1 /* 2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware 3 monitoring 4 5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> 6 7 (derived from w83781d.c) 8 9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, 10 Philip Edelbrock <phil@netroedge.com>, and 11 Mark Studebaker <mdsxyz123@yahoo.com> 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 28 /* 29 This driver supports the hardware sensor chips: Asus ASB100 and 30 ASB100-A "BACH". 31 32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known 33 way for the driver to tell which one is there. 34 35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 36 asb100 7 3 1 4 0x31 0x0694 yes no 37 */ 38 39 #include <linux/module.h> 40 #include <linux/slab.h> 41 #include <linux/i2c.h> 42 #include <linux/hwmon.h> 43 #include <linux/hwmon-vid.h> 44 #include <linux/err.h> 45 #include <linux/init.h> 46 #include <linux/jiffies.h> 47 #include <linux/mutex.h> 48 #include "lm75.h" 49 50 /* 51 HISTORY: 52 2003-12-29 1.0.0 Ported from lm_sensors project for kernel 2.6 53 */ 54 #define ASB100_VERSION "1.0.0" 55 56 /* I2C addresses to scan */ 57 static unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; 58 59 /* Insmod parameters */ 60 I2C_CLIENT_INSMOD_1(asb100); 61 I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: " 62 "{bus, clientaddr, subclientaddr1, subclientaddr2}"); 63 64 /* Voltage IN registers 0-6 */ 65 #define ASB100_REG_IN(nr) (0x20 + (nr)) 66 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) 67 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) 68 69 /* FAN IN registers 1-3 */ 70 #define ASB100_REG_FAN(nr) (0x28 + (nr)) 71 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) 72 73 /* TEMPERATURE registers 1-4 */ 74 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; 75 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; 76 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; 77 78 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) 79 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) 80 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) 81 82 #define ASB100_REG_TEMP2_CONFIG 0x0152 83 #define ASB100_REG_TEMP3_CONFIG 0x0252 84 85 86 #define ASB100_REG_CONFIG 0x40 87 #define ASB100_REG_ALARM1 0x41 88 #define ASB100_REG_ALARM2 0x42 89 #define ASB100_REG_SMIM1 0x43 90 #define ASB100_REG_SMIM2 0x44 91 #define ASB100_REG_VID_FANDIV 0x47 92 #define ASB100_REG_I2C_ADDR 0x48 93 #define ASB100_REG_CHIPID 0x49 94 #define ASB100_REG_I2C_SUBADDR 0x4a 95 #define ASB100_REG_PIN 0x4b 96 #define ASB100_REG_IRQ 0x4c 97 #define ASB100_REG_BANK 0x4e 98 #define ASB100_REG_CHIPMAN 0x4f 99 100 #define ASB100_REG_WCHIPID 0x58 101 102 /* bit 7 -> enable, bits 0-3 -> duty cycle */ 103 #define ASB100_REG_PWM1 0x59 104 105 /* CONVERSIONS 106 Rounding and limit checking is only done on the TO_REG variants. */ 107 108 /* These constants are a guess, consistent w/ w83781d */ 109 #define ASB100_IN_MIN ( 0) 110 #define ASB100_IN_MAX (4080) 111 112 /* IN: 1/1000 V (0V to 4.08V) 113 REG: 16mV/bit */ 114 static u8 IN_TO_REG(unsigned val) 115 { 116 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX); 117 return (nval + 8) / 16; 118 } 119 120 static unsigned IN_FROM_REG(u8 reg) 121 { 122 return reg * 16; 123 } 124 125 static u8 FAN_TO_REG(long rpm, int div) 126 { 127 if (rpm == -1) 128 return 0; 129 if (rpm == 0) 130 return 255; 131 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 132 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 133 } 134 135 static int FAN_FROM_REG(u8 val, int div) 136 { 137 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div); 138 } 139 140 /* These constants are a guess, consistent w/ w83781d */ 141 #define ASB100_TEMP_MIN (-128000) 142 #define ASB100_TEMP_MAX ( 127000) 143 144 /* TEMP: 0.001C/bit (-128C to +127C) 145 REG: 1C/bit, two's complement */ 146 static u8 TEMP_TO_REG(int temp) 147 { 148 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); 149 ntemp += (ntemp<0 ? -500 : 500); 150 return (u8)(ntemp / 1000); 151 } 152 153 static int TEMP_FROM_REG(u8 reg) 154 { 155 return (s8)reg * 1000; 156 } 157 158 /* PWM: 0 - 255 per sensors documentation 159 REG: (6.25% duty cycle per bit) */ 160 static u8 ASB100_PWM_TO_REG(int pwm) 161 { 162 pwm = SENSORS_LIMIT(pwm, 0, 255); 163 return (u8)(pwm / 16); 164 } 165 166 static int ASB100_PWM_FROM_REG(u8 reg) 167 { 168 return reg * 16; 169 } 170 171 #define DIV_FROM_REG(val) (1 << (val)) 172 173 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2) 174 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */ 175 static u8 DIV_TO_REG(long val) 176 { 177 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1; 178 } 179 180 /* For each registered client, we need to keep some data in memory. That 181 data is pointed to by client->data. The structure itself is 182 dynamically allocated, at the same time the client itself is allocated. */ 183 struct asb100_data { 184 struct i2c_client client; 185 struct class_device *class_dev; 186 struct mutex lock; 187 enum chips type; 188 189 struct mutex update_lock; 190 unsigned long last_updated; /* In jiffies */ 191 192 /* array of 2 pointers to subclients */ 193 struct i2c_client *lm75[2]; 194 195 char valid; /* !=0 if following fields are valid */ 196 u8 in[7]; /* Register value */ 197 u8 in_max[7]; /* Register value */ 198 u8 in_min[7]; /* Register value */ 199 u8 fan[3]; /* Register value */ 200 u8 fan_min[3]; /* Register value */ 201 u16 temp[4]; /* Register value (0 and 3 are u8 only) */ 202 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ 203 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ 204 u8 fan_div[3]; /* Register encoding, right justified */ 205 u8 pwm; /* Register encoding */ 206 u8 vid; /* Register encoding, combined */ 207 u32 alarms; /* Register encoding, combined */ 208 u8 vrm; 209 }; 210 211 static int asb100_read_value(struct i2c_client *client, u16 reg); 212 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); 213 214 static int asb100_attach_adapter(struct i2c_adapter *adapter); 215 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind); 216 static int asb100_detach_client(struct i2c_client *client); 217 static struct asb100_data *asb100_update_device(struct device *dev); 218 static void asb100_init_client(struct i2c_client *client); 219 220 static struct i2c_driver asb100_driver = { 221 .driver = { 222 .name = "asb100", 223 }, 224 .id = I2C_DRIVERID_ASB100, 225 .attach_adapter = asb100_attach_adapter, 226 .detach_client = asb100_detach_client, 227 }; 228 229 /* 7 Voltages */ 230 #define show_in_reg(reg) \ 231 static ssize_t show_##reg (struct device *dev, char *buf, int nr) \ 232 { \ 233 struct asb100_data *data = asb100_update_device(dev); \ 234 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 235 } 236 237 show_in_reg(in) 238 show_in_reg(in_min) 239 show_in_reg(in_max) 240 241 #define set_in_reg(REG, reg) \ 242 static ssize_t set_in_##reg(struct device *dev, const char *buf, \ 243 size_t count, int nr) \ 244 { \ 245 struct i2c_client *client = to_i2c_client(dev); \ 246 struct asb100_data *data = i2c_get_clientdata(client); \ 247 unsigned long val = simple_strtoul(buf, NULL, 10); \ 248 \ 249 mutex_lock(&data->update_lock); \ 250 data->in_##reg[nr] = IN_TO_REG(val); \ 251 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ 252 data->in_##reg[nr]); \ 253 mutex_unlock(&data->update_lock); \ 254 return count; \ 255 } 256 257 set_in_reg(MIN, min) 258 set_in_reg(MAX, max) 259 260 #define sysfs_in(offset) \ 261 static ssize_t \ 262 show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \ 263 { \ 264 return show_in(dev, buf, offset); \ 265 } \ 266 static DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 267 show_in##offset, NULL); \ 268 static ssize_t \ 269 show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \ 270 { \ 271 return show_in_min(dev, buf, offset); \ 272 } \ 273 static ssize_t \ 274 show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \ 275 { \ 276 return show_in_max(dev, buf, offset); \ 277 } \ 278 static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \ 279 const char *buf, size_t count) \ 280 { \ 281 return set_in_min(dev, buf, count, offset); \ 282 } \ 283 static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \ 284 const char *buf, size_t count) \ 285 { \ 286 return set_in_max(dev, buf, count, offset); \ 287 } \ 288 static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 289 show_in##offset##_min, set_in##offset##_min); \ 290 static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 291 show_in##offset##_max, set_in##offset##_max); 292 293 sysfs_in(0); 294 sysfs_in(1); 295 sysfs_in(2); 296 sysfs_in(3); 297 sysfs_in(4); 298 sysfs_in(5); 299 sysfs_in(6); 300 301 #define device_create_file_in(client, offset) do { \ 302 device_create_file(&client->dev, &dev_attr_in##offset##_input); \ 303 device_create_file(&client->dev, &dev_attr_in##offset##_min); \ 304 device_create_file(&client->dev, &dev_attr_in##offset##_max); \ 305 } while (0) 306 307 /* 3 Fans */ 308 static ssize_t show_fan(struct device *dev, char *buf, int nr) 309 { 310 struct asb100_data *data = asb100_update_device(dev); 311 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 312 DIV_FROM_REG(data->fan_div[nr]))); 313 } 314 315 static ssize_t show_fan_min(struct device *dev, char *buf, int nr) 316 { 317 struct asb100_data *data = asb100_update_device(dev); 318 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 319 DIV_FROM_REG(data->fan_div[nr]))); 320 } 321 322 static ssize_t show_fan_div(struct device *dev, char *buf, int nr) 323 { 324 struct asb100_data *data = asb100_update_device(dev); 325 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 326 } 327 328 static ssize_t set_fan_min(struct device *dev, const char *buf, 329 size_t count, int nr) 330 { 331 struct i2c_client *client = to_i2c_client(dev); 332 struct asb100_data *data = i2c_get_clientdata(client); 333 u32 val = simple_strtoul(buf, NULL, 10); 334 335 mutex_lock(&data->update_lock); 336 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 337 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 338 mutex_unlock(&data->update_lock); 339 return count; 340 } 341 342 /* Note: we save and restore the fan minimum here, because its value is 343 determined in part by the fan divisor. This follows the principle of 344 least surprise; the user doesn't expect the fan minimum to change just 345 because the divisor changed. */ 346 static ssize_t set_fan_div(struct device *dev, const char *buf, 347 size_t count, int nr) 348 { 349 struct i2c_client *client = to_i2c_client(dev); 350 struct asb100_data *data = i2c_get_clientdata(client); 351 unsigned long min; 352 unsigned long val = simple_strtoul(buf, NULL, 10); 353 int reg; 354 355 mutex_lock(&data->update_lock); 356 357 min = FAN_FROM_REG(data->fan_min[nr], 358 DIV_FROM_REG(data->fan_div[nr])); 359 data->fan_div[nr] = DIV_TO_REG(val); 360 361 switch(nr) { 362 case 0: /* fan 1 */ 363 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 364 reg = (reg & 0xcf) | (data->fan_div[0] << 4); 365 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 366 break; 367 368 case 1: /* fan 2 */ 369 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 370 reg = (reg & 0x3f) | (data->fan_div[1] << 6); 371 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 372 break; 373 374 case 2: /* fan 3 */ 375 reg = asb100_read_value(client, ASB100_REG_PIN); 376 reg = (reg & 0x3f) | (data->fan_div[2] << 6); 377 asb100_write_value(client, ASB100_REG_PIN, reg); 378 break; 379 } 380 381 data->fan_min[nr] = 382 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 383 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 384 385 mutex_unlock(&data->update_lock); 386 387 return count; 388 } 389 390 #define sysfs_fan(offset) \ 391 static ssize_t show_fan##offset(struct device *dev, struct device_attribute *attr, char *buf) \ 392 { \ 393 return show_fan(dev, buf, offset - 1); \ 394 } \ 395 static ssize_t show_fan##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \ 396 { \ 397 return show_fan_min(dev, buf, offset - 1); \ 398 } \ 399 static ssize_t show_fan##offset##_div(struct device *dev, struct device_attribute *attr, char *buf) \ 400 { \ 401 return show_fan_div(dev, buf, offset - 1); \ 402 } \ 403 static ssize_t set_fan##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \ 404 size_t count) \ 405 { \ 406 return set_fan_min(dev, buf, count, offset - 1); \ 407 } \ 408 static ssize_t set_fan##offset##_div(struct device *dev, struct device_attribute *attr, const char *buf, \ 409 size_t count) \ 410 { \ 411 return set_fan_div(dev, buf, count, offset - 1); \ 412 } \ 413 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 414 show_fan##offset, NULL); \ 415 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 416 show_fan##offset##_min, set_fan##offset##_min); \ 417 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 418 show_fan##offset##_div, set_fan##offset##_div); 419 420 sysfs_fan(1); 421 sysfs_fan(2); 422 sysfs_fan(3); 423 424 #define device_create_file_fan(client, offset) do { \ 425 device_create_file(&client->dev, &dev_attr_fan##offset##_input); \ 426 device_create_file(&client->dev, &dev_attr_fan##offset##_min); \ 427 device_create_file(&client->dev, &dev_attr_fan##offset##_div); \ 428 } while (0) 429 430 /* 4 Temp. Sensors */ 431 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) 432 { 433 int ret = 0; 434 435 switch (nr) { 436 case 1: case 2: 437 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); 438 break; 439 case 0: case 3: default: 440 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); 441 break; 442 } 443 return ret; 444 } 445 446 #define show_temp_reg(reg) \ 447 static ssize_t show_##reg(struct device *dev, char *buf, int nr) \ 448 { \ 449 struct asb100_data *data = asb100_update_device(dev); \ 450 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ 451 } 452 453 show_temp_reg(temp); 454 show_temp_reg(temp_max); 455 show_temp_reg(temp_hyst); 456 457 #define set_temp_reg(REG, reg) \ 458 static ssize_t set_##reg(struct device *dev, const char *buf, \ 459 size_t count, int nr) \ 460 { \ 461 struct i2c_client *client = to_i2c_client(dev); \ 462 struct asb100_data *data = i2c_get_clientdata(client); \ 463 unsigned long val = simple_strtoul(buf, NULL, 10); \ 464 \ 465 mutex_lock(&data->update_lock); \ 466 switch (nr) { \ 467 case 1: case 2: \ 468 data->reg[nr] = LM75_TEMP_TO_REG(val); \ 469 break; \ 470 case 0: case 3: default: \ 471 data->reg[nr] = TEMP_TO_REG(val); \ 472 break; \ 473 } \ 474 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ 475 data->reg[nr]); \ 476 mutex_unlock(&data->update_lock); \ 477 return count; \ 478 } 479 480 set_temp_reg(MAX, temp_max); 481 set_temp_reg(HYST, temp_hyst); 482 483 #define sysfs_temp(num) \ 484 static ssize_t show_temp##num(struct device *dev, struct device_attribute *attr, char *buf) \ 485 { \ 486 return show_temp(dev, buf, num-1); \ 487 } \ 488 static DEVICE_ATTR(temp##num##_input, S_IRUGO, show_temp##num, NULL); \ 489 static ssize_t show_temp_max##num(struct device *dev, struct device_attribute *attr, char *buf) \ 490 { \ 491 return show_temp_max(dev, buf, num-1); \ 492 } \ 493 static ssize_t set_temp_max##num(struct device *dev, struct device_attribute *attr, const char *buf, \ 494 size_t count) \ 495 { \ 496 return set_temp_max(dev, buf, count, num-1); \ 497 } \ 498 static DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ 499 show_temp_max##num, set_temp_max##num); \ 500 static ssize_t show_temp_hyst##num(struct device *dev, struct device_attribute *attr, char *buf) \ 501 { \ 502 return show_temp_hyst(dev, buf, num-1); \ 503 } \ 504 static ssize_t set_temp_hyst##num(struct device *dev, struct device_attribute *attr, const char *buf, \ 505 size_t count) \ 506 { \ 507 return set_temp_hyst(dev, buf, count, num-1); \ 508 } \ 509 static DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ 510 show_temp_hyst##num, set_temp_hyst##num); 511 512 sysfs_temp(1); 513 sysfs_temp(2); 514 sysfs_temp(3); 515 sysfs_temp(4); 516 517 /* VID */ 518 #define device_create_file_temp(client, num) do { \ 519 device_create_file(&client->dev, &dev_attr_temp##num##_input); \ 520 device_create_file(&client->dev, &dev_attr_temp##num##_max); \ 521 