xref: /linux/drivers/hwmon/asb100.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	      monitoring
5  *
6  * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7  *
8  * (derived from w83781d.c)
9  *
10  * Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
11  *			      Philip Edelbrock <phil@netroedge.com>, and
12  *			      Mark Studebaker <mdsxyz123@yahoo.com>
13  */
14 
15 /*
16  * This driver supports the hardware sensor chips: Asus ASB100 and
17  * ASB100-A "BACH".
18  *
19  * ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
20  * way for the driver to tell which one is there.
21  *
22  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
23  * asb100	7	3	1	4	0x31	0x0694	yes	no
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/i2c.h>
31 #include <linux/hwmon.h>
32 #include <linux/hwmon-sysfs.h>
33 #include <linux/hwmon-vid.h>
34 #include <linux/err.h>
35 #include <linux/init.h>
36 #include <linux/jiffies.h>
37 #include <linux/mutex.h>
38 #include "lm75.h"
39 
40 /* I2C addresses to scan */
41 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
42 
43 static unsigned short force_subclients[4];
44 module_param_array(force_subclients, short, NULL, 0);
45 MODULE_PARM_DESC(force_subclients,
46 	"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
47 
48 /* Voltage IN registers 0-6 */
49 #define ASB100_REG_IN(nr)	(0x20 + (nr))
50 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
51 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
52 
53 /* FAN IN registers 1-3 */
54 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
55 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
56 
57 /* TEMPERATURE registers 1-4 */
58 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
59 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
60 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
61 
62 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
63 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
64 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
65 
66 #define ASB100_REG_TEMP2_CONFIG	0x0152
67 #define ASB100_REG_TEMP3_CONFIG	0x0252
68 
69 
70 #define ASB100_REG_CONFIG	0x40
71 #define ASB100_REG_ALARM1	0x41
72 #define ASB100_REG_ALARM2	0x42
73 #define ASB100_REG_SMIM1	0x43
74 #define ASB100_REG_SMIM2	0x44
75 #define ASB100_REG_VID_FANDIV	0x47
76 #define ASB100_REG_I2C_ADDR	0x48
77 #define ASB100_REG_CHIPID	0x49
78 #define ASB100_REG_I2C_SUBADDR	0x4a
79 #define ASB100_REG_PIN		0x4b
80 #define ASB100_REG_IRQ		0x4c
81 #define ASB100_REG_BANK		0x4e
82 #define ASB100_REG_CHIPMAN	0x4f
83 
84 #define ASB100_REG_WCHIPID	0x58
85 
86 /* bit 7 -> enable, bits 0-3 -> duty cycle */
87 #define ASB100_REG_PWM1		0x59
88 
89 /*
90  * CONVERSIONS
91  * Rounding and limit checking is only done on the TO_REG variants.
92  */
93 
94 /* These constants are a guess, consistent w/ w83781d */
95 #define ASB100_IN_MIN		0
96 #define ASB100_IN_MAX		4080
97 
98 /*
99  * IN: 1/1000 V (0V to 4.08V)
100  * REG: 16mV/bit
101  */
102 static u8 IN_TO_REG(unsigned val)
103 {
104 	unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
105 	return (nval + 8) / 16;
106 }
107 
108 static unsigned IN_FROM_REG(u8 reg)
109 {
110 	return reg * 16;
111 }
112 
113 static u8 FAN_TO_REG(long rpm, int div)
114 {
115 	if (rpm == -1)
116 		return 0;
117 	if (rpm == 0)
118 		return 255;
119 	rpm = clamp_val(rpm, 1, 1000000);
120 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
121 }
122 
123 static int FAN_FROM_REG(u8 val, int div)
124 {
125 	return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
126 }
127 
128 /* These constants are a guess, consistent w/ w83781d */
129 #define ASB100_TEMP_MIN		-128000
130 #define ASB100_TEMP_MAX		127000
131 
132 /*
133  * TEMP: 0.001C/bit (-128C to +127C)
134  * REG: 1C/bit, two's complement
135  */
136 static u8 TEMP_TO_REG(long temp)
137 {
