip id 0x%02x!\n", val2); 757 return -ENODEV; 758 } 759 760 /* Put it now into bank 0 and Vendor ID High Byte */ 761 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 762 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78) 763 | 0x80); 764 765 /* Determine the chip type. */ 766 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID); 767 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 768 769 if (val1 != 0x31 || val2 != 0x06) 770 return -ENODEV; 771 772 strlcpy(info->type, "asb100", I2C_NAME_SIZE); 773 774 return 0; 775 } 776 777 static int asb100_probe(struct i2c_client *client) 778 { 779 int err; 780 struct asb100_data *data; 781 782 data = devm_kzalloc(&client->dev, sizeof(struct asb100_data), 783 GFP_KERNEL); 784 if (!data) 785 return -ENOMEM; 786 787 i2c_set_clientdata(client, data); 788 mutex_init(&data->lock); 789 mutex_init(&data->update_lock); 790 791 /* Attach secondary lm75 clients */ 792 err = asb100_detect_subclients(client); 793 if (err) 794 return err; 795 796 /* Initialize the chip */ 797 asb100_init_client(client); 798 799 /* A few vars need to be filled upon startup */ 800 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0)); 801 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1)); 802 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2)); 803 804 /* Register sysfs hooks */ 805 err = sysfs_create_group(&client->dev.kobj, &asb100_group); 806 if (err) 807 goto ERROR3; 808 809 data->hwmon_dev = hwmon_device_register(&client->dev); 810 if (IS_ERR(data->hwmon_dev)) { 811 err = PTR_ERR(data->hwmon_dev); 812 goto ERROR4; 813 } 814 815 return 0; 816 817 ERROR4: 818 sysfs_remove_group(&client->dev.kobj, &asb100_group); 819 ERROR3: 820 i2c_unregister_device(data->lm75[1]); 821 i2c_unregister_device(data->lm75[0]); 822 return err; 823 } 824 825 static int asb100_remove(struct i2c_client *client) 826 { 827 struct asb100_data *data = i2c_get_clientdata(client); 828 829 hwmon_device_unregister(data->hwmon_dev); 830 sysfs_remove_group(&client->dev.kobj, &asb100_group); 831 832 i2c_unregister_device(data->lm75[1]); 833 i2c_unregister_device(data->lm75[0]); 834 835 return 0; 836 } 837 838 /* 839 * The SMBus locks itself, usually, but nothing may access the chip between 840 * bank switches. 841 */ 842 static int asb100_read_value(struct i2c_client *client, u16 reg) 843 { 844 struct asb100_data *data = i2c_get_clientdata(client); 845 struct i2c_client *cl; 846 int res, bank; 847 848 mutex_lock(&data->lock); 849 850 bank = (reg >> 8) & 0x0f; 851 if (bank > 2) 852 /* switch banks */ 853 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 854 855 if (bank == 0 || bank > 2) { 856 res = i2c_smbus_read_byte_data(client, reg & 0xff); 857 } else { 858 /* switch to subclient */ 859 cl = data->lm75[bank - 1]; 860 861 /* convert from ISA to LM75 I2C addresses */ 862 switch (reg & 0xff) { 863 case 0x50: /* TEMP */ 864 res = i2c_smbus_read_word_swapped(cl, 0); 865 break; 866 case 0x52: /* CONFIG */ 867 res = i2c_smbus_read_byte_data(cl, 1); 868 break; 869 case 0x53: /* HYST */ 870 res = i2c_smbus_read_word_swapped(cl, 2); 871 break; 872 case 0x55: /* MAX */ 873 default: 874 res = i2c_smbus_read_word_swapped(cl, 3); 875 break; 876 } 877 } 878 879 if (bank > 2) 880 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 881 882 mutex_unlock(&data->lock); 883 884 return res; 885 } 886 887 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) 