device_create_file(&client->dev, &dev_attr_temp##num##_max_hyst); \ 522 } while (0) 523 524 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf) 525 { 526 struct asb100_data *data = asb100_update_device(dev); 527 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 528 } 529 530 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); 531 #define device_create_file_vid(client) \ 532 device_create_file(&client->dev, &dev_attr_cpu0_vid) 533 534 /* VRM */ 535 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf) 536 { 537 struct asb100_data *data = asb100_update_device(dev); 538 return sprintf(buf, "%d\n", data->vrm); 539 } 540 541 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 542 { 543 struct i2c_client *client = to_i2c_client(dev); 544 struct asb100_data *data = i2c_get_clientdata(client); 545 unsigned long val = simple_strtoul(buf, NULL, 10); 546 data->vrm = val; 547 return count; 548 } 549 550 /* Alarms */ 551 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm); 552 #define device_create_file_vrm(client) \ 553 device_create_file(&client->dev, &dev_attr_vrm); 554 555 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct asb100_data *data = asb100_update_device(dev); 558 return sprintf(buf, "%u\n", data->alarms); 559 } 560 561 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 562 #define device_create_file_alarms(client) \ 563 device_create_file(&client->dev, &dev_attr_alarms) 564 565 /* 1 PWM */ 566 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, char *buf) 567 { 568 struct asb100_data *data = asb100_update_device(dev); 569 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); 570 } 571 572 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 573 { 574 struct i2c_client *client = to_i2c_client(dev); 575 struct asb100_data *data = i2c_get_clientdata(client); 576 unsigned long val = simple_strtoul(buf, NULL, 10); 577 578 mutex_lock(&data->update_lock); 579 data->pwm &= 0x80; /* keep the enable bit */ 580 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); 581 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 582 mutex_unlock(&data->update_lock); 583 return count; 584 } 585 586 static ssize_t show_pwm_enable1(struct device *dev, struct device_attribute *attr, char *buf) 587 { 588 struct asb100_data *data = asb100_update_device(dev); 589 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); 590 } 591 592 static ssize_t set_pwm_enable1(struct device *dev, struct device_attribute *attr, const char *buf, 593 size_t count) 594 { 595 struct i2c_client *client = to_i2c_client(dev); 596 struct asb100_data *data = i2c_get_clientdata(client); 597 unsigned long val = simple_strtoul(buf, NULL, 10); 598 599 mutex_lock(&data->update_lock); 600 data->pwm &= 0x0f; /* keep the duty cycle bits */ 601 data->pwm |= (val ? 0x80 : 0x00); 602 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 603 mutex_unlock(&data->update_lock); 604 return count; 605 } 606 607 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1); 608 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, 609 show_pwm_enable1, set_pwm_enable1); 610 #define device_create_file_pwm1(client) do { \ 611 device_create_file(&new_client->dev, &dev_attr_pwm1); \ 612 device_create_file(&new_client->dev, &dev_attr_pwm1_enable); \ 613 } while (0) 614 615 /* This function is called when: 616 asb100_driver is inserted (when this module is loaded), for each 617 available adapter 618 when a new adapter is inserted (and asb100_driver is still present) 619 */ 620 static int asb100_attach_adapter(struct i2c_adapter *adapter) 621 { 622 if (!(adapter->class & I2C_CLASS_HWMON)) 623 return 0; 624 return i2c_probe(adapter, &addr_data, asb100_detect); 625 } 626 627 static int asb100_detect_subclients(struct i2c_adapter *adapter, int address, 628 int kind, struct i2c_client *new_client) 629 { 630 int i, id, err; 631 struct asb100_data *data = i2c_get_clientdata(new_client); 632 633 data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); 634 if (!(data->lm75[0])) { 635 err = -ENOMEM; 636 goto ERROR_SC_0; 637 } 638 639 data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); 640 if (!(data->lm75[1])) { 641 err = -ENOMEM; 642 goto ERROR_SC_1; 643 } 644 645 id = i2c_adapter_id(adapter); 646 647 if (force_subclients[0] == id && force_subclients[1] == address) { 648 for (i = 2; i <= 3; i++) { 649 if (force_subclients[i] < 0x48 || 650 force_subclients[i] > 0x4f) { 651 dev_err(&new_client->dev, "invalid subclient " 652 "address %d; must be 0x48-0x4f\n", 653 force_subclients[i]); 654 err = -ENODEV; 655 goto ERROR_SC_2; 656 } 657 } 658 asb100_write_value(new_client, ASB100_REG_I2C_SUBADDR, 659 (force_subclients[2] & 0x07) | 660 ((force_subclients[3] & 0x07) <<4)); 661 data->lm75[0]->addr = force_subclients[2]; 662 data->lm75[1]->addr = force_subclients[3]; 663 } else { 664 int val = asb100_read_value(new_client, ASB100_REG_I2C_SUBADDR); 665 data->lm75[0]->addr = 0x48 + (val & 0x07); 666 data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07); 667 } 668 669 if(data->lm75[0]->addr == data->lm75[1]->addr) { 670 dev_err(&new_client->dev, "duplicate addresses 0x%x " 671 "for subclients\n", data->lm75[0]->addr); 672 err = -ENODEV; 673 goto ERROR_SC_2; 674 } 675 676 for (i = 0; i <= 1; i++) { 677 i2c_set_clientdata(data->lm75[i], NULL); 678 data->lm75[i]->adapter = adapter; 679 data->lm75[i]->driver = &asb100_driver; 680 data->lm75[i]->flags = 0; 681 strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE); 682 } 683 684 if ((err = i2c_attach_client(data->lm75[0]))) { 685 dev_err(&new_client->dev, "subclient %d registration " 686 "at address 0x%x failed.\n", i, data->lm75[0]->addr); 687 goto ERROR_SC_2; 688 } 689 690 if ((err = i2c_attach_client(data->lm75[1]))) { 691 dev_err(&new_client->dev, "subclient %d registration " 692 "at address 0x%x failed.\n", i, data->lm75[1]->addr); 693 goto ERROR_SC_3; 694 } 695 696 return 0; 697 698 /* Undo inits in case of errors */ 699 ERROR_SC_3: 700 i2c_detach_client(data->lm75[0]); 701 ERROR_SC_2: 702 kfree(data->lm75[1]); 703 ERROR_SC_1: 704 kfree(data->lm75[0]); 705 ERROR_SC_0: 706 return err; 707 } 708 709 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind) 710 { 711 int err; 712 struct i2c_client *new_client; 713 struct asb100_data *data; 714 715 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 716 pr_debug("asb100.o: detect failed, " 717 "smbus byte data not supported!\n"); 718 err = -ENODEV; 719 goto ERROR0; 720 } 721 722 /* OK. For now, we presume we have a valid client. We now create the 723 client structure, even though we cannot fill it completely yet. 724 But it allows us to access asb100_{read,write}_value. */ 725 726 if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) { 727 pr_debug("asb100.o: detect failed, kzalloc failed!\n"); 728 err = -ENOMEM; 729 goto ERROR0; 730 } 731 732 new_client = &data->client; 733 mutex_init(&data->lock); 734 i2c_set_clientdata(new_client, data); 735 new_client->addr = address; 736 new_client->adapter = adapter; 737 new_client->driver = &asb100_driver; 738 new_client->flags = 0; 739 740 /* Now, we do the remaining detection. */ 741 742 /* The chip may be stuck in some other bank than bank 0. This may 743 make reading other information impossible. Specify a force=... or 744 force_*=... parameter, and the chip will be reset to the right 745 bank. */ 746 if (kind < 0) { 747 748 int val1 = asb100_read_value(new_client, ASB100_REG_BANK); 749 int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN); 750 751 /* If we're in bank 0 */ 752 if ( (!(val1 & 0x07)) && 753 /* Check for ASB100 ID (low byte) */ 754 ( ((!(val1 & 0x80)) && (val2 != 0x94)) || 755 /* Check for ASB100 ID (high byte ) */ 756 ((val1 & 0x80) && (val2 != 0x06)) ) ) { 757 pr_debug("asb100.o: detect failed, " 758 "bad chip id 0x%02x!