xref: /linux/drivers/hv/vmbus_drv.c (revision f5a0ea8936a640d8229d5219515141fc496ec5d8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/platform_device.h>
16 #include <linux/interrupt.h>
17 #include <linux/sysctl.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/completion.h>
21 #include <linux/hyperv.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/of_address.h>
24 #include <linux/clockchips.h>
25 #include <linux/cpu.h>
26 #include <linux/sched/isolation.h>
27 #include <linux/sched/task_stack.h>
28 
29 #include <linux/delay.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/ptrace.h>
32 #include <linux/screen_info.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <linux/pci.h>
39 #include <clocksource/hyperv_timer.h>
40 #include <asm/mshyperv.h>
41 #include "hyperv_vmbus.h"
42 
43 struct vmbus_dynid {
44 	struct list_head node;
45 	struct hv_vmbus_device_id id;
46 };
47 
48 static struct device  *hv_dev;
49 
50 static int hyperv_cpuhp_online;
51 
52 static long __percpu *vmbus_evt;
53 
54 /* Values parsed from ACPI DSDT */
55 int vmbus_irq;
56 int vmbus_interrupt;
57 
58 /*
59  * The panic notifier below is responsible solely for unloading the
60  * vmbus connection, which is necessary in a panic event.
61  *
62  * Notice an intrincate relation of this notifier with Hyper-V
63  * framebuffer panic notifier exists - we need vmbus connection alive
64  * there in order to succeed, so we need to order both with each other
65  * [see hvfb_on_panic()] - this is done using notifiers' priorities.
66  */
67 static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
68 			      void *args)
69 {
70 	vmbus_initiate_unload(true);
71 	return NOTIFY_DONE;
72 }
73 static struct notifier_block hyperv_panic_vmbus_unload_block = {
74 	.notifier_call	= hv_panic_vmbus_unload,
75 	.priority	= INT_MIN + 1, /* almost the latest one to execute */
76 };
77 
78 static const char *fb_mmio_name = "fb_range";
79 static struct resource *fb_mmio;
80 static struct resource *hyperv_mmio;
81 static DEFINE_MUTEX(hyperv_mmio_lock);
82 
83 static int vmbus_exists(void)
84 {
85 	if (hv_dev == NULL)
86 		return -ENODEV;
87 
88 	return 0;
89 }
90 
91 static u8 channel_monitor_group(const struct vmbus_channel *channel)
92 {
93 	return (u8)channel->offermsg.monitorid / 32;
94 }
95 
96 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
97 {
98 	return (u8)channel->offermsg.monitorid % 32;
99 }
100 
101 static u32 channel_pending(const struct vmbus_channel *channel,
102 			   const struct hv_monitor_page *monitor_page)
103 {
104 	u8 monitor_group = channel_monitor_group(channel);
105 
106 	return monitor_page->trigger_group[monitor_group].pending;
107 }
108 
109 static u32 channel_latency(const struct vmbus_channel *channel,
110 			   const struct hv_monitor_page *monitor_page)
111 {
112 	u8 monitor_group = channel_monitor_group(channel);
113 	u8 monitor_offset = channel_monitor_offset(channel);
114 
115 	return monitor_page->latency[monitor_group][monitor_offset];
116 }
117 
118 static u32 channel_conn_id(struct vmbus_channel *channel,
119 			   struct hv_monitor_page *monitor_page)
120 {
121 	u8 monitor_group = channel_monitor_group(channel);
122 	u8 monitor_offset = channel_monitor_offset(channel);
123 
124 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
125 }
126 
127 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
128 		       char *buf)
129 {
130 	struct hv_device *hv_dev = device_to_hv_device(dev);
131 
132 	if (!hv_dev->channel)
133 		return -ENODEV;
134 	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
135 }
