xref: /linux/drivers/hwmon/asb100.c (revision b76960c0f6b25d447a1493c4388defb9e8e76c63)
1 /*
2  * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3  *	      monitoring
4  *
5  * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6  *
7  * (derived from w83781d.c)
8  *
9  * Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10  *			      Philip Edelbrock <phil@netroedge.com>, and
11  *			      Mark Studebaker <mdsxyz123@yahoo.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 
28 /*
29  * This driver supports the hardware sensor chips: Asus ASB100 and
30  * ASB100-A "BACH".
31  *
32  * ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33  * way for the driver to tell which one is there.
34  *
35  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36  * asb100	7	3	1	4	0x31	0x0694	yes	no
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/slab.h>
43 #include <linux/i2c.h>
44 #include <linux/hwmon.h>
45 #include <linux/hwmon-sysfs.h>
46 #include <linux/hwmon-vid.h>
47 #include <linux/err.h>
48 #include <linux/init.h>
49 #include <linux/jiffies.h>
50 #include <linux/mutex.h>
51 #include "lm75.h"
52 
53 /* I2C addresses to scan */
54 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
55 
56 static unsigned short force_subclients[4];
57 module_param_array(force_subclients, short, NULL, 0);
58 MODULE_PARM_DESC(force_subclients,
59 	"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
60 
61 /* Voltage IN registers 0-6 */
62 #define ASB100_REG_IN(nr)	(0x20 + (nr))
63 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
64 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
65 
66 /* FAN IN registers 1-3 */
67 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
68 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
69 
70 /* TEMPERATURE registers 1-4 */
71 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
72 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
73 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
74 
75 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
76 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
77 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
78 
79 #define ASB100_REG_TEMP2_CONFIG	0x0152
80 #define ASB100_REG_TEMP3_CONFIG	0x0252
81 
82 
83 #define ASB100_REG_CONFIG	0x40
84 #define ASB100_REG_ALARM1	0x41
85 #define ASB100_REG_ALARM2	0x42
86 #define ASB100_REG_SMIM1	0x43
87 #define ASB100_REG_SMIM2	0x44
88 #define ASB100_REG_VID_FANDIV	0x47
89 #define ASB100_REG_I2C_ADDR	0x48
90 #define ASB100_REG_CHIPID	0x49
91 #define ASB100_REG_I2C_SUBADDR	0x4a
92 #define ASB100_REG_PIN		0x4b
93 #define ASB100_REG_IRQ		0x4c
94 #define ASB100_REG_BANK		0x4e
95 #define ASB100_REG_CHIPMAN	0x4f
96 
97 #define ASB100_REG_WCHIPID	0x58
98 
99 /* bit 7 -> enable, bits 0-3 -> duty cycle */
100 #define ASB100_REG_PWM1		0x59
101 
102 /*
103  * CONVERSIONS
104  * Rounding and limit checking is only done on the TO_REG variants.