138 	int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
139 	ntemp += (ntemp < 0 ? -500 : 500);
140 	return (u8)(ntemp / 1000);
141 }
142 
143 static int TEMP_FROM_REG(u8 reg)
144 {
145 	return (s8)reg * 1000;
146 }
147 
148 /*
149  * PWM: 0 - 255 per sensors documentation
150  * REG: (6.25% duty cycle per bit)
151  */
152 static u8 ASB100_PWM_TO_REG(int pwm)
153 {
154 	pwm = clamp_val(pwm, 0, 255);
155 	return (u8)(pwm / 16);
156 }
157 
158 static int ASB100_PWM_FROM_REG(u8 reg)
159 {
160 	return reg * 16;
161 }
162 
163 #define DIV_FROM_REG(val) (1 << (val))
164 
165 /*
166  * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
167  * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
168  */
169 static u8 DIV_TO_REG(long val)
170 {
171 	return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
172 }
173 
174 /*
175  * For each registered client, we need to keep some data in memory. That
176  * data is pointed to by client->data. The structure itself is
177  * dynamically allocated, at the same time the client itself is allocated.
178  */
179 struct asb100_data {
180 	struct device *hwmon_dev;
181 	struct mutex lock;
182 
183 	struct mutex update_lock;
184 	unsigned long last_updated;	/* In jiffies */
185 
186 	/* array of 2 pointers to subclients */
187 	struct i2c_client *lm75[2];
188 
189 	char valid;		/* !=0 if following fields are valid */
190 	u8 in[7];		/* Register value */
191 	u8 in_max[7];		/* Register value */
192 	u8 in_min[7];		/* Register value */
193 	u8 fan[3];		/* Register value */
194 	u8 fan_min[3];		/* Register value */
195 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
196 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
197 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
198 	u8 fan_div[3];		/* Register encoding, right justified */
199 	u8 pwm;			/* Register encoding */
200 	u8 vid;			/* Register encoding, combined */
201 	u32 alarms;		/* Register encoding, combined */
202 	u8 vrm;
203 };
204 
205 static int asb100_read_value(struct i2c_client *client, u16 reg);
206 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
207 
208 static int asb100_probe(struct i2c_client *client,
209 			const struct i2c_device_id *id);
210 static int asb100_detect(struct i2c_client *client,
211 			 struct i2c_board_info *info);
212 static int asb100_remove(struct i2c_client *client);
213 static struct asb100_data *asb100_update_device(struct device *dev);
214 static void asb100_init_client(struct i2c_client *client);
215 
216 static const struct i2c_device_id asb100_id[] = {
217 	{ "asb100", 0 },
218 	{ }
219 };
220 MODULE_DEVICE_TABLE(i2c, asb100_id);
221 
222 static struct i2c_driver asb100_driver = {
223 	.class		= I2C_CLASS_HWMON,
224 	.driver = {
225 		.name	= "asb100",
226 	},
227 	.probe		= asb100_probe,
228 	.remove		= asb100_remove,
229 	.id_table	= asb100_id,
230 	.detect		= asb100_detect,
231 	.address_list	= normal_i2c,
232 };
233 
234 /* 7 Voltages */
235 #define show_in_reg(reg) \
236 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
237 		char *buf) \
238 { \
239 	int nr = to_sensor_dev_attr(attr)->index; \
240 	struct asb100_data *data = asb100_update_device(dev); \
241 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
242 }
243 
244 show_in_reg(in)
245 show_in_reg(in_min)
246 show_in_reg(in_max)
247 
248 #define set_in_reg(REG, reg) \
249 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
250 		const char *buf, size_t count) \
251 { \
252 	int nr = to_sensor_dev_attr(attr)->index; \
253 	struct i2c_client *client = to_i2c_client(dev); \
254 	struct asb100_data *data = i2c_get_clientdata(client); \
255 	unsigned long val; \
256 	int err = kstrtoul(buf, 10, &val); \
257 	if (err) \
258 		return err; \
259 	mutex_lock(&data->update_lock); \
260 	data->in_##reg[nr] = IN_TO_REG(val); \
261 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
