xref: /linux/drivers/hwmon/asb100.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2     asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 	        monitoring
4 
5     Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6 
7 	(derived from w83781d.c)
8 
9     Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10     Philip Edelbrock <phil@netroedge.com>, and
11     Mark Studebaker <mdsxyz123@yahoo.com>
12 
13     This program is free software; you can redistribute it and/or modify
14     it under the terms of the GNU General Public License as published by
15     the Free Software Foundation; either version 2 of the License, or
16     (at your option) any later version.
17 
18     This program is distributed in the hope that it will be useful,
19     but WITHOUT ANY WARRANTY; without even the implied warranty of
20     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21     GNU General Public License for more details.
22 
23     You should have received a copy of the GNU General Public License
24     along with this program; if not, write to the Free Software
25     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 
28 /*
29     This driver supports the hardware sensor chips: Asus ASB100 and
30     ASB100-A "BACH".
31 
32     ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33     way for the driver to tell which one is there.
34 
35     Chip	#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36     asb100	7	3	1	4	0x31	0x0694	yes	no
37 */
38 
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-vid.h>
44 #include <linux/err.h>
45 #include <linux/init.h>
46 #include <linux/jiffies.h>
47 #include <linux/mutex.h>
48 #include "lm75.h"
49 
50 /*
51 	HISTORY:
52 	2003-12-29	1.0.0	Ported from lm_sensors project for kernel 2.6
53 */
54 #define ASB100_VERSION "1.0.0"
55 
56 /* I2C addresses to scan */
57 static unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
58 
59 /* Insmod parameters */
60 I2C_CLIENT_INSMOD_1(asb100);
61 I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: "
62 	"{bus, clientaddr, subclientaddr1, subclientaddr2}");
63 
64 /* Voltage IN registers 0-6 */
65 #define ASB100_REG_IN(nr)	(0x20 + (nr))
66 #define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
67 #define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
68 
69 /* FAN IN registers 1-3 */
70 #define ASB100_REG_FAN(nr)	(0x28 + (nr))
71 #define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
72 
73 /* TEMPERATURE registers 1-4 */
74 static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
75 static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
76 static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
77 
78 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
79 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
80 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
81 
82 #define ASB100_REG_TEMP2_CONFIG	0x0152
83 #define ASB100_REG_TEMP3_CONFIG	0x0252
84 
85 
86 #define ASB100_REG_CONFIG	0x40
87 #define ASB100_REG_ALARM1	0x41
88 #define ASB100_REG_ALARM2	0x42
89 #define ASB100_REG_SMIM1	0x43
90 #define ASB100_REG_SMIM2	0x44
91 #define ASB100_REG_VID_FANDIV	0x47
92 #define ASB100_REG_I2C_ADDR	0x48
93 #define ASB100_REG_CHIPID	0x49
94 #define ASB100_REG_I2C_SUBADDR	0x4a
95 #define ASB100_REG_PIN		0x4b
96 #define ASB100_REG_IRQ		0x4c
97 #define ASB100_REG_BANK		0x4e
98 #define ASB100_REG_CHIPMAN	0x4f
99 
100 #define ASB100_REG_WCHIPID	0x58
101 
102 /* bit 7 -> enable, bits 0-3 -> duty cycle */
103 #define ASB100_REG_PWM1		0x59
104 
105 /* CONVERSIONS
106    Rounding and limit checking is only done on the TO_REG variants. */
107 
108 /* These constants are a guess, consistent w/ w83781d */
109 #define ASB100_IN_MIN (   0)
110 #define ASB100_IN_MAX (4080)
111 
112 /* IN: 1/1000 V (0V to 4.08V)
113    REG: 16mV/bit */
114 static u8 IN_TO_REG(unsigned val)
115 {
116 	unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
117 	return (nval + 8) / 16;
118 }
119 
120 static unsigned IN_FROM_REG(u8 reg)
121 {
122 	return reg * 16;
123 }
124 
125 static u8 FAN_TO_REG(long rpm, int div)
126 {
127 	if (rpm == -1)
128 		return 0;
129 	if (rpm == 0)
130 		return 255;
131 	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
132 	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
133 }
134 
