1 /* 2 * asb100.c - Part of lm_sensors, Linux kernel modules for hardware 3 * monitoring 4 * 5 * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> 6 * 7 * (derived from w83781d.c) 8 * 9 * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, 10 * Philip Edelbrock <phil@netroedge.com>, and 11 * Mark Studebaker <mdsxyz123@yahoo.com> 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 28 /* 29 * This driver supports the hardware sensor chips: Asus ASB100 and 30 * ASB100-A "BACH". 31 * 32 * ASB100-A supports pwm1, while plain ASB100 does not. There is no known 33 * way for the driver to tell which one is there. 34 * 35 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA 36 * asb100 7 3 1 4 0x31 0x0694 yes no 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/slab.h> 43 #include <linux/i2c.h> 44 #include <linux/hwmon.h> 45 #include <linux/hwmon-sysfs.h> 46 #include <linux/hwmon-vid.h> 47 #include <linux/err.h> 48 #include <linux/init.h> 49 #include <linux/jiffies.h> 50 #include <linux/mutex.h> 51 #include "lm75.h" 52 53 /* I2C addresses to scan */ 54 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; 55 56 static unsigned short force_subclients[4]; 57 module_param_array(force_subclients, short, NULL, 0); 58 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: " 59 "{bus, clientaddr, subclientaddr1, subclientaddr2}"); 60 61 /* Voltage IN registers 0-6 */ 62 #define ASB100_REG_IN(nr) (0x20 + (nr)) 63 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) 64 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) 65 66 /* FAN IN registers 1-3 */ 67 #define ASB100_REG_FAN(nr) (0x28 + (nr)) 68 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) 69 70 /* TEMPERATURE registers 1-4 */ 71 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; 72 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; 73 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; 74 75 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) 76 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) 77 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) 78 79 #define ASB100_REG_TEMP2_CONFIG 0x0152 80 #define ASB100_REG_TEMP3_CONFIG 0x0252 81 82 83 #define ASB100_REG_CONFIG 0x40 84 #define ASB100_REG_ALARM1 0x41 85 #define ASB100_REG_ALARM2 0x42 86 #define ASB100_REG_SMIM1 0x43 87 #define ASB100_REG_SMIM2 0x44 88 #define ASB100_REG_VID_FANDIV 0x47 89 #define ASB100_REG_I2C_ADDR 0x48 90 #define ASB100_REG_CHIPID 0x49 91 #define ASB100_REG_I2C_SUBADDR 0x4a 92 #define ASB100_REG_PIN 0x4b 93 #define ASB100_REG_IRQ 0x4c 94 #define ASB100_REG_BANK 0x4e 95 #define ASB100_REG_CHIPMAN 0x4f 96 97 #define ASB100_REG_WCHIPID 0x58 98 99 /* bit 7 -> enable, bits 0-3 -> duty cycle */ 100 #define ASB100_REG_PWM1 0x59 101 102 /* 103 * CONVERSIONS 104 * Rounding and limit checking is only done on the TO_REG variants. 105 */ 106 107 /* These constants are a guess, consistent w/ w83781d */ 108 #define ASB100_IN_MIN 0 109 #define ASB100_IN_MAX 4080 110 111 /* 112 * IN: 1/1000 V (0V to 4.08V) 113 * REG: 16mV/bit 114 */ 115 static u8 IN_TO_REG(unsigned val) 116 { 117 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX); 118 return (nval + 8) / 16; 119 } 120 121 static unsigned IN_FROM_REG(u8 reg) 122 { 123 return reg * 16; 124 } 125 126 static u8 FAN_TO_REG(long rpm, int div) 127 { 128 if (rpm == -1) 129 return 0; 130 if (rpm == 0) 131 return 255; 132 rpm = SENSORS_LIMIT(rpm, 1, 1000000); 133 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254); 134 } 135 136 static int FAN_FROM_REG(u8 val, int div) 137 { 138 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); 139 } 140 141 /* These constants are a guess, consistent w/ w83781d */ 142 #define ASB100_TEMP_MIN -128000 143 #define ASB100_TEMP_MAX 127000 144 