262 		data->in_##reg[nr]); \
263 	mutex_unlock(&data->update_lock); \
264 	return count; \
265 }
266 
267 set_in_reg(MIN, min)
268 set_in_reg(MAX, max)
269 
270 #define sysfs_in(offset) \
271 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
272 		show_in, NULL, offset); \
273 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
274 		show_in_min, set_in_min, offset); \
275 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
276 		show_in_max, set_in_max, offset)
277 
278 sysfs_in(0);
279 sysfs_in(1);
280 sysfs_in(2);
281 sysfs_in(3);
282 sysfs_in(4);
283 sysfs_in(5);
284 sysfs_in(6);
285 
286 /* 3 Fans */
287 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
288 		char *buf)
289 {
290 	int nr = to_sensor_dev_attr(attr)->index;
291 	struct asb100_data *data = asb100_update_device(dev);
292 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
293 		DIV_FROM_REG(data->fan_div[nr])));
294 }
295 
296 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
297 		char *buf)
298 {
299 	int nr = to_sensor_dev_attr(attr)->index;
300 	struct asb100_data *data = asb100_update_device(dev);
301 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
302 		DIV_FROM_REG(data->fan_div[nr])));
303 }
304 
305 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
306 		char *buf)
307 {
308 	int nr = to_sensor_dev_attr(attr)->index;
309 	struct asb100_data *data = asb100_update_device(dev);
310 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
311 }
312 
313 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
314 		const char *buf, size_t count)
315 {
316 	int nr = to_sensor_dev_attr(attr)->index;
317 	struct i2c_client *client = to_i2c_client(dev);
318 	struct asb100_data *data = i2c_get_clientdata(client);
319 	unsigned long val;
320 	int err;
321 
322 	err = kstrtoul(buf, 10, &val);
323 	if (err)
324 		return err;
325 
326 	mutex_lock(&data->update_lock);
327 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
328 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
329 	mutex_unlock(&data->update_lock);
330 	return count;
331 }
332 
333 /*
334  * Note: we save and restore the fan minimum here, because its value is
335  * determined in part by the fan divisor.  This follows the principle of
336  * least surprise; the user doesn't expect the fan minimum to change just
337  * because the divisor changed.
338  */
339 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
340 		const char *buf, size_t count)
341 {
342 	int nr = to_sensor_dev_attr(attr)->index;
343 	struct i2c_client *client = to_i2c_client(dev);
344 	struct asb100_data *data = i2c_get_clientdata(client);
345 	unsigned long min;
346 	int reg;
347 	unsigned long val;
348 	int err;
349 
350 	err = kstrtoul(buf, 10, &val);
351 	if (err)
352 		return err;
353 
354 	mutex_lock(&data->update_lock);
355 
356 	min = FAN_FROM_REG(data->fan_min[nr],
357 			DIV_FROM_REG(data->fan_div[nr]));
358 	data->fan_div[nr] = DIV_TO_REG(val);
359 
360 	switch (nr) {
361 	case 0:	/* fan 1 */
362 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
363 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
364 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
365 		break;
366 
367 	case 1:	/* fan 2 */
368 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
369 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
370 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
371 		break;
372 
373 	case 2:	/* fan 3 */
374 		reg = asb100_read_value(client, ASB100_REG_PIN);
375 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
376 		asb100_write_value(client, ASB100_REG_PIN, reg);
377 		break;
378 	}
379 
380 	data->fan_min[nr] =
381 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
382 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
383 
384 	mutex_unlock(&data->update_lock);
385 
386 	return count;
387 }