136 static DEVICE_ATTR_RO(id);
137 
138 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
139 			  char *buf)
140 {
141 	struct hv_device *hv_dev = device_to_hv_device(dev);
142 
143 	if (!hv_dev->channel)
144 		return -ENODEV;
145 	return sysfs_emit(buf, "%d\n", hv_dev->channel->state);
146 }
147 static DEVICE_ATTR_RO(state);
148 
149 static ssize_t monitor_id_show(struct device *dev,
150 			       struct device_attribute *dev_attr, char *buf)
151 {
152 	struct hv_device *hv_dev = device_to_hv_device(dev);
153 
154 	if (!hv_dev->channel)
155 		return -ENODEV;
156 	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
157 }
158 static DEVICE_ATTR_RO(monitor_id);
159 
160 static ssize_t class_id_show(struct device *dev,
161 			       struct device_attribute *dev_attr, char *buf)
162 {
163 	struct hv_device *hv_dev = device_to_hv_device(dev);
164 
165 	if (!hv_dev->channel)
166 		return -ENODEV;
167 	return sysfs_emit(buf, "{%pUl}\n",
168 			  &hv_dev->channel->offermsg.offer.if_type);
169 }
170 static DEVICE_ATTR_RO(class_id);
171 
172 static ssize_t device_id_show(struct device *dev,
173 			      struct device_attribute *dev_attr, char *buf)
174 {
175 	struct hv_device *hv_dev = device_to_hv_device(dev);
176 
177 	if (!hv_dev->channel)
178 		return -ENODEV;
179 	return sysfs_emit(buf, "{%pUl}\n",
180 			  &hv_dev->channel->offermsg.offer.if_instance);
181 }
182 static DEVICE_ATTR_RO(device_id);
183 
184 static ssize_t modalias_show(struct device *dev,
185 			     struct device_attribute *dev_attr, char *buf)
186 {
187 	struct hv_device *hv_dev = device_to_hv_device(dev);
188 
189 	return sysfs_emit(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
190 }
191 static DEVICE_ATTR_RO(modalias);
192 
193 #ifdef CONFIG_NUMA
194 static ssize_t numa_node_show(struct device *dev,
195 			      struct device_attribute *attr, char *buf)
196 {
197 	struct hv_device *hv_dev = device_to_hv_device(dev);
198 
199 	if (!hv_dev->channel)
200 		return -ENODEV;
201 
202 	return sysfs_emit(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
203 }
204 static DEVICE_ATTR_RO(numa_node);
205 #endif
206 
207 static ssize_t server_monitor_pending_show(struct device *dev,
208 					   struct device_attribute *dev_attr,
209 					   char *buf)
210 {
211 	struct hv_device *hv_dev = device_to_hv_device(dev);
212 
213 	if (!hv_dev->channel)
214 		return -ENODEV;
215 	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
216 			  vmbus_connection.monitor_pages[0]));
217 }
218 static DEVICE_ATTR_RO(server_monitor_pending);
219 
220 static ssize_t client_monitor_pending_show(struct device *dev,
221 					   struct device_attribute *dev_attr,
222 					   char *buf)
223 {
224 	struct hv_device *hv_dev = device_to_hv_device(dev);
225 
226 	if (!hv_dev->channel)
227 		return -ENODEV;
228 	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
229 			  vmbus_connection.monitor_pages[1]));
230 }
231 static DEVICE_ATTR_RO(client_monitor_pending);
232 
233 static ssize_t server_monitor_latency_show(struct device *dev,
234 					   struct device_attribute *dev_attr,
235 					   char *buf)
236 {
237 	struct hv_device *hv_dev = device_to_hv_device(dev);
238 
239 	if (!hv_dev->channel)
240 		return -ENODEV;
241 	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
242 			  vmbus_connection.monitor_pages[0]));
243 }
244 static DEVICE_ATTR_RO(server_monitor_latency);
245 
246 static ssize_t client_monitor_latency_show(struct device *dev,
247 					   struct device_attribute *dev_attr,
248 					   char *buf)
249 {
250 	struct hv_device *hv_dev = device_to_hv_device(dev);