888 { 889 struct asb100_data *data = i2c_get_clientdata(client); 890 struct i2c_client *cl; 891 int bank; 892 893 mutex_lock(&data->lock); 894 895 bank = (reg >> 8) & 0x0f; 896 if (bank > 2) 897 /* switch banks */ 898 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 899 900 if (bank == 0 || bank > 2) { 901 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); 902 } else { 903 /* switch to subclient */ 904 cl = data->lm75[bank - 1]; 905 906 /* convert from ISA to LM75 I2C addresses */ 907 switch (reg & 0xff) { 908 case 0x52: /* CONFIG */ 909 i2c_smbus_write_byte_data(cl, 1, value & 0xff); 910 break; 911 case 0x53: /* HYST */ 912 i2c_smbus_write_word_swapped(cl, 2, value); 913 break; 914 case 0x55: /* MAX */ 915 i2c_smbus_write_word_swapped(cl, 3, value); 916 break; 917 } 918 } 919 920 if (bank > 2) 921 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 922 923 mutex_unlock(&data->lock); 924 } 925 926 static void asb100_init_client(struct i2c_client *client) 927 { 928 struct asb100_data *data = i2c_get_clientdata(client); 929 930 data->vrm = vid_which_vrm(); 931 932 /* Start monitoring */ 933 asb100_write_value(client, ASB100_REG_CONFIG, 934 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); 935 } 936 937 static struct asb100_data *asb100_update_device(struct device *dev) 938 { 939 struct i2c_client *client = to_i2c_client(dev); 940 struct asb100_data *data = i2c_get_clientdata(client); 941 int i; 942 943 mutex_lock(&data->update_lock); 944 945 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 946 || !data->valid) { 947 948 dev_dbg(&client->dev, "starting device update...\n"); 949 950 /* 7 voltage inputs */ 951 for (i = 0; i < 7; i++) { 952 data->in[i] = asb100_read_value(client, 953 ASB100_REG_IN(i)); 954 data->in_min[i] = asb100_read_value(client, 955 ASB100_REG_IN_MIN(i)); 956 data->in_max[i] = asb100_read_value(client, 957 ASB100_REG_IN_MAX(i)); 958 } 959 960 /* 3 fan inputs */ 961 for (i = 0; i < 3; i++) { 962 data->fan[i] = asb100_read_value(client, 963 ASB100_REG_FAN(i)); 964 data->fan_min[i] = asb100_read_value(client, 965 ASB100_REG_FAN_MIN(i)); 966 } 967 968 /* 4 temperature inputs */ 969 for (i = 1; i <= 4; i++) { 970 data->temp[i-1] = asb100_read_value(client, 971 ASB100_REG_TEMP(i)); 972 data->temp_max[i-1] = asb100_read_value(client, 973 ASB100_REG_TEMP_MAX(i)); 974 data->temp_hyst[i-1] = asb100_read_value(client, 975 ASB100_REG_TEMP_HYST(i)); 976 } 977 978 /* VID and fan divisors */ 979 i = asb100_read_value(client, ASB100_REG_VID_FANDIV); 980 data->vid = i & 0x0f; 981 data->vid |= (asb100_read_value(client, 982 ASB100_REG_CHIPID) & 0x01) << 4; 983 data->fan_div[0] = (i >> 4) & 0x03; 984 data->fan_div[1] = (i >> 6) & 0x03; 985 data->fan_div[2] = (asb100_read_value(client, 986 ASB100_REG_PIN) >> 6) & 0x03; 987 988 /* PWM */ 989 data->pwm = asb100_read_value(client, ASB100_REG_PWM1); 990 991 /* alarms */ 992 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + 993 (asb100_read_value(client, ASB100_REG_ALARM2) << 8); 994 995 data->last_updated = jiffies; 996 data->valid = 1; 997 998 dev_dbg(&client->dev, "... device update complete\n"); 999 } 1000 1001 mutex_unlock(&data->update_lock); 1002 1003 return data; 1004 } 1005 1006 module_i2c_driver(asb100_driver); 1007 1008 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); 1009 MODULE_DESCRIPTION("ASB100 Bach driver"); 1010 MODULE_LICENSE("GPL"); 1011