388 
389 #define sysfs_fan(offset) \
390 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
391 		show_fan, NULL, offset - 1); \
392 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
393 		show_fan_min, set_fan_min, offset - 1); \
394 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
395 		show_fan_div, set_fan_div, offset - 1)
396 
397 sysfs_fan(1);
398 sysfs_fan(2);
399 sysfs_fan(3);
400 
401 /* 4 Temp. Sensors */
402 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
403 {
404 	int ret = 0;
405 
406 	switch (nr) {
407 	case 1: case 2:
408 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
409 		break;
410 	case 0: case 3: default:
411 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
412 		break;
413 	}
414 	return ret;
415 }
416 
417 #define show_temp_reg(reg) \
418 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
419 		char *buf) \
420 { \
421 	int nr = to_sensor_dev_attr(attr)->index; \
422 	struct asb100_data *data = asb100_update_device(dev); \
423 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
424 }
425 
426 show_temp_reg(temp);
427 show_temp_reg(temp_max);
428 show_temp_reg(temp_hyst);
429 
430 #define set_temp_reg(REG, reg) \
431 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
432 		const char *buf, size_t count) \
433 { \
434 	int nr = to_sensor_dev_attr(attr)->index; \
435 	struct i2c_client *client = to_i2c_client(dev); \
436 	struct asb100_data *data = i2c_get_clientdata(client); \
437 	long val; \
438 	int err = kstrtol(buf, 10, &val); \
439 	if (err) \
440 		return err; \
441 	mutex_lock(&data->update_lock); \
442 	switch (nr) { \
443 	case 1: case 2: \
444 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
445 		break; \
446 	case 0: case 3: default: \
447 		data->reg[nr] = TEMP_TO_REG(val); \
448 		break; \
449 	} \
450 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
451 			data->reg[nr]); \
452 	mutex_unlock(&data->update_lock); \
453 	return count; \
454 }
455 
456 set_temp_reg(MAX, temp_max);
457 set_temp_reg(HYST, temp_hyst);
458 
459 #define sysfs_temp(num) \
460 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
461 		show_temp, NULL, num - 1); \
462 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
463 		show_temp_max, set_temp_max, num - 1); \
464 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
465 		show_temp_hyst, set_temp_hyst, num - 1)
466 
467 sysfs_temp(1);
468 sysfs_temp(2);
469 sysfs_temp(3);
470 sysfs_temp(4);
471 
472 /* VID */
473 static ssize_t cpu0_vid_show(struct device *dev,
474 			     struct device_attribute *attr, char *buf)
475 {
476 	struct asb100_data *data = asb100_update_device(dev);
477 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
478 }
479 
480 static DEVICE_ATTR_RO(cpu0_vid);
481 
482 /* VRM */
483 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
484 		char *buf)
485 {
486 	struct asb100_data *data = dev_get_drvdata(dev);
487 	return sprintf(buf, "%d\n", data->vrm);
488 }
489 
490 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
491 			 const char *buf, size_t count)
492 {
493 	struct asb100_data *data = dev_get_drvdata(dev);
494 	unsigned long val;
495 	int err;
496 
497 	err = kstrtoul(buf, 10, &val);
498 	if (err)
499 		return err;
500 
501 	if (val > 255)
502 		return -EINVAL;
503 
504 	data->vrm = val;
505 	return count;
506 }
507 
508 /* Alarms */
509 static DEVICE_ATTR_RW(vrm);
510 
511 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
512 		char *buf)
513 {
514 	struct asb100_data *data = asb100_update_device(dev);
515 	return sprintf(buf, "%u\n", data->alarms);
516 }
517 
518 static DEVICE_ATTR_RO(alarms);
519 
520 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
521 		char *buf)
522 {
523 	int bitnr = to_sensor_dev_attr(attr)->index;
524 	struct asb100_data *data = asb100_update_device(dev);
525 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