251 
252 	if (!hv_dev->channel)
253 		return -ENODEV;
254 	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
255 			  vmbus_connection.monitor_pages[1]));
256 }
257 static DEVICE_ATTR_RO(client_monitor_latency);
258 
259 static ssize_t server_monitor_conn_id_show(struct device *dev,
260 					   struct device_attribute *dev_attr,
261 					   char *buf)
262 {
263 	struct hv_device *hv_dev = device_to_hv_device(dev);
264 
265 	if (!hv_dev->channel)
266 		return -ENODEV;
267 	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
268 			  vmbus_connection.monitor_pages[0]));
269 }
270 static DEVICE_ATTR_RO(server_monitor_conn_id);
271 
272 static ssize_t client_monitor_conn_id_show(struct device *dev,
273 					   struct device_attribute *dev_attr,
274 					   char *buf)
275 {
276 	struct hv_device *hv_dev = device_to_hv_device(dev);
277 
278 	if (!hv_dev->channel)
279 		return -ENODEV;
280 	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
281 			  vmbus_connection.monitor_pages[1]));
282 }
283 static DEVICE_ATTR_RO(client_monitor_conn_id);
284 
285 static ssize_t out_intr_mask_show(struct device *dev,
286 				  struct device_attribute *dev_attr, char *buf)
287 {
288 	struct hv_device *hv_dev = device_to_hv_device(dev);
289 	struct hv_ring_buffer_debug_info outbound;
290 	int ret;
291 
292 	if (!hv_dev->channel)
293 		return -ENODEV;
294 
295 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
296 					  &outbound);
297 	if (ret < 0)
298 		return ret;
299 
300 	return sysfs_emit(buf, "%d\n", outbound.current_interrupt_mask);
301 }
302 static DEVICE_ATTR_RO(out_intr_mask);
303 
304 static ssize_t out_read_index_show(struct device *dev,
305 				   struct device_attribute *dev_attr, char *buf)
306 {
307 	struct hv_device *hv_dev = device_to_hv_device(dev);
308 	struct hv_ring_buffer_debug_info outbound;
309 	int ret;
310 
311 	if (!hv_dev->channel)
312 		return -ENODEV;
313 
314 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
315 					  &outbound);
316 	if (ret < 0)
317 		return ret;
318 	return sysfs_emit(buf, "%d\n", outbound.current_read_index);
319 }
320 static DEVICE_ATTR_RO(out_read_index);
321 
322 static ssize_t out_write_index_show(struct device *dev,
323 				    struct device_attribute *dev_attr,
324 				    char *buf)
325 {
326 	struct hv_device *hv_dev = device_to_hv_device(dev);
327 	struct hv_ring_buffer_debug_info outbound;
328 	int ret;
329 
330 	if (!hv_dev->channel)
331 		return -ENODEV;
332 
333 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
334 					  &outbound);
335 	if (ret < 0)
336 		return ret;
337 	return sysfs_emit(buf, "%d\n", outbound.current_write_index);
338 }
339 static DEVICE_ATTR_RO(out_write_index);
340 
341 static ssize_t out_read_bytes_avail_show(struct device *dev,
342 					 struct device_attribute *dev_attr,
343 					 char *buf)
344 {
345 	struct hv_device *hv_dev = device_to_hv_device(dev);
346 	struct hv_ring_buffer_debug_info outbound;
347 	int ret;
348 
349 	if (!hv_dev->channel)
350 		return -ENODEV;
351 
352 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
353 					  &outbound);
354 	if (ret < 0)
355 		return ret;
356 	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_toread);
357 }
358 static DEVICE_ATTR_RO(out_read_bytes_avail);
359 
360 static ssize_t out_write_bytes_avail_show(struct device *dev,
361 					  struct device_attribute *dev_attr,
362 					  char *buf)
363 {
364 	struct hv_device *hv_dev = device_to_hv_device(dev);
365 	struct hv_ring_buffer_debug_info outbound;
366 	int ret;
367 
368 	if (!hv_dev->channel)
369 		return -ENODEV;