105  */
106 
107 /* These constants are a guess, consistent w/ w83781d */
108 #define ASB100_IN_MIN		0
109 #define ASB100_IN_MAX		4080
110 
111 /*
112  * IN: 1/1000 V (0V to 4.08V)
113  * REG: 16mV/bit
114  */
115 static u8 IN_TO_REG(unsigned val)
116 {
117 	unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
118 	return (nval + 8) / 16;
119 }
120 
121 static unsigned IN_FROM_REG(u8 reg)
122 {
123 	return reg * 16;
124 }
125 
126 static u8 FAN_TO_REG(long rpm, int div)
127 {
128 	if (rpm == -1)
129 		return 0;
130 	if (rpm == 0)
131 		return 255;
132 	rpm = clamp_val(rpm, 1, 1000000);
133 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
134 }
135 
136 static int FAN_FROM_REG(u8 val, int div)
137 {
138 	return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
139 }
140 
141 /* These constants are a guess, consistent w/ w83781d */
142 #define ASB100_TEMP_MIN		-128000
143 #define ASB100_TEMP_MAX		127000
144 
145 /*
146  * TEMP: 0.001C/bit (-128C to +127C)
147  * REG: 1C/bit, two's complement
148  */
149 static u8 TEMP_TO_REG(long temp)
150 {
151 	int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
152 	ntemp += (ntemp < 0 ? -500 : 500);
153 	return (u8)(ntemp / 1000);
154 }
155 
156 static int TEMP_FROM_REG(u8 reg)
157 {
158 	return (s8)reg * 1000;
159 }
160 
161 /*
162  * PWM: 0 - 255 per sensors documentation
163  * REG: (6.25% duty cycle per bit)
164  */
165 static u8 ASB100_PWM_TO_REG(int pwm)
166 {
167 	pwm = clamp_val(pwm, 0, 255);
168 	return (u8)(pwm / 16);
169 }
170 
171 static int ASB100_PWM_FROM_REG(u8 reg)
172 {
173 	return reg * 16;
174 }
175 
176 #define DIV_FROM_REG(val) (1 << (val))
177 
178 /*
179  * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
180  * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
181  */
182 static u8 DIV_TO_REG(long val)
183 {
184 	return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
185 }
186 
187 /*
188  * For each registered client, we need to keep some data in memory. That
189  * data is pointed to by client->data. The structure itself is
190  * dynamically allocated, at the same time the client itself is allocated.
191  */
192 struct asb100_data {
193 	struct device *hwmon_dev;
194 	struct mutex lock;
195 
196 	struct mutex update_lock;
197 	unsigned long last_updated;	/* In jiffies */
198 
199 	/* array of 2 pointers to subclients */
200 	struct i2c_client *lm75[2];
201 
202 	char valid;		/* !=0 if following fields are valid */
203 	u8 in[7];		/* Register value */
204 	u8 in_max[7];		/* Register value */
205 	u8 in_min[7];		/* Register value */
206 	u8 fan[3];		/* Register value */
207 	u8 fan_min[3];		/* Register value */
208 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
209 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
210 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
211 	u8 fan_div[3];		/* Register encoding, right justified */
212 	u8 pwm;			/* Register encoding */
213 	u8 vid;			/* Register encoding, combined */
214 	u32 alarms;		/* Register encoding, combined */
215 	u8 vrm;
216 };
217 
218 static int asb100_read_value(struct i2c_client *client, u16 reg);
219 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
220 
221 static int asb100_probe(struct i2c_client *client,
222 			const struct i2c_device_id *id);
223 static int asb100_detect(struct i2c_client *client,
224 			 struct i2c_board_info *info);
225 static int asb100_remove(struct i2c_client *client);
226 static struct asb100_data *asb100_update_device(struct device *dev);
227 static void asb100_init_client(struct i2c_client *client);
228 
229 static const struct i2c_device_id asb100_id[] = {
230 	{ "asb100", 0 },
231 	{ }
232 };
233 MODULE_DEVICE_TABLE(i2c, asb100_id);
234 
235 static struct i2c_driver asb100_driver = {
236 	.class		= I2C_CLASS_HWMON,
237 	.driver = {
238 		.name	= "asb100",
239 	},
240 	.probe		= asb100_probe,
241 	.remove		= asb100_remove,
242 	.id_table	= asb100_id,
243 	.detect		= asb100_detect,
244 	.address_list	= normal_i2c,
245 };
246 
