1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Based on lm75.c and lm85.c
6 * Supports adm1030 / adm1031
7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
8 * Reworked by Jean Delvare <jdelvare@suse.de>
9 */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/i2c.h>
16 #include <linux/hwmon.h>
17 #include <linux/hwmon-sysfs.h>
18 #include <linux/err.h>
19 #include <linux/mutex.h>
20
21 /* Following macros takes channel parameter starting from 0 to 2 */
22 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
23 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
24 #define ADM1031_REG_PWM (0x22)
25 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
26 #define ADM1031_REG_FAN_FILTER (0x23)
27
28 #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
29 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
30 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
31 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
32
33 #define ADM1031_REG_TEMP(nr) (0x0a + (nr))
34 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
35
36 #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
37
38 #define ADM1031_REG_CONF1 0x00
39 #define ADM1031_REG_CONF2 0x01
40 #define ADM1031_REG_EXT_TEMP 0x06
41
42 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
43 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
44 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
45
46 #define ADM1031_CONF2_PWM1_ENABLE 0x01
47 #define ADM1031_CONF2_PWM2_ENABLE 0x02
48 #define ADM1031_CONF2_TACH1_ENABLE 0x04
49 #define ADM1031_CONF2_TACH2_ENABLE 0x08
50 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
51
52 #define ADM1031_UPDATE_RATE_MASK 0x1c
53 #define ADM1031_UPDATE_RATE_SHIFT 2
54
55 /* Addresses to scan */
56 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
57
58 enum chips { adm1030, adm1031 };
59
60 typedef u8 auto_chan_table_t[8][2];
61
62 /* Each client has this additional data */
63 struct adm1031_data {
64 struct i2c_client *client;
65 const struct attribute_group *groups[3];
66 struct mutex update_lock;
67 int chip_type;
68 bool valid; /* true if following fields are valid */
69 unsigned long last_updated; /* In jiffies */
70 unsigned int update_interval; /* In milliseconds */
71 /*
72 * The chan_select_table contains the possible configurations for
73 * auto fan control.
74 */
75 const auto_chan_table_t *chan_select_table;
76 u16 alarm;
77 u8 conf1;
78 u8 conf2;
79 u8 fan[2];
80 u8 fan_div[2];
81 u8 fan_min[2];
82 u8 pwm[2];
83 u8 old_pwm[2];
84 s8 temp[3];
85 u8 ext_temp[3];
86 u8 auto_temp[3];
87 u8 auto_temp_min[3];
88 u8 auto_temp_off[3];
89 u8 auto_temp_max[3];
90 s8 temp_offset[3];
91 s8 temp_min[3];
92 s8 temp_max[3];
93 s8 temp_crit[3];
94 };
95
adm1031_read_value(struct i2c_client * client,u8 reg)96 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
97 {
98 return i2c_smbus_read_byte_data(client, reg);
99 }
100
101 static inline int
adm1031_write_value(struct i2c_client * client,u8 reg,unsigned int value)102 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
103 {
104 return i2c_smbus_write_byte_data(client, reg, value);
105 }
106
adm1031_update_device(struct device * dev)107 static struct adm1031_data *adm1031_update_device(struct device *dev)
108 {
109 struct adm1031_data *data = dev_get_drvdata(dev);
110 struct i2c_client *client = data->client;
111 unsigned long next_update;
112 int chan;
113
114 mutex_lock(&data->update_lock);
115
116 next_update = data->last_updated
117 + msecs_to_jiffies(data->update_interval);
118 if (time_after(jiffies, next_update) || !data->valid) {
119
120 dev_dbg(&client->dev, "Starting adm1031 update\n");
121 for (chan = 0;
122 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
123 u8 oldh, newh;
124
125 oldh =
126 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
127 data->ext_temp[chan] =
128 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
129 newh =
130 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
131 if (newh != oldh) {
132 data->ext_temp[chan] =
133 adm1031_read_value(client,
134 ADM1031_REG_EXT_TEMP);
135 #ifdef DEBUG
136 oldh =
137 adm1031_read_value(client,
138 ADM1031_REG_TEMP(chan));
139
140 /* oldh is actually newer */
141 if (newh != oldh)
142 dev_warn(&client->dev,
143 "Remote temperature may be wrong.\n");
144 #endif
145 }
146 data->temp[chan] = newh;