370 
371 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
372 					  &outbound);
373 	if (ret < 0)
374 		return ret;
375 	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_towrite);
376 }
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
378 
379 static ssize_t in_intr_mask_show(struct device *dev,
380 				 struct device_attribute *dev_attr, char *buf)
381 {
382 	struct hv_device *hv_dev = device_to_hv_device(dev);
383 	struct hv_ring_buffer_debug_info inbound;
384 	int ret;
385 
386 	if (!hv_dev->channel)
387 		return -ENODEV;
388 
389 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
390 	if (ret < 0)
391 		return ret;
392 
393 	return sysfs_emit(buf, "%d\n", inbound.current_interrupt_mask);
394 }
395 static DEVICE_ATTR_RO(in_intr_mask);
396 
397 static ssize_t in_read_index_show(struct device *dev,
398 				  struct device_attribute *dev_attr, char *buf)
399 {
400 	struct hv_device *hv_dev = device_to_hv_device(dev);
401 	struct hv_ring_buffer_debug_info inbound;
402 	int ret;
403 
404 	if (!hv_dev->channel)
405 		return -ENODEV;
406 
407 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
408 	if (ret < 0)
409 		return ret;
410 
411 	return sysfs_emit(buf, "%d\n", inbound.current_read_index);
412 }
413 static DEVICE_ATTR_RO(in_read_index);
414 
415 static ssize_t in_write_index_show(struct device *dev,
416 				   struct device_attribute *dev_attr, char *buf)
417 {
418 	struct hv_device *hv_dev = device_to_hv_device(dev);
419 	struct hv_ring_buffer_debug_info inbound;
420 	int ret;
421 
422 	if (!hv_dev->channel)
423 		return -ENODEV;
424 
425 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 	if (ret < 0)
427 		return ret;
428 
429 	return sysfs_emit(buf, "%d\n", inbound.current_write_index);
430 }
431 static DEVICE_ATTR_RO(in_write_index);
432 
433 static ssize_t in_read_bytes_avail_show(struct device *dev,
434 					struct device_attribute *dev_attr,
435 					char *buf)
436 {
437 	struct hv_device *hv_dev = device_to_hv_device(dev);
438 	struct hv_ring_buffer_debug_info inbound;
439 	int ret;
440 
441 	if (!hv_dev->channel)
442 		return -ENODEV;
443 
444 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
445 	if (ret < 0)
446 		return ret;
447 
448 	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_toread);
449 }
450 static DEVICE_ATTR_RO(in_read_bytes_avail);
451 
452 static ssize_t in_write_bytes_avail_show(struct device *dev,
453 					 struct device_attribute *dev_attr,
454 					 char *buf)
455 {
456 	struct hv_device *hv_dev = device_to_hv_device(dev);
457 	struct hv_ring_buffer_debug_info inbound;
458 	int ret;
459 
460 	if (!hv_dev->channel)
461 		return -ENODEV;
462 
463 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
464 	if (ret < 0)
465 		return ret;
466 
467 	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_towrite);
468 }
469 static DEVICE_ATTR_RO(in_write_bytes_avail);
470 
471 static ssize_t channel_vp_mapping_show(struct device *dev,
472 				       struct device_attribute *dev_attr,
473 				       char *buf)
474 {
475 	struct hv_device *hv_dev = device_to_hv_device(dev);
476 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
477 	int n_written;
478 	struct list_head *cur;
479 
480 	if (!channel)
481 		return -ENODEV;
482 
483 	mutex_lock(&vmbus_connection.channel_mutex);
484 
485 	n_written = sysfs_emit(buf, "%u:%u\n",
486 			       channel->offermsg.child_relid,
487 			       channel->target_cpu);
488 
489 	list_for_each(cur, &channel->sc_list) {
490 
491 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
492 		n_written += sysfs_emit_at(buf, n_written, "%u:%u\n",