145 /* 146 * TEMP: 0.001C/bit (-128C to +127C) 147 * REG: 1C/bit, two's complement 148 */ 149 static u8 TEMP_TO_REG(long temp) 150 { 151 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); 152 ntemp += (ntemp < 0 ? -500 : 500); 153 return (u8)(ntemp / 1000); 154 } 155 156 static int TEMP_FROM_REG(u8 reg) 157 { 158 return (s8)reg * 1000; 159 } 160 161 /* 162 * PWM: 0 - 255 per sensors documentation 163 * REG: (6.25% duty cycle per bit) 164 */ 165 static u8 ASB100_PWM_TO_REG(int pwm) 166 { 167 pwm = SENSORS_LIMIT(pwm, 0, 255); 168 return (u8)(pwm / 16); 169 } 170 171 static int ASB100_PWM_FROM_REG(u8 reg) 172 { 173 return reg * 16; 174 } 175 176 #define DIV_FROM_REG(val) (1 << (val)) 177 178 /* 179 * FAN DIV: 1, 2, 4, or 8 (defaults to 2) 180 * REG: 0, 1, 2, or 3 (respectively) (defaults to 1) 181 */ 182 static u8 DIV_TO_REG(long val) 183 { 184 return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1; 185 } 186 187 /* 188 * For each registered client, we need to keep some data in memory. That 189 * data is pointed to by client->data. The structure itself is 190 * dynamically allocated, at the same time the client itself is allocated. 191 */ 192 struct asb100_data { 193 struct device *hwmon_dev; 194 struct mutex lock; 195 196 struct mutex update_lock; 197 unsigned long last_updated; /* In jiffies */ 198 199 /* array of 2 pointers to subclients */ 200 struct i2c_client *lm75[2]; 201 202 char valid; /* !=0 if following fields are valid */ 203 u8 in[7]; /* Register value */ 204 u8 in_max[7]; /* Register value */ 205 u8 in_min[7]; /* Register value */ 206 u8 fan[3]; /* Register value */ 207 u8 fan_min[3]; /* Register value */ 208 u16 temp[4]; /* Register value (0 and 3 are u8 only) */ 209 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ 210 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ 211 u8 fan_div[3]; /* Register encoding, right justified */ 212 u8 pwm; /* Register encoding */ 213 u8 vid; /* Register encoding, combined */ 214 u32 alarms; /* Register encoding, combined */ 215 u8 vrm; 216 }; 217 218 static int asb100_read_value(struct i2c_client *client, u16 reg); 219 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); 220 221 static int asb100_probe(struct i2c_client *client, 222 const struct i2c_device_id *id); 223 static int asb100_detect(struct i2c_client *client, 224 struct i2c_board_info *info); 225 static int asb100_remove(struct i2c_client *client); 226 static struct asb100_data *asb100_update_device(struct device *dev); 227 static void asb100_init_client(struct i2c_client *client); 228 229 static const struct i2c_device_id asb100_id[] = { 230 { "asb100", 0 }, 231 { } 232 }; 233 MODULE_DEVICE_TABLE(i2c, asb100_id); 234 235 static struct i2c_driver asb100_driver = { 236 .class = I2C_CLASS_HWMON, 237 .driver = { 238 .name = "asb100", 239 }, 240 .probe = asb100_probe, 241 .remove = asb100_remove, 242 .id_table = asb100_id, 243 .detect = asb100_detect, 244 .address_list = normal_i2c, 245 }; 246 247 /* 7 Voltages */ 248 #define show_in_reg(reg) \ 249 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 250 char *buf) \ 251 { \ 252 int nr = to_sensor_dev_attr(attr)->index; \ 253 struct asb100_data *data = asb100_update_device(dev); \ 254 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ 255 } 256 257 show_in_reg(in) 258 show_in_reg(in_min) 259 show_in_reg(in_max) 260 261 #define set_in_reg(REG, reg) \ 262 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \ 263 const char *buf, size_t count) \ 264 { \ 265 int nr = to_sensor_dev_attr(attr)->index; \ 266 struct i2c_client *client = to_i2c_client(dev); \ 267 struct asb100_data *data = i2c_get_clientdata(client); \ 268 unsigned long val; \ 269 int err = kstrtoul(buf, 10, &val); \ 270 if (err) \ 271 