147
148 data->temp_offset[chan] =
149 adm1031_read_value(client,
150 ADM1031_REG_TEMP_OFFSET(chan));
151 data->temp_min[chan] =
152 adm1031_read_value(client,
153 ADM1031_REG_TEMP_MIN(chan));
154 data->temp_max[chan] =
155 adm1031_read_value(client,
156 ADM1031_REG_TEMP_MAX(chan));
157 data->temp_crit[chan] =
158 adm1031_read_value(client,
159 ADM1031_REG_TEMP_CRIT(chan));
160 data->auto_temp[chan] =
161 adm1031_read_value(client,
162 ADM1031_REG_AUTO_TEMP(chan));
163
164 }
165
166 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
167 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
168
169 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
170 | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
171 if (data->chip_type == adm1030)
172 data->alarm &= 0xc0ff;
173
174 for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
175 chan++) {
176 data->fan_div[chan] =
177 adm1031_read_value(client,
178 ADM1031_REG_FAN_DIV(chan));
179 data->fan_min[chan] =
180 adm1031_read_value(client,
181 ADM1031_REG_FAN_MIN(chan));
182 data->fan[chan] =
183 adm1031_read_value(client,
184 ADM1031_REG_FAN_SPEED(chan));
185 data->pwm[chan] =
186 (adm1031_read_value(client,
187 ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
188 }
189 data->last_updated = jiffies;
190 data->valid = true;
191 }
192
193 mutex_unlock(&data->update_lock);
194
195 return data;
196 }
197
198 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
199 ((val + 500) / 1000)))
200
201 #define TEMP_FROM_REG(val) ((val) * 1000)
202
203 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
204
205 #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
206 #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
207 (val) | 0x70 : (val))
208
209 #define FAN_FROM_REG(reg, div) ((reg) ? \
210 (11250 * 60) / ((reg) * (div)) : 0)
211
FAN_TO_REG(int reg,int div)212 static int FAN_TO_REG(int reg, int div)
213 {
214 int tmp;
215 tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
216 return tmp > 255 ? 255 : tmp;
217 }
218
219 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
220
221 #define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4)
222 #define PWM_FROM_REG(val) ((val) << 4)
223
224 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
225 #define FAN_CHAN_TO_REG(val, reg) \
226 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
227
228 #define AUTO_TEMP_MIN_TO_REG(val, reg) \
229 ((((val) / 500) & 0xf8) | ((reg) & 0x7))
230 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7)))
231 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
232
233 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
234
235 #define AUTO_TEMP_OFF_FROM_REG(reg) \
236 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
237
238 #define AUTO_TEMP_MAX_FROM_REG(reg) \
239 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
240 AUTO_TEMP_MIN_FROM_REG(reg))
241
AUTO_TEMP_MAX_TO_REG(int val,int reg,int pwm)242 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
243 {
244 int ret;
245 int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
246
247 ret = ((reg & 0xf8) |
248 (range < 10000 ? 0 :
249 range < 20000 ? 1 :
250 range < 40000 ? 2 : range < 80000 ? 3 : 4));
251 return ret;
252 }
253
254 /* FAN auto control */
255 #define GET_FAN_AUTO_BITFIELD(data, idx) \
256 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
257
258 /*
259 * The tables below contains the possible values for the auto fan
260 * control bitfields. the index in the table is the register value.
261 * MSb is the auto fan control enable bit, so the four first entries
262 * in the table disables auto fan control when both bitfields are zero.
263 */
264 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
265 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
266 { 2 /* 0b010 */ , 4 /* 0b100 */ },
267 { 2 /* 0b010 */ , 2 /* 0b010 */ },
268 { 4 /* 0b100 */ , 4 /* 0b100 */ },
269 { 7 /* 0b111 */ , 7 /* 0b111 */ },
270 };
271
272 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
273 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
274 { 2 /* 0b10 */ , 0 },
275 { 0xff /* invalid */ , 0 },
276 { 0xff /* invalid */ , 0 },
277 { 3 /* 0b11 */ , 0 },
278 };
279
280 /*
281 * That function checks if a bitfield is valid and returns the other bitfield
282 * nearest match if no exact match where found.
283 */
284 static int
get_fan_auto_nearest(struct adm1031_data * data,int chan,u8 val,u8 reg)285 get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
286 {
287 int i;
288 int first_match = -1, exact_match = -1;
289 u8 other_reg_val =
290 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
291
292 if (val == 0)
293 return 0;
294
295 for (i = 0; i < 8; i++) {
296 if ((val == (*data->chan_select_table)[i][chan]) &&
297 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
298 other_reg_val)) {
299 /* We found an exact match */
300 exact_match = i;
301 break;
302 } else if (val == (*data->chan_select_table)[i][chan] &&
303 first_match == -1) {
304 /*
305 * Save the first match in case of an exact match has
306 * not been found
307 */
308 first_match = i;
309 }
310 }
311
312 if (exact_match >= 0)
313 return exact_match;
314 else if (first_match >= 0)
315 return first_match;
316
317 return -EINVAL;
318 }
319
fan_auto_channel_show(struct device * dev,struct device_attribute * attr,char * buf)320 static ssize_t fan_auto_channel_show(struct device *dev,
321 struct device_attribute *attr, char *buf)
322 {
323 int nr = to_sensor_dev_attr(attr)->index;
324 struct adm1031_data *data = adm1031_update_device(dev);
325 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
326 }
327
328 static ssize_t
fan_auto_channel_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)329 fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
330 const char *buf, size_t count)
331 {
332 struct adm1031_data *data = dev_get_drvdata(dev);
333 struct i2c_client *client = data->client;
334 int nr = to_sensor_dev_attr(attr)->index;
335 long val;
336 u8 reg;
337 int ret;
338 u8 old_fan_mode;
339
340 ret = kstrtol(buf, 10, &val);
341 if (ret)
342 return ret;
343
344 old_fan_mode = data->conf1;
345
346 mutex_lock(&data->update_lock);
347
348 ret = get_fan_auto_nearest(data, nr, val, data->conf1);
349 if (ret < 0) {
350 mutex_unlock(&data->update_lock);
351 return ret;
352 }
353 reg = ret;
354 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
355 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
356 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
357 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
358 /*
359 * Switch to Auto Fan Mode
360 * Save PWM registers
361 * Set PWM registers to 33% Both
362 */
363 data->old_pwm[0] = data->pwm[0];
364 data->old_pwm[1] = data->pwm[1];
365 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
366 } else {
367 /* Switch to Manual Mode */
368 data->pwm[0] = data->old_pwm[0];
369 data->pwm[1] = data->old_pwm[1];
370 /* Restore PWM registers */
371 adm1031_write_value(client, ADM1031_REG_PWM,
372 data->pwm[0] | (data->pwm[1] << 4));
373 }
374 }
375 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
376 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
377 mutex_unlock(&data->update_lock);
378 return count;
379 }
380
381 static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
382 static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
383
384 /* Auto Temps */
auto_temp_off_show(struct device * dev,struct device_attribute * attr,char * buf)385 static ssize_t auto_temp_off_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
387 {
388 int nr = to_sensor_dev_attr(attr)->index;
389 struct adm1031_data *data = adm1031_update_device(dev);
390 return sprintf(buf, "%d\n",
391 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
392 }
auto_temp_min_show(struct device * dev,struct device_attribute * attr,char * buf)393 static ssize_t auto_temp_min_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
395 {
396 int nr = to_sensor_dev_attr(attr)->index;
397 struct adm1031_data *data = adm1031_update_device(dev);
398 return sprintf(buf, "%d\n",
399 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
400 }
401 static ssize_t
auto_temp_min_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)402 auto_temp_min_store(struct device *dev, struct device_attribute *attr,
403 const char *buf, size_t count)
404 {
405 struct adm1031_data *data = dev_get_drvdata(dev);
406 struct i2c_client *client = data->client;
407 int nr = to_sensor_dev_attr(attr)->index;
408 long val;
409 int ret;
410
411 ret = kstrtol(buf, 10, &val);
412 if (ret)
413 return ret;
414
415 val = clamp_val(val, 0, 127000);
416 mutex_lock(&data->update_lock);
417 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
418 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
419 data->auto_temp[nr]);
420 mutex_unlock(&data->update_lock);
421 return count;
422 }
auto_temp_max_show(struct device * dev,struct device_attribute * attr,char * buf)423 static ssize_t auto_temp_max_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
425 {
426 int nr = to_sensor_dev_attr(attr)->index;
427 struct adm1031_data *data = adm1031_update_device(dev);
428 return sprintf(buf, "%d\n",
429 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
430 }
431 static ssize_t
auto_temp_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)432 auto_temp_max_store(struct device *dev, struct device_attribute *attr,
433 const char *buf, size_t count)
434 {
435 struct adm1031_data *data = dev_get_drvdata(dev);
436 struct i2c_client *client = data->client;
437 int nr = to_sensor_dev_attr(attr)->index;
438 long val;
439 int ret;
440
441 ret = kstrtol(buf, 10, &val);
442 if (ret)
443 return ret;
444
445 val = clamp_val(val, 0, 127000);
446 mutex_lock(&data->update_lock);
447 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
448 data->pwm[nr]);
449 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
450 data->temp_max[nr]);
451 mutex_unlock(&data->update_lock);
452 return count;
453 }
454
455 static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
456 static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
457 static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
458 static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
459 static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
460 static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
461 static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
462 static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
463 static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
464
465 /* pwm */
pwm_show(struct device * dev,struct device_attribute * attr,char * buf)466 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
467 char *buf)
468 {
469 int nr = to_sensor_dev_attr(attr)->index;
470 struct adm1031_data *data = adm1031_update_device(dev);
471 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
472 }
pwm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)473 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
474 const char *buf, size_t count)
475 {
476 struct adm1031_data *data = dev_get_drvdata(dev);
477 struct i2c_client *client = data->client;
478 int nr = to_sensor_dev_attr(attr)->index;
479 long val;
480 int ret, reg;
481
482 ret = kstrtol(buf, 10, &val);
483 if (ret)
484 return ret;
485
486 mutex_lock(&data->update_lock);
487 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
488 (((val>>4) & 0xf) != 5)) {
489 /* In automatic mode, the only PWM accepted is 33% */
490 mutex_unlock(&data->update_lock);
491 return -EINVAL;
492 }
493 data->pwm[nr] = PWM_TO_REG(val);
494 reg = adm1031_read_value(client, ADM1031_REG_PWM);
495 adm1031_write_value(client, ADM1031_REG_PWM,
496 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
497 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
498 mutex_unlock(&data->update_lock);
499 return count;
500 }
501
502 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
503 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
504 static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
505 static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
506
507 /* Fans */
508
509 /*
510 * That function checks the cases where the fan reading is not
511 * relevant. It is used to provide 0 as fan reading when the fan is
512 * not supposed to run
513 */
trust_fan_readings(struct adm1031_data * data,int chan)514 static int trust_fan_readings(struct adm1031_data *data, int chan)
515 {
516 int res = 0;
517
518 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
519 switch (data->conf1 & 0x60) {
520 case 0x00:
521 /*
522 * remote temp1 controls fan1,
523 * remote temp2 controls fan2
524 */
525 res = data->temp[chan+1] >=
526 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
527 break;
528 case 0x20: /* remote temp1 controls both fans */
529 res =
530 data->temp[1] >=
531 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
532 break;
533 case 0x40: /* remote temp2 controls both fans */
534 res =
535 data->temp[2] >=
536 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
537 break;
538 case 0x60: /* max controls both fans */
539 res =
540 data->temp[0] >=
541 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
542 || data->temp[1] >=
543 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
544 || (data->chip_type == adm1031
545 && data->temp[2] >=
546 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
547 break;
548 }
549 } else {
550 res = data->pwm[chan] > 0;
551 }
552 return res;
553 }
554
fan_show(struct device * dev,struct device_attribute * attr,char * buf)555 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
556 char *buf)
557 {
558 int nr = to_sensor_dev_attr(attr)->index;
559 struct adm1031_data *data = adm1031_update_device(dev);
560 int value;
561
562 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
563 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
564 return sprintf(buf, "%d\n", value);
565 }
566
fan_div_show(struct device * dev,struct device_attribute * attr,char * buf)567 static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
568 char *buf)
569 {
570 int nr = to_sensor_dev_attr(attr)->index;
571 struct adm1031_data *data = adm1031_update_device(dev);
572 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
573 }
fan_min_show(struct device * dev,struct device_attribute * attr,char * buf)574 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
575 char *buf)
576 {
577 int nr = to_sensor_dev_attr(attr)->index;
578 struct adm1031_data *data = adm1031_update_device(dev);
579 return sprintf(buf, "%d\n",
580 FAN_FROM_REG(data->fan_min[nr],
581 FAN_DIV_FROM_REG(data->fan_div[nr])));
582 }
fan_min_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)583 static ssize_t fan_min_store(struct device *dev,
584 struct device_attribute *attr, const char *buf,
585 size_t count)
586 {
587 struct adm1031_data *data = dev_get_drvdata(dev);
588 struct i2c_client *client = data->client;
589 int nr = to_sensor_dev_attr(attr)->index;
590 long val;
591 int ret;
592
593 ret = kstrtol(buf, 10, &val);
594 if (ret)
595 return ret;
596
597 mutex_lock(&data->update_lock);
598 if (val) {
599 data->fan_min[nr] =
600 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
601 } else {
602 data->fan_min[nr] = 0xff;
603 }
604 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
605 mutex_unlock(&data->update_lock);
606 return count;
607 }
fan_div_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)608 static ssize_t fan_div_store(struct device *dev,
609 struct device_attribute *attr, const char *buf,
610 size_t count)
611 {
612 struct adm1031_data *data = dev_get_drvdata(dev);
613 struct i2c_client *client = data->client;
614 int nr = to_sensor_dev_attr(attr)->index;
615 long val;
616 u8 tmp;
617 int old_div;
618 int new_min;
619 int ret;
620
621 ret = kstrtol(buf, 10, &val);
622 if (ret)
623 return ret;
624
625 tmp = val == 8 ? 0xc0 :
626 val == 4 ? 0x80 :
627 val == 2 ? 0x40 :
628 val == 1 ? 0x00 :
629 0xff;
630 if (tmp == 0xff)
631 return -EINVAL;
632
633 mutex_lock(&data->update_lock);
634 /* Get fresh readings */
635 data->fan_div[nr] = adm1031_read_value(client,
636 ADM1031_REG_FAN_DIV(nr));
637 data->fan_min[nr] = adm1031_read_value(client,
638 ADM1031_REG_FAN_MIN(nr));
639
640 /* Write the new clock divider and fan min */
641 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
642 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
643 new_min = data->fan_min[nr] * old_div / val;
644 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
645
646 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
647 data->fan_div[nr]);
648 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
649 data->fan_min[nr]);
650
651 /* Invalidate the cache: fan speed is no longer valid */
652 data->valid = false;
653 mutex_unlock(&data->update_lock);
654 return count;
655 }
656
657 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
658 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
659 static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
660 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
661 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
662 static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
663
664 /* Temps */
temp_show(struct device * dev,struct device_attribute * attr,char * buf)665 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
666 char *buf)
667 {
668 int nr = to_sensor_dev_attr(attr)->index;
669 struct adm1031_data *data = adm1031_update_device(dev);
670 int ext;
671 ext = nr == 0 ?
672 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
673 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
674 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
675 }
temp_offset_show(struct device * dev,struct device_attribute * attr,char * buf)676 static ssize_t temp_offset_show(struct device *dev,
677 struct device_attribute *attr, char *buf)
678 {
679 int nr = to_sensor_dev_attr(attr)->index;
680 struct adm1031_data *data = adm1031_update_device(dev);
681 return sprintf(buf, "%d\n",
682 TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
683 }
temp_min_show(struct device * dev,struct device_attribute * attr,char * buf)684 static ssize_t temp_min_show(struct device *dev,
685 struct device_attribute *attr, char *buf)
686 {
687 int nr = to_sensor_dev_attr(attr)->index;
688 struct adm1031_data *data = adm1031_update_device(dev);
689 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
690 }
temp_max_show(struct device * dev,struct device_attribute * attr,char * buf)691 static ssize_t temp_max_show(struct device *dev,
692 struct device_attribute *attr, char *buf)
693 {
694 int nr = to_sensor_dev_attr(attr)->index;
695 struct adm1031_data *data = adm1031_update_device(dev);
696 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
697 }
temp_crit_show(struct device * dev,struct device_attribute * attr,char * buf)698 static ssize_t temp_crit_show(struct device *dev,
699 struct device_attribute *attr, char *buf)
700 {
701 int nr = to_sensor_dev_attr(attr)->index;
702 struct adm1031_data *data = adm1031_update_device(dev);
703 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
704 }
temp_offset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)705 static ssize_t temp_offset_store(struct device *dev,
706 struct device_attribute *attr,
707 const char *buf, size_t count)
708 {
709 struct adm1031_data *data = dev_get_drvdata(dev);
710 struct i2c_client *client = data->client;
711 int nr = to_sensor_dev_attr(attr)->index;
712 long val;
713 int ret;
714
715 ret = kstrtol(buf, 10, &val);
716 if (ret)
717 return ret;
718
719 val = clamp_val(val, -15000, 15000);
720 mutex_lock(&data->update_lock);
721 data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
722 adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
723 data->temp_offset[nr]);
724 mutex_unlock(&data->update_lock);
725 return count;
726 }
temp_min_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)727 static ssize_t temp_min_store(struct device *dev,
728 struct device_attribute *attr, const char *buf,
729 size_t count)
730 {
731 struct adm1031_data *data = dev_get_drvdata(dev);
732 struct i2c_client *client = data->client;
733 int nr = to_sensor_dev_attr(attr)->index;
734 long val;
735 int ret;
736
737 ret = kstrtol(buf, 10, &val);
738 if (ret)
739 return ret;
740
741 val = clamp_val(val, -55000, 127000);
742 mutex_lock(&data->update_lock);
743 data->temp_min[nr] = TEMP_TO_REG(val);
744 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
745 data->temp_min[nr]);
746 mutex_unlock(&data->update_lock);
747 return count;
748 }
temp_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)749 static ssize_t temp_max_store(struct device *dev,
750 struct device_attribute *attr, const char *buf,
751 size_t count)
752 {
753 struct adm1031_data *data = dev_get_drvdata(dev);
754 struct i2c_client *client = data->client;
755 int nr = to_sensor_dev_attr(attr)->index;
756 long val;
757 int ret;
758
759 ret = kstrtol(buf, 10, &val);
760 if (ret)
761 return ret;
762
763 val = clamp_val(val, -55000, 127000);
764 mutex_lock(&data->update_lock);
765 data->temp_max[nr] = TEMP_TO_REG(val);
766 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
767 data->temp_max[nr]);
768 mutex_unlock(&data->update_lock);
769 return count;
770 }
temp_crit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)771 static ssize_t temp_crit_store(struct device *dev,
772 struct device_attribute *attr, const char *buf,
773 size_t count)
774 {
775 struct adm1031_data *data = dev_get_drvdata(dev);
776 struct i2c_client *client = data->client;
777 int nr = to_sensor_dev_attr(attr)->index;
778 long val;
779 int ret;
780
781 ret = kstrtol(buf, 10, &val);
782 if (ret)
783 return ret;
784
785 val = clamp_val(val, -55000, 127000);
786 mutex_lock(&data->update_lock);
787 data->temp_crit[nr] = TEMP_TO_REG(val);
788 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
789 data->temp_crit[nr]);
790 mutex_unlock(&data->update_lock);
791 return count;
792 }
793
794 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
795 static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
796 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
797 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
798 static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
799 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
800 static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
801 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
802 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
803 static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
804 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
805 static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
806 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
807 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
808 static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
809
810 /* Alarms */
alarms_show(struct device * dev,struct device_attribute * attr,char * buf)811 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
812 char *buf)
813 {
814 struct adm1031_data *data = adm1031_update_device(dev);
815 return sprintf(buf, "%d\n", data->alarm);
816 }
817
818 static DEVICE_ATTR_RO(alarms);
819
alarm_show(struct device * dev,struct device_attribute * attr,char * buf)820 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
821 char *buf)
822 {
823 int bitnr = to_sensor_dev_attr(attr)->index;
824 struct adm1031_data *data = adm1031_update_device(dev);
825 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
826 }
827
828 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
829 static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
830 static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
831 static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
832 static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
833 static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
834 static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
835 static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
836 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
837 static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
838 static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
839 static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
840 static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
841 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
842 static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
843
844 /* Update Interval */
845 static const unsigned int update_intervals[] = {
846 16000, 8000, 4000, 2000, 1000, 500, 250, 125,
847 };
848
update_interval_show(struct device * dev,struct device_attribute * attr,char * buf)849 static ssize_t update_interval_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
851 {
852 struct adm1031_data *data = dev_get_drvdata(dev);
853
854 return sprintf(buf, "%u\n", data->update_interval);
855 }
856
update_interval_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)857 static ssize_t update_interval_store(struct device *dev,
858 struct device_attribute *attr,
859 const char *buf, size_t count)
860 {
861 struct adm1031_data *data = dev_get_drvdata(dev);
862 struct i2c_client *client = data->client;
863 unsigned long val;
864 int i, err;
865 u8 reg;
866
867 err = kstrtoul(buf, 10, &val);
868 if (err)
869 return err;
870
871 /*
872 * Find the nearest update interval from the table.
873 * Use it to determine the matching update rate.
874 */
875 for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
876 if (val >= update_intervals[i])
877 break;
878 }
879 /* if not found, we point to the last entry (lowest update interval) */
880
881 /* set the new update rate while preserving other settings */
882 reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
883 reg &= ~ADM1031_UPDATE_RATE_MASK;
884 reg |= i << ADM1031_UPDATE_RATE_SHIFT;
885 adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
886
887 mutex_lock(&data->update_lock);
888 data->update_interval = update_intervals[i];
889 mutex_unlock(&data->update_lock);
890
891 return count;
892 }
893
894 static DEVICE_ATTR_RW(update_interval);
895
896 static struct attribute *adm1031_attributes[] = {
897 &sensor_dev_attr_fan1_input.dev_attr.attr,
898 &sensor_dev_attr_fan1_div.dev_attr.attr,
899 &sensor_dev_attr_fan1_min.dev_attr.attr,
900 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
901 &sensor_dev_attr_fan1_fault.dev_attr.attr,
902 &sensor_dev_attr_pwm1.dev_attr.attr,
903 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
904 &sensor_dev_attr_temp1_input.dev_attr.attr,
905 &sensor_dev_attr_temp1_offset.dev_attr.attr,
906 &sensor_dev_attr_temp1_min.dev_attr.attr,
907 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
908 &sensor_dev_attr_temp1_max.dev_attr.attr,
909 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
910 &sensor_dev_attr_temp1_crit.dev_attr.attr,
911 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
912 &sensor_dev_attr_temp2_input.dev_attr.attr,
913 &sensor_dev_attr_temp2_offset.dev_attr.attr,
914 &sensor_dev_attr_temp2_min.dev_attr.attr,
915 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
916 &sensor_dev_attr_temp2_max.dev_attr.attr,
917 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
918 &sensor_dev_attr_temp2_crit.dev_attr.attr,
919 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
920 &sensor_dev_attr_temp2_fault.dev_attr.attr,
921
922 &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
923 &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
924 &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
925
926 &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
927 &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
928 &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
929
930 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
931
932 &dev_attr_update_interval.attr,
933 &dev_attr_alarms.attr,
934
935 NULL
936 };
937
938 static const struct attribute_group adm1031_group = {
939 .attrs = adm1031_attributes,
940 };
941
942 static struct attribute *adm1031_attributes_opt[] = {
943 &sensor_dev_attr_fan2_input.dev_attr.attr,
944 &sensor_dev_attr_fan2_div.dev_attr.attr,
945 &sensor_dev_attr_fan2_min.dev_attr.attr,
946 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
947 &sensor_dev_attr_fan2_fault.dev_attr.attr,
948 &sensor_dev_attr_pwm2.dev_attr.attr,
949 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
950 &sensor_dev_attr_temp3_input.dev_attr.attr,
951 &sensor_dev_attr_temp3_offset.dev_attr.attr,
952 &sensor_dev_attr_temp3_min.dev_attr.attr,
953 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
954 &sensor_dev_attr_temp3_max.dev_attr.attr,
955 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
956 &sensor_dev_attr_temp3_crit.dev_attr.attr,
957 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
958 &sensor_dev_attr_temp3_fault.dev_attr.attr,
959 &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
960 &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
961 &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
962 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
963 NULL
964 };
965
966 static const struct attribute_group adm1031_group_opt = {
967 .attrs = adm1031_attributes_opt,
968 };
969
970 /* Return 0 if detection is successful, -ENODEV otherwise */
adm1031_detect(struct i2c_client * client,struct i2c_board_info * info)971 static int adm1031_detect(struct i2c_client *client,
972 struct i2c_board_info *info)
973 {
974 struct i2c_adapter *adapter = client->adapter;
975 const char *name;
976 int id, co;
977
978 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
979 return -ENODEV;
980
981 id = i2c_smbus_read_byte_data(client, 0x3d);
982 co = i2c_smbus_read_byte_data(client, 0x3e);
983
984 if (!((id == 0x31 || id == 0x30) && co == 0x41))
985 return -ENODEV;
986 name = (id == 0x30) ? "adm1030" : "adm1031";
987
988 strscpy(info->type, name, I2C_NAME_SIZE);
989
990 return 0;
991 }
992
adm1031_init_client(struct i2c_client * client)993 static void adm1031_init_client(struct i2c_client *client)
994 {
995 unsigned int read_val;
996 unsigned int mask;
997 int i;
998 struct adm1031_data *data = i2c_get_clientdata(client);
999
1000 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1001 if (data->chip_type == adm1031) {
1002 mask |= (ADM1031_CONF2_PWM2_ENABLE |
1003 ADM1031_CONF2_TACH2_ENABLE);
1004 }
1005 /* Initialize the ADM1031 chip (enables fan speed reading ) */
1006 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1007 if ((read_val | mask) != read_val)
1008 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1009
1010 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1011 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1012 adm1031_write_value(client, ADM1031_REG_CONF1,
1013 read_val | ADM1031_CONF1_MONITOR_ENABLE);
1014 }
1015
1016 /* Read the chip's update rate */
1017 mask = ADM1031_UPDATE_RATE_MASK;
1018 read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1019 i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1020 /* Save it as update interval */
1021 data->update_interval = update_intervals[i];
1022 }
1023
adm1031_probe(struct i2c_client * client)1024 static int adm1031_probe(struct i2c_client *client)
1025 {
1026 struct device *dev = &client->dev;
1027 struct device *hwmon_dev;
1028 struct adm1031_data *data;
1029
1030 data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1031 if (!data)
1032 return -ENOMEM;
1033
1034 i2c_set_clientdata(client, data);
1035 data->client = client;
1036 data->chip_type = (uintptr_t)i2c_get_match_data(client);
1037 mutex_init(&data->update_lock);
1038
1039 if (data->chip_type == adm1030)
1040 data->chan_select_table = &auto_channel_select_table_adm1030;
1041 else
1042 data->chan_select_table = &auto_channel_select_table_adm1031;
1043
1044 /* Initialize the ADM1031 chip */
1045 adm1031_init_client(client);
1046
1047 /* sysfs hooks */
1048 data->groups[0] = &adm1031_group;
1049 if (data->chip_type == adm1031)
1050 data->groups[1] = &adm1031_group_opt;
1051
1052 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1053 data, data->groups);
1054 return PTR_ERR_OR_ZERO(hwmon_dev);
1055 }
1056
1057 static const struct i2c_device_id adm1031_id[] = {
1058 { "adm1030", adm1030 },
1059 { "adm1031", adm1031 },
1060 { }
1061 };
1062 MODULE_DEVICE_TABLE(i2c, adm1031_id);
1063
1064 static struct i2c_driver adm1031_driver = {
1065 .class = I2C_CLASS_HWMON,
1066 .driver = {
1067 .name = "adm1031",
1068 },
1069 .probe = adm1031_probe,
1070 .id_table = adm1031_id,
1071 .detect = adm1031_detect,
1072 .address_list = normal_i2c,
1073 };
1074
1075 module_i2c_driver(adm1031_driver);
1076
1077 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1078 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1079 MODULE_LICENSE("GPL");
1080