\n", val2); 759 err = -ENODEV; 760 goto ERROR1; 761 } 762 763 } /* kind < 0 */ 764 765 /* We have either had a force parameter, or we have already detected 766 Winbond. Put it now into bank 0 and Vendor ID High Byte */ 767 asb100_write_value(new_client, ASB100_REG_BANK, 768 (asb100_read_value(new_client, ASB100_REG_BANK) & 0x78) | 0x80); 769 770 /* Determine the chip type. */ 771 if (kind <= 0) { 772 int val1 = asb100_read_value(new_client, ASB100_REG_WCHIPID); 773 int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN); 774 775 if ((val1 == 0x31) && (val2 == 0x06)) 776 kind = asb100; 777 else { 778 if (kind == 0) 779 dev_warn(&new_client->dev, "ignoring " 780 "'force' parameter for unknown chip " 781 "at adapter %d, address 0x%02x.\n", 782 i2c_adapter_id(adapter), address); 783 err = -ENODEV; 784 goto ERROR1; 785 } 786 } 787 788 /* Fill in remaining client fields and put it into the global list */ 789 strlcpy(new_client->name, "asb100", I2C_NAME_SIZE); 790 data->type = kind; 791 792 data->valid = 0; 793 mutex_init(&data->update_lock); 794 795 /* Tell the I2C layer a new client has arrived */ 796 if ((err = i2c_attach_client(new_client))) 797 goto ERROR1; 798 799 /* Attach secondary lm75 clients */ 800 if ((err = asb100_detect_subclients(adapter, address, kind, 801 new_client))) 802 goto ERROR2; 803 804 /* Initialize the chip */ 805 asb100_init_client(new_client); 806 807 /* A few vars need to be filled upon startup */ 808 data->fan_min[0] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(0)); 809 data->fan_min[1] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(1)); 810 data->fan_min[2] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(2)); 811 812 /* Register sysfs hooks */ 813 data->class_dev = hwmon_device_register(&new_client->dev); 814 if (IS_ERR(data->class_dev)) { 815 err = PTR_ERR(data->class_dev); 816 goto ERROR3; 817 } 818 819 device_create_file_in(new_client, 0); 820 device_create_file_in(new_client, 1); 821 device_create_file_in(new_client, 2); 822 device_create_file_in(new_client, 3); 823 device_create_file_in(new_client, 4); 824 device_create_file_in(new_client, 5); 825 device_create_file_in(new_client, 6); 826 827 device_create_file_fan(new_client, 1); 828 device_create_file_fan(new_client, 2); 829 device_create_file_fan(new_client, 3); 830 831 device_create_file_temp(new_client, 1); 832 device_create_file_temp(new_client, 2); 833 device_create_file_temp(new_client, 3); 834 device_create_file_temp(new_client, 4); 835 836 device_create_file_vid(new_client); 837 device_create_file_vrm(new_client); 838 839 device_create_file_alarms(new_client); 840 841 device_create_file_pwm1(new_client); 842 843 return 0; 844 845 ERROR3: 846 i2c_detach_client(data->lm75[1]); 847 i2c_detach_client(data->lm75[0]); 848 kfree(data->lm75[1]); 849 kfree(data->lm75[0]); 850 ERROR2: 851 i2c_detach_client(new_client); 852 ERROR1: 853 kfree(data); 854 ERROR0: 855 return err; 856 } 857 858 static int asb100_detach_client(struct i2c_client *client) 859 { 860 struct asb100_data *data = i2c_get_clientdata(client); 861 int err; 862 863 /* main client */ 864 if (data) 865 hwmon_device_unregister(data->class_dev); 866 867 if ((err = i2c_detach_client(client))) 868 return err; 869 870 /* main client */ 871 if (data) 872 kfree(data); 873 874 /* subclient */ 875 else 876 kfree(client); 877 878 return 0; 879 } 880 881 /* The SMBus locks itself, usually, but nothing may access the chip between 882 bank switches. */ 883 static int asb100_read_value(struct i2c_client *client, u16 reg) 884 { 885 struct asb100_data *data = i2c_get_clientdata(client); 886 struct i2c_client *cl; 887 int res, bank; 888 889 mutex_lock(&data->lock); 890 891 bank = (reg >> 8) & 0x0f; 892 if (bank > 2) 893 /* switch banks */ 894 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 895 896 if (bank == 0 || bank > 2) { 897 res = i2c_smbus_read_byte_data(client, reg & 0xff); 898 } else { 899 /* switch to subclient */ 900 cl = data->lm75[bank - 1]; 901 902 /* convert from ISA to LM75 I2C addresses */ 903 switch (reg & 0xff) { 904 case 0x50: /* TEMP */ 905 res = swab16(i2c_smbus_read_word_data (cl, 0)); 906 break; 907 case 0x52: /* CONFIG */ 908 res = i2c_smbus_read_byte_data(cl, 1); 909 break; 910 case 0x53: /* HYST */ 911 res = swab16(i2c_smbus_read_word_data (cl, 2)); 912 break; 913 case 0x55: /* MAX */ 914 default: 915 res = swab16(i2c_smbus_read_word_data (cl, 3)); 916 break; 917 } 918 } 919 920 if (bank > 2) 921 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 922 923 mutex_unlock(&data->lock); 924 925 return res; 926 } 927 928 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) 929 { 930 struct asb100_data *data = i2c_get_clientdata(client); 931 struct i2c_client *cl; 932 int bank; 933 934 mutex_lock(&data->lock); 935 936 bank = (reg >> 8) & 0x0f; 937 if (bank > 2) 938 /* switch banks */ 939 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 940 941 if (bank == 0 || bank > 2) { 942 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); 943 } else { 944 /* switch to subclient */ 945 cl = data->lm75[bank - 1]; 946 947 /* convert from ISA to LM75 I2C addresses */ 948 switch (reg & 0xff) { 949 case 0x52: /* CONFIG */ 950 i2c_smbus_write_byte_data(cl, 1, value & 0xff); 951 break; 952 case 0x53: /* HYST */ 953 i2c_smbus_write_word_data(cl, 2, swab16(value)); 954 break; 955 case 0x55: /* MAX */ 956 i2c_smbus_write_word_data(cl, 3, swab16(value)); 957 break; 958 } 959 } 960 961 if (bank > 2) 962 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 963 964 mutex_unlock(&data->lock); 965 } 966 967 static void asb100_init_client(struct i2c_client *client) 968 { 969 struct asb100_data *data = i2c_get_clientdata(client); 970 int vid = 0; 971 972 vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f; 973 vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4; 974 data->vrm = vid_which_vrm(); 975 vid = vid_from_reg(vid, data->vrm); 976 977 /* Start monitoring */ 978 asb100_write_value(client, ASB100_REG_CONFIG, 979 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); 980 } 981 982 static struct asb100_data *asb100_update_device(struct device *dev) 983 { 984 struct i2c_client *client = to_i2c_client(dev); 985 struct asb100_data *data = i2c_get_clientdata(client); 986 int i; 987 988 mutex_lock(&data->update_lock); 989 990 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 991 || !data->valid) { 992 993 dev_dbg(&client->dev, "starting device update...\n"); 994 995 /* 7 voltage inputs */ 996 for (i = 0; i < 7; i++) { 997 data->in[i] = asb100_read_value(client, 998 ASB100_REG_IN(i)); 999 data->in_min[i] = asb100_read_value(client, 1000 ASB100_REG_IN_MIN(i)); 1001 data->in_max[i] = asb100_read_value(client, 1002 ASB100_REG_IN_MAX(i)); 1003 } 1004 1005 /* 3 fan inputs */ 1006 for (i = 0; i < 3; i++) { 1007 data->fan[i] = asb100_read_value(client, 1008 ASB100_REG_FAN(i)); 1009 data->fan_min[i] = asb100_read_value(client, 1010 ASB100_REG_FAN_MIN(i)); 1011 } 1012 1013 /* 4 temperature inputs */ 1014 for (i = 1; i <= 4; i++) { 1015 data->temp[i-1] = asb100_read_value(client, 1016 ASB100_REG_TEMP(i)); 1017 data->temp_max[i-1] = asb100_read_value(client, 1018 ASB100_REG_TEMP_MAX(i)); 1019 data->temp_hyst[i-1] = asb100_read_value(client, 1020 ASB100_REG_TEMP_HYST(i)); 1021 } 1022 1023 /* VID and fan divisors */ 1024 i = asb100_read_value(client, ASB100_REG_VID_FANDIV); 1025 data->vid = i & 0x0f; 1026 data->vid |= (asb100_read_value(client, 1027 ASB100_REG_CHIPID) & 0x01) << 4; 1028 data->fan_div[0] = (i >> 4) & 0x03; 1029 data->fan_div[1] = (i >> 6) & 0x03; 1030 data->fan_div[2] = (asb100_read_value(client, 1031 ASB100_REG_PIN) >> 6) & 0x03; 1032 1033 /* PWM */ 1034 data->pwm = asb100_read_value(client, ASB100_REG_PWM1); 1035 1036 /* alarms */ 1037 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + 1038 (asb100_read_value(client, ASB100_REG_ALARM2) << 8); 1039 1040 data->last_updated = jiffies; 1041 data->valid = 1; 1042 1043 dev_dbg(&client->dev, "... device update complete\n"); 1044 } 1045 1046 mutex_unlock(&data->update_lock); 1047 1048 return data; 1049 } 1050 1051 static int __init asb100_init(void) 1052 { 1053 return i2c_add_driver(&asb100_driver); 1054 } 1055 1056 static void __exit asb100_exit(void) 1057 { 1058 i2c_del_driver(&asb100_driver); 1059 } 1060 1061 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); 1062 MODULE_DESCRIPTION("ASB100 Bach driver"); 1063 MODULE_LICENSE("GPL"); 1064 1065 module_init(asb100_init); 1066 module_exit(asb100_exit); 1067 1068