return err; \ 272 mutex_lock(&data->update_lock); \ 273 data->in_##reg[nr] = IN_TO_REG(val); \ 274 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ 275 data->in_##reg[nr]); \ 276 mutex_unlock(&data->update_lock); \ 277 return count; \ 278 } 279 280 set_in_reg(MIN, min) 281 set_in_reg(MAX, max) 282 283 #define sysfs_in(offset) \ 284 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ 285 show_in, NULL, offset); \ 286 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ 287 show_in_min, set_in_min, offset); \ 288 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ 289 show_in_max, set_in_max, offset) 290 291 sysfs_in(0); 292 sysfs_in(1); 293 sysfs_in(2); 294 sysfs_in(3); 295 sysfs_in(4); 296 sysfs_in(5); 297 sysfs_in(6); 298 299 /* 3 Fans */ 300 static ssize_t show_fan(struct device *dev, struct device_attribute *attr, 301 char *buf) 302 { 303 int nr = to_sensor_dev_attr(attr)->index; 304 struct asb100_data *data = asb100_update_device(dev); 305 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], 306 DIV_FROM_REG(data->fan_div[nr]))); 307 } 308 309 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, 310 char *buf) 311 { 312 int nr = to_sensor_dev_attr(attr)->index; 313 struct asb100_data *data = asb100_update_device(dev); 314 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], 315 DIV_FROM_REG(data->fan_div[nr]))); 316 } 317 318 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, 319 char *buf) 320 { 321 int nr = to_sensor_dev_attr(attr)->index; 322 struct asb100_data *data = asb100_update_device(dev); 323 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); 324 } 325 326 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, 327 const char *buf, size_t count) 328 { 329 int nr = to_sensor_dev_attr(attr)->index; 330 struct i2c_client *client = to_i2c_client(dev); 331 struct asb100_data *data = i2c_get_clientdata(client); 332 unsigned long val; 333 int err; 334 335 err = kstrtoul(buf, 10, &val); 336 if (err) 337 return err; 338 339 mutex_lock(&data->update_lock); 340 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); 341 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 342 mutex_unlock(&data->update_lock); 343 return count; 344 } 345 346 /* 347 * Note: we save and restore the fan minimum here, because its value is 348 * determined in part by the fan divisor. This follows the principle of 349 * least surprise; the user doesn't expect the fan minimum to change just 350 * because the divisor changed. 351 */ 352 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, 353 const char *buf, size_t count) 354 { 355 int nr = to_sensor_dev_attr(attr)->index; 356 struct i2c_client *client = to_i2c_client(dev); 357 struct asb100_data *data = i2c_get_clientdata(client); 358 unsigned long min; 359 int reg; 360 unsigned long val; 361 int err; 362 363 err = kstrtoul(buf, 10, &val); 364 if (err) 365 return err; 366 367 mutex_lock(&data->update_lock); 368 369 min = FAN_FROM_REG(data->fan_min[nr], 370 DIV_FROM_REG(data->fan_div[nr])); 371 data->fan_div[nr] = DIV_TO_REG(val); 372 373 switch (nr) { 374 case 0: /* fan 1 */ 375 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 376 reg = (reg & 0xcf) | (data->fan_div[0] << 4); 377 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 378 break; 379 380 case 1: /* fan 2 */ 381 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); 382 reg = (reg & 0x3f) | (data->fan_div[1] << 6); 383 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); 384 break; 385 386 case 2: /* fan 3 */ 387 reg = asb100_read_value(client, ASB100_REG_PIN); 388 reg = (reg & 0x3f) | (data->fan_div[2] << 6); 389 asb100_write_value(client, ASB100_REG_PIN, reg); 390 break; 391 } 392 393 data->fan_min[nr] = 394 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); 395 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); 396 397 mutex_unlock(&data->update_lock); 398 399 return count; 400 } 401 402 #define sysfs_fan(offset) \ 403 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ 404 show_fan, NULL, offset - 1); \ 405 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ 406 show_fan_min, set_fan_min, offset - 1); \ 407 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ 408 show_fan_div, set_fan_div, offset - 1) 409 410 sysfs_fan(1); 411 sysfs_fan(2); 412 sysfs_fan(3); 413 414 /* 4 Temp. Sensors */ 415 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) 416 { 417 int ret = 0; 418 419 switch (nr) { 420 case 1: case 2: 421 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); 422 break; 423 case 0: case 3: default: 424 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); 425 break; 426 } 427 return ret; 428 } 429 430 #define show_temp_reg(reg) \ 431 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ 432 char *buf) \ 433 { \ 434 int nr = to_sensor_dev_attr(attr)->index; \ 435 struct asb100_data *data = asb100_update_device(dev); \ 436 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ 437 } 438 439 show_temp_reg(temp); 440 show_temp_reg(temp_max); 441 show_temp_reg(temp_hyst); 442 443 #define set_temp_reg(REG, reg) \ 444 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \ 445 const char *buf, size_t count) \ 446 { \ 447 int nr = to_sensor_dev_attr(attr)->index; \ 448 struct i2c_client *client = to_i2c_client(dev); \ 449 struct asb100_data *data = i2c_get_clientdata(client); \ 450 long val; \ 451 int err = kstrtol(buf, 10, &val); \ 452 if (err) \ 453 return err; \ 454 mutex_lock(&data->update_lock); \ 455 switch (nr) { \ 456 case 1: case 2: \ 457 data->reg[nr] = LM75_TEMP_TO_REG(val); \ 458 break; \ 459 case 0: case 3: default: \ 460 data->reg[nr] = TEMP_TO_REG(val); \ 461 break; \ 462 } \ 463 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ 464 data->reg[nr]); \ 465 mutex_unlock(&data->update_lock); \ 466 return count; \ 467 } 468 469 set_temp_reg(MAX, temp_max); 470 set_temp_reg(HYST, temp_hyst); 471 472 #define sysfs_temp(num) \ 473 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \ 474 show_temp, NULL, num - 1); \ 475 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ 476 show_temp_max, set_temp_max, num - 1); \ 477 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ 478 show_temp_hyst, set_temp_hyst, num - 1) 479 480 sysfs_temp(1); 481 sysfs_temp(2); 482 sysfs_temp(3); 483 sysfs_temp(4); 484 485 /* VID */ 486 static ssize_t show_vid(struct device *dev, struct device_attribute *attr, 487 char *buf) 488 { 489 struct asb100_data *data = asb100_update_device(dev); 490 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); 491 } 492 493 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL); 494 495 /* VRM */ 496 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, 497 char *buf) 498 { 499 struct asb100_data *data = dev_get_drvdata(dev); 500 return sprintf(buf, "%d\n", data->vrm); 501 } 502 503 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, 504 const char *buf, size_t count) 505 { 506 struct asb100_data *data = dev_get_drvdata(dev); 507 unsigned long val; 508 int err; 509 510 err = kstrtoul(buf, 10, &val); 511 if (err) 512 return err; 513 data->vrm = val; 514 return count; 515 } 516 517 /* Alarms */ 518 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm); 519 520 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, 521 char *buf) 522 { 523 struct asb100_data *data = asb100_update_device(dev); 524 return sprintf(buf, "%u\n", data->alarms); 525 } 526 527 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 528 529 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, 