247 /* 7 Voltages */
248 #define show_in_reg(reg) \
249 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
250 		char *buf) \
251 { \
252 	int nr = to_sensor_dev_attr(attr)->index; \
253 	struct asb100_data *data = asb100_update_device(dev); \
254 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
255 }
256 
257 show_in_reg(in)
258 show_in_reg(in_min)
259 show_in_reg(in_max)
260 
261 #define set_in_reg(REG, reg) \
262 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
263 		const char *buf, size_t count) \
264 { \
265 	int nr = to_sensor_dev_attr(attr)->index; \
266 	struct i2c_client *client = to_i2c_client(dev); \
267 	struct asb100_data *data = i2c_get_clientdata(client); \
268 	unsigned long val; \
269 	int err = kstrtoul(buf, 10, &val); \
270 	if (err) \
271 		return err; \
272 	mutex_lock(&data->update_lock); \
273 	data->in_##reg[nr] = IN_TO_REG(val); \
274 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
275 		data->in_##reg[nr]); \
276 	mutex_unlock(&data->update_lock); \
277 	return count; \
278 }
279 
280 set_in_reg(MIN, min)
281 set_in_reg(MAX, max)
282 
283 #define sysfs_in(offset) \
284 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
285 		show_in, NULL, offset); \
286 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
287 		show_in_min, set_in_min, offset); \
288 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
289 		show_in_max, set_in_max, offset)
290 
291 sysfs_in(0);
292 sysfs_in(1);
293 sysfs_in(2);
294 sysfs_in(3);
295 sysfs_in(4);
296 sysfs_in(5);
297 sysfs_in(6);
298 
299 /* 3 Fans */
300 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
301 		char *buf)
302 {
303 	int nr = to_sensor_dev_attr(attr)->index;
304 	struct asb100_data *data = asb100_update_device(dev);
305 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
306 		DIV_FROM_REG(data->fan_div[nr])));
307 }
308 
309 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
310 		char *buf)
311 {
312 	int nr = to_sensor_dev_attr(attr)->index;
313 	struct asb100_data *data = asb100_update_device(dev);
314 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
315 		DIV_FROM_REG(data->fan_div[nr])));
316 }
317 
318 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
319 		char *buf)
320 {
321 	int nr = to_sensor_dev_attr(attr)->index;
322 	struct asb100_data *data = asb100_update_device(dev);
323 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
324 }
325 
326 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
327 		const char *buf, size_t count)
328 {
329 	int nr = to_sensor_dev_attr(attr)->index;
330 	struct i2c_client *client = to_i2c_client(dev);
331 	struct asb100_data *data = i2c_get_clientdata(client);
332 	unsigned long val;
333 	int err;
334 
335 	err = kstrtoul(buf, 10, &val);
336 	if (err)
337 		return err;
338 
339 	mutex_lock(&data->update_lock);
340 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
341 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
342 	mutex_unlock(&data->update_lock);
343 	return count;
344 }
345 
346 /*
347  * Note: we save and restore the fan minimum here, because its value is
348  * determined in part by the fan divisor.  This follows the principle of
349  * least surprise; the user doesn't expect the fan minimum to change just
350  * because the divisor changed.
351  */
352 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
353 		const char *buf, size_t count)
354 {
355 	int nr = to_sensor_dev_attr(attr)->index;
356 	struct i2c_client *client = to_i2c_client(dev);
357 	struct asb100_data *data = i2c_get_clientdata(client);
358 	unsigned long min;
359 	int reg;
360 	unsigned long val;
361 	int err;
362 
363 	err = kstrtoul(buf, 10, &val);
364 	if (err)
365 		return err;
366 
367 	mutex_lock(&data->update_lock);
368 
369 	min = FAN_FROM_REG(data->fan_min[nr],
370 			DIV_FROM_REG(data->fan_div[nr]));
371 	data->fan_div[nr] = DIV_TO_REG(val);
372 
373 	switch (nr) {
374 	case 0:	/* fan 1 */
375 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