135 static int FAN_FROM_REG(u8 val, int div)
136 {
137 	return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
138 }
139 
140 /* These constants are a guess, consistent w/ w83781d */
141 #define ASB100_TEMP_MIN (-128000)
142 #define ASB100_TEMP_MAX ( 127000)
143 
144 /* TEMP: 0.001C/bit (-128C to +127C)
145    REG: 1C/bit, two's complement */
146 static u8 TEMP_TO_REG(int temp)
147 {
148 	int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
149 	ntemp += (ntemp<0 ? -500 : 500);
150 	return (u8)(ntemp / 1000);
151 }
152 
153 static int TEMP_FROM_REG(u8 reg)
154 {
155 	return (s8)reg * 1000;
156 }
157 
158 /* PWM: 0 - 255 per sensors documentation
159    REG: (6.25% duty cycle per bit) */
160 static u8 ASB100_PWM_TO_REG(int pwm)
161 {
162 	pwm = SENSORS_LIMIT(pwm, 0, 255);
163 	return (u8)(pwm / 16);
164 }
165 
166 static int ASB100_PWM_FROM_REG(u8 reg)
167 {
168 	return reg * 16;
169 }
170 
171 #define DIV_FROM_REG(val) (1 << (val))
172 
173 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
174    REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
175 static u8 DIV_TO_REG(long val)
176 {
177 	return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
178 }
179 
180 /* For each registered client, we need to keep some data in memory. That
181    data is pointed to by client->data. The structure itself is
182    dynamically allocated, at the same time the client itself is allocated. */
183 struct asb100_data {
184 	struct i2c_client client;
185 	struct class_device *class_dev;
186 	struct mutex lock;
187 	enum chips type;
188 
189 	struct mutex update_lock;
190 	unsigned long last_updated;	/* In jiffies */
191 
192 	/* array of 2 pointers to subclients */
193 	struct i2c_client *lm75[2];
194 
195 	char valid;		/* !=0 if following fields are valid */
196 	u8 in[7];		/* Register value */
197 	u8 in_max[7];		/* Register value */
198 	u8 in_min[7];		/* Register value */
199 	u8 fan[3];		/* Register value */
200 	u8 fan_min[3];		/* Register value */
201 	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
202 	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
203 	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
204 	u8 fan_div[3];		/* Register encoding, right justified */
205 	u8 pwm;			/* Register encoding */
206 	u8 vid;			/* Register encoding, combined */
207 	u32 alarms;		/* Register encoding, combined */
208 	u8 vrm;
209 };
210 
211 static int asb100_read_value(struct i2c_client *client, u16 reg);
212 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
213 
214 static int asb100_attach_adapter(struct i2c_adapter *adapter);
215 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind);
216 static int asb100_detach_client(struct i2c_client *client);
217 static struct asb100_data *asb100_update_device(struct device *dev);
218 static void asb100_init_client(struct i2c_client *client);
219 
220 static struct i2c_driver asb100_driver = {
221 	.driver = {
222 		.name	= "asb100",
223 	},
224 	.id		= I2C_DRIVERID_ASB100,
225 	.attach_adapter	= asb100_attach_adapter,
226 	.detach_client	= asb100_detach_client,
227 };
228 
229 /* 7 Voltages */
230 #define show_in_reg(reg) \
231 static ssize_t show_##reg (struct device *dev, char *buf, int nr) \
232 { \
233 	struct asb100_data *data = asb100_update_device(dev); \
234 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
235 }
236 
237 show_in_reg(in)
238 show_in_reg(in_min)
239 show_in_reg(in_max)
240 
241 #define set_in_reg(REG, reg) \
242 static ssize_t set_in_##reg(struct device *dev, const char *buf, \
243 		size_t count, int nr) \
244 { \
245 	struct i2c_client *client = to_i2c_client(dev); \
246 	struct asb100_data *data = i2c_get_clientdata(client); \
247 	unsigned long val = simple_strtoul(buf, NULL, 10); \
248  \
249 	mutex_lock(&data->update_lock); \
250 	data->in_##reg[nr] = IN_TO_REG(val); \
251 	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
252 		data->in_##reg[nr]); \
253 	mutex_unlock(&data->update_lock); \
254 	return count; \
255 }
256 
257 set_in_reg(MIN, min)
258 set_in_reg(MAX, max)
259 
260 #define sysfs_in(offset) \
261 static ssize_t \
262 	show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \
263 { \
264 	return show_in(dev, buf, offset); \
265 } \
266 static DEVICE_ATTR(in##offset##_input, S_IRUGO, \