530 char *buf) 531 { 532 int bitnr = to_sensor_dev_attr(attr)->index; 533 struct asb100_data *data = asb100_update_device(dev); 534 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); 535 } 536 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); 537 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); 538 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); 539 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); 540 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); 541 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); 542 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); 543 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); 544 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); 545 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); 546 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13); 547 548 /* 1 PWM */ 549 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, 550 char *buf) 551 { 552 struct asb100_data *data = asb100_update_device(dev); 553 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); 554 } 555 556 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, 557 const char *buf, size_t count) 558 { 559 struct i2c_client *client = to_i2c_client(dev); 560 struct asb100_data *data = i2c_get_clientdata(client); 561 unsigned long val; 562 int err; 563 564 err = kstrtoul(buf, 10, &val); 565 if (err) 566 return err; 567 568 mutex_lock(&data->update_lock); 569 data->pwm &= 0x80; /* keep the enable bit */ 570 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); 571 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 572 mutex_unlock(&data->update_lock); 573 return count; 574 } 575 576 static ssize_t show_pwm_enable1(struct device *dev, 577 struct device_attribute *attr, char *buf) 578 { 579 struct asb100_data *data = asb100_update_device(dev); 580 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); 581 } 582 583 static ssize_t set_pwm_enable1(struct device *dev, 584 struct device_attribute *attr, const char *buf, size_t count) 585 { 586 struct i2c_client *client = to_i2c_client(dev); 587 struct asb100_data *data = i2c_get_clientdata(client); 588 unsigned long val; 589 int err; 590 591 err = kstrtoul(buf, 10, &val); 592 if (err) 593 return err; 594 595 mutex_lock(&data->update_lock); 596 data->pwm &= 0x0f; /* keep the duty cycle bits */ 597 data->pwm |= (val ? 0x80 : 0x00); 598 asb100_write_value(client, ASB100_REG_PWM1, data->pwm); 599 mutex_unlock(&data->update_lock); 600 return count; 601 } 602 603 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1); 604 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, 605 show_pwm_enable1, set_pwm_enable1); 606 607 static struct attribute *asb100_attributes[] = { 608 &sensor_dev_attr_in0_input.dev_attr.attr, 609 &sensor_dev_attr_in0_min.dev_attr.attr, 610 &sensor_dev_attr_in0_max.dev_attr.attr, 611 &sensor_dev_attr_in1_input.dev_attr.attr, 612 &sensor_dev_attr_in1_min.dev_attr.attr, 613 &sensor_dev_attr_in1_max.dev_attr.attr, 614 &sensor_dev_attr_in2_input.dev_attr.attr, 615 &sensor_dev_attr_in2_min.dev_attr.attr, 616 &sensor_dev_attr_in2_max.dev_attr.attr, 617 &sensor_dev_attr_in3_input.dev_attr.attr, 618 &sensor_dev_attr_in3_min.dev_attr.attr, 619 &sensor_dev_attr_in3_max.dev_attr.attr, 620 &sensor_dev_attr_in4_input.dev_attr.attr, 621 &sensor_dev_attr_in4_min.dev_attr.attr, 622 &sensor_dev_attr_in4_max.dev_attr.attr, 623 &sensor_dev_attr_in5_input.dev_attr.attr, 624 &sensor_dev_attr_in5_min.dev_attr.attr, 625 &sensor_dev_attr_in5_max.dev_attr.attr, 626 &sensor_dev_attr_in6_input.dev_attr.attr, 627 &sensor_dev_attr_in6_min.dev_attr.attr, 628 &sensor_dev_attr_in6_max.dev_attr.attr, 629 630 &sensor_dev_attr_fan1_input.dev_attr.attr, 631 &sensor_dev_attr_fan1_min.dev_attr.attr, 632 &sensor_dev_attr_fan1_div.dev_attr.attr, 633 &sensor_dev_attr_fan2_input.dev_attr.attr, 634 &sensor_dev_attr_fan2_min.dev_attr.attr, 635 &sensor_dev_attr_fan2_div.dev_attr.attr, 636 &sensor_dev_attr_fan3_input.dev_attr.attr, 637 &sensor_dev_attr_fan3_min.dev_attr.attr, 638 &sensor_dev_attr_fan3_div.dev_attr.attr, 639 640 &sensor_dev_attr_temp1_input.dev_attr.attr, 641 &sensor_dev_attr_temp1_max.dev_attr.attr, 642 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, 643 &sensor_dev_attr_temp2_input.dev_attr.attr, 644 &sensor_dev_attr_temp2_max.dev_attr.attr, 645 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, 646 &sensor_dev_attr_temp3_input.dev_attr.attr, 647 &sensor_dev_attr_temp3_max.dev_attr.attr, 648 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, 649 &sensor_dev_attr_temp4_input.dev_attr.attr, 650 &sensor_dev_attr_temp4_max.dev_attr.attr, 651 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, 652 653 &sensor_dev_attr_in0_alarm.dev_attr.attr, 654 &sensor_dev_attr_in1_alarm.dev_attr.attr, 655 &sensor_dev_attr_in2_alarm.dev_attr.attr, 656 &sensor_dev_attr_in3_alarm.dev_attr.attr, 657 &sensor_dev_attr_in4_alarm.dev_attr.attr, 658 &sensor_dev_attr_fan1_alarm.dev_attr.attr, 659 &sensor_dev_attr_fan2_alarm.dev_attr.attr, 660 &sensor_dev_attr_fan3_alarm.dev_attr.attr, 661 &sensor_dev_attr_temp1_alarm.dev_attr.attr, 662 &sensor_dev_attr_temp2_alarm.dev_attr.attr, 663 &sensor_dev_attr_temp3_alarm.dev_attr.attr, 664 665 &dev_attr_cpu0_vid.attr, 666 &dev_attr_vrm.attr, 667 &dev_attr_alarms.attr, 668 &dev_attr_pwm1.attr, 669 &dev_attr_pwm1_enable.attr, 670 671 NULL 672 }; 673 674 static const struct attribute_group asb100_group = { 675 .attrs = asb100_attributes, 676 }; 677 678 static int asb100_detect_subclients(struct i2c_client *client) 679 { 680 int i, id, err; 681 int address = client->addr; 682 unsigned short sc_addr[2]; 683 struct asb100_data *data = i2c_get_clientdata(client); 684 struct i2c_adapter *adapter = client->adapter; 685 686 id = i2c_adapter_id(adapter); 687 688 if (force_subclients[0] == id && force_subclients[1] == address) { 689 for (i = 2; i <= 3; i++) { 690 if (force_subclients[i] < 0x48 || 691 force_subclients[i] > 0x4f) { 692 dev_err(&client->dev, "invalid subclient " 693 "address %d; must be 0x48-0x4f\n", 694 force_subclients[i]); 695 err = -ENODEV; 696 goto ERROR_SC_2; 697 } 698 } 699 asb100_write_value(client, ASB100_REG_I2C_SUBADDR, 700 (force_subclients[2] & 0x07) | 701 ((force_subclients[3] & 0x07) << 4)); 702 sc_addr[0] = force_subclients[2]; 703 sc_addr[1] = force_subclients[3]; 704 } else { 705 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR); 706 sc_addr[0] = 0x48 + (val & 0x07); 707 sc_addr[1] = 0x48 + ((val >> 4) & 0x07); 708 } 709 710 if (sc_addr[0] == sc_addr[1]) { 711 dev_err(&client->dev, "duplicate addresses 0x%x " 712 "for subclients\n", sc_addr[0]); 713 err = -ENODEV; 714 goto ERROR_SC_2; 715 } 716 717 data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]); 718 if (!data->lm75[0]) { 719 dev_err(&client->dev, "subclient %d registration " 720 "at address 0x%x failed.\n", 1, sc_addr[0]); 721 err = -ENOMEM; 722 goto ERROR_SC_2; 723 } 724 725 data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]); 726 if (!data->lm75[1]) { 727 dev_err(&client->dev, "subclient %d registration " 728 "at address 0x%x failed.\n", 2, sc_addr[1]); 729 err = -ENOMEM; 730 goto ERROR_SC_3; 731 } 732 733 return 0; 734 735 /* Undo inits in case of errors */ 736 ERROR_SC_3: 737 i2c_unregister_device(data->lm75[0]); 738 ERROR_SC_2: 739 return err; 740 } 741 742 /* Return 0 if detection is successful, -ENODEV otherwise */ 743 static int asb100_detect(struct i2c_client *client, 744 struct i2c_board_info *info) 745 { 746 struct i2c_adapter *adapter = client->adapter; 747 int val1, val2; 748 749 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { 750 pr_debug("detect failed, smbus byte data not supported!\n"); 751 return -ENODEV; 752 } 753 754 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK); 755 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 756 757 /* If we're in bank 0 */ 758 if ((!(val1 & 0x07)) && 759 /* Check for ASB100 ID (low byte) */ 760 (((!(val1 & 0x80)) && (val2 != 0x94)) || 761 /* Check for ASB100 ID (high byte ) */ 762 ((val1 & 0x80) && (val2 != 0x06)))) { 763 pr_debug("detect failed, bad chip id 0x%02x!\n", val2); 764 return -ENODEV; 765 } 766 767 /* Put it now into bank 0 and Vendor ID High Byte */ 768 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 769 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78) 770 | 0x80); 771 772 /* Determine the chip type. */ 773 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID); 774 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); 775 776 if (val1 != 0x31 || val2 != 0x06) 777 return -ENODEV; 778 779 strlcpy(info->type, "asb100", I2C_NAME_SIZE); 780 781 return 0; 782 } 783 784 static int asb100_probe(struct i2c_client *client, 785 const struct i2c_device_id *id) 786 { 787 int err; 788 struct asb100_data *data; 789 790 data = devm_kzalloc(&client->dev, sizeof(struct asb100_data), 791 GFP_KERNEL); 792 if (!data) 793 return -ENOMEM; 794 795 i2c_set_clientdata(client, data); 796 mutex_init(&data->lock); 797 mutex_init(&data->update_lock); 798 799 /* Attach secondary lm75 clients */ 800 err = asb100_detect_subclients(client); 801 if (err) 802 return err; 803 804 /* Initialize the chip */ 805 asb100_init_client(client); 806 807 /* A few vars need to be filled upon startup */ 808 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0)); 809 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1)); 810 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2)); 811 812 /* Register sysfs hooks */ 813 err = sysfs_create_group(&client->dev.kobj, &asb100_group); 814 if (err) 815 goto ERROR3; 816 817 data->hwmon_dev = hwmon_device_register(&client->dev); 818 if (IS_ERR(data->hwmon_dev)) { 819 err = PTR_ERR(data->hwmon_dev); 820 goto ERROR4; 821 } 822 823 return 0; 824 825 ERROR4: 826 sysfs_remove_group(&client->dev.kobj, &asb100_group); 827 ERROR3: 828 i2c_unregister_device(data->lm75[1]); 829 i2c_unregister_device(data->lm75[0]); 830 return err; 831 } 832 833 static int asb100_remove(struct i2c_client *client) 834 { 835 struct asb100_data *data = i2c_get_clientdata(client); 836 837 hwmon_device_unregister(data->hwmon_dev); 838 sysfs_remove_group(&client->dev.kobj, &asb100_group); 839 840 i2c_unregister_device(data->lm75[1]); 841 i2c_unregister_device(data->lm75[0]); 842 843 return 0; 844 } 845 846 /* 847 * The SMBus locks itself, usually, but nothing may access the chip between 848 * bank switches. 849 */ 850 static int asb100_read_value(struct i2c_client *client, u16 reg) 851 { 852 struct asb100_data *data = i2c_get_clientdata(client); 853 struct i2c_client *cl; 854 int res, bank; 855 856 mutex_lock(&data->lock); 857 858 bank = (reg >> 8) & 0x0f; 859 if (bank > 2) 860 /* switch banks */ 861 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 862 863 if (bank == 0 || bank > 2) { 864 res = i2c_smbus_read_byte_data(client, reg & 0xff); 865 } else { 866 /* switch to subclient */ 867 cl = data->lm75[bank - 1]; 868 869 /* convert from ISA to LM75 I2C addresses */ 870 switch (reg & 0xff) { 871 case 0x50: /* TEMP */ 872 res = i2c_smbus_read_word_swapped(cl, 0); 873 break; 874 case 0x52: /* CONFIG */ 875 res = i2c_smbus_read_byte_data(cl, 1); 876 break; 877 case 0x53: /* HYST */ 878 res = i2c_smbus_read_word_swapped(cl, 2); 879 break; 880 case 0x55: /* MAX */ 881 default: 882 res = i2c_smbus_read_word_swapped(cl, 3); 883 break; 884 } 885 } 886 887 if (bank > 2) 888 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 889 890 mutex_unlock(&data->lock); 891 892 return res; 893 } 894 895 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) 896 { 897 struct asb100_data *data = i2c_get_clientdata(client); 898 struct i2c_client *cl; 899 int bank; 900 901 mutex_lock(&data->lock); 902 903 bank = (reg >> 8) & 0x0f; 904 if (bank > 2) 905 /* switch banks */ 906 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); 907 908 if (bank == 0 || bank > 2) { 909 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); 910 } else { 911 /* switch to subclient */ 912 cl = data->lm75[bank - 1]; 913 914 /* convert from ISA to LM75 I2C addresses */ 915 switch (reg & 0xff) { 916 case 0x52: /* CONFIG */ 917 i2c_smbus_write_byte_data(cl, 1, value & 0xff); 918 break; 919 case 0x53: /* HYST */ 920 i2c_smbus_write_word_swapped(cl, 2, value); 921 break; 922 case 0x55: /* MAX */ 923 i2c_smbus_write_word_swapped(cl, 3, value); 924 break; 925 } 926 } 927 928 if (bank > 2) 929 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); 930 931 mutex_unlock(&data->lock); 932 } 933 934 static void asb100_init_client(struct i2c_client *client) 935 { 936 struct asb100_data *data = i2c_get_clientdata(client); 937 938 data->vrm = vid_which_vrm(); 939 940 /* Start monitoring */ 941 asb100_write_value(client, ASB100_REG_CONFIG, 942 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); 943 } 944 945 static struct asb100_data *asb100_update_device(struct device *dev) 946 { 947 struct i2c_client *client = to_i2c_client(dev); 948 struct asb100_data *data = i2c_get_clientdata(client); 949 int i; 950 951 mutex_lock(&data->update_lock); 952 953 if (time_after(jiffies, data->last_updated + HZ + HZ / 2) 954 || !data->valid) { 955 956 dev_dbg(&client->dev, "starting device update...\n"); 957 958 /* 7 voltage inputs */ 959 for (i = 0; i < 7; i++) { 960 data->in[i] = asb100_read_value(client, 961 ASB100_REG_IN(i)); 962 data->in_min[i] = asb100_read_value(client, 963 ASB100_REG_IN_MIN(i)); 964 data->in_max[i] = asb100_read_value(client, 965 ASB100_REG_IN_MAX(i)); 966 } 967 968 /* 3 fan inputs */ 969 for (i = 0; i < 3; i++) { 970 data->fan[i] = asb100_read_value(client, 971 ASB100_REG_FAN(i)); 972 data->fan_min[i] = asb100_read_value(client, 973 ASB100_REG_FAN_MIN(i)); 974 } 975 976 /* 4 temperature inputs */ 977 for (i = 1; i <= 4; i++) { 978 data->temp[i-1] = asb100_read_value(client, 979 ASB100_REG_TEMP(i)); 980 data->temp_max[i-1] = asb100_read_value(client, 981 ASB100_REG_TEMP_MAX(i)); 982 data->temp_hyst[i-1] = asb100_read_value(client, 983 ASB100_REG_TEMP_HYST(i)); 984 } 985 986 /* VID and fan divisors */ 987 i = asb100_read_value(client, ASB100_REG_VID_FANDIV); 988 data->vid = i & 0x0f; 989 data->vid |= (asb100_read_value(client, 990 ASB100_REG_CHIPID) & 0x01) << 4; 991 data->fan_div[0] = (i >> 4) & 0x03; 992 data->fan_div[1] = (i >> 6) & 0x03; 993 data->fan_div[2] = (asb100_read_value(client, 994 ASB100_REG_PIN) >> 6) & 0x03; 995 996 /* PWM */ 997 data->pwm = asb100_read_value(client, ASB100_REG_PWM1); 998 999 /* alarms */ 1000 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + 1001 (asb100_read_value(client, ASB100_REG_ALARM2) << 8); 1002 1003 data->last_updated = jiffies; 1004 data->valid = 1; 1005 1006 dev_dbg(&client->dev, "... device update complete\n"); 1007 } 1008 1009 mutex_unlock(&data->update_lock); 1010 1011 return data; 1012 } 1013 1014 module_i2c_driver(asb100_driver); 1015 1016 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); 1017 MODULE_DESCRIPTION("ASB100 Bach driver"); 1018 MODULE_LICENSE("GPL"); 1019