xref: /linux/drivers/hwmon/abituguru.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2     abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede@hhs.nl>
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18 /*
19     This driver supports the sensor part of the custom Abit uGuru chip found
20     on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM /
21     etc voltage & frequency control is not supported!
22 */
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/jiffies.h>
27 #include <linux/mutex.h>
28 #include <linux/err.h>
29 #include <linux/platform_device.h>
30 #include <linux/hwmon.h>
31 #include <linux/hwmon-sysfs.h>
32 #include <asm/io.h>
33 
34 /* Banks */
35 #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
36 #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
37 #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
38 #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
39 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
40 #define ABIT_UGURU_MAX_BANK1_SENSORS		16
41 /* Warning if you increase one of the 2 MAX defines below to 10 or higher you
42    should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
43 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
44 #define ABIT_UGURU_MAX_BANK2_SENSORS		6
45 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
46 #define ABIT_UGURU_MAX_PWMS			5
47 /* uGuru sensor bank 1 flags */			     /* Alarm if: */
48 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
49 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
50 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
51 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
52 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
53 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
54 /* uGuru sensor bank 2 flags */			     /* Alarm if: */
55 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
56 /* uGuru sensor bank common flags */
57 #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
58 #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
59 /* uGuru fan PWM (speed control) flags */
60 #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
61 /* Values used for conversion */
62 #define ABIT_UGURU_FAN_MAX			15300 /* RPM */
63 /* Bank1 sensor types */
64 #define ABIT_UGURU_IN_SENSOR			0
65 #define ABIT_UGURU_TEMP_SENSOR			1
66 #define ABIT_UGURU_NC				2
67 /* Timeouts / Retries, if these turn out to need a lot of fiddling we could
68    convert them to params. */
69 /* 250 was determined by trial and error, 200 works most of the time, but not
70    always. I assume this is cpu-speed independent, since the ISA-bus and not
71    the CPU should be the bottleneck. Note that 250 sometimes is still not
72    enough (only reported on AN7 mb) this is handled by a higher layer. */
73 #define ABIT_UGURU_WAIT_TIMEOUT			250
74 /* Normally all expected status in abituguru_ready, are reported after the
75    first read, but sometimes not and we need to poll, 5 polls was not enough
76    50 sofar is. */
77 #define ABIT_UGURU_READY_TIMEOUT		50
78 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
79 #define ABIT_UGURU_MAX_RETRIES			3
80 #define ABIT_UGURU_RETRY_DELAY			(HZ/5)
81 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
82 #define ABIT_UGURU_MAX_TIMEOUTS			2
83 /* utility macros */
84 #define ABIT_UGURU_NAME				"abituguru"
85 #define ABIT_UGURU_DEBUG(level, format, arg...)				\
86 	if (level <= verbose)						\
87 		printk(KERN_DEBUG ABIT_UGURU_NAME ": "	format , ## arg)
88 /* Macros to help calculate the sysfs_names array length */
89 /* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
90    in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
91 #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
92 /* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
93    temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
94 #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
95 /* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
96    fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
97 #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
98 /* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
99    pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
100 #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
101 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
102 #define ABITUGURU_SYSFS_NAMES_LENGTH	( \
103 	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
104 	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
105 	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
106 
107 /* All the macros below are named identical to the oguru and oguru2 programs
108    reverse engineered by Olle Sandberg, hence the names might not be 100%
109    logical. I could come up with better names, but I prefer keeping the names
110    identical so that this driver can be compared with his work more easily. */
111 /* Two i/o-ports are used by uGuru */
112 #define ABIT_UGURU_BASE				0x00E0
113 /* Used to tell uGuru what to read and to read the actual data */
114 #define ABIT_UGURU_CMD				0x00
115 /* Mostly used to check if uGuru is busy */
116 #define ABIT_UGURU_DATA				0x04
117 #define ABIT_UGURU_REGION_LENGTH		5
118 /* uGuru status' */
119 #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
120 #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
121 #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
122 #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
123 
124 /* Constants */
125 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
126 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
127 /* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
128    correspond to 300-3000 RPM */
129 static const u8 abituguru_bank2_min_threshold = 5;
130 static const u8 abituguru_bank2_max_threshold = 50;
131 /* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
132    are temperature trip points. */
133 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
134 /* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
135    special case the minium allowed pwm% setting for this is 30% (77) on
136    some MB's this special case is handled in the code! */
137 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
138 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
139 
140 
141 /* Insmod parameters */
142 static int force;
143 module_param(force, bool, 0);
144 MODULE_PARM_DESC(force, "Set to one to force detection.");
145 static int fan_sensors;
146 module_param(fan_sensors, int, 0);
147 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
148 	"(0 = autodetect)");
149 static int pwms;
150 module_param(pwms, int, 0);
151 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
152 	"(0 = autodetect)");
153 
154 /* Default verbose is 2, since this driver is still in the testing phase */
155 static int verbose = 2;
156 module_param(verbose, int, 0644);
157 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
158 	"   0 normal output\n"
159 	"   1 + verbose error reporting\n"
160 	"   2 + sensors type probing info\n"
161 	"   3 + retryable error reporting");
162 
163 
164 /* For the Abit uGuru, we need to keep some data in memory.
165    The structure is dynamically allocated, at the same time when a new
166    abituguru device is allocated. */
167 struct abituguru_data {
168 	struct class_device *class_dev; /* hwmon registered device */
169 	struct mutex update_lock;	/* protect access to data and uGuru */
170 	unsigned long last_updated;	/* In jiffies */
171 	unsigned short addr;		/* uguru base address */
172 	char uguru_ready;		/* is the uguru in ready state? */
173 	unsigned char update_timeouts;	/* number of update timeouts since last
174 					   successful update */
175 
176 	/* The sysfs attr and their names are generated automatically, for bank1
177 	   we cannot use a predefined array because we don't know beforehand
178 	   of a sensor is a volt or a temp sensor, for bank2 and the pwms its
179 	   easier todo things the same way.  For in sensors we have 9 (temp 7)
180 	   sysfs entries per sensor, for bank2 and pwms 6. */
181 	struct sensor_device_attribute_2 sysfs_attr[
182 		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
183 		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
184 	/* Buffer to store the dynamically generated sysfs names */
185 	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
186 
187 	/* Bank 1 data */
188 	/* number of and addresses of [0] in, [1] temp sensors */
189 	u8 bank1_sensors[2];
190 	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
191 	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
192 	/* This array holds 3 entries per sensor for the bank 1 sensor settings
193 	   (flags, min, max for voltage / flags, warn, shutdown for temp). */
194 	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
195 	/* Maximum value for each sensor used for scaling in mV/millidegrees
196 	   Celsius. */
197 	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
198 
199 	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
200 	u8 bank2_sensors; /* actual number of bank2 sensors found */
201 	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
202 	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
203 
204 	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
205 	u8 alarms[3];
206 
207 	/* Fan PWM (speed control) 5 bytes per PWM */
208 	u8 pwms; /* actual number of pwms found */
209 	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
210 };
211 
212 /* wait till the uguru is in the specified state */
213 static int abituguru_wait(struct abituguru_data *data, u8 state)
214 {
215 	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
216 
217 	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
218 		timeout--;
219 		if (timeout == 0)
220 			return -EBUSY;
221 	}
222 	return 0;
223 }
224 
225 /* Put the uguru in ready for input state */
226 static int abituguru_ready(struct abituguru_data *data)
227 {
228 	int timeout = ABIT_UGURU_READY_TIMEOUT;
229 
230 	if (data->uguru_ready)
231 		return 0;
232 
233 	/* Reset? / Prepare for next read/write cycle */
234 	outb(0x00, data->addr + ABIT_UGURU_DATA);
235 
236 	/* Wait till the uguru is ready */
237 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
238 		ABIT_UGURU_DEBUG(1,
239 			"timeout exceeded waiting for ready state\n");
240 		return -EIO;
241 	}
242 
243 	/* Cmd port MUST be read now and should contain 0xAC */
244 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
245 		timeout--;
246 		if (timeout == 0) {
247 			ABIT_UGURU_DEBUG(1,
248 			   "CMD reg does not hold 0xAC after ready command\n");
249 			return -EIO;
250 		}
251 	}
252 
253 	/* After this the ABIT_UGURU_DATA port should contain
254 	   ABIT_UGURU_STATUS_INPUT */
255 	timeout = ABIT_UGURU_READY_TIMEOUT;
256 	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
257 		timeout--;
258 		if (timeout == 0) {
259 			ABIT_UGURU_DEBUG(1,
260 				"state != more input after ready command\n");
261 			return -EIO;
262 		}
263 	}
264 
265 	data->uguru_ready = 1;
266 	return 0;
267 }
268 
269 /* Send the bank and then sensor address to the uGuru for the next read/write
270    cycle. This function gets called as the first part of a read/write by
271    abituguru_read and abituguru_write. This function should never be
272    called by any other function. */
273 static int abituguru_send_address(struct abituguru_data *data,
274 	u8 bank_addr, u8 sensor_addr, int retries)
275 {
276 	/* assume the caller does error handling itself if it has not requested
277 	   any retries, and thus be quiet. */
278 	int report_errors = retries;
279 
280 	for (;;) {
281 		/* Make sure the uguru is ready and then send the bank address,
282 		   after this the uguru is no longer "ready". */
283 		if (abituguru_ready(data) != 0)
284 			return -EIO;
285 		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
286 		data->uguru_ready = 0;
287 
288 		/* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
289 		   and send the sensor addr */
290 		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
291 			if (retries) {
292 				ABIT_UGURU_DEBUG(3, "timeout exceeded "
293 					"waiting for more input state, %d "
294 					"tries remaining\n", retries);
295 				set_current_state(TASK_UNINTERRUPTIBLE);
296 				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
297 				retries--;
298 				continue;
299 			}
300 			if (report_errors)
301 				ABIT_UGURU_DEBUG(1, "timeout exceeded "
302 					"waiting for more input state "
303 					"(bank: %d)\n", (int)bank_addr);
304 			return -EBUSY;
305 		}
306 		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
307 		return 0;
308 	}
309 }
310 
311 /* Read count bytes from sensor sensor_addr in bank bank_addr and store the
312    result in buf, retry the send address part of the read retries times. */
313 static int abituguru_read(struct abituguru_data *data,
314 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
315 {
316 	int i;
317 
318 	/* Send the address */
319 	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
320 	if (i)
321 		return i;
322 
323 	/* And read the data */
324 	for (i = 0; i < count; i++) {
325 		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
326 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
327 				"read state (bank: %d, sensor: %d)\n",
328 				(int)bank_addr, (int)sensor_addr);
329 			break;
330 		}
331 		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
332 	}
333 
334 	/* Last put the chip back in ready state */
335 	abituguru_ready(data);
336 
337 	return i;
338 }
339 
340 /* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
341    address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
342 static int abituguru_write(struct abituguru_data *data,
343 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
344 {
345 	int i;
346 
347 	/* Send the address */
348 	i = abituguru_send_address(data, bank_addr, sensor_addr,
349 		ABIT_UGURU_MAX_RETRIES);
350 	if (i)
351 		return i;
352 
353 	/* And write the data */
354 	for (i = 0; i < count; i++) {
355 		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
356 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
357 				"write state (bank: %d, sensor: %d)\n",
358 				(int)bank_addr, (int)sensor_addr);
359 			break;
360 		}
361 		outb(buf[i], data->addr + ABIT_UGURU_CMD);
362 	}
363 
364 	/* Now we need to wait till the chip is ready to be read again,
365 	   don't ask why */
366 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
367 		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
368 			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
369 			(int)sensor_addr);
370 		return -EIO;
371 	}
372 
373 	/* Cmd port MUST be read now and should contain 0xAC */
374 	if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
375 		ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write "
376 			"(bank: %d, sensor: %d)\n", (int)bank_addr,
377 			(int)sensor_addr);
378 		return -EIO;
379 	}
380 
381 	/* Last put the chip back in ready state */
382 	abituguru_ready(data);
383 
384 	return i;
385 }
386 
387 /* Detect sensor type. Temp and Volt sensors are enabled with
388    different masks and will ignore enable masks not meant for them.
389    This enables us to test what kind of sensor we're dealing with.
390    By setting the alarm thresholds so that we will always get an
391    alarm for sensor type X and then enabling the sensor as sensor type
392    X, if we then get an alarm it is a sensor of type X. */
393 static int __devinit
394 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
395 				   u8 sensor_addr)
396 {
397 	u8 val, buf[3];
398 	int ret = ABIT_UGURU_NC;
399 
400 	/* First read the sensor and the current settings */
401 	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
402 			1, ABIT_UGURU_MAX_RETRIES) != 1)
403 		return -ENODEV;
404 
405 	/* Test val is sane / usable for sensor type detection. */
406 	if ((val < 10u) || (val > 240u)) {
407 		printk(KERN_WARNING ABIT_UGURU_NAME
408 			": bank1-sensor: %d reading (%d) too close to limits, "
409 			"unable to determine sensor type, skipping sensor\n",
410 			(int)sensor_addr, (int)val);
411 		/* assume no sensor is there for sensors for which we can't
412 		   determine the sensor type because their reading is too close
413 		   to their limits, this usually means no sensor is there. */
414 		return ABIT_UGURU_NC;
415 	}
416 
417 	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
418 	/* Volt sensor test, enable volt low alarm, set min value ridicously
419 	   high. If its a volt sensor this should always give us an alarm. */
420 	buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
421 	buf[1] = 245;
422 	buf[2] = 250;
423 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
424 			buf, 3) != 3)
425 		return -ENODEV;
426 	/* Now we need 20 ms to give the uguru time to read the sensors
427 	   and raise a voltage alarm */
428 	set_current_state(TASK_UNINTERRUPTIBLE);
429 	schedule_timeout(HZ/50);
430 	/* Check for alarm and check the alarm is a volt low alarm. */
431 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
432 			ABIT_UGURU_MAX_RETRIES) != 3)
433 		return -ENODEV;
434 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
435 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
436 				sensor_addr, buf, 3,
437 				ABIT_UGURU_MAX_RETRIES) != 3)
438 			return -ENODEV;
439 		if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) {
440 			/* Restore original settings */
441 			if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
442 					sensor_addr,
443 					data->bank1_settings[sensor_addr],
444 					3) != 3)
445 				return -ENODEV;
446 			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
447 			return ABIT_UGURU_IN_SENSOR;
448 		} else
449 			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
450 				"sensor test, but volt low flag not set\n");
451 	} else
452 		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
453 			"test\n");
454 
455 	/* Temp sensor test, enable sensor as a temp sensor, set beep value
456 	   ridicously low (but not too low, otherwise uguru ignores it).
457 	   If its a temp sensor this should always give us an alarm. */
458 	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
459 	buf[1] = 5;
460 	buf[2] = 10;
461 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
462 			buf, 3) != 3)
463 		return -ENODEV;
464 	/* Now we need 50 ms to give the uguru time to read the sensors
465 	   and raise a temp alarm */
466 	set_current_state(TASK_UNINTERRUPTIBLE);
467 	schedule_timeout(HZ/20);
468 	/* Check for alarm and check the alarm is a temp high alarm. */
469 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
470 			ABIT_UGURU_MAX_RETRIES) != 3)
471 		return -ENODEV;
472 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
473 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
474 				sensor_addr, buf, 3,
475 				ABIT_UGURU_MAX_RETRIES) != 3)
476 			return -ENODEV;
477 		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
478 			ret = ABIT_UGURU_TEMP_SENSOR;
479 			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
480 		} else
481 			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
482 				"sensor test, but temp high flag not set\n");
483 	} else
484 		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
485 			"test\n");
486 
487 	/* Restore original settings */
488 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
489 			data->bank1_settings[sensor_addr], 3) != 3)
490 		return -ENODEV;
491 
492 	return ret;
493 }
494 
495 /* These functions try to find out how many sensors there are in bank2 and how
496    many pwms there are. The purpose of this is to make sure that we don't give
497    the user the possibility to change settings for non-existent sensors / pwm.
498    The uGuru will happily read / write whatever memory happens to be after the
499    memory storing the PWM settings when reading/writing to a PWM which is not
500    there. Notice even if we detect a PWM which doesn't exist we normally won't
501    write to it, unless the user tries to change the settings.
502 
503    Although the uGuru allows reading (settings) from non existing bank2
504    sensors, my version of the uGuru does seem to stop writing to them, the
505    write function above aborts in this case with:
506    "CMD reg does not hold 0xAC after write"
507 
508    Notice these 2 tests are non destructive iow read-only tests, otherwise
509    they would defeat their purpose. Although for the bank2_sensors detection a
510    read/write test would be feasible because of the reaction above, I've
511    however opted to stay on the safe side. */
512 static void __devinit
513 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
514 {
515 	int i;
516 
517 	if (fan_sensors) {
518 		data->bank2_sensors = fan_sensors;
519 		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
520 			"\"fan_sensors\" module param\n",
521 			(int)data->bank2_sensors);
522 		return;
523 	}
524 
525 	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
526 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
527 		/* 0x89 are the known used bits:
528 		   -0x80 enable shutdown
529 		   -0x08 enable beep
530 		   -0x01 enable alarm
531 		   All other bits should be 0, but on some motherboards
532 		   0x40 (bit 6) is also high for some of the fans?? */
533 		if (data->bank2_settings[i][0] & ~0xC9) {
534 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
535 				"to be a fan sensor: settings[0] = %02X\n",
536 				i, (unsigned int)data->bank2_settings[i][0]);
537 			break;
538 		}
539 
540 		/* check if the threshold is within the allowed range */
541 		if (data->bank2_settings[i][1] <
542 				abituguru_bank2_min_threshold) {
543 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
544 				"to be a fan sensor: the threshold (%d) is "
545 				"below the minimum (%d)\n", i,
546 				(int)data->bank2_settings[i][1],
547 				(int)abituguru_bank2_min_threshold);
548 			break;
549 		}
550 		if (data->bank2_settings[i][1] >
551 				abituguru_bank2_max_threshold) {
552 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
553 				"to be a fan sensor: the threshold (%d) is "
554 				"above the maximum (%d)\n", i,
555 				(int)data->bank2_settings[i][1],
556 				(int)abituguru_bank2_max_threshold);
557 			break;
558 		}
559 	}
560 
561 	data->bank2_sensors = i;
562 	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
563 		(int)data->bank2_sensors);
564 }
565 
566 static void __devinit
567 abituguru_detect_no_pwms(struct abituguru_data *data)
568 {
569 	int i, j;
570 
571 	if (pwms) {
572 		data->pwms = pwms;
573 		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
574 			"\"pwms\" module param\n", (int)data->pwms);
575 		return;
576 	}
577 
578 	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
579 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
580 		/* 0x80 is the enable bit and the low
581 		   nibble is which temp sensor to use,
582 		   the other bits should be 0 */
583 		if (data->pwm_settings[i][0] & ~0x8F) {
584 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
585 				"to be a pwm channel: settings[0] = %02X\n",
586 				i, (unsigned int)data->pwm_settings[i][0]);
587 			break;
588 		}
589 
590 		/* the low nibble must correspond to one of the temp sensors
591 		   we've found */
592 		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
593 				j++) {
594 			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
595 					(data->pwm_settings[i][0] & 0x0F))
596 				break;
597 		}
598 		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
599 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
600 				"to be a pwm channel: %d is not a valid temp "
601 				"sensor address\n", i,
602 				data->pwm_settings[i][0] & 0x0F);
603 			break;
604 		}
605 
606 		/* check if all other settings are within the allowed range */
607 		for (j = 1; j < 5; j++) {
608 			u8 min;
609 			/* special case pwm1 min pwm% */
610 			if ((i == 0) && ((j == 1) || (j == 2)))
611 				min = 77;
612 			else
613 				min = abituguru_pwm_min[j];
614 			if (data->pwm_settings[i][j] < min) {
615 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
616 					"not seem to be a pwm channel: "
617 					"setting %d (%d) is below the minimum "
618 					"value (%d)\n", i, j,
619 					(int)data->pwm_settings[i][j],
620 					(int)min);
621 				goto abituguru_detect_no_pwms_exit;
622 			}
623 			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
624 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
625 					"not seem to be a pwm channel: "
626 					"setting %d (%d) is above the maximum "
627 					"value (%d)\n", i, j,
628 					(int)data->pwm_settings[i][j],
629 					(int)abituguru_pwm_max[j]);
630 				goto abituguru_detect_no_pwms_exit;
631 			}
632 		}
633 
634 		/* check that min temp < max temp and min pwm < max pwm */
635 		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
636 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
637 				"to be a pwm channel: min pwm (%d) >= "
638 				"max pwm (%d)\n", i,
639 				(int)data->pwm_settings[i][1],
640 				(int)data->pwm_settings[i][2]);
641 			break;
642 		}
643 		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
644 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
645 				"to be a pwm channel: min temp (%d) >= "
646 				"max temp (%d)\n", i,
647 				(int)data->pwm_settings[i][3],
648 				(int)data->pwm_settings[i][4]);
649 			break;
650 		}
651 	}
652 
653 abituguru_detect_no_pwms_exit:
654 	data->pwms = i;
655 	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
656 }
657 
658 /* Following are the sysfs callback functions. These functions expect:
659    sensor_device_attribute_2->index:   sensor address/offset in the bank
660    sensor_device_attribute_2->nr:      register offset, bitmask or NA. */
661 static struct abituguru_data *abituguru_update_device(struct device *dev);
662 
663 static ssize_t show_bank1_value(struct device *dev,
664 	struct device_attribute *devattr, char *buf)
665 {
666 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
667 	struct abituguru_data *data = abituguru_update_device(dev);
668 	if (!data)
669 		return -EIO;
670 	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
671 		data->bank1_max_value[attr->index] + 128) / 255);
672 }
673 
674 static ssize_t show_bank1_setting(struct device *dev,
675 	struct device_attribute *devattr, char *buf)
676 {
677 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
678 	struct abituguru_data *data = dev_get_drvdata(dev);
679 	return sprintf(buf, "%d\n",
680 		(data->bank1_settings[attr->index][attr->nr] *
681 		data->bank1_max_value[attr->index] + 128) / 255);
682 }
683 
684 static ssize_t show_bank2_value(struct device *dev,
685 	struct device_attribute *devattr, char *buf)
686 {
687 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
688 	struct abituguru_data *data = abituguru_update_device(dev);
689 	if (!data)
690 		return -EIO;
691 	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
692 		ABIT_UGURU_FAN_MAX + 128) / 255);
693 }
694 
695 static ssize_t show_bank2_setting(struct device *dev,
696 	struct device_attribute *devattr, char *buf)
697 {
698 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
699 	struct abituguru_data *data = dev_get_drvdata(dev);
700 	return sprintf(buf, "%d\n",
701 		(data->bank2_settings[attr->index][attr->nr] *
702 		ABIT_UGURU_FAN_MAX + 128) / 255);
703 }
704 
705 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
706 	*devattr, const char *buf, size_t count)
707 {
708 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
709 	struct abituguru_data *data = dev_get_drvdata(dev);
710 	u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
711 		data->bank1_max_value[attr->index]/2) /
712 		data->bank1_max_value[attr->index];
713 	ssize_t ret = count;
714 
715 	mutex_lock(&data->update_lock);
716 	if (data->bank1_settings[attr->index][attr->nr] != val) {
717 		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
718 		data->bank1_settings[attr->index][attr->nr] = val;
719 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
720 				attr->index, data->bank1_settings[attr->index],
721 				3) <= attr->nr) {
722 			data->bank1_settings[attr->index][attr->nr] = orig_val;
723 			ret = -EIO;
724 		}
725 	}
726 	mutex_unlock(&data->update_lock);
727 	return ret;
728 }
729 
730 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
731 	*devattr, const char *buf, size_t count)
732 {
733 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
734 	struct abituguru_data *data = dev_get_drvdata(dev);
735 	u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
736 		ABIT_UGURU_FAN_MAX;
737 	ssize_t ret = count;
738 
739 	/* this check can be done before taking the lock */
740 	if ((val < abituguru_bank2_min_threshold) ||
741 			(val > abituguru_bank2_max_threshold))
742 		return -EINVAL;
743 
744 	mutex_lock(&data->update_lock);
745 	if (data->bank2_settings[attr->index][attr->nr] != val) {
746 		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
747 		data->bank2_settings[attr->index][attr->nr] = val;
748 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
749 				attr->index, data->bank2_settings[attr->index],
750 				2) <= attr->nr) {
751 			data->bank2_settings[attr->index][attr->nr] = orig_val;
752 			ret = -EIO;
753 		}
754 	}
755 	mutex_unlock(&data->update_lock);
756 	return ret;
757 }
758 
759 static ssize_t show_bank1_alarm(struct device *dev,
760 	struct device_attribute *devattr, char *buf)
761 {
762 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
763 	struct abituguru_data *data = abituguru_update_device(dev);
764 	if (!data)
765 		return -EIO;
766 	/* See if the alarm bit for this sensor is set, and if the
767 	   alarm matches the type of alarm we're looking for (for volt
768 	   it can be either low or high). The type is stored in a few
769 	   readonly bits in the settings part of the relevant sensor.
770 	   The bitmask of the type is passed to us in attr->nr. */
771 	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
772 			(data->bank1_settings[attr->index][0] & attr->nr))
773 		return sprintf(buf, "1\n");
774 	else
775 		return sprintf(buf, "0\n");
776 }
777 
778 static ssize_t show_bank2_alarm(struct device *dev,
779 	struct device_attribute *devattr, char *buf)
780 {
781 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
782 	struct abituguru_data *data = abituguru_update_device(dev);
783 	if (!data)
784 		return -EIO;
785 	if (data->alarms[2] & (0x01 << attr->index))
786 		return sprintf(buf, "1\n");
787 	else
788 		return sprintf(buf, "0\n");
789 }
790 
791 static ssize_t show_bank1_mask(struct device *dev,
792 	struct device_attribute *devattr, char *buf)
793 {
794 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
795 	struct abituguru_data *data = dev_get_drvdata(dev);
796 	if (data->bank1_settings[attr->index][0] & attr->nr)
797 		return sprintf(buf, "1\n");
798 	else
799 		return sprintf(buf, "0\n");
800 }
801 
802 static ssize_t show_bank2_mask(struct device *dev,
803 	struct device_attribute *devattr, char *buf)
804 {
805 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
806 	struct abituguru_data *data = dev_get_drvdata(dev);
807 	if (data->bank2_settings[attr->index][0] & attr->nr)
808 		return sprintf(buf, "1\n");
809 	else
810 		return sprintf(buf, "0\n");
811 }
812 
813 static ssize_t store_bank1_mask(struct device *dev,
814 	struct device_attribute *devattr, const char *buf, size_t count)
815 {
816 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
817 	struct abituguru_data *data = dev_get_drvdata(dev);
818 	int mask = simple_strtoul(buf, NULL, 10);
819 	ssize_t ret = count;
820 	u8 orig_val;
821 
822 	mutex_lock(&data->update_lock);
823 	orig_val = data->bank1_settings[attr->index][0];
824 
825 	if (mask)
826 		data->bank1_settings[attr->index][0] |= attr->nr;
827 	else
828 		data->bank1_settings[attr->index][0] &= ~attr->nr;
829 
830 	if ((data->bank1_settings[attr->index][0] != orig_val) &&
831 			(abituguru_write(data,
832 			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
833 			data->bank1_settings[attr->index], 3) < 1)) {
834 		data->bank1_settings[attr->index][0] = orig_val;
835 		ret = -EIO;
836 	}
837 	mutex_unlock(&data->update_lock);
838 	return ret;
839 }
840 
841 static ssize_t store_bank2_mask(struct device *dev,
842 	struct device_attribute *devattr, const char *buf, size_t count)
843 {
844 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
845 	struct abituguru_data *data = dev_get_drvdata(dev);
846 	int mask = simple_strtoul(buf, NULL, 10);
847 	ssize_t ret = count;
848 	u8 orig_val;
849 
850 	mutex_lock(&data->update_lock);
851 	orig_val = data->bank2_settings[attr->index][0];
852 
853 	if (mask)
854 		data->bank2_settings[attr->index][0] |= attr->nr;
855 	else
856 		data->bank2_settings[attr->index][0] &= ~attr->nr;
857 
858 	if ((data->bank2_settings[attr->index][0] != orig_val) &&
859 			(abituguru_write(data,
860 			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
861 			data->bank2_settings[attr->index], 2) < 1)) {
862 		data->bank2_settings[attr->index][0] = orig_val;
863 		ret = -EIO;
864 	}
865 	mutex_unlock(&data->update_lock);
866 	return ret;
867 }
868 
869 /* Fan PWM (speed control) */
870 static ssize_t show_pwm_setting(struct device *dev,
871 	struct device_attribute *devattr, char *buf)
872 {
873 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
874 	struct abituguru_data *data = dev_get_drvdata(dev);
875 	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
876 		abituguru_pwm_settings_multiplier[attr->nr]);
877 }
878 
879 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
880 	*devattr, const char *buf, size_t count)
881 {
882 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
883 	struct abituguru_data *data = dev_get_drvdata(dev);
884 	u8 min, val = (simple_strtoul(buf, NULL, 10) +
885 		abituguru_pwm_settings_multiplier[attr->nr]/2) /
886 		abituguru_pwm_settings_multiplier[attr->nr];
887 	ssize_t ret = count;
888 
889 	/* special case pwm1 min pwm% */
890 	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
891 		min = 77;
892 	else
893 		min = abituguru_pwm_min[attr->nr];
894 
895 	/* this check can be done before taking the lock */
896 	if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
897 		return -EINVAL;
898 
899 	mutex_lock(&data->update_lock);
900 	/* this check needs to be done after taking the lock */
901 	if ((attr->nr & 1) &&
902 			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
903 		ret = -EINVAL;
904 	else if (!(attr->nr & 1) &&
905 			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
906 		ret = -EINVAL;
907 	else if (data->pwm_settings[attr->index][attr->nr] != val) {
908 		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
909 		data->pwm_settings[attr->index][attr->nr] = val;
910 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
911 				attr->index, data->pwm_settings[attr->index],
912 				5) <= attr->nr) {
913 			data->pwm_settings[attr->index][attr->nr] =
914 				orig_val;
915 			ret = -EIO;
916 		}
917 	}
918 	mutex_unlock(&data->update_lock);
919 	return ret;
920 }
921 
922 static ssize_t show_pwm_sensor(struct device *dev,
923 	struct device_attribute *devattr, char *buf)
924 {
925 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
926 	struct abituguru_data *data = dev_get_drvdata(dev);
927 	int i;
928 	/* We need to walk to the temp sensor addresses to find what
929 	   the userspace id of the configured temp sensor is. */
930 	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
931 		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
932 				(data->pwm_settings[attr->index][0] & 0x0F))
933 			return sprintf(buf, "%d\n", i+1);
934 
935 	return -ENXIO;
936 }
937 
938 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
939 	*devattr, const char *buf, size_t count)
940 {
941 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
942 	struct abituguru_data *data = dev_get_drvdata(dev);
943 	unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
944 	ssize_t ret = count;
945 
946 	mutex_lock(&data->update_lock);
947 	if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
948 		u8 orig_val = data->pwm_settings[attr->index][0];
949 		u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
950 		data->pwm_settings[attr->index][0] &= 0xF0;
951 		data->pwm_settings[attr->index][0] |= address;
952 		if (data->pwm_settings[attr->index][0] != orig_val) {
953 			if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
954 					attr->index,
955 					data->pwm_settings[attr->index],
956 					5) < 1) {
957 				data->pwm_settings[attr->index][0] = orig_val;
958 				ret = -EIO;
959 			}
960 		}
961 	}
962 	else
963 		ret = -EINVAL;
964 	mutex_unlock(&data->update_lock);
965 	return ret;
966 }
967 
968 static ssize_t show_pwm_enable(struct device *dev,
969 	struct device_attribute *devattr, char *buf)
970 {
971 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
972 	struct abituguru_data *data = dev_get_drvdata(dev);
973 	int res = 0;
974 	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
975 		res = 2;
976 	return sprintf(buf, "%d\n", res);
977 }
978 
979 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
980 	*devattr, const char *buf, size_t count)
981 {
982 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
983 	struct abituguru_data *data = dev_get_drvdata(dev);
984 	u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
985 	ssize_t ret = count;
986 
987 	mutex_lock(&data->update_lock);
988 	orig_val = data->pwm_settings[attr->index][0];
989 	switch (user_val) {
990 		case 0:
991 			data->pwm_settings[attr->index][0] &=
992 				~ABIT_UGURU_FAN_PWM_ENABLE;
993 			break;
994 		case 2:
995 			data->pwm_settings[attr->index][0] |=
996 				ABIT_UGURU_FAN_PWM_ENABLE;
997 			break;
998 		default:
999 			ret = -EINVAL;
1000 	}
1001 	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1002 			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1003 			attr->index, data->pwm_settings[attr->index],
1004 			5) < 1)) {
1005 		data->pwm_settings[attr->index][0] = orig_val;
1006 		ret = -EIO;
1007 	}
1008 	mutex_unlock(&data->update_lock);
1009 	return ret;
1010 }
1011 
1012 static ssize_t show_name(struct device *dev,
1013 	struct device_attribute *devattr, char *buf)
1014 {
1015 	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1016 }
1017 
1018 /* Sysfs attr templates, the real entries are generated automatically. */
1019 static const
1020 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1021 	{
1022 	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1023 	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1024 		store_bank1_setting, 1, 0),
1025 	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1026 		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1027 	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1028 		store_bank1_setting, 2, 0),
1029 	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1030 		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1031 	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1032 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1033 	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1034 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1035 	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1036 		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1037 	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1038 		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1039 	}, {
1040 	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1041 	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1042 		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1043 	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1044 		store_bank1_setting, 1, 0),
1045 	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1046 		store_bank1_setting, 2, 0),
1047 	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1048 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1049 	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1050 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1051 	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1052 		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1053 	}
1054 };
1055 
1056 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1057 	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1058 	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1059 	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1060 		store_bank2_setting, 1, 0),
1061 	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1062 		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1063 	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1064 		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1065 	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1066 		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1067 };
1068 
1069 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1070 	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1071 		store_pwm_enable, 0, 0),
1072 	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1073 		store_pwm_sensor, 0, 0),
1074 	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1075 		store_pwm_setting, 1, 0),
1076 	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1077 		store_pwm_setting, 2, 0),
1078 	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1079 		store_pwm_setting, 3, 0),
1080 	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1081 		store_pwm_setting, 4, 0),
1082 };
1083 
1084 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1085 	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1086 };
1087 
1088 static int __devinit abituguru_probe(struct platform_device *pdev)
1089 {
1090 	struct abituguru_data *data;
1091 	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1092 	char *sysfs_filename;
1093 
1094 	/* El weirdo probe order, to keep the sysfs order identical to the
1095 	   BIOS and window-appliction listing order. */
1096 	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1097 		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1098 		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1099 
1100 	if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
1101 		return -ENOMEM;
1102 
1103 	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1104 	mutex_init(&data->update_lock);
1105 	platform_set_drvdata(pdev, data);
1106 
1107 	/* See if the uGuru is ready */
1108 	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1109 		data->uguru_ready = 1;
1110 
1111 	/* Completely read the uGuru this has 2 purposes:
1112 	   - testread / see if one really is there.
1113 	   - make an in memory copy of all the uguru settings for future use. */
1114 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1115 			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1116 		goto abituguru_probe_error;
1117 
1118 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1119 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1120 				&data->bank1_value[i], 1,
1121 				ABIT_UGURU_MAX_RETRIES) != 1)
1122 			goto abituguru_probe_error;
1123 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1124 				data->bank1_settings[i], 3,
1125 				ABIT_UGURU_MAX_RETRIES) != 3)
1126 			goto abituguru_probe_error;
1127 	}
1128 	/* Note: We don't know how many bank2 sensors / pwms there really are,
1129 	   but in order to "detect" this we need to read the maximum amount
1130 	   anyways. If we read sensors/pwms not there we'll just read crap
1131 	   this can't hurt. We need the detection because we don't want
1132 	   unwanted writes, which will hurt! */
1133 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1134 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1135 				&data->bank2_value[i], 1,
1136 				ABIT_UGURU_MAX_RETRIES) != 1)
1137 			goto abituguru_probe_error;
1138 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1139 				data->bank2_settings[i], 2,
1140 				ABIT_UGURU_MAX_RETRIES) != 2)
1141 			goto abituguru_probe_error;
1142 	}
1143 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1144 		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1145 				data->pwm_settings[i], 5,
1146 				ABIT_UGURU_MAX_RETRIES) != 5)
1147 			goto abituguru_probe_error;
1148 	}
1149 	data->last_updated = jiffies;
1150 
1151 	/* Detect sensor types and fill the sysfs attr for bank1 */
1152 	sysfs_attr_i = 0;
1153 	sysfs_filename = data->sysfs_names;
1154 	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1155 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1156 		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1157 		if (res < 0)
1158 			goto abituguru_probe_error;
1159 		if (res == ABIT_UGURU_NC)
1160 			continue;
1161 
1162 		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1163 		for (j = 0; j < (res ? 7 : 9); j++) {
1164 			used = snprintf(sysfs_filename, sysfs_names_free,
1165 				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1166 				attr.name, data->bank1_sensors[res] + res)
1167 				+ 1;
1168 			data->sysfs_attr[sysfs_attr_i] =
1169 				abituguru_sysfs_bank1_templ[res][j];
1170 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1171 				sysfs_filename;
1172 			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1173 			sysfs_filename += used;
1174 			sysfs_names_free -= used;
1175 			sysfs_attr_i++;
1176 		}
1177 		data->bank1_max_value[probe_order[i]] =
1178 			abituguru_bank1_max_value[res];
1179 		data->bank1_address[res][data->bank1_sensors[res]] =
1180 			probe_order[i];
1181 		data->bank1_sensors[res]++;
1182 	}
1183 	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1184 	abituguru_detect_no_bank2_sensors(data);
1185 	for (i = 0; i < data->bank2_sensors; i++) {
1186 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1187 			used = snprintf(sysfs_filename, sysfs_names_free,
1188 				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1189 				i + 1) + 1;
1190 			data->sysfs_attr[sysfs_attr_i] =
1191 				abituguru_sysfs_fan_templ[j];
1192 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1193 				sysfs_filename;
1194 			data->sysfs_attr[sysfs_attr_i].index = i;
1195 			sysfs_filename += used;
1196 			sysfs_names_free -= used;
1197 			sysfs_attr_i++;
1198 		}
1199 	}
1200 	/* Detect number of sensors and fill the sysfs attr for pwms */
1201 	abituguru_detect_no_pwms(data);
1202 	for (i = 0; i < data->pwms; i++) {
1203 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1204 			used = snprintf(sysfs_filename, sysfs_names_free,
1205 				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1206 				i + 1) + 1;
1207 			data->sysfs_attr[sysfs_attr_i] =
1208 				abituguru_sysfs_pwm_templ[j];
1209 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1210 				sysfs_filename;
1211 			data->sysfs_attr[sysfs_attr_i].index = i;
1212 			sysfs_filename += used;
1213 			sysfs_names_free -= used;
1214 			sysfs_attr_i++;
1215 		}
1216 	}
1217 	/* Fail safe check, this should never happen! */
1218 	if (sysfs_names_free < 0) {
1219 		printk(KERN_ERR ABIT_UGURU_NAME ": Fatal error ran out of "
1220 		       "space for sysfs attr names. This should never "
1221 		       "happen please report to the abituguru maintainer "
1222 		       "(see MAINTAINERS)\n");
1223 		res = -ENAMETOOLONG;
1224 		goto abituguru_probe_error;
1225 	}
1226 	printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n");
1227 
1228 	/* Register sysfs hooks */
1229 	data->class_dev = hwmon_device_register(&pdev->dev);
1230 	if (IS_ERR(data->class_dev)) {
1231 		res = PTR_ERR(data->class_dev);
1232 		goto abituguru_probe_error;
1233 	}
1234 	for (i = 0; i < sysfs_attr_i; i++)
1235 		device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1236 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1237 		device_create_file(&pdev->dev,
1238 			&abituguru_sysfs_attr[i].dev_attr);
1239 
1240 	return 0;
1241 
1242 abituguru_probe_error:
1243 	kfree(data);
1244 	return res;
1245 }
1246 
1247 static int __devexit abituguru_remove(struct platform_device *pdev)
1248 {
1249 	struct abituguru_data *data = platform_get_drvdata(pdev);
1250 
1251 	platform_set_drvdata(pdev, NULL);
1252 	hwmon_device_unregister(data->class_dev);
1253 	kfree(data);
1254 
1255 	return 0;
1256 }
1257 
1258 static struct abituguru_data *abituguru_update_device(struct device *dev)
1259 {
1260 	int i, err;
1261 	struct abituguru_data *data = dev_get_drvdata(dev);
1262 	/* fake a complete successful read if no update necessary. */
1263 	char success = 1;
1264 
1265 	mutex_lock(&data->update_lock);
1266 	if (time_after(jiffies, data->last_updated + HZ)) {
1267 		success = 0;
1268 		if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1269 				data->alarms, 3, 0)) != 3)
1270 			goto LEAVE_UPDATE;
1271 		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1272 			if ((err = abituguru_read(data,
1273 					ABIT_UGURU_SENSOR_BANK1, i,
1274 					&data->bank1_value[i], 1, 0)) != 1)
1275 				goto LEAVE_UPDATE;
1276 			if ((err = abituguru_read(data,
1277 					ABIT_UGURU_SENSOR_BANK1 + 1, i,
1278 					data->bank1_settings[i], 3, 0)) != 3)
1279 				goto LEAVE_UPDATE;
1280 		}
1281 		for (i = 0; i < data->bank2_sensors; i++)
1282 			if ((err = abituguru_read(data,
1283 					ABIT_UGURU_SENSOR_BANK2, i,
1284 					&data->bank2_value[i], 1, 0)) != 1)
1285 				goto LEAVE_UPDATE;
1286 		/* success! */
1287 		success = 1;
1288 		data->update_timeouts = 0;
1289 LEAVE_UPDATE:
1290 		/* handle timeout condition */
1291 		if (err == -EBUSY) {
1292 			/* No overflow please */
1293 			if (data->update_timeouts < 255u)
1294 				data->update_timeouts++;
1295 			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1296 				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1297 					"try again next update\n");
1298 				/* Just a timeout, fake a successful read */
1299 				success = 1;
1300 			} else
1301 				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1302 					"times waiting for more input state\n",
1303 					(int)data->update_timeouts);
1304 		}
1305 		/* On success set last_updated */
1306 		if (success)
1307 			data->last_updated = jiffies;
1308 	}
1309 	mutex_unlock(&data->update_lock);
1310 
1311 	if (success)
1312 		return data;
1313 	else
1314 		return NULL;
1315 }
1316 
1317 static struct platform_driver abituguru_driver = {
1318 	.driver = {
1319 		.owner	= THIS_MODULE,
1320 		.name	= ABIT_UGURU_NAME,
1321 	},
1322 	.probe	= abituguru_probe,
1323 	.remove	= __devexit_p(abituguru_remove),
1324 };
1325 
1326 static int __init abituguru_detect(void)
1327 {
1328 	/* See if there is an uguru there. After a reboot uGuru will hold 0x00
1329 	   at DATA and 0xAC, when this driver has already been loaded once
1330 	   DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1331 	   scenario but some will hold 0x00.
1332 	   Some uGuru's initally hold 0x09 at DATA and will only hold 0x08
1333 	   after reading CMD first, so CMD must be read first! */
1334 	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1335 	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1336 	if (((data_val == 0x00) || (data_val == 0x08)) &&
1337 	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1338 		return ABIT_UGURU_BASE;
1339 
1340 	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1341 		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1342 
1343 	if (force) {
1344 		printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is "
1345 				"present because of \"force\" parameter\n");
1346 		return ABIT_UGURU_BASE;
1347 	}
1348 
1349 	/* No uGuru found */
1350 	return -ENODEV;
1351 }
1352 
1353 static struct platform_device *abituguru_pdev;
1354 
1355 static int __init abituguru_init(void)
1356 {
1357 	int address, err;
1358 	struct resource res = { .flags = IORESOURCE_IO };
1359 
1360 	address = abituguru_detect();
1361 	if (address < 0)
1362 		return address;
1363 
1364 	err = platform_driver_register(&abituguru_driver);
1365 	if (err)
1366 		goto exit;
1367 
1368 	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1369 	if (!abituguru_pdev) {
1370 		printk(KERN_ERR ABIT_UGURU_NAME
1371 			": Device allocation failed\n");
1372 		err = -ENOMEM;
1373 		goto exit_driver_unregister;
1374 	}
1375 
1376 	res.start = address;
1377 	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1378 	res.name = ABIT_UGURU_NAME;
1379 
1380 	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1381 	if (err) {
1382 		printk(KERN_ERR ABIT_UGURU_NAME
1383 			": Device resource addition failed (%d)\n", err);
1384 		goto exit_device_put;
1385 	}
1386 
1387 	err = platform_device_add(abituguru_pdev);
1388 	if (err) {
1389 		printk(KERN_ERR ABIT_UGURU_NAME
1390 			": Device addition failed (%d)\n", err);
1391 		goto exit_device_put;
1392 	}
1393 
1394 	return 0;
1395 
1396 exit_device_put:
1397 	platform_device_put(abituguru_pdev);
1398 exit_driver_unregister:
1399 	platform_driver_unregister(&abituguru_driver);
1400 exit:
1401 	return err;
1402 }
1403 
1404 static void __exit abituguru_exit(void)
1405 {
1406 	platform_device_unregister(abituguru_pdev);
1407 	platform_driver_unregister(&abituguru_driver);
1408 }
1409 
1410 MODULE_AUTHOR("Hans de Goede <j.w.r.degoede@hhs.nl>");
1411 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1412 MODULE_LICENSE("GPL");
1413 
1414 module_init(abituguru_init);
1415 module_exit(abituguru_exit);
1416