526 }
527 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
528 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
529 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
530 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
531 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
532 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
533 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
534 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
535 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
536 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
537 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
538 
539 /* 1 PWM */
540 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
541 		char *buf)
542 {
543 	struct asb100_data *data = asb100_update_device(dev);
544 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
545 }
546 
547 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
548 			  const char *buf, size_t count)
549 {
550 	struct i2c_client *client = to_i2c_client(dev);
551 	struct asb100_data *data = i2c_get_clientdata(client);
552 	unsigned long val;
553 	int err;
554 
555 	err = kstrtoul(buf, 10, &val);
556 	if (err)
557 		return err;
558 
559 	mutex_lock(&data->update_lock);
560 	data->pwm &= 0x80; /* keep the enable bit */
561 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
562 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
563 	mutex_unlock(&data->update_lock);
564 	return count;
565 }
566 
567 static ssize_t pwm1_enable_show(struct device *dev,
568 		struct device_attribute *attr, char *buf)
569 {
570 	struct asb100_data *data = asb100_update_device(dev);
571 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
572 }
573 
574 static ssize_t pwm1_enable_store(struct device *dev,
575 				 struct device_attribute *attr,
576 				 const char *buf, size_t count)
577 {
578 	struct i2c_client *client = to_i2c_client(dev);
579 	struct asb100_data *data = i2c_get_clientdata(client);
580 	unsigned long val;
581 	int err;
582 
583 	err = kstrtoul(buf, 10, &val);
584 	if (err)
585 		return err;
586 
587 	mutex_lock(&data->update_lock);
588 	data->pwm &= 0x0f; /* keep the duty cycle bits */
589 	data->pwm |= (val ? 0x80 : 0x00);
590 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
591 	mutex_unlock(&data->update_lock);
592 	return count;
593 }
594 
595 static DEVICE_ATTR_RW(pwm1);
596 static DEVICE_ATTR_RW(pwm1_enable);
597 
598 static struct attribute *asb100_attributes[] = {
599 	&sensor_dev_attr_in0_input.dev_attr.attr,
600 	&sensor_dev_attr_in0_min.dev_attr.attr,
601 	&sensor_dev_attr_in0_max.dev_attr.attr,
602 	&sensor_dev_attr_in1_input.dev_attr.attr,
603 	&sensor_dev_attr_in1_min.dev_attr.attr,
604 	&sensor_dev_attr_in1_max.dev_attr.attr,
605 	&sensor_dev_attr_in2_input.dev_attr.attr,
606 	&sensor_dev_attr_in2_min.dev_attr.attr,
607 	&sensor_dev_attr_in2_max.dev_attr.attr,
608 	&sensor_dev_attr_in3_input.dev_attr.attr,
609 	&sensor_dev_attr_in3_min.dev_attr.attr,
610 	&sensor_dev_attr_in3_max.dev_attr.attr,
611 	&sensor_dev_attr_in4_input.dev_attr.attr,
612 	&sensor_dev_attr_in4_min.dev_attr.attr,
613 	&sensor_dev_attr_in4_max.dev_attr.attr,
614 	&sensor_dev_attr_in5_input.dev_attr.attr,
615 	&sensor_dev_attr_in5_min.dev_attr.attr,
616 	&sensor_dev_attr_in5_max.dev_attr.attr,
617 	&sensor_dev_attr_in6_input.dev_attr.attr,
618 	&sensor_dev_attr_in6_min.dev_attr.attr,
619 	&sensor_dev_attr_in6_max.dev_attr.attr,
620 
621 	&sensor_dev_attr_fan1_input.dev_attr.attr,
622 	&sensor_dev_attr_fan1_min.dev_attr.attr,
623 	&sensor_dev_attr_fan1_div.dev_attr.attr,
624 	&sensor_dev_attr_fan2_input.dev_attr.attr,
625 	&sensor_dev_attr_fan2_min.dev_attr.attr,
626 	&sensor_dev_attr_fan2_div.dev_attr.attr,
627 	&sensor_dev_attr_fan3_input.dev_attr.attr,
628 	&sensor_dev_attr_fan3_min.dev_attr.attr,
629 	&sensor_dev_attr_fan3_div.dev_attr.attr,
630 
631 	&sensor_dev_attr_temp1_input.dev_attr.attr,
632 	&sensor_dev_attr_temp1_max.dev_attr.attr,
633 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
634 	&sensor_dev_attr_temp2_input.dev_attr.attr,
635 	&sensor_dev_attr_temp2_max.dev_attr.attr,
636 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
637 	&sensor_dev_attr_temp3_input.dev_attr.attr,
638 	&sensor_dev_attr_temp3_max.dev_attr.attr,
639 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
640 	&sensor_dev_attr_temp4_input.dev_attr.attr,
641 	&sensor_dev_attr_temp4_max.dev_attr.attr,
642 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
643 
644 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
645 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
646 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
647 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
648 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
649 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
650 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
651 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
652 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
653 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
654 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
655 
656 	&dev_attr_cpu0_vid.attr,
657 	&dev_attr_vrm.attr,
658 	&dev_attr_alarms.attr,
659 	&dev_attr_pwm1.attr,
660 	&dev_attr_pwm1_enable.attr,
661 
662 	NULL
663 };
664 
665 static const struct attribute_group asb100_group = {
666 	.attrs = asb100_attributes,
667 };
668 
669 static int asb100_detect_subclients(struct i2c_client *client)
670 {
671 	int i, id, err;
672 	int address = client->addr;
673 	unsigned short sc_addr[2];
674 	struct asb100_data *data = i2c_get_clientdata(client);
675 	struct i2c_adapter *adapter = client->adapter;
676 
677 	id = i2c_adapter_id(adapter);
678 
679 	if (force_subclients[0] == id && force_subclients[1] == address) {
680 		for (i = 2; i <= 3; i++) {
681 			if (force_subclients[i] < 0x48 ||
682 			    force_subclients[i] > 0x4f) {
683 				dev_err(&client->dev,
684 					"invalid subclient address %d; must be 0x48-0x4f\n",
685 					force_subclients[i]);
686 				err = -ENODEV;
687 				goto ERROR_SC_2;
688 			}
689 		}
690 		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
691 					(force_subclients[2] & 0x07) |
692 					((force_subclients[3] & 0x07) << 4));
693 		sc_addr[0] = force_subclients[2];
694 		sc_addr[1] = force_subclients[3];
695 	} else {
696 		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
697 		sc_addr[0] = 0x48 + (val & 0x07);
698 		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
699 	}
700 
701 	if (sc_addr[0] == sc_addr[1]) {
702 		dev_err(&client->dev,
703 			"duplicate addresses 0x%x for subclients\n",
704 			sc_addr[0]);
705 		err = -ENODEV;
706 		goto ERROR_SC_2;
707 	}
708 
709 	data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
710 	if (!data->lm75[0]) {
711 		dev_err(&client->dev,
712 			"subclient %d registration at address 0x%x failed.\n",
713 			1, sc_addr[0]);
714 		err = -ENOMEM;
715 		goto ERROR_SC_2;
716 	}
717 
718 	data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
719 	if (!data->lm75[1]) {
720 		dev_err(&client->dev,
721 			"subclient %d registration at address 0x%x failed.\n",
722 			2, sc_addr[1]);
723 		err = -ENOMEM;
724 		goto ERROR_SC_3;
725 	}
726 
727 	return 0;
728 
729 /* Undo inits in case of errors */
730 ERROR_SC_3:
731 	i2c_unregister_device(data->lm75[0]);
732 ERROR_SC_2:
733 	return err;
734 }
735 
736 /* Return 0 if detection is successful, -ENODEV otherwise */
737 static int asb100_detect(struct i2c_client *client,
738 			 struct i2c_board_info *info)
739 {
740 	struct i2c_adapter *adapter = client->adapter;
741 	int val1, val2;
742 
743 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
744 		pr_debug("detect failed, smbus byte data not supported!\n");
745 		return -ENODEV;
746 	}
747 
748 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
749 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
750 
751 	/* If we're in bank 0 */
752 	if ((!(val1 & 0x07)) &&
753 			/* Check for ASB100 ID (low byte) */
754 			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
755 			/* Check for ASB100 ID (high byte ) */
756 			((val1 & 0x80) && (val2 != 0x06)))) {
757 		pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
758 		return -ENODEV;
759 	}
760 
761 	/* Put it now into bank 0 and Vendor ID High Byte */
762 	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
763 		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
764 		| 0x80);
765 
766 	/* Determine the chip type. */
767 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
768 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
769 
770 	if (val1 != 0x31 || val2 != 0x06)
771 		return -ENODEV;
772 
773 	strlcpy(info->type, "asb100", I2C_NAME_SIZE);
774 
775 	return 0;
776 }
777 
778 static int asb100_probe(struct i2c_client *client,
779 			const struct i2c_device_id *id)
780 {
781 	int err;
782 	struct asb100_data *data;
783 
784 	data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
785 			    GFP_KERNEL);
786 	if (!data)
787 		return -ENOMEM;
788 
789 	i2c_set_clientdata(client, data);
790 	mutex_init(&data->lock);
791 	mutex_init(&data->update_lock);
792 
793 	/* Attach secondary lm75 clients */
794 	err = asb100_detect_subclients(client);
795 	if (err)
796 		return err;
797 
798 	/* Initialize the chip */
799 	asb100_init_client(client);
800 
801 	/* A few vars need to be filled upon startup */
802 	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
803 	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
804 	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
805 
806 	/* Register sysfs hooks */
807 	err = sysfs_create_group(&client->dev.kobj, &asb100_group);
808 	if (err)
809 		goto ERROR3;
810 
811 	data->hwmon_dev = hwmon_device_register(&client->dev);
812 	if (IS_ERR(data->hwmon_dev)) {
813 		err = PTR_ERR(data->hwmon_dev);
814 		goto ERROR4;
815 	}
816 
817 	return 0;
818 
819 ERROR4:
820 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
821 ERROR3:
822 	i2c_unregister_device(data->lm75[1]);
823 	i2c_unregister_device(data->lm75[0]);
824 	return err;
825 }
826 
827 static int asb100_remove(struct i2c_client *client)
828 {
829 	struct asb100_data *data = i2c_get_clientdata(client);
830 
831 	hwmon_device_unregister(data->hwmon_dev);
832 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
833 
834 	i2c_unregister_device(data->lm75[1]);
835 	i2c_unregister_device(data->lm75[0]);
836 
837 	return 0;
838 }
839 
840 /*
841  * The SMBus locks itself, usually, but nothing may access the chip between
842  * bank switches.
843  */
844 static int asb100_read_value(struct i2c_client *client, u16 reg)
845 {
846 	struct asb100_data *data = i2c_get_clientdata(client);
847 	struct i2c_client *cl;
848 	int res, bank;
849 
850 	mutex_lock(&data->lock);
851 
852 	bank = (reg >> 8) & 0x0f;
853 	if (bank > 2)
854 		/* switch banks */
855 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
856 
857 	if (bank == 0 || bank > 2) {
858 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
859 	} else {
860 		/* switch to subclient */
861 		cl = data->lm75[bank - 1];
862 
863 		/* convert from ISA to LM75 I2C addresses */
864 		switch (reg & 0xff) {
865 		case 0x50: /* TEMP */
866 			res = i2c_smbus_read_word_swapped(cl, 0);
867 			break;
868 		case 0x52: /* CONFIG */
869 			res = i2c_smbus_read_byte_data(cl, 1);
870 			break;
871 		case 0x53: /* HYST */
872 			res = i2c_smbus_read_word_swapped(cl, 2);
873 			break;
874 		case 0x55: /* MAX */
875 		default:
876 			res = i2c_smbus_read_word_swapped(cl, 3);
877 			break;
878 		}
879 	}
880 
881 	if (bank > 2)
882 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
883 
884 	mutex_unlock(&data->lock);
885 
886 	return res;
887 }
888 
889 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
890 {
891 	struct asb100_data *data = i2c_get_clientdata(client);
892 	struct i2c_client *cl;
893 	int bank;
894 
895 	mutex_lock(&data->lock);
896 
897 	bank = (reg >> 8) & 0x0f;
898 	if (bank > 2)
899 		/* switch banks */
900 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
901 
902 	if (bank == 0 || bank > 2) {
903 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
904 	} else {
905 		/* switch to subclient */
906 		cl = data->lm75[bank - 1];
907 
908 		/* convert from ISA to LM75 I2C addresses */
909 		switch (reg & 0xff) {
910 		case 0x52: /* CONFIG */
911 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
912 			break;
913 		case 0x53: /* HYST */
914 			i2c_smbus_write_word_swapped(cl, 2, value);
915 			break;
916 		case 0x55: /* MAX */
917 			i2c_smbus_write_word_swapped(cl, 3, value);
918 			break;
919 		}
920 	}
921 
922 	if (bank > 2)
923 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
924 
925 	mutex_unlock(&data->lock);
926 }
927 
928 static void asb100_init_client(struct i2c_client *client)
929 {
930 	struct asb100_data *data = i2c_get_clientdata(client);
931 
932 	data->vrm = vid_which_vrm();
933 
934 	/* Start monitoring */
935 	asb100_write_value(client, ASB100_REG_CONFIG,
936 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
937 }
938 
939 static struct asb100_data *asb100_update_device(struct device *dev)
940 {
941 	struct i2c_client *client = to_i2c_client(dev);
942 	struct asb100_data *data = i2c_get_clientdata(client);
943 	int i;
944 
945 	mutex_lock(&data->update_lock);
946 
947 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
948 		|| !data->valid) {
949 
950 		dev_dbg(&client->dev, "starting device update...\n");
951 
952 		/* 7 voltage inputs */
953 		for (i = 0; i < 7; i++) {
954 			data->in[i] = asb100_read_value(client,
955 				ASB100_REG_IN(i));
956 			data->in_min[i] = asb100_read_value(client,
957 				ASB100_REG_IN_MIN(i));
958 			data->in_max[i] = asb100_read_value(client,
959 				ASB100_REG_IN_MAX(i));
960 		}
961 
962 		/* 3 fan inputs */
963 		for (i = 0; i < 3; i++) {
964 			data->fan[i] = asb100_read_value(client,
965 					ASB100_REG_FAN(i));
966 			data->fan_min[i] = asb100_read_value(client,
967 					ASB100_REG_FAN_MIN(i));
968 		}
969 
970 		/* 4 temperature inputs */
971 		for (i = 1; i <= 4; i++) {
972 			data->temp[i-1] = asb100_read_value(client,
973 					ASB100_REG_TEMP(i));
974 			data->temp_max[i-1] = asb100_read_value(client,
975 					ASB100_REG_TEMP_MAX(i));
976 			data->temp_hyst[i-1] = asb100_read_value(client,
977 					ASB100_REG_TEMP_HYST(i));
978 		}
979 
980 		/* VID and fan divisors */
981 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
982 		data->vid = i & 0x0f;
983 		data->vid |= (asb100_read_value(client,
984 				ASB100_REG_CHIPID) & 0x01) << 4;
985 		data->fan_div[0] = (i >> 4) & 0x03;
986 		data->fan_div[1] = (i >> 6) & 0x03;
987 		data->fan_div[2] = (asb100_read_value(client,
988 				ASB100_REG_PIN) >> 6) & 0x03;
989 
990 		/* PWM */
991 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
992 
993 		/* alarms */
994 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
995 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
996 
997 		data->last_updated = jiffies;
998 		data->valid = 1;
999 
1000 		dev_dbg(&client->dev, "... device update complete\n");
1001 	}
1002 
1003 	mutex_unlock(&data->update_lock);
1004 
1005 	return data;
1006 }
1007 
1008 module_i2c_driver(asb100_driver);
1009 
1010 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1011 MODULE_DESCRIPTION("ASB100 Bach driver");
1012 MODULE_LICENSE("GPL");
1013