493 					  cur_sc->offermsg.child_relid,
494 					  cur_sc->target_cpu);
495 	}
496 
497 	mutex_unlock(&vmbus_connection.channel_mutex);
498 
499 	return n_written;
500 }
501 static DEVICE_ATTR_RO(channel_vp_mapping);
502 
503 static ssize_t vendor_show(struct device *dev,
504 			   struct device_attribute *dev_attr,
505 			   char *buf)
506 {
507 	struct hv_device *hv_dev = device_to_hv_device(dev);
508 
509 	return sysfs_emit(buf, "0x%x\n", hv_dev->vendor_id);
510 }
511 static DEVICE_ATTR_RO(vendor);
512 
513 static ssize_t device_show(struct device *dev,
514 			   struct device_attribute *dev_attr,
515 			   char *buf)
516 {
517 	struct hv_device *hv_dev = device_to_hv_device(dev);
518 
519 	return sysfs_emit(buf, "0x%x\n", hv_dev->device_id);
520 }
521 static DEVICE_ATTR_RO(device);
522 
523 static ssize_t driver_override_store(struct device *dev,
524 				     struct device_attribute *attr,
525 				     const char *buf, size_t count)
526 {
527 	struct hv_device *hv_dev = device_to_hv_device(dev);
528 	int ret;
529 
530 	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
531 	if (ret)
532 		return ret;
533 
534 	return count;
535 }
536 
537 static ssize_t driver_override_show(struct device *dev,
538 				    struct device_attribute *attr, char *buf)
539 {
540 	struct hv_device *hv_dev = device_to_hv_device(dev);
541 	ssize_t len;
542 
543 	device_lock(dev);
544 	len = sysfs_emit(buf, "%s\n", hv_dev->driver_override);
545 	device_unlock(dev);
546 
547 	return len;
548 }
549 static DEVICE_ATTR_RW(driver_override);
550 
551 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
552 static struct attribute *vmbus_dev_attrs[] = {
553 	&dev_attr_id.attr,
554 	&dev_attr_state.attr,
555 	&dev_attr_monitor_id.attr,
556 	&dev_attr_class_id.attr,
557 	&dev_attr_device_id.attr,
558 	&dev_attr_modalias.attr,
559 #ifdef CONFIG_NUMA
560 	&dev_attr_numa_node.attr,
561 #endif
562 	&dev_attr_server_monitor_pending.attr,
563 	&dev_attr_client_monitor_pending.attr,
564 	&dev_attr_server_monitor_latency.attr,
565 	&dev_attr_client_monitor_latency.attr,
566 	&dev_attr_server_monitor_conn_id.attr,
567 	&dev_attr_client_monitor_conn_id.attr,
568 	&dev_attr_out_intr_mask.attr,
569 	&dev_attr_out_read_index.attr,
570 	&dev_attr_out_write_index.attr,
571 	&dev_attr_out_read_bytes_avail.attr,
572 	&dev_attr_out_write_bytes_avail.attr,
573 	&dev_attr_in_intr_mask.attr,
574 	&dev_attr_in_read_index.attr,
575 	&dev_attr_in_write_index.attr,
576 	&dev_attr_in_read_bytes_avail.attr,
577 	&dev_attr_in_write_bytes_avail.attr,
578 	&dev_attr_channel_vp_mapping.attr,
579 	&dev_attr_vendor.attr,
580 	&dev_attr_device.attr,
581 	&dev_attr_driver_override.attr,
582 	NULL,
583 };
584 
585 /*
586  * Device-level attribute_group callback function. Returns the permission for
587  * each attribute, and returns 0 if an attribute is not visible.
588  */
589 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
590 					 struct attribute *attr, int idx)
591 {
592 	struct device *dev = kobj_to_dev(kobj);
593 	const struct hv_device *hv_dev = device_to_hv_device(dev);
594 
595 	/* Hide the monitor attributes if the monitor mechanism is not used. */
596 	if (!hv_dev->channel->offermsg.monitor_allocated &&
597 	    (attr == &dev_attr_monitor_id.attr ||
598 	     attr == &dev_attr_server_monitor_pending.attr ||
599 	     attr == &dev_attr_client_monitor_pending.attr ||
600 	     attr == &dev_attr_server_monitor_latency.attr ||
601 	     attr == &dev_attr_client_monitor_latency.attr ||
602 	     attr == &dev_attr_server_monitor_conn_id.attr ