xref: /linux/drivers/hwmon/abituguru.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
4  */
5 /*
6  * This driver supports the sensor part of the first and second revision of
7  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
8  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/jiffies.h>
18 #include <linux/mutex.h>
19 #include <linux/err.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/hwmon.h>
23 #include <linux/hwmon-sysfs.h>
24 #include <linux/dmi.h>
25 #include <linux/io.h>
26 
27 /* Banks */
28 #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
29 #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
30 #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
31 #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
32 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
33 #define ABIT_UGURU_MAX_BANK1_SENSORS		16
34 /*
35  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
36  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
37  */
38 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
39 #define ABIT_UGURU_MAX_BANK2_SENSORS		6
40 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
41 #define ABIT_UGURU_MAX_PWMS			5
42 /* uGuru sensor bank 1 flags */			     /* Alarm if: */
43 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
44 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
45 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
46 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
47 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
48 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
49 /* uGuru sensor bank 2 flags */			     /* Alarm if: */
50 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
51 /* uGuru sensor bank common flags */
52 #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
53 #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
54 /* uGuru fan PWM (speed control) flags */
55 #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
56 /* Values used for conversion */
57 #define ABIT_UGURU_FAN_MAX			15300 /* RPM */
58 /* Bank1 sensor types */
59 #define ABIT_UGURU_IN_SENSOR			0
60 #define ABIT_UGURU_TEMP_SENSOR			1
61 #define ABIT_UGURU_NC				2
62 /*
63  * In many cases we need to wait for the uGuru to reach a certain status, most
64  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
65  * can best busy wait. This define gives the total amount of reads to try.
66  */
67 #define ABIT_UGURU_WAIT_TIMEOUT			125
68 /*
69  * However sometimes older versions of the uGuru seem to be distracted and they
70  * do not respond for a long time. To handle this we sleep before each of the
71  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
72  */
73 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
74 /*
75  * Normally all expected status in abituguru_ready, are reported after the
76  * first read, but sometimes not and we need to poll.
77  */
78 #define ABIT_UGURU_READY_TIMEOUT		5
79 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
80 #define ABIT_UGURU_MAX_RETRIES			3
81 #define ABIT_UGURU_RETRY_DELAY			(HZ/5)
82 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
83 #define ABIT_UGURU_MAX_TIMEOUTS			2
84 /* utility macros */
85 #define ABIT_UGURU_NAME				"abituguru"
86 #define ABIT_UGURU_DEBUG(level, format, arg...)		\
87 	do {						\
88 		if (level <= verbose)			\
89 			pr_debug(format , ## arg);	\
90 	} while (0)
91 
92 /* Macros to help calculate the sysfs_names array length */
93 /*
94  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
95  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
96  */
97 #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
98 /*
99  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
100  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
101  */
102 #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
103 /*
104  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
105  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
106  */
107 #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
108 /*
109  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
110  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
111  */
112 #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
113 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
114 #define ABITUGURU_SYSFS_NAMES_LENGTH	( \
115 	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
116 	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
117 	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
118 
119 /*
120  * All the macros below are named identical to the oguru and oguru2 programs
121  * reverse engineered by Olle Sandberg, hence the names might not be 100%
122  * logical. I could come up with better names, but I prefer keeping the names
123  * identical so that this driver can be compared with his work more easily.
124  */
125 /* Two i/o-ports are used by uGuru */
126 #define ABIT_UGURU_BASE				0x00E0
127 /* Used to tell uGuru what to read and to read the actual data */
128 #define ABIT_UGURU_CMD				0x00
129 /* Mostly used to check if uGuru is busy */
130 #define ABIT_UGURU_DATA				0x04
131 #define ABIT_UGURU_REGION_LENGTH		5
132 /* uGuru status' */
133 #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
134 #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
135 #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
136 #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
137 
138 /* Constants */
139 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
140 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
141 /*
142  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
143  * correspond to 300-3000 RPM
144  */
145 static const u8 abituguru_bank2_min_threshold = 5;
146 static const u8 abituguru_bank2_max_threshold = 50;
147 /*
148  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
149  * are temperature trip points.
150  */
151 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
152 /*
153  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
154  * special case the minimum allowed pwm% setting for this is 30% (77) on
155  * some MB's this special case is handled in the code!
156  */
157 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
158 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
159 
160 
161 /* Insmod parameters */
162 static bool force;
163 module_param(force, bool, 0);
164 MODULE_PARM_DESC(force, "Set to one to force detection.");
165 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
166 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
167 module_param_array(bank1_types, int, NULL, 0);
168 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
169 	"   -1 autodetect\n"
170 	"    0 volt sensor\n"
171 	"    1 temp sensor\n"
172 	"    2 not connected");
173 static int fan_sensors;
174 module_param(fan_sensors, int, 0);
175 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
176 	"(0 = autodetect)");
177 static int pwms;
178 module_param(pwms, int, 0);
179 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
180 	"(0 = autodetect)");
181 
182 /* Default verbose is 2, since this driver is still in the testing phase */
183 static int verbose = 2;
184 module_param(verbose, int, 0644);
185 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
186 	"   0 normal output\n"
187 	"   1 + verbose error reporting\n"
188 	"   2 + sensors type probing info\n"
189 	"   3 + retryable error reporting");
190 
191 
192 /*
193  * For the Abit uGuru, we need to keep some data in memory.
194  * The structure is dynamically allocated, at the same time when a new
195  * abituguru device is allocated.
196  */
197 struct abituguru_data {
198 	struct device *hwmon_dev;	/* hwmon registered device */
199 	struct mutex update_lock;	/* protect access to data and uGuru */
200 	unsigned long last_updated;	/* In jiffies */
201 	unsigned short addr;		/* uguru base address */
202 	char uguru_ready;		/* is the uguru in ready state? */
203 	unsigned char update_timeouts;	/*
204 					 * number of update timeouts since last
205 					 * successful update
206 					 */
207 
208 	/*
209 	 * The sysfs attr and their names are generated automatically, for bank1
210 	 * we cannot use a predefined array because we don't know beforehand
211 	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
212 	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
213 	 * sysfs entries per sensor, for bank2 and pwms 6.
214 	 */
215 	struct sensor_device_attribute_2 sysfs_attr[
216 		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
217 		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
218 	/* Buffer to store the dynamically generated sysfs names */
219 	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
220 
221 	/* Bank 1 data */
222 	/* number of and addresses of [0] in, [1] temp sensors */
223 	u8 bank1_sensors[2];
224 	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
225 	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
226 	/*
227 	 * This array holds 3 entries per sensor for the bank 1 sensor settings
228 	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
229 	 */
230 	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
231 	/*
232 	 * Maximum value for each sensor used for scaling in mV/millidegrees
233 	 * Celsius.
234 	 */
235 	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
236 
237 	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
238 	u8 bank2_sensors; /* actual number of bank2 sensors found */
239 	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
240 	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
241 
242 	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
243 	u8 alarms[3];
244 
245 	/* Fan PWM (speed control) 5 bytes per PWM */
246 	u8 pwms; /* actual number of pwms found */
247 	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
248 };
249 
250 static const char *never_happen = "This should never happen.";
251 static const char *report_this =
252 	"Please report this to the abituguru maintainer (see MAINTAINERS)";
253 
254 /* wait till the uguru is in the specified state */
255 static int abituguru_wait(struct abituguru_data *data, u8 state)
256 {
257 	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
258 
259 	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
260 		timeout--;
261 		if (timeout == 0)
262 			return -EBUSY;
263 		/*
264 		 * sleep a bit before our last few tries, see the comment on
265 		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
266 		 */
267 		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
268 			msleep(0);
269 	}
270 	return 0;
271 }
272 
273 /* Put the uguru in ready for input state */
274 static int abituguru_ready(struct abituguru_data *data)
275 {
276 	int timeout = ABIT_UGURU_READY_TIMEOUT;
277 
278 	if (data->uguru_ready)
279 		return 0;
280 
281 	/* Reset? / Prepare for next read/write cycle */
282 	outb(0x00, data->addr + ABIT_UGURU_DATA);
283 
284 	/* Wait till the uguru is ready */
285 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
286 		ABIT_UGURU_DEBUG(1,
287 			"timeout exceeded waiting for ready state\n");
288 		return -EIO;
289 	}
290 
291 	/* Cmd port MUST be read now and should contain 0xAC */
292 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
293 		timeout--;
294 		if (timeout == 0) {
295 			ABIT_UGURU_DEBUG(1,
296 			   "CMD reg does not hold 0xAC after ready command\n");
297 			return -EIO;
298 		}
299 		msleep(0);
300 	}
301 
302 	/*
303 	 * After this the ABIT_UGURU_DATA port should contain
304 	 * ABIT_UGURU_STATUS_INPUT
305 	 */
306 	timeout = ABIT_UGURU_READY_TIMEOUT;
307 	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
308 		timeout--;
309 		if (timeout == 0) {
310 			ABIT_UGURU_DEBUG(1,
311 				"state != more input after ready command\n");
312 			return -EIO;
313 		}
314 		msleep(0);
315 	}
316 
317 	data->uguru_ready = 1;
318 	return 0;
319 }
320 
321 /*
322  * Send the bank and then sensor address to the uGuru for the next read/write
323  * cycle. This function gets called as the first part of a read/write by
324  * abituguru_read and abituguru_write. This function should never be
325  * called by any other function.
326  */
327 static int abituguru_send_address(struct abituguru_data *data,
328 	u8 bank_addr, u8 sensor_addr, int retries)
329 {
330 	/*
331 	 * assume the caller does error handling itself if it has not requested
332 	 * any retries, and thus be quiet.
333 	 */
334 	int report_errors = retries;
335 
336 	for (;;) {
337 		/*
338 		 * Make sure the uguru is ready and then send the bank address,
339 		 * after this the uguru is no longer "ready".
340 		 */
341 		if (abituguru_ready(data) != 0)
342 			return -EIO;
343 		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
344 		data->uguru_ready = 0;
345 
346 		/*
347 		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
348 		 * and send the sensor addr
349 		 */
350 		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
351 			if (retries) {
352 				ABIT_UGURU_DEBUG(3, "timeout exceeded "
353 					"waiting for more input state, %d "
354 					"tries remaining\n", retries);
355 				set_current_state(TASK_UNINTERRUPTIBLE);
356 				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
357 				retries--;
358 				continue;
359 			}
360 			if (report_errors)
361 				ABIT_UGURU_DEBUG(1, "timeout exceeded "
362 					"waiting for more input state "
363 					"(bank: %d)\n", (int)bank_addr);
364 			return -EBUSY;
365 		}
366 		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
367 		return 0;
368 	}
369 }
370 
371 /*
372  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
373  * result in buf, retry the send address part of the read retries times.
374  */
375 static int abituguru_read(struct abituguru_data *data,
376 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
377 {
378 	int i;
379 
380 	/* Send the address */
381 	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
382 	if (i)
383 		return i;
384 
385 	/* And read the data */
386 	for (i = 0; i < count; i++) {
387 		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
388 			ABIT_UGURU_DEBUG(retries ? 1 : 3,
389 				"timeout exceeded waiting for "
390 				"read state (bank: %d, sensor: %d)\n",
391 				(int)bank_addr, (int)sensor_addr);
392 			break;
393 		}
394 		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
395 	}
396 
397 	/* Last put the chip back in ready state */
398 	abituguru_ready(data);
399 
400 	return i;
401 }
402 
403 /*
404  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
405  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
406  */
407 static int abituguru_write(struct abituguru_data *data,
408 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
409 {
410 	/*
411 	 * We use the ready timeout as we have to wait for 0xAC just like the
412 	 * ready function
413 	 */
414 	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
415 
416 	/* Send the address */
417 	i = abituguru_send_address(data, bank_addr, sensor_addr,
418 		ABIT_UGURU_MAX_RETRIES);
419 	if (i)
420 		return i;
421 
422 	/* And write the data */
423 	for (i = 0; i < count; i++) {
424 		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
425 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
426 				"write state (bank: %d, sensor: %d)\n",
427 				(int)bank_addr, (int)sensor_addr);
428 			break;
429 		}
430 		outb(buf[i], data->addr + ABIT_UGURU_CMD);
431 	}
432 
433 	/*
434 	 * Now we need to wait till the chip is ready to be read again,
435 	 * so that we can read 0xAC as confirmation that our write has
436 	 * succeeded.
437 	 */
438 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
439 		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
440 			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
441 			(int)sensor_addr);
442 		return -EIO;
443 	}
444 
445 	/* Cmd port MUST be read now and should contain 0xAC */
446 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
447 		timeout--;
448 		if (timeout == 0) {
449 			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
450 				"write (bank: %d, sensor: %d)\n",
451 				(int)bank_addr, (int)sensor_addr);
452 			return -EIO;
453 		}
454 		msleep(0);
455 	}
456 
457 	/* Last put the chip back in ready state */
458 	abituguru_ready(data);
459 
460 	return i;
461 }
462 
463 /*
464  * Detect sensor type. Temp and Volt sensors are enabled with
465  * different masks and will ignore enable masks not meant for them.
466  * This enables us to test what kind of sensor we're dealing with.
467  * By setting the alarm thresholds so that we will always get an
468  * alarm for sensor type X and then enabling the sensor as sensor type
469  * X, if we then get an alarm it is a sensor of type X.
470  */
471 static int
472 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
473 				   u8 sensor_addr)
474 {
475 	u8 val, test_flag, buf[3];
476 	int i, ret = -ENODEV; /* error is the most common used retval :| */
477 
478 	/* If overriden by the user return the user selected type */
479 	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
480 			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
481 		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
482 			"%d because of \"bank1_types\" module param\n",
483 			bank1_types[sensor_addr], (int)sensor_addr);
484 		return bank1_types[sensor_addr];
485 	}
486 
487 	/* First read the sensor and the current settings */
488 	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
489 			1, ABIT_UGURU_MAX_RETRIES) != 1)
490 		return -ENODEV;
491 
492 	/* Test val is sane / usable for sensor type detection. */
493 	if ((val < 10u) || (val > 250u)) {
494 		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
495 			"unable to determine sensor type, skipping sensor\n",
496 			(int)sensor_addr, (int)val);
497 		/*
498 		 * assume no sensor is there for sensors for which we can't
499 		 * determine the sensor type because their reading is too close
500 		 * to their limits, this usually means no sensor is there.
501 		 */
502 		return ABIT_UGURU_NC;
503 	}
504 
505 	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
506 	/*
507 	 * Volt sensor test, enable volt low alarm, set min value ridiculously
508 	 * high, or vica versa if the reading is very high. If its a volt
509 	 * sensor this should always give us an alarm.
510 	 */
511 	if (val <= 240u) {
512 		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
513 		buf[1] = 245;
514 		buf[2] = 250;
515 		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
516 	} else {
517 		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
518 		buf[1] = 5;
519 		buf[2] = 10;
520 		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
521 	}
522 
523 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
524 			buf, 3) != 3)
525 		goto abituguru_detect_bank1_sensor_type_exit;
526 	/*
527 	 * Now we need 20 ms to give the uguru time to read the sensors
528 	 * and raise a voltage alarm
529 	 */
530 	set_current_state(TASK_UNINTERRUPTIBLE);
531 	schedule_timeout(HZ/50);
532 	/* Check for alarm and check the alarm is a volt low alarm. */
533 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
534 			ABIT_UGURU_MAX_RETRIES) != 3)
535 		goto abituguru_detect_bank1_sensor_type_exit;
536 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
537 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
538 				sensor_addr, buf, 3,
539 				ABIT_UGURU_MAX_RETRIES) != 3)
540 			goto abituguru_detect_bank1_sensor_type_exit;
541 		if (buf[0] & test_flag) {
542 			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
543 			ret = ABIT_UGURU_IN_SENSOR;
544 			goto abituguru_detect_bank1_sensor_type_exit;
545 		} else
546 			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
547 				"sensor test, but volt range flag not set\n");
548 	} else
549 		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
550 			"test\n");
551 
552 	/*
553 	 * Temp sensor test, enable sensor as a temp sensor, set beep value
554 	 * ridiculously low (but not too low, otherwise uguru ignores it).
555 	 * If its a temp sensor this should always give us an alarm.
556 	 */
557 	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
558 	buf[1] = 5;
559 	buf[2] = 10;
560 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
561 			buf, 3) != 3)
562 		goto abituguru_detect_bank1_sensor_type_exit;
563 	/*
564 	 * Now we need 50 ms to give the uguru time to read the sensors
565 	 * and raise a temp alarm
566 	 */
567 	set_current_state(TASK_UNINTERRUPTIBLE);
568 	schedule_timeout(HZ/20);
569 	/* Check for alarm and check the alarm is a temp high alarm. */
570 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
571 			ABIT_UGURU_MAX_RETRIES) != 3)
572 		goto abituguru_detect_bank1_sensor_type_exit;
573 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
574 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
575 				sensor_addr, buf, 3,
576 				ABIT_UGURU_MAX_RETRIES) != 3)
577 			goto abituguru_detect_bank1_sensor_type_exit;
578 		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
579 			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
580 			ret = ABIT_UGURU_TEMP_SENSOR;
581 			goto abituguru_detect_bank1_sensor_type_exit;
582 		} else
583 			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
584 				"sensor test, but temp high flag not set\n");
585 	} else
586 		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
587 			"test\n");
588 
589 	ret = ABIT_UGURU_NC;
590 abituguru_detect_bank1_sensor_type_exit:
591 	/*
592 	 * Restore original settings, failing here is really BAD, it has been
593 	 * reported that some BIOS-es hang when entering the uGuru menu with
594 	 * invalid settings present in the uGuru, so we try this 3 times.
595 	 */
596 	for (i = 0; i < 3; i++)
597 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
598 				sensor_addr, data->bank1_settings[sensor_addr],
599 				3) == 3)
600 			break;
601 	if (i == 3) {
602 		pr_err("Fatal error could not restore original settings. %s %s\n",
603 		       never_happen, report_this);
604 		return -ENODEV;
605 	}
606 	return ret;
607 }
608 
609 /*
610  * These functions try to find out how many sensors there are in bank2 and how
611  * many pwms there are. The purpose of this is to make sure that we don't give
612  * the user the possibility to change settings for non-existent sensors / pwm.
613  * The uGuru will happily read / write whatever memory happens to be after the
614  * memory storing the PWM settings when reading/writing to a PWM which is not
615  * there. Notice even if we detect a PWM which doesn't exist we normally won't
616  * write to it, unless the user tries to change the settings.
617  *
618  * Although the uGuru allows reading (settings) from non existing bank2
619  * sensors, my version of the uGuru does seem to stop writing to them, the
620  * write function above aborts in this case with:
621  * "CMD reg does not hold 0xAC after write"
622  *
623  * Notice these 2 tests are non destructive iow read-only tests, otherwise
624  * they would defeat their purpose. Although for the bank2_sensors detection a
625  * read/write test would be feasible because of the reaction above, I've
626  * however opted to stay on the safe side.
627  */
628 static void
629 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
630 {
631 	int i;
632 
633 	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
634 		data->bank2_sensors = fan_sensors;
635 		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
636 			"\"fan_sensors\" module param\n",
637 			(int)data->bank2_sensors);
638 		return;
639 	}
640 
641 	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
642 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
643 		/*
644 		 * 0x89 are the known used bits:
645 		 * -0x80 enable shutdown
646 		 * -0x08 enable beep
647 		 * -0x01 enable alarm
648 		 * All other bits should be 0, but on some motherboards
649 		 * 0x40 (bit 6) is also high for some of the fans??
650 		 */
651 		if (data->bank2_settings[i][0] & ~0xC9) {
652 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
653 				"to be a fan sensor: settings[0] = %02X\n",
654 				i, (unsigned int)data->bank2_settings[i][0]);
655 			break;
656 		}
657 
658 		/* check if the threshold is within the allowed range */
659 		if (data->bank2_settings[i][1] <
660 				abituguru_bank2_min_threshold) {
661 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
662 				"to be a fan sensor: the threshold (%d) is "
663 				"below the minimum (%d)\n", i,
664 				(int)data->bank2_settings[i][1],
665 				(int)abituguru_bank2_min_threshold);
666 			break;
667 		}
668 		if (data->bank2_settings[i][1] >
669 				abituguru_bank2_max_threshold) {
670 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
671 				"to be a fan sensor: the threshold (%d) is "
672 				"above the maximum (%d)\n", i,
673 				(int)data->bank2_settings[i][1],
674 				(int)abituguru_bank2_max_threshold);
675 			break;
676 		}
677 	}
678 
679 	data->bank2_sensors = i;
680 	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
681 		(int)data->bank2_sensors);
682 }
683 
684 static void
685 abituguru_detect_no_pwms(struct abituguru_data *data)
686 {
687 	int i, j;
688 
689 	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
690 		data->pwms = pwms;
691 		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
692 			"\"pwms\" module param\n", (int)data->pwms);
693 		return;
694 	}
695 
696 	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
697 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
698 		/*
699 		 * 0x80 is the enable bit and the low
700 		 * nibble is which temp sensor to use,
701 		 * the other bits should be 0
702 		 */
703 		if (data->pwm_settings[i][0] & ~0x8F) {
704 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
705 				"to be a pwm channel: settings[0] = %02X\n",
706 				i, (unsigned int)data->pwm_settings[i][0]);
707 			break;
708 		}
709 
710 		/*
711 		 * the low nibble must correspond to one of the temp sensors
712 		 * we've found
713 		 */
714 		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
715 				j++) {
716 			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
717 					(data->pwm_settings[i][0] & 0x0F))
718 				break;
719 		}
720 		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
721 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
722 				"to be a pwm channel: %d is not a valid temp "
723 				"sensor address\n", i,
724 				data->pwm_settings[i][0] & 0x0F);
725 			break;
726 		}
727 
728 		/* check if all other settings are within the allowed range */
729 		for (j = 1; j < 5; j++) {
730 			u8 min;
731 			/* special case pwm1 min pwm% */
732 			if ((i == 0) && ((j == 1) || (j == 2)))
733 				min = 77;
734 			else
735 				min = abituguru_pwm_min[j];
736 			if (data->pwm_settings[i][j] < min) {
737 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
738 					"not seem to be a pwm channel: "
739 					"setting %d (%d) is below the minimum "
740 					"value (%d)\n", i, j,
741 					(int)data->pwm_settings[i][j],
742 					(int)min);
743 				goto abituguru_detect_no_pwms_exit;
744 			}
745 			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
746 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
747 					"not seem to be a pwm channel: "
748 					"setting %d (%d) is above the maximum "
749 					"value (%d)\n", i, j,
750 					(int)data->pwm_settings[i][j],
751 					(int)abituguru_pwm_max[j]);
752 				goto abituguru_detect_no_pwms_exit;
753 			}
754 		}
755 
756 		/* check that min temp < max temp and min pwm < max pwm */
757 		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
758 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
759 				"to be a pwm channel: min pwm (%d) >= "
760 				"max pwm (%d)\n", i,
761 				(int)data->pwm_settings[i][1],
762 				(int)data->pwm_settings[i][2]);
763 			break;
764 		}
765 		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
766 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
767 				"to be a pwm channel: min temp (%d) >= "
768 				"max temp (%d)\n", i,
769 				(int)data->pwm_settings[i][3],
770 				(int)data->pwm_settings[i][4]);
771 			break;
772 		}
773 	}
774 
775 abituguru_detect_no_pwms_exit:
776 	data->pwms = i;
777 	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
778 }
779 
780 /*
781  * Following are the sysfs callback functions. These functions expect:
782  * sensor_device_attribute_2->index:   sensor address/offset in the bank
783  * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
784  */
785 static struct abituguru_data *abituguru_update_device(struct device *dev);
786 
787 static ssize_t show_bank1_value(struct device *dev,
788 	struct device_attribute *devattr, char *buf)
789 {
790 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
791 	struct abituguru_data *data = abituguru_update_device(dev);
792 	if (!data)
793 		return -EIO;
794 	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
795 		data->bank1_max_value[attr->index] + 128) / 255);
796 }
797 
798 static ssize_t show_bank1_setting(struct device *dev,
799 	struct device_attribute *devattr, char *buf)
800 {
801 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
802 	struct abituguru_data *data = dev_get_drvdata(dev);
803 	return sprintf(buf, "%d\n",
804 		(data->bank1_settings[attr->index][attr->nr] *
805 		data->bank1_max_value[attr->index] + 128) / 255);
806 }
807 
808 static ssize_t show_bank2_value(struct device *dev,
809 	struct device_attribute *devattr, char *buf)
810 {
811 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
812 	struct abituguru_data *data = abituguru_update_device(dev);
813 	if (!data)
814 		return -EIO;
815 	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
816 		ABIT_UGURU_FAN_MAX + 128) / 255);
817 }
818 
819 static ssize_t show_bank2_setting(struct device *dev,
820 	struct device_attribute *devattr, char *buf)
821 {
822 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
823 	struct abituguru_data *data = dev_get_drvdata(dev);
824 	return sprintf(buf, "%d\n",
825 		(data->bank2_settings[attr->index][attr->nr] *
826 		ABIT_UGURU_FAN_MAX + 128) / 255);
827 }
828 
829 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
830 	*devattr, const char *buf, size_t count)
831 {
832 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
833 	struct abituguru_data *data = dev_get_drvdata(dev);
834 	unsigned long val;
835 	ssize_t ret;
836 
837 	ret = kstrtoul(buf, 10, &val);
838 	if (ret)
839 		return ret;
840 
841 	ret = count;
842 	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
843 		data->bank1_max_value[attr->index];
844 	if (val > 255)
845 		return -EINVAL;
846 
847 	mutex_lock(&data->update_lock);
848 	if (data->bank1_settings[attr->index][attr->nr] != val) {
849 		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
850 		data->bank1_settings[attr->index][attr->nr] = val;
851 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
852 				attr->index, data->bank1_settings[attr->index],
853 				3) <= attr->nr) {
854 			data->bank1_settings[attr->index][attr->nr] = orig_val;
855 			ret = -EIO;
856 		}
857 	}
858 	mutex_unlock(&data->update_lock);
859 	return ret;
860 }
861 
862 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
863 	*devattr, const char *buf, size_t count)
864 {
865 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
866 	struct abituguru_data *data = dev_get_drvdata(dev);
867 	unsigned long val;
868 	ssize_t ret;
869 
870 	ret = kstrtoul(buf, 10, &val);
871 	if (ret)
872 		return ret;
873 
874 	ret = count;
875 	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
876 
877 	/* this check can be done before taking the lock */
878 	if (val < abituguru_bank2_min_threshold ||
879 			val > abituguru_bank2_max_threshold)
880 		return -EINVAL;
881 
882 	mutex_lock(&data->update_lock);
883 	if (data->bank2_settings[attr->index][attr->nr] != val) {
884 		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
885 		data->bank2_settings[attr->index][attr->nr] = val;
886 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
887 				attr->index, data->bank2_settings[attr->index],
888 				2) <= attr->nr) {
889 			data->bank2_settings[attr->index][attr->nr] = orig_val;
890 			ret = -EIO;
891 		}
892 	}
893 	mutex_unlock(&data->update_lock);
894 	return ret;
895 }
896 
897 static ssize_t show_bank1_alarm(struct device *dev,
898 	struct device_attribute *devattr, char *buf)
899 {
900 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
901 	struct abituguru_data *data = abituguru_update_device(dev);
902 	if (!data)
903 		return -EIO;
904 	/*
905 	 * See if the alarm bit for this sensor is set, and if the
906 	 * alarm matches the type of alarm we're looking for (for volt
907 	 * it can be either low or high). The type is stored in a few
908 	 * readonly bits in the settings part of the relevant sensor.
909 	 * The bitmask of the type is passed to us in attr->nr.
910 	 */
911 	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
912 			(data->bank1_settings[attr->index][0] & attr->nr))
913 		return sprintf(buf, "1\n");
914 	else
915 		return sprintf(buf, "0\n");
916 }
917 
918 static ssize_t show_bank2_alarm(struct device *dev,
919 	struct device_attribute *devattr, char *buf)
920 {
921 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
922 	struct abituguru_data *data = abituguru_update_device(dev);
923 	if (!data)
924 		return -EIO;
925 	if (data->alarms[2] & (0x01 << attr->index))
926 		return sprintf(buf, "1\n");
927 	else
928 		return sprintf(buf, "0\n");
929 }
930 
931 static ssize_t show_bank1_mask(struct device *dev,
932 	struct device_attribute *devattr, char *buf)
933 {
934 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
935 	struct abituguru_data *data = dev_get_drvdata(dev);
936 	if (data->bank1_settings[attr->index][0] & attr->nr)
937 		return sprintf(buf, "1\n");
938 	else
939 		return sprintf(buf, "0\n");
940 }
941 
942 static ssize_t show_bank2_mask(struct device *dev,
943 	struct device_attribute *devattr, char *buf)
944 {
945 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
946 	struct abituguru_data *data = dev_get_drvdata(dev);
947 	if (data->bank2_settings[attr->index][0] & attr->nr)
948 		return sprintf(buf, "1\n");
949 	else
950 		return sprintf(buf, "0\n");
951 }
952 
953 static ssize_t store_bank1_mask(struct device *dev,
954 	struct device_attribute *devattr, const char *buf, size_t count)
955 {
956 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
957 	struct abituguru_data *data = dev_get_drvdata(dev);
958 	ssize_t ret;
959 	u8 orig_val;
960 	unsigned long mask;
961 
962 	ret = kstrtoul(buf, 10, &mask);
963 	if (ret)
964 		return ret;
965 
966 	ret = count;
967 	mutex_lock(&data->update_lock);
968 	orig_val = data->bank1_settings[attr->index][0];
969 
970 	if (mask)
971 		data->bank1_settings[attr->index][0] |= attr->nr;
972 	else
973 		data->bank1_settings[attr->index][0] &= ~attr->nr;
974 
975 	if ((data->bank1_settings[attr->index][0] != orig_val) &&
976 			(abituguru_write(data,
977 			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
978 			data->bank1_settings[attr->index], 3) < 1)) {
979 		data->bank1_settings[attr->index][0] = orig_val;
980 		ret = -EIO;
981 	}
982 	mutex_unlock(&data->update_lock);
983 	return ret;
984 }
985 
986 static ssize_t store_bank2_mask(struct device *dev,
987 	struct device_attribute *devattr, const char *buf, size_t count)
988 {
989 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
990 	struct abituguru_data *data = dev_get_drvdata(dev);
991 	ssize_t ret;
992 	u8 orig_val;
993 	unsigned long mask;
994 
995 	ret = kstrtoul(buf, 10, &mask);
996 	if (ret)
997 		return ret;
998 
999 	ret = count;
1000 	mutex_lock(&data->update_lock);
1001 	orig_val = data->bank2_settings[attr->index][0];
1002 
1003 	if (mask)
1004 		data->bank2_settings[attr->index][0] |= attr->nr;
1005 	else
1006 		data->bank2_settings[attr->index][0] &= ~attr->nr;
1007 
1008 	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1009 			(abituguru_write(data,
1010 			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1011 			data->bank2_settings[attr->index], 2) < 1)) {
1012 		data->bank2_settings[attr->index][0] = orig_val;
1013 		ret = -EIO;
1014 	}
1015 	mutex_unlock(&data->update_lock);
1016 	return ret;
1017 }
1018 
1019 /* Fan PWM (speed control) */
1020 static ssize_t show_pwm_setting(struct device *dev,
1021 	struct device_attribute *devattr, char *buf)
1022 {
1023 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1024 	struct abituguru_data *data = dev_get_drvdata(dev);
1025 	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1026 		abituguru_pwm_settings_multiplier[attr->nr]);
1027 }
1028 
1029 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1030 	*devattr, const char *buf, size_t count)
1031 {
1032 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1033 	struct abituguru_data *data = dev_get_drvdata(dev);
1034 	u8 min;
1035 	unsigned long val;
1036 	ssize_t ret;
1037 
1038 	ret = kstrtoul(buf, 10, &val);
1039 	if (ret)
1040 		return ret;
1041 
1042 	ret = count;
1043 	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1044 				abituguru_pwm_settings_multiplier[attr->nr];
1045 
1046 	/* special case pwm1 min pwm% */
1047 	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1048 		min = 77;
1049 	else
1050 		min = abituguru_pwm_min[attr->nr];
1051 
1052 	/* this check can be done before taking the lock */
1053 	if (val < min || val > abituguru_pwm_max[attr->nr])
1054 		return -EINVAL;
1055 
1056 	mutex_lock(&data->update_lock);
1057 	/* this check needs to be done after taking the lock */
1058 	if ((attr->nr & 1) &&
1059 			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1060 		ret = -EINVAL;
1061 	else if (!(attr->nr & 1) &&
1062 			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1063 		ret = -EINVAL;
1064 	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1065 		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1066 		data->pwm_settings[attr->index][attr->nr] = val;
1067 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1068 				attr->index, data->pwm_settings[attr->index],
1069 				5) <= attr->nr) {
1070 			data->pwm_settings[attr->index][attr->nr] =
1071 				orig_val;
1072 			ret = -EIO;
1073 		}
1074 	}
1075 	mutex_unlock(&data->update_lock);
1076 	return ret;
1077 }
1078 
1079 static ssize_t show_pwm_sensor(struct device *dev,
1080 	struct device_attribute *devattr, char *buf)
1081 {
1082 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1083 	struct abituguru_data *data = dev_get_drvdata(dev);
1084 	int i;
1085 	/*
1086 	 * We need to walk to the temp sensor addresses to find what
1087 	 * the userspace id of the configured temp sensor is.
1088 	 */
1089 	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1090 		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1091 				(data->pwm_settings[attr->index][0] & 0x0F))
1092 			return sprintf(buf, "%d\n", i+1);
1093 
1094 	return -ENXIO;
1095 }
1096 
1097 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1098 	*devattr, const char *buf, size_t count)
1099 {
1100 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1101 	struct abituguru_data *data = dev_get_drvdata(dev);
1102 	ssize_t ret;
1103 	unsigned long val;
1104 	u8 orig_val;
1105 	u8 address;
1106 
1107 	ret = kstrtoul(buf, 10, &val);
1108 	if (ret)
1109 		return ret;
1110 
1111 	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1112 		return -EINVAL;
1113 
1114 	val -= 1;
1115 	ret = count;
1116 	mutex_lock(&data->update_lock);
1117 	orig_val = data->pwm_settings[attr->index][0];
1118 	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1119 	data->pwm_settings[attr->index][0] &= 0xF0;
1120 	data->pwm_settings[attr->index][0] |= address;
1121 	if (data->pwm_settings[attr->index][0] != orig_val) {
1122 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1123 				    data->pwm_settings[attr->index], 5) < 1) {
1124 			data->pwm_settings[attr->index][0] = orig_val;
1125 			ret = -EIO;
1126 		}
1127 	}
1128 	mutex_unlock(&data->update_lock);
1129 	return ret;
1130 }
1131 
1132 static ssize_t show_pwm_enable(struct device *dev,
1133 	struct device_attribute *devattr, char *buf)
1134 {
1135 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1136 	struct abituguru_data *data = dev_get_drvdata(dev);
1137 	int res = 0;
1138 	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1139 		res = 2;
1140 	return sprintf(buf, "%d\n", res);
1141 }
1142 
1143 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1144 	*devattr, const char *buf, size_t count)
1145 {
1146 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1147 	struct abituguru_data *data = dev_get_drvdata(dev);
1148 	u8 orig_val;
1149 	ssize_t ret;
1150 	unsigned long user_val;
1151 
1152 	ret = kstrtoul(buf, 10, &user_val);
1153 	if (ret)
1154 		return ret;
1155 
1156 	ret = count;
1157 	mutex_lock(&data->update_lock);
1158 	orig_val = data->pwm_settings[attr->index][0];
1159 	switch (user_val) {
1160 	case 0:
1161 		data->pwm_settings[attr->index][0] &=
1162 			~ABIT_UGURU_FAN_PWM_ENABLE;
1163 		break;
1164 	case 2:
1165 		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1166 		break;
1167 	default:
1168 		ret = -EINVAL;
1169 	}
1170 	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1171 			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1172 			attr->index, data->pwm_settings[attr->index],
1173 			5) < 1)) {
1174 		data->pwm_settings[attr->index][0] = orig_val;
1175 		ret = -EIO;
1176 	}
1177 	mutex_unlock(&data->update_lock);
1178 	return ret;
1179 }
1180 
1181 static ssize_t show_name(struct device *dev,
1182 	struct device_attribute *devattr, char *buf)
1183 {
1184 	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1185 }
1186 
1187 /* Sysfs attr templates, the real entries are generated automatically. */
1188 static const
1189 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1190 	{
1191 	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1192 	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1193 		store_bank1_setting, 1, 0),
1194 	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1195 		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1196 	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1197 		store_bank1_setting, 2, 0),
1198 	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1199 		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1200 	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1201 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1202 	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1203 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1204 	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1205 		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1206 	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1207 		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1208 	}, {
1209 	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1210 	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1211 		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1212 	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1213 		store_bank1_setting, 1, 0),
1214 	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1215 		store_bank1_setting, 2, 0),
1216 	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1217 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1218 	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1219 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1220 	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1221 		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1222 	}
1223 };
1224 
1225 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1226 	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1227 	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1228 	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1229 		store_bank2_setting, 1, 0),
1230 	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1231 		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1232 	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1233 		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1234 	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1235 		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1236 };
1237 
1238 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1239 	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1240 		store_pwm_enable, 0, 0),
1241 	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1242 		store_pwm_sensor, 0, 0),
1243 	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1244 		store_pwm_setting, 1, 0),
1245 	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1246 		store_pwm_setting, 2, 0),
1247 	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1248 		store_pwm_setting, 3, 0),
1249 	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1250 		store_pwm_setting, 4, 0),
1251 };
1252 
1253 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1254 	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1255 };
1256 
1257 static int abituguru_probe(struct platform_device *pdev)
1258 {
1259 	struct abituguru_data *data;
1260 	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1261 	char *sysfs_filename;
1262 
1263 	/*
1264 	 * El weirdo probe order, to keep the sysfs order identical to the
1265 	 * BIOS and window-appliction listing order.
1266 	 */
1267 	static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1268 		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1269 		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1270 
1271 	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1272 			    GFP_KERNEL);
1273 	if (!data)
1274 		return -ENOMEM;
1275 
1276 	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1277 	mutex_init(&data->update_lock);
1278 	platform_set_drvdata(pdev, data);
1279 
1280 	/* See if the uGuru is ready */
1281 	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1282 		data->uguru_ready = 1;
1283 
1284 	/*
1285 	 * Completely read the uGuru this has 2 purposes:
1286 	 * - testread / see if one really is there.
1287 	 * - make an in memory copy of all the uguru settings for future use.
1288 	 */
1289 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1290 			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1291 		goto abituguru_probe_error;
1292 
1293 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1294 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1295 				&data->bank1_value[i], 1,
1296 				ABIT_UGURU_MAX_RETRIES) != 1)
1297 			goto abituguru_probe_error;
1298 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1299 				data->bank1_settings[i], 3,
1300 				ABIT_UGURU_MAX_RETRIES) != 3)
1301 			goto abituguru_probe_error;
1302 	}
1303 	/*
1304 	 * Note: We don't know how many bank2 sensors / pwms there really are,
1305 	 * but in order to "detect" this we need to read the maximum amount
1306 	 * anyways. If we read sensors/pwms not there we'll just read crap
1307 	 * this can't hurt. We need the detection because we don't want
1308 	 * unwanted writes, which will hurt!
1309 	 */
1310 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1311 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1312 				&data->bank2_value[i], 1,
1313 				ABIT_UGURU_MAX_RETRIES) != 1)
1314 			goto abituguru_probe_error;
1315 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1316 				data->bank2_settings[i], 2,
1317 				ABIT_UGURU_MAX_RETRIES) != 2)
1318 			goto abituguru_probe_error;
1319 	}
1320 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1321 		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1322 				data->pwm_settings[i], 5,
1323 				ABIT_UGURU_MAX_RETRIES) != 5)
1324 			goto abituguru_probe_error;
1325 	}
1326 	data->last_updated = jiffies;
1327 
1328 	/* Detect sensor types and fill the sysfs attr for bank1 */
1329 	sysfs_attr_i = 0;
1330 	sysfs_filename = data->sysfs_names;
1331 	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1332 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1333 		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1334 		if (res < 0)
1335 			goto abituguru_probe_error;
1336 		if (res == ABIT_UGURU_NC)
1337 			continue;
1338 
1339 		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1340 		for (j = 0; j < (res ? 7 : 9); j++) {
1341 			used = snprintf(sysfs_filename, sysfs_names_free,
1342 				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1343 				attr.name, data->bank1_sensors[res] + res)
1344 				+ 1;
1345 			data->sysfs_attr[sysfs_attr_i] =
1346 				abituguru_sysfs_bank1_templ[res][j];
1347 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1348 				sysfs_filename;
1349 			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1350 			sysfs_filename += used;
1351 			sysfs_names_free -= used;
1352 			sysfs_attr_i++;
1353 		}
1354 		data->bank1_max_value[probe_order[i]] =
1355 			abituguru_bank1_max_value[res];
1356 		data->bank1_address[res][data->bank1_sensors[res]] =
1357 			probe_order[i];
1358 		data->bank1_sensors[res]++;
1359 	}
1360 	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1361 	abituguru_detect_no_bank2_sensors(data);
1362 	for (i = 0; i < data->bank2_sensors; i++) {
1363 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1364 			used = snprintf(sysfs_filename, sysfs_names_free,
1365 				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1366 				i + 1) + 1;
1367 			data->sysfs_attr[sysfs_attr_i] =
1368 				abituguru_sysfs_fan_templ[j];
1369 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1370 				sysfs_filename;
1371 			data->sysfs_attr[sysfs_attr_i].index = i;
1372 			sysfs_filename += used;
1373 			sysfs_names_free -= used;
1374 			sysfs_attr_i++;
1375 		}
1376 	}
1377 	/* Detect number of sensors and fill the sysfs attr for pwms */
1378 	abituguru_detect_no_pwms(data);
1379 	for (i = 0; i < data->pwms; i++) {
1380 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1381 			used = snprintf(sysfs_filename, sysfs_names_free,
1382 				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1383 				i + 1) + 1;
1384 			data->sysfs_attr[sysfs_attr_i] =
1385 				abituguru_sysfs_pwm_templ[j];
1386 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1387 				sysfs_filename;
1388 			data->sysfs_attr[sysfs_attr_i].index = i;
1389 			sysfs_filename += used;
1390 			sysfs_names_free -= used;
1391 			sysfs_attr_i++;
1392 		}
1393 	}
1394 	/* Fail safe check, this should never happen! */
1395 	if (sysfs_names_free < 0) {
1396 		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1397 		       never_happen, report_this);
1398 		res = -ENAMETOOLONG;
1399 		goto abituguru_probe_error;
1400 	}
1401 	pr_info("found Abit uGuru\n");
1402 
1403 	/* Register sysfs hooks */
1404 	for (i = 0; i < sysfs_attr_i; i++) {
1405 		res = device_create_file(&pdev->dev,
1406 					 &data->sysfs_attr[i].dev_attr);
1407 		if (res)
1408 			goto abituguru_probe_error;
1409 	}
1410 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1411 		res = device_create_file(&pdev->dev,
1412 					 &abituguru_sysfs_attr[i].dev_attr);
1413 		if (res)
1414 			goto abituguru_probe_error;
1415 	}
1416 
1417 	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1418 	if (!IS_ERR(data->hwmon_dev))
1419 		return 0; /* success */
1420 
1421 	res = PTR_ERR(data->hwmon_dev);
1422 abituguru_probe_error:
1423 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1424 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1425 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1426 		device_remove_file(&pdev->dev,
1427 			&abituguru_sysfs_attr[i].dev_attr);
1428 	return res;
1429 }
1430 
1431 static void abituguru_remove(struct platform_device *pdev)
1432 {
1433 	int i;
1434 	struct abituguru_data *data = platform_get_drvdata(pdev);
1435 
1436 	hwmon_device_unregister(data->hwmon_dev);
1437 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1438 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1439 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1440 		device_remove_file(&pdev->dev,
1441 			&abituguru_sysfs_attr[i].dev_attr);
1442 }
1443 
1444 static struct abituguru_data *abituguru_update_device(struct device *dev)
1445 {
1446 	int i, err;
1447 	struct abituguru_data *data = dev_get_drvdata(dev);
1448 	/* fake a complete successful read if no update necessary. */
1449 	char success = 1;
1450 
1451 	mutex_lock(&data->update_lock);
1452 	if (time_after(jiffies, data->last_updated + HZ)) {
1453 		success = 0;
1454 		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1455 				     data->alarms, 3, 0);
1456 		if (err != 3)
1457 			goto LEAVE_UPDATE;
1458 		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1459 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1460 					     i, &data->bank1_value[i], 1, 0);
1461 			if (err != 1)
1462 				goto LEAVE_UPDATE;
1463 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1464 					     i, data->bank1_settings[i], 3, 0);
1465 			if (err != 3)
1466 				goto LEAVE_UPDATE;
1467 		}
1468 		for (i = 0; i < data->bank2_sensors; i++) {
1469 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1470 					     &data->bank2_value[i], 1, 0);
1471 			if (err != 1)
1472 				goto LEAVE_UPDATE;
1473 		}
1474 		/* success! */
1475 		success = 1;
1476 		data->update_timeouts = 0;
1477 LEAVE_UPDATE:
1478 		/* handle timeout condition */
1479 		if (!success && (err == -EBUSY || err >= 0)) {
1480 			/* No overflow please */
1481 			if (data->update_timeouts < 255u)
1482 				data->update_timeouts++;
1483 			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1484 				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1485 					"try again next update\n");
1486 				/* Just a timeout, fake a successful read */
1487 				success = 1;
1488 			} else
1489 				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1490 					"times waiting for more input state\n",
1491 					(int)data->update_timeouts);
1492 		}
1493 		/* On success set last_updated */
1494 		if (success)
1495 			data->last_updated = jiffies;
1496 	}
1497 	mutex_unlock(&data->update_lock);
1498 
1499 	if (success)
1500 		return data;
1501 	else
1502 		return NULL;
1503 }
1504 
1505 static int abituguru_suspend(struct device *dev)
1506 {
1507 	struct abituguru_data *data = dev_get_drvdata(dev);
1508 	/*
1509 	 * make sure all communications with the uguru are done and no new
1510 	 * ones are started
1511 	 */
1512 	mutex_lock(&data->update_lock);
1513 	return 0;
1514 }
1515 
1516 static int abituguru_resume(struct device *dev)
1517 {
1518 	struct abituguru_data *data = dev_get_drvdata(dev);
1519 	/* See if the uGuru is still ready */
1520 	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1521 		data->uguru_ready = 0;
1522 	mutex_unlock(&data->update_lock);
1523 	return 0;
1524 }
1525 
1526 static DEFINE_SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1527 
1528 static struct platform_driver abituguru_driver = {
1529 	.driver = {
1530 		.name	= ABIT_UGURU_NAME,
1531 		.pm	= pm_sleep_ptr(&abituguru_pm),
1532 	},
1533 	.probe		= abituguru_probe,
1534 	.remove_new	= abituguru_remove,
1535 };
1536 
1537 static int __init abituguru_detect(void)
1538 {
1539 	/*
1540 	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1541 	 * at DATA and 0xAC, when this driver has already been loaded once
1542 	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1543 	 * scenario but some will hold 0x00.
1544 	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1545 	 * after reading CMD first, so CMD must be read first!
1546 	 */
1547 	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1548 	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1549 	if (((data_val == 0x00) || (data_val == 0x08)) &&
1550 	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1551 		return ABIT_UGURU_BASE;
1552 
1553 	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1554 		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1555 
1556 	if (force) {
1557 		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1558 		return ABIT_UGURU_BASE;
1559 	}
1560 
1561 	/* No uGuru found */
1562 	return -ENODEV;
1563 }
1564 
1565 static struct platform_device *abituguru_pdev;
1566 
1567 static int __init abituguru_init(void)
1568 {
1569 	int address, err;
1570 	struct resource res = { .flags = IORESOURCE_IO };
1571 	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1572 
1573 	/* safety check, refuse to load on non Abit motherboards */
1574 	if (!force && (!board_vendor ||
1575 			strcmp(board_vendor, "http://www.abit.com.tw/")))
1576 		return -ENODEV;
1577 
1578 	address = abituguru_detect();
1579 	if (address < 0)
1580 		return address;
1581 
1582 	err = platform_driver_register(&abituguru_driver);
1583 	if (err)
1584 		goto exit;
1585 
1586 	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1587 	if (!abituguru_pdev) {
1588 		pr_err("Device allocation failed\n");
1589 		err = -ENOMEM;
1590 		goto exit_driver_unregister;
1591 	}
1592 
1593 	res.start = address;
1594 	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1595 	res.name = ABIT_UGURU_NAME;
1596 
1597 	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1598 	if (err) {
1599 		pr_err("Device resource addition failed (%d)\n", err);
1600 		goto exit_device_put;
1601 	}
1602 
1603 	err = platform_device_add(abituguru_pdev);
1604 	if (err) {
1605 		pr_err("Device addition failed (%d)\n", err);
1606 		goto exit_device_put;
1607 	}
1608 
1609 	return 0;
1610 
1611 exit_device_put:
1612 	platform_device_put(abituguru_pdev);
1613 exit_driver_unregister:
1614 	platform_driver_unregister(&abituguru_driver);
1615 exit:
1616 	return err;
1617 }
1618 
1619 static void __exit abituguru_exit(void)
1620 {
1621 	platform_device_unregister(abituguru_pdev);
1622 	platform_driver_unregister(&abituguru_driver);
1623 }
1624 
1625 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1626 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1627 MODULE_LICENSE("GPL");
1628 
1629 module_init(abituguru_init);
1630 module_exit(abituguru_exit);
1631