376 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
377 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
378 		break;
379 
380 	case 1:	/* fan 2 */
381 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
382 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
383 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
384 		break;
385 
386 	case 2:	/* fan 3 */
387 		reg = asb100_read_value(client, ASB100_REG_PIN);
388 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
389 		asb100_write_value(client, ASB100_REG_PIN, reg);
390 		break;
391 	}
392 
393 	data->fan_min[nr] =
394 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
395 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
396 
397 	mutex_unlock(&data->update_lock);
398 
399 	return count;
400 }
401 
402 #define sysfs_fan(offset) \
403 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
404 		show_fan, NULL, offset - 1); \
405 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
406 		show_fan_min, set_fan_min, offset - 1); \
407 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
408 		show_fan_div, set_fan_div, offset - 1)
409 
410 sysfs_fan(1);
411 sysfs_fan(2);
412 sysfs_fan(3);
413 
414 /* 4 Temp. Sensors */
415 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
416 {
417 	int ret = 0;
418 
419 	switch (nr) {
420 	case 1: case 2:
421 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
422 		break;
423 	case 0: case 3: default:
424 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
425 		break;
426 	}
427 	return ret;
428 }
429 
430 #define show_temp_reg(reg) \
431 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
432 		char *buf) \
433 { \
434 	int nr = to_sensor_dev_attr(attr)->index; \
435 	struct asb100_data *data = asb100_update_device(dev); \
436 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
437 }
438 
439 show_temp_reg(temp);
440 show_temp_reg(temp_max);
441 show_temp_reg(temp_hyst);
442 
443 #define set_temp_reg(REG, reg) \
444 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
445 		const char *buf, size_t count) \
446 { \
447 	int nr = to_sensor_dev_attr(attr)->index; \
448 	struct i2c_client *client = to_i2c_client(dev); \
449 	struct asb100_data *data = i2c_get_clientdata(client); \
450 	long val; \
451 	int err = kstrtol(buf, 10, &val); \
452 	if (err) \
453 		return err; \
454 	mutex_lock(&data->update_lock); \
455 	switch (nr) { \
456 	case 1: case 2: \
457 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
458 		break; \
459 	case 0: case 3: default: \
460 		data->reg[nr] = TEMP_TO_REG(val); \
461 		break; \
462 	} \
463 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
464 			data->reg[nr]); \
465 	mutex_unlock(&data->update_lock); \
466 	return count; \
467 }
468 
469 set_temp_reg(MAX, temp_max);
470 set_temp_reg(HYST, temp_hyst);
471 
472 #define sysfs_temp(num) \
473 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
474 		show_temp, NULL, num - 1); \
475 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
476 		show_temp_max, set_temp_max, num - 1); \
477 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
478 		show_temp_hyst, set_temp_hyst, num - 1)
479 
480 sysfs_temp(1);
481 sysfs_temp(2);
482 sysfs_temp(3);
483 sysfs_temp(4);
484 
485 /* VID */
486 static ssize_t cpu0_vid_show(struct device *dev,
487 			     struct device_attribute *attr, char *buf)
488 {
489 	struct asb100_data *data = asb100_update_device(dev);
490 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
491 }
492 
493 static DEVICE_ATTR_RO(cpu0_vid);
494 
495 /* VRM */
496 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
497 		char *buf)
498 {
499 	struct asb100_data *data = dev_get_drvdata(dev);
500 	return sprintf(buf, "%d\n", data->vrm);
501 }
502 
503 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
504 			 const char *buf, size_t count)
505 {
506 	struct asb100_data *data = dev_get_drvdata(dev);
507 	unsigned long val;
508 	int err;
509 
510 	err = kstrtoul(buf, 10, &val);
511 	if (err)
512 		return err;
513 
514 	if (val > 255)
515 		return -EINVAL;
516 
517 	data->vrm = val;
518 	return count;
519 }
520 
521 /* Alarms */
522 static DEVICE_ATTR_RW(vrm);
523 
524 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
525 		char *buf)
526 {
527 	struct asb100_data *data = asb100_update_device(dev);
528 	return sprintf(buf, "%u\n", data->alarms);
529 }
530 
531 static DEVICE_ATTR_RO(alarms);
532 
533 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
534 		char *buf)
535 {
536 	int bitnr = to_sensor_dev_attr(attr)->index;
537 	struct asb100_data *data = asb100_update_device(dev);
538 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
539 }
540 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
541 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
542 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
543 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
544 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
545 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
546 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
547 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
548 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
549 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
550 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
551 
552 /* 1 PWM */
553 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
554 		char *buf)
555 {
556 	struct asb100_data *data = asb100_update_device(dev);
557 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
558 }
559 
560 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
561 			  const char *buf, size_t count)
562 {
563 	struct i2c_client *client = to_i2c_client(dev);
564 	struct asb100_data *data = i2c_get_clientdata(client);
565 	unsigned long val;
566 	int err;
567 
568 	err = kstrtoul(buf, 10, &val);
569 	if (err)
570 		return err;
571 
572 	mutex_lock(&data->update_lock);
573 	data->pwm &= 0x80; /* keep the enable bit */
574 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
575 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
576 	mutex_unlock(&data->update_lock);
577 	return count;
578 }
579 
580 static ssize_t pwm1_enable_show(struct device *dev,
581 		struct device_attribute *attr, char *buf)
582 {
583 	struct asb100_data *data = asb100_update_device(dev);
584 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
585 }
586 
587 static ssize_t pwm1_enable_store(struct device *dev,
588 				 struct device_attribute *attr,
589 				 const char *buf, size_t count)
590 {
591 	struct i2c_client *client = to_i2c_client(dev);
592 	struct asb100_data *data = i2c_get_clientdata(client);
593 	unsigned long val;
594 	int err;
595 
596 	err = kstrtoul(buf, 10, &val);
597 	if (err)
598 		return err;
599 
600 	mutex_lock(&data->update_lock);
601 	data->pwm &= 0x0f; /* keep the duty cycle bits */
602 	data->pwm |= (val ? 0x80 : 0x00);
603 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
604 	mutex_unlock(&data->update_lock);
605 	return count;
606 }
607 
608 static DEVICE_ATTR_RW(pwm1);
609 static DEVICE_ATTR_RW(pwm1_enable);
610 
611 static struct attribute *asb100_attributes[] = {
612 	&sensor_dev_attr_in0_input.dev_attr.attr,
613 	&sensor_dev_attr_in0_min.dev_attr.attr,
614 	&sensor_dev_attr_in0_max.dev_attr.attr,
615 	&sensor_dev_attr_in1_input.dev_attr.attr,
616 	&sensor_dev_attr_in1_min.dev_attr.attr,
617 	&sensor_dev_attr_in1_max.dev_attr.attr,
618 	&sensor_dev_attr_in2_input.dev_attr.attr,
619 	&sensor_dev_attr_in2_min.dev_attr.attr,
620 	&sensor_dev_attr_in2_max.dev_attr.attr,
621 	&sensor_dev_attr_in3_input.dev_attr.attr,
622 	&sensor_dev_attr_in3_min.dev_attr.attr,
623 	&sensor_dev_attr_in3_max.dev_attr.attr,
624 	&sensor_dev_attr_in4_input.dev_attr.attr,
625 	&sensor_dev_attr_in4_min.dev_attr.attr,
626 	&sensor_dev_attr_in4_max.dev_attr.attr,
627 	&sensor_dev_attr_in5_input.dev_attr.attr,
628 	&sensor_dev_attr_in5_min.dev_attr.attr,
629 	&sensor_dev_attr_in5_max.dev_attr.attr,
630 	&sensor_dev_attr_in6_input.dev_attr.attr,
631 	&sensor_dev_attr_in6_min.dev_attr.attr,
632 	&sensor_dev_attr_in6_max.dev_attr.attr,
633 
634 	&sensor_dev_attr_fan1_input.dev_attr.attr,
635 	&sensor_dev_attr_fan1_min.dev_attr.attr,
636 	&sensor_dev_attr_fan1_div.dev_attr.attr,
637 	&sensor_dev_attr_fan2_input.dev_attr.attr,
638 	&sensor_dev_attr_fan2_min.dev_attr.attr,
639 	&sensor_dev_attr_fan2_div.dev_attr.attr,
640 	&sensor_dev_attr_fan3_input.dev_attr.attr,
641 	&sensor_dev_attr_fan3_min.dev_attr.attr,
642 	&sensor_dev_attr_fan3_div.dev_attr.attr,
643 
644 	&sensor_dev_attr_temp1_input.dev_attr.attr,
645 	&sensor_dev_attr_temp1_max.dev_attr.attr,
646 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
647 	&sensor_dev_attr_temp2_input.dev_attr.attr,
648 	&sensor_dev_attr_temp2_max.dev_attr.attr,
649 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
650 	&sensor_dev_attr_temp3_input.dev_attr.attr,
651 	&sensor_dev_attr_temp3_max.dev_attr.attr,
652 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
653 	&sensor_dev_attr_temp4_input.dev_attr.attr,
654 	&sensor_dev_attr_temp4_max.dev_attr.attr,
655 	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
656 
657 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
658 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
659 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
660 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
661 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
662 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
663 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
664 	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
665 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
666 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
667 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
668 
669 	&dev_attr_cpu0_vid.attr,
670 	&dev_attr_vrm.attr,
671 	&dev_attr_alarms.attr,
672 	&dev_attr_pwm1.attr,
673 	&dev_attr_pwm1_enable.attr,
674 
675 	NULL
676 };
677 
678 static const struct attribute_group asb100_group = {
679 	.attrs = asb100_attributes,
680 };
681 
682 static int asb100_detect_subclients(struct i2c_client *client)
683 {
684 	int i, id, err;
685 	int address = client->addr;
686 	unsigned short sc_addr[2];
687 	struct asb100_data *data = i2c_get_clientdata(client);
688 	struct i2c_adapter *adapter = client->adapter;
689 
690 	id = i2c_adapter_id(adapter);
691 
692 	if (force_subclients[0] == id && force_subclients[1] == address) {
693 		for (i = 2; i <= 3; i++) {
694 			if (force_subclients[i] < 0x48 ||
695 			    force_subclients[i] > 0x4f) {
696 				dev_err(&client->dev,
697 					"invalid subclient address %d; must be 0x48-0x4f\n",
698 					force_subclients[i]);
699 				err = -ENODEV;
700 				goto ERROR_SC_2;
701 			}
702 		}
703 		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
704 					(force_subclients[2] & 0x07) |
705 					((force_subclients[3] & 0x07) << 4));
706 		sc_addr[0] = force_subclients[2];
707 		sc_addr[1] = force_subclients[3];
708 	} else {
709 		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
710 		sc_addr[0] = 0x48 + (val & 0x07);
711 		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
712 	}
713 
714 	if (sc_addr[0] == sc_addr[1]) {
715 		dev_err(&client->dev,
716 			"duplicate addresses 0x%x for subclients\n",
717 			sc_addr[0]);
718 		err = -ENODEV;
719 		goto ERROR_SC_2;
720 	}
721 
722 	data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
723 	if (!data->lm75[0]) {
724 		dev_err(&client->dev,
725 			"subclient %d registration at address 0x%x failed.\n",
726 			1, sc_addr[0]);
727 		err = -ENOMEM;
728 		goto ERROR_SC_2;
729 	}
730 
731 	data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
732 	if (!data->lm75[1]) {
733 		dev_err(&client->dev,
734 			"subclient %d registration at address 0x%x failed.\n",
735 			2, sc_addr[1]);
736 		err = -ENOMEM;
737 		goto ERROR_SC_3;
738 	}
739 
740 	return 0;
741 
742 /* Undo inits in case of errors */
743 ERROR_SC_3:
744 	i2c_unregister_device(data->lm75[0]);
745 ERROR_SC_2:
746 	return err;
747 }
748 
749 /* Return 0 if detection is successful, -ENODEV otherwise */
750 static int asb100_detect(struct i2c_client *client,
751 			 struct i2c_board_info *info)
752 {
753 	struct i2c_adapter *adapter = client->adapter;
754 	int val1, val2;
755 
756 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
757 		pr_debug("detect failed, smbus byte data not supported!\n");
758 		return -ENODEV;
759 	}
760 
761 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
762 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
763 
764 	/* If we're in bank 0 */
765 	if ((!(val1 & 0x07)) &&
766 			/* Check for ASB100 ID (low byte) */
767 			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
768 			/* Check for ASB100 ID (high byte ) */
769 			((val1 & 0x80) && (val2 != 0x06)))) {
770 		pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
771 		return -ENODEV;
772 	}
773 
774 	/* Put it now into bank 0 and Vendor ID High Byte */
775 	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
776 		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
777 		| 0x80);
778 
779 	/* Determine the chip type. */
780 	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
781 	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
782 
783 	if (val1 != 0x31 || val2 != 0x06)
784 		return -ENODEV;
785 
786 	strlcpy(info->type, "asb100", I2C_NAME_SIZE);
787 
788 	return 0;
789 }
790 
791 static int asb100_probe(struct i2c_client *client,
792 			const struct i2c_device_id *id)
793 {
794 	int err;
795 	struct asb100_data *data;
796 
797 	data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
798 			    GFP_KERNEL);
799 	if (!data)
800 		return -ENOMEM;
801 
802 	i2c_set_clientdata(client, data);
803 	mutex_init(&data->lock);
804 	mutex_init(&data->update_lock);
805 
806 	/* Attach secondary lm75 clients */
807 	err = asb100_detect_subclients(client);
808 	if (err)
809 		return err;
810 
811 	/* Initialize the chip */
812 	asb100_init_client(client);
813 
814 	/* A few vars need to be filled upon startup */
815 	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
816 	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
817 	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
818 
819 	/* Register sysfs hooks */
820 	err = sysfs_create_group(&client->dev.kobj, &asb100_group);
821 	if (err)
822 		goto ERROR3;
823 
824 	data->hwmon_dev = hwmon_device_register(&client->dev);
825 	if (IS_ERR(data->hwmon_dev)) {
826 		err = PTR_ERR(data->hwmon_dev);
827 		goto ERROR4;
828 	}
829 
830 	return 0;
831 
832 ERROR4:
833 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
834 ERROR3:
835 	i2c_unregister_device(data->lm75[1]);
836 	i2c_unregister_device(data->lm75[0]);
837 	return err;
838 }
839 
840 static int asb100_remove(struct i2c_client *client)
841 {
842 	struct asb100_data *data = i2c_get_clientdata(client);
843 
844 	hwmon_device_unregister(data->hwmon_dev);
845 	sysfs_remove_group(&client->dev.kobj, &asb100_group);
846 
847 	i2c_unregister_device(data->lm75[1]);
848 	i2c_unregister_device(data->lm75[0]);
849 
850 	return 0;
851 }
852 
853 /*
854  * The SMBus locks itself, usually, but nothing may access the chip between
855  * bank switches.
856  */
857 static int asb100_read_value(struct i2c_client *client, u16 reg)
858 {
859 	struct asb100_data *data = i2c_get_clientdata(client);
860 	struct i2c_client *cl;
861 	int res, bank;
862 
863 	mutex_lock(&data->lock);
864 
865 	bank = (reg >> 8) & 0x0f;
866 	if (bank > 2)
867 		/* switch banks */
868 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
869 
870 	if (bank == 0 || bank > 2) {
871 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
872 	} else {
873 		/* switch to subclient */
874 		cl = data->lm75[bank - 1];
875 
876 		/* convert from ISA to LM75 I2C addresses */
877 		switch (reg & 0xff) {
878 		case 0x50: /* TEMP */
879 			res = i2c_smbus_read_word_swapped(cl, 0);
880 			break;
881 		case 0x52: /* CONFIG */
882 			res = i2c_smbus_read_byte_data(cl, 1);
883 			break;
884 		case 0x53: /* HYST */
885 			res = i2c_smbus_read_word_swapped(cl, 2);
886 			break;
887 		case 0x55: /* MAX */
888 		default:
889 			res = i2c_smbus_read_word_swapped(cl, 3);
890 			break;
891 		}
892 	}
893 
894 	if (bank > 2)
895 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
896 
897 	mutex_unlock(&data->lock);
898 
899 	return res;
900 }
901 
902 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
903 {
904 	struct asb100_data *data = i2c_get_clientdata(client);
905 	struct i2c_client *cl;
906 	int bank;
907 
908 	mutex_lock(&data->lock);
909 
910 	bank = (reg >> 8) & 0x0f;
911 	if (bank > 2)
912 		/* switch banks */
913 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
914 
915 	if (bank == 0 || bank > 2) {
916 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
917 	} else {
918 		/* switch to subclient */
919 		cl = data->lm75[bank - 1];
920 
921 		/* convert from ISA to LM75 I2C addresses */
922 		switch (reg & 0xff) {
923 		case 0x52: /* CONFIG */
924 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
925 			break;
926 		case 0x53: /* HYST */
927 			i2c_smbus_write_word_swapped(cl, 2, value);
928 			break;
929 		case 0x55: /* MAX */
930 			i2c_smbus_write_word_swapped(cl, 3, value);
931 			break;
932 		}
933 	}
934 
935 	if (bank > 2)
936 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
937 
938 	mutex_unlock(&data->lock);
939 }
940 
941 static void asb100_init_client(struct i2c_client *client)
942 {
943 	struct asb100_data *data = i2c_get_clientdata(client);
944 
945 	data->vrm = vid_which_vrm();
946 
947 	/* Start monitoring */
948 	asb100_write_value(client, ASB100_REG_CONFIG,
949 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
950 }
951 
952 static struct asb100_data *asb100_update_device(struct device *dev)
953 {
954 	struct i2c_client *client = to_i2c_client(dev);
955 	struct asb100_data *data = i2c_get_clientdata(client);
956 	int i;
957 
958 	mutex_lock(&data->update_lock);
959 
960 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
961 		|| !data->valid) {
962 
963 		dev_dbg(&client->dev, "starting device update...\n");
964 
965 		/* 7 voltage inputs */
966 		for (i = 0; i < 7; i++) {
967 			data->in[i] = asb100_read_value(client,
968 				ASB100_REG_IN(i));
969 			data->in_min[i] = asb100_read_value(client,
970 				ASB100_REG_IN_MIN(i));
971 			data->in_max[i] = asb100_read_value(client,
972 				ASB100_REG_IN_MAX(i));
973 		}
974 
975 		/* 3 fan inputs */
976 		for (i = 0; i < 3; i++) {
977 			data->fan[i] = asb100_read_value(client,
978 					ASB100_REG_FAN(i));
979 			data->fan_min[i] = asb100_read_value(client,
980 					ASB100_REG_FAN_MIN(i));
981 		}
982 
983 		/* 4 temperature inputs */
984 		for (i = 1; i <= 4; i++) {
985 			data->temp[i-1] = asb100_read_value(client,
986 					ASB100_REG_TEMP(i));
987 			data->temp_max[i-1] = asb100_read_value(client,
988 					ASB100_REG_TEMP_MAX(i));
989 			data->temp_hyst[i-1] = asb100_read_value(client,
990 					ASB100_REG_TEMP_HYST(i));
991 		}
992 
993 		/* VID and fan divisors */
994 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
995 		data->vid = i & 0x0f;
996 		data->vid |= (asb100_read_value(client,
997 				ASB100_REG_CHIPID) & 0x01) << 4;
998 		data->fan_div[0] = (i >> 4) & 0x03;
999 		data->fan_div[1] = (i >> 6) & 0x03;
1000 		data->fan_div[2] = (asb100_read_value(client,
1001 				ASB100_REG_PIN) >> 6) & 0x03;
1002 
1003 		/* PWM */
1004 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1005 
1006 		/* alarms */
1007 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1008 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1009 
1010 		data->last_updated = jiffies;
1011 		data->valid = 1;
1012 
1013 		dev_dbg(&client->dev, "... device update complete\n");
1014 	}
1015 
1016 	mutex_unlock(&data->update_lock);
1017 
1018 	return data;
1019 }
1020 
1021 module_i2c_driver(asb100_driver);
1022 
1023 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1024 MODULE_DESCRIPTION("ASB100 Bach driver");
1025 MODULE_LICENSE("GPL");
1026