267 		show_in##offset, NULL); \
268 static ssize_t \
269 	show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
270 { \
271 	return show_in_min(dev, buf, offset); \
272 } \
273 static ssize_t \
274 	show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
275 { \
276 	return show_in_max(dev, buf, offset); \
277 } \
278 static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \
279 		const char *buf, size_t count) \
280 { \
281 	return set_in_min(dev, buf, count, offset); \
282 } \
283 static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \
284 		const char *buf, size_t count) \
285 { \
286 	return set_in_max(dev, buf, count, offset); \
287 } \
288 static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
289 		show_in##offset##_min, set_in##offset##_min); \
290 static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
291 		show_in##offset##_max, set_in##offset##_max);
292 
293 sysfs_in(0);
294 sysfs_in(1);
295 sysfs_in(2);
296 sysfs_in(3);
297 sysfs_in(4);
298 sysfs_in(5);
299 sysfs_in(6);
300 
301 #define device_create_file_in(client, offset) do { \
302 	device_create_file(&client->dev, &dev_attr_in##offset##_input); \
303 	device_create_file(&client->dev, &dev_attr_in##offset##_min); \
304 	device_create_file(&client->dev, &dev_attr_in##offset##_max); \
305 } while (0)
306 
307 /* 3 Fans */
308 static ssize_t show_fan(struct device *dev, char *buf, int nr)
309 {
310 	struct asb100_data *data = asb100_update_device(dev);
311 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
312 		DIV_FROM_REG(data->fan_div[nr])));
313 }
314 
315 static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
316 {
317 	struct asb100_data *data = asb100_update_device(dev);
318 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
319 		DIV_FROM_REG(data->fan_div[nr])));
320 }
321 
322 static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
323 {
324 	struct asb100_data *data = asb100_update_device(dev);
325 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
326 }
327 
328 static ssize_t set_fan_min(struct device *dev, const char *buf,
329 				size_t count, int nr)
330 {
331 	struct i2c_client *client = to_i2c_client(dev);
332 	struct asb100_data *data = i2c_get_clientdata(client);
333 	u32 val = simple_strtoul(buf, NULL, 10);
334 
335 	mutex_lock(&data->update_lock);
336 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
337 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
338 	mutex_unlock(&data->update_lock);
339 	return count;
340 }
341 
342 /* Note: we save and restore the fan minimum here, because its value is
343    determined in part by the fan divisor.  This follows the principle of
344    least surprise; the user doesn't expect the fan minimum to change just
345    because the divisor changed. */
346 static ssize_t set_fan_div(struct device *dev, const char *buf,
347 				size_t count, int nr)
348 {
349 	struct i2c_client *client = to_i2c_client(dev);
350 	struct asb100_data *data = i2c_get_clientdata(client);
351 	unsigned long min;
352 	unsigned long val = simple_strtoul(buf, NULL, 10);
353 	int reg;
354 
355 	mutex_lock(&data->update_lock);
356 
357 	min = FAN_FROM_REG(data->fan_min[nr],
358 			DIV_FROM_REG(data->fan_div[nr]));
359 	data->fan_div[nr] = DIV_TO_REG(val);
360 
361 	switch(nr) {
362 	case 0:	/* fan 1 */
363 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
364 		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
365 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
366 		break;
367 
368 	case 1:	/* fan 2 */
369 		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
370 		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
371 		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
372 		break;
373 
374 	case 2:	/* fan 3 */
375 		reg = asb100_read_value(client, ASB100_REG_PIN);
376 		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
377 		asb100_write_value(client, ASB100_REG_PIN, reg);
378 		break;
379 	}
380 
381 	data->fan_min[nr] =
382 		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
383 	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
384 
385 	mutex_unlock(&data->update_lock);
386 
387 	return count;
388 }
389 
390 #define sysfs_fan(offset) \
391 static ssize_t show_fan##offset(struct device *dev, struct device_attribute *attr, char *buf) \
392 { \
393 	return show_fan(dev, buf, offset - 1); \
394 } \
395 static ssize_t show_fan##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \
396 { \
397 	return show_fan_min(dev, buf, offset - 1); \
398 } \
399 static ssize_t show_fan##offset##_div(struct device *dev, struct device_attribute *attr, char *buf) \
400 { \
401 	return show_fan_div(dev, buf, offset - 1); \
402 } \
403 static ssize_t set_fan##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \
404 					size_t count) \
405 { \
406 	return set_fan_min(dev, buf, count, offset - 1); \
407 } \
408 static ssize_t set_fan##offset##_div(struct device *dev, struct device_attribute *attr, const char *buf, \
409 					size_t count) \
410 { \
411 	return set_fan_div(dev, buf, count, offset - 1); \
412 } \
413 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
414 		show_fan##offset, NULL); \
415 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
416 		show_fan##offset##_min, set_fan##offset##_min); \
417 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
418 		show_fan##offset##_div, set_fan##offset##_div);
419 
420 sysfs_fan(1);
421 sysfs_fan(2);
422 sysfs_fan(3);
423 
424 #define device_create_file_fan(client, offset) do { \
425 	device_create_file(&client->dev, &dev_attr_fan##offset##_input); \
426 	device_create_file(&client->dev, &dev_attr_fan##offset##_min); \
427 	device_create_file(&client->dev, &dev_attr_fan##offset##_div); \
428 } while (0)
429 
430 /* 4 Temp. Sensors */
431 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
432 {
433 	int ret = 0;
434 
435 	switch (nr) {
436 	case 1: case 2:
437 		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
438 		break;
439 	case 0: case 3: default:
440 		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
441 		break;
442 	}
443 	return ret;
444 }
445 
446 #define show_temp_reg(reg) \
447 static ssize_t show_##reg(struct device *dev, char *buf, int nr) \
448 { \
449 	struct asb100_data *data = asb100_update_device(dev); \
450 	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
451 }
452 
453 show_temp_reg(temp);
454 show_temp_reg(temp_max);
455 show_temp_reg(temp_hyst);
456 
457 #define set_temp_reg(REG, reg) \
458 static ssize_t set_##reg(struct device *dev, const char *buf, \
459 			size_t count, int nr) \
460 { \
461 	struct i2c_client *client = to_i2c_client(dev); \
462 	struct asb100_data *data = i2c_get_clientdata(client); \
463 	unsigned long val = simple_strtoul(buf, NULL, 10); \
464  \
465 	mutex_lock(&data->update_lock); \
466 	switch (nr) { \
467 	case 1: case 2: \
468 		data->reg[nr] = LM75_TEMP_TO_REG(val); \
469 		break; \
470 	case 0: case 3: default: \
471 		data->reg[nr] = TEMP_TO_REG(val); \
472 		break; \
473 	} \
474 	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
475 			data->reg[nr]); \
476 	mutex_unlock(&data->update_lock); \
477 	return count; \
478 }
479 
480 set_temp_reg(MAX, temp_max);
481 set_temp_reg(HYST, temp_hyst);
482 
483 #define sysfs_temp(num) \
484 static ssize_t show_temp##num(struct device *dev, struct device_attribute *attr, char *buf) \
485 { \
486 	return show_temp(dev, buf, num-1); \
487 } \
488 static DEVICE_ATTR(temp##num##_input, S_IRUGO, show_temp##num, NULL); \
489 static ssize_t show_temp_max##num(struct device *dev, struct device_attribute *attr, char *buf) \
490 { \
491 	return show_temp_max(dev, buf, num-1); \
492 } \
493 static ssize_t set_temp_max##num(struct device *dev, struct device_attribute *attr, const char *buf, \
494 					size_t count) \
495 { \
496 	return set_temp_max(dev, buf, count, num-1); \
497 } \
498 static DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
499 		show_temp_max##num, set_temp_max##num); \
500 static ssize_t show_temp_hyst##num(struct device *dev, struct device_attribute *attr, char *buf) \
501 { \
502 	return show_temp_hyst(dev, buf, num-1); \
503 } \
504 static ssize_t set_temp_hyst##num(struct device *dev, struct device_attribute *attr, const char *buf, \
505 					size_t count) \
506 { \
507 	return set_temp_hyst(dev, buf, count, num-1); \
508 } \
509 static DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
510 		show_temp_hyst##num, set_temp_hyst##num);
511 
512 sysfs_temp(1);
513 sysfs_temp(2);
514 sysfs_temp(3);
515 sysfs_temp(4);
516 
517 /* VID */
518 #define device_create_file_temp(client, num) do { \
519 	device_create_file(&client->dev, &dev_attr_temp##num##_input); \
520 	device_create_file(&client->dev, &dev_attr_temp##num##_max); \
521 	device_create_file(&client->dev, &dev_attr_temp##num##_max_hyst); \
522 } while (0)
523 
524 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf)
525 {
526 	struct asb100_data *data = asb100_update_device(dev);
527 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
528 }
529 
530 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
531 #define device_create_file_vid(client) \
532 device_create_file(&client->dev, &dev_attr_cpu0_vid)
533 
534 /* VRM */
535 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
536 {
537 	struct asb100_data *data = asb100_update_device(dev);
538 	return sprintf(buf, "%d\n", data->vrm);
539 }
540 
541 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
542 {
543 	struct i2c_client *client = to_i2c_client(dev);
544 	struct asb100_data *data = i2c_get_clientdata(client);
545 	unsigned long val = simple_strtoul(buf, NULL, 10);
546 	data->vrm = val;
547 	return count;
548 }
549 
550 /* Alarms */
551 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
552 #define device_create_file_vrm(client) \
553 device_create_file(&client->dev, &dev_attr_vrm);
554 
555 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
556 {
557 	struct asb100_data *data = asb100_update_device(dev);
558 	return sprintf(buf, "%u\n", data->alarms);
559 }
560 
561 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
562 #define device_create_file_alarms(client) \
563 device_create_file(&client->dev, &dev_attr_alarms)
564 
565 /* 1 PWM */
566 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, char *buf)
567 {
568 	struct asb100_data *data = asb100_update_device(dev);
569 	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
570 }
571 
572 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
573 {
574 	struct i2c_client *client = to_i2c_client(dev);
575 	struct asb100_data *data = i2c_get_clientdata(client);
576 	unsigned long val = simple_strtoul(buf, NULL, 10);
577 
578 	mutex_lock(&data->update_lock);
579 	data->pwm &= 0x80; /* keep the enable bit */
580 	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
581 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
582 	mutex_unlock(&data->update_lock);
583 	return count;
584 }
585 
586 static ssize_t show_pwm_enable1(struct device *dev, struct device_attribute *attr, char *buf)
587 {
588 	struct asb100_data *data = asb100_update_device(dev);
589 	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
590 }
591 
592 static ssize_t set_pwm_enable1(struct device *dev, struct device_attribute *attr, const char *buf,
593 				size_t count)
594 {
595 	struct i2c_client *client = to_i2c_client(dev);
596 	struct asb100_data *data = i2c_get_clientdata(client);
597 	unsigned long val = simple_strtoul(buf, NULL, 10);
598 
599 	mutex_lock(&data->update_lock);
600 	data->pwm &= 0x0f; /* keep the duty cycle bits */
601 	data->pwm |= (val ? 0x80 : 0x00);
602 	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
603 	mutex_unlock(&data->update_lock);
604 	return count;
605 }
606 
607 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
608 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
609 		show_pwm_enable1, set_pwm_enable1);
610 #define device_create_file_pwm1(client) do { \
611 	device_create_file(&new_client->dev, &dev_attr_pwm1); \
612 	device_create_file(&new_client->dev, &dev_attr_pwm1_enable); \
613 } while (0)
614 
615 /* This function is called when:
616 	asb100_driver is inserted (when this module is loaded), for each
617 		available adapter
618 	when a new adapter is inserted (and asb100_driver is still present)
619  */
620 static int asb100_attach_adapter(struct i2c_adapter *adapter)
621 {
622 	if (!(adapter->class & I2C_CLASS_HWMON))
623 		return 0;
624 	return i2c_probe(adapter, &addr_data, asb100_detect);
625 }
626 
627 static int asb100_detect_subclients(struct i2c_adapter *adapter, int address,
628 		int kind, struct i2c_client *new_client)
629 {
630 	int i, id, err;
631 	struct asb100_data *data = i2c_get_clientdata(new_client);
632 
633 	data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
634 	if (!(data->lm75[0])) {
635 		err = -ENOMEM;
636 		goto ERROR_SC_0;
637 	}
638 
639 	data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
640 	if (!(data->lm75[1])) {
641 		err = -ENOMEM;
642 		goto ERROR_SC_1;
643 	}
644 
645 	id = i2c_adapter_id(adapter);
646 
647 	if (force_subclients[0] == id && force_subclients[1] == address) {
648 		for (i = 2; i <= 3; i++) {
649 			if (force_subclients[i] < 0x48 ||
650 			    force_subclients[i] > 0x4f) {
651 				dev_err(&new_client->dev, "invalid subclient "
652 					"address %d; must be 0x48-0x4f\n",
653 					force_subclients[i]);
654 				err = -ENODEV;
655 				goto ERROR_SC_2;
656 			}
657 		}
658 		asb100_write_value(new_client, ASB100_REG_I2C_SUBADDR,
659 					(force_subclients[2] & 0x07) |
660 					((force_subclients[3] & 0x07) <<4));
661 		data->lm75[0]->addr = force_subclients[2];
662 		data->lm75[1]->addr = force_subclients[3];
663 	} else {
664 		int val = asb100_read_value(new_client, ASB100_REG_I2C_SUBADDR);
665 		data->lm75[0]->addr = 0x48 + (val & 0x07);
666 		data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07);
667 	}
668 
669 	if(data->lm75[0]->addr == data->lm75[1]->addr) {
670 		dev_err(&new_client->dev, "duplicate addresses 0x%x "
671 				"for subclients\n", data->lm75[0]->addr);
672 		err = -ENODEV;
673 		goto ERROR_SC_2;
674 	}
675 
676 	for (i = 0; i <= 1; i++) {
677 		i2c_set_clientdata(data->lm75[i], NULL);
678 		data->lm75[i]->adapter = adapter;
679 		data->lm75[i]->driver = &asb100_driver;
680 		data->lm75[i]->flags = 0;
681 		strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE);
682 	}
683 
684 	if ((err = i2c_attach_client(data->lm75[0]))) {
685 		dev_err(&new_client->dev, "subclient %d registration "
686 			"at address 0x%x failed.\n", i, data->lm75[0]->addr);
687 		goto ERROR_SC_2;
688 	}
689 
690 	if ((err = i2c_attach_client(data->lm75[1]))) {
691 		dev_err(&new_client->dev, "subclient %d registration "
692 			"at address 0x%x failed.\n", i, data->lm75[1]->addr);
693 		goto ERROR_SC_3;
694 	}
695 
696 	return 0;
697 
698 /* Undo inits in case of errors */
699 ERROR_SC_3:
700 	i2c_detach_client(data->lm75[0]);
701 ERROR_SC_2:
702 	kfree(data->lm75[1]);
703 ERROR_SC_1:
704 	kfree(data->lm75[0]);
705 ERROR_SC_0:
706 	return err;
707 }
708 
709 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind)
710 {
711 	int err;
712 	struct i2c_client *new_client;
713 	struct asb100_data *data;
714 
715 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
716 		pr_debug("asb100.o: detect failed, "
717 				"smbus byte data not supported!\n");
718 		err = -ENODEV;
719 		goto ERROR0;
720 	}
721 
722 	/* OK. For now, we presume we have a valid client. We now create the
723 	   client structure, even though we cannot fill it completely yet.
724 	   But it allows us to access asb100_{read,write}_value. */
725 
726 	if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) {
727 		pr_debug("asb100.o: detect failed, kzalloc failed!\n");
728 		err = -ENOMEM;
729 		goto ERROR0;
730 	}
731 
732 	new_client = &data->client;
733 	mutex_init(&data->lock);
734 	i2c_set_clientdata(new_client, data);
735 	new_client->addr = address;
736 	new_client->adapter = adapter;
737 	new_client->driver = &asb100_driver;
738 	new_client->flags = 0;
739 
740 	/* Now, we do the remaining detection. */
741 
742 	/* The chip may be stuck in some other bank than bank 0. This may
743 	   make reading other information impossible. Specify a force=... or
744 	   force_*=... parameter, and the chip will be reset to the right
745 	   bank. */
746 	if (kind < 0) {
747 
748 		int val1 = asb100_read_value(new_client, ASB100_REG_BANK);
749 		int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
750 
751 		/* If we're in bank 0 */
752 		if ( (!(val1 & 0x07)) &&
753 				/* Check for ASB100 ID (low byte) */
754 				( ((!(val1 & 0x80)) && (val2 != 0x94)) ||
755 				/* Check for ASB100 ID (high byte ) */
756 				((val1 & 0x80) && (val2 != 0x06)) ) ) {
757 			pr_debug("asb100.o: detect failed, "
758 					"bad chip id 0x%02x!\n", val2);
759 			err = -ENODEV;
760 			goto ERROR1;
761 		}
762 
763 	} /* kind < 0 */
764 
765 	/* We have either had a force parameter, or we have already detected
766 	   Winbond. Put it now into bank 0 and Vendor ID High Byte */
767 	asb100_write_value(new_client, ASB100_REG_BANK,
768 		(asb100_read_value(new_client, ASB100_REG_BANK) & 0x78) | 0x80);
769 
770 	/* Determine the chip type. */
771 	if (kind <= 0) {
772 		int val1 = asb100_read_value(new_client, ASB100_REG_WCHIPID);
773 		int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
774 
775 		if ((val1 == 0x31) && (val2 == 0x06))
776 			kind = asb100;
777 		else {
778 			if (kind == 0)
779 				dev_warn(&new_client->dev, "ignoring "
780 					"'force' parameter for unknown chip "
781 					"at adapter %d, address 0x%02x.\n",
782 					i2c_adapter_id(adapter), address);
783 			err = -ENODEV;
784 			goto ERROR1;
785 		}
786 	}
787 
788 	/* Fill in remaining client fields and put it into the global list */
789 	strlcpy(new_client->name, "asb100", I2C_NAME_SIZE);
790 	data->type = kind;
791 
792 	data->valid = 0;
793 	mutex_init(&data->update_lock);
794 
795 	/* Tell the I2C layer a new client has arrived */
796 	if ((err = i2c_attach_client(new_client)))
797 		goto ERROR1;
798 
799 	/* Attach secondary lm75 clients */
800 	if ((err = asb100_detect_subclients(adapter, address, kind,
801 			new_client)))
802 		goto ERROR2;
803 
804 	/* Initialize the chip */
805 	asb100_init_client(new_client);
806 
807 	/* A few vars need to be filled upon startup */
808 	data->fan_min[0] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(0));
809 	data->fan_min[1] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(1));
810 	data->fan_min[2] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(2));
811 
812 	/* Register sysfs hooks */
813 	data->class_dev = hwmon_device_register(&new_client->dev);
814 	if (IS_ERR(data->class_dev)) {
815 		err = PTR_ERR(data->class_dev);
816 		goto ERROR3;
817 	}
818 
819 	device_create_file_in(new_client, 0);
820 	device_create_file_in(new_client, 1);
821 	device_create_file_in(new_client, 2);
822 	device_create_file_in(new_client, 3);
823 	device_create_file_in(new_client, 4);
824 	device_create_file_in(new_client, 5);
825 	device_create_file_in(new_client, 6);
826 
827 	device_create_file_fan(new_client, 1);
828 	device_create_file_fan(new_client, 2);
829 	device_create_file_fan(new_client, 3);
830 
831 	device_create_file_temp(new_client, 1);
832 	device_create_file_temp(new_client, 2);
833 	device_create_file_temp(new_client, 3);
834 	device_create_file_temp(new_client, 4);
835 
836 	device_create_file_vid(new_client);
837 	device_create_file_vrm(new_client);
838 
839 	device_create_file_alarms(new_client);
840 
841 	device_create_file_pwm1(new_client);
842 
843 	return 0;
844 
845 ERROR3:
846 	i2c_detach_client(data->lm75[1]);
847 	i2c_detach_client(data->lm75[0]);
848 	kfree(data->lm75[1]);
849 	kfree(data->lm75[0]);
850 ERROR2:
851 	i2c_detach_client(new_client);
852 ERROR1:
853 	kfree(data);
854 ERROR0:
855 	return err;
856 }
857 
858 static int asb100_detach_client(struct i2c_client *client)
859 {
860 	struct asb100_data *data = i2c_get_clientdata(client);
861 	int err;
862 
863 	/* main client */
864 	if (data)
865 		hwmon_device_unregister(data->class_dev);
866 
867 	if ((err = i2c_detach_client(client)))
868 		return err;
869 
870 	/* main client */
871 	if (data)
872 		kfree(data);
873 
874 	/* subclient */
875 	else
876 		kfree(client);
877 
878 	return 0;
879 }
880 
881 /* The SMBus locks itself, usually, but nothing may access the chip between
882    bank switches. */
883 static int asb100_read_value(struct i2c_client *client, u16 reg)
884 {
885 	struct asb100_data *data = i2c_get_clientdata(client);
886 	struct i2c_client *cl;
887 	int res, bank;
888 
889 	mutex_lock(&data->lock);
890 
891 	bank = (reg >> 8) & 0x0f;
892 	if (bank > 2)
893 		/* switch banks */
894 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
895 
896 	if (bank == 0 || bank > 2) {
897 		res = i2c_smbus_read_byte_data(client, reg & 0xff);
898 	} else {
899 		/* switch to subclient */
900 		cl = data->lm75[bank - 1];
901 
902 		/* convert from ISA to LM75 I2C addresses */
903 		switch (reg & 0xff) {
904 		case 0x50: /* TEMP */
905 			res = swab16(i2c_smbus_read_word_data (cl, 0));
906 			break;
907 		case 0x52: /* CONFIG */
908 			res = i2c_smbus_read_byte_data(cl, 1);
909 			break;
910 		case 0x53: /* HYST */
911 			res = swab16(i2c_smbus_read_word_data (cl, 2));
912 			break;
913 		case 0x55: /* MAX */
914 		default:
915 			res = swab16(i2c_smbus_read_word_data (cl, 3));
916 			break;
917 		}
918 	}
919 
920 	if (bank > 2)
921 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
922 
923 	mutex_unlock(&data->lock);
924 
925 	return res;
926 }
927 
928 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
929 {
930 	struct asb100_data *data = i2c_get_clientdata(client);
931 	struct i2c_client *cl;
932 	int bank;
933 
934 	mutex_lock(&data->lock);
935 
936 	bank = (reg >> 8) & 0x0f;
937 	if (bank > 2)
938 		/* switch banks */
939 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
940 
941 	if (bank == 0 || bank > 2) {
942 		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
943 	} else {
944 		/* switch to subclient */
945 		cl = data->lm75[bank - 1];
946 
947 		/* convert from ISA to LM75 I2C addresses */
948 		switch (reg & 0xff) {
949 		case 0x52: /* CONFIG */
950 			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
951 			break;
952 		case 0x53: /* HYST */
953 			i2c_smbus_write_word_data(cl, 2, swab16(value));
954 			break;
955 		case 0x55: /* MAX */
956 			i2c_smbus_write_word_data(cl, 3, swab16(value));
957 			break;
958 		}
959 	}
960 
961 	if (bank > 2)
962 		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
963 
964 	mutex_unlock(&data->lock);
965 }
966 
967 static void asb100_init_client(struct i2c_client *client)
968 {
969 	struct asb100_data *data = i2c_get_clientdata(client);
970 	int vid = 0;
971 
972 	vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f;
973 	vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4;
974 	data->vrm = vid_which_vrm();
975 	vid = vid_from_reg(vid, data->vrm);
976 
977 	/* Start monitoring */
978 	asb100_write_value(client, ASB100_REG_CONFIG,
979 		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
980 }
981 
982 static struct asb100_data *asb100_update_device(struct device *dev)
983 {
984 	struct i2c_client *client = to_i2c_client(dev);
985 	struct asb100_data *data = i2c_get_clientdata(client);
986 	int i;
987 
988 	mutex_lock(&data->update_lock);
989 
990 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
991 		|| !data->valid) {
992 
993 		dev_dbg(&client->dev, "starting device update...\n");
994 
995 		/* 7 voltage inputs */
996 		for (i = 0; i < 7; i++) {
997 			data->in[i] = asb100_read_value(client,
998 				ASB100_REG_IN(i));
999 			data->in_min[i] = asb100_read_value(client,
1000 				ASB100_REG_IN_MIN(i));
1001 			data->in_max[i] = asb100_read_value(client,
1002 				ASB100_REG_IN_MAX(i));
1003 		}
1004 
1005 		/* 3 fan inputs */
1006 		for (i = 0; i < 3; i++) {
1007 			data->fan[i] = asb100_read_value(client,
1008 					ASB100_REG_FAN(i));
1009 			data->fan_min[i] = asb100_read_value(client,
1010 					ASB100_REG_FAN_MIN(i));
1011 		}
1012 
1013 		/* 4 temperature inputs */
1014 		for (i = 1; i <= 4; i++) {
1015 			data->temp[i-1] = asb100_read_value(client,
1016 					ASB100_REG_TEMP(i));
1017 			data->temp_max[i-1] = asb100_read_value(client,
1018 					ASB100_REG_TEMP_MAX(i));
1019 			data->temp_hyst[i-1] = asb100_read_value(client,
1020 					ASB100_REG_TEMP_HYST(i));
1021 		}
1022 
1023 		/* VID and fan divisors */
1024 		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
1025 		data->vid = i & 0x0f;
1026 		data->vid |= (asb100_read_value(client,
1027 				ASB100_REG_CHIPID) & 0x01) << 4;
1028 		data->fan_div[0] = (i >> 4) & 0x03;
1029 		data->fan_div[1] = (i >> 6) & 0x03;
1030 		data->fan_div[2] = (asb100_read_value(client,
1031 				ASB100_REG_PIN) >> 6) & 0x03;
1032 
1033 		/* PWM */
1034 		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1035 
1036 		/* alarms */
1037 		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1038 			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1039 
1040 		data->last_updated = jiffies;
1041 		data->valid = 1;
1042 
1043 		dev_dbg(&client->dev, "... device update complete\n");
1044 	}
1045 
1046 	mutex_unlock(&data->update_lock);
1047 
1048 	return data;
1049 }
1050 
1051 static int __init asb100_init(void)
1052 {
1053 	return i2c_add_driver(&asb100_driver);
1054 }
1055 
1056 static void __exit asb100_exit(void)
1057 {
1058 	i2c_del_driver(&asb100_driver);
1059 }
1060 
1061 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1062 MODULE_DESCRIPTION("ASB100 Bach driver");
1063 MODULE_LICENSE("GPL");
1064 
1065 module_init(asb100_init);
1066 module_exit(asb100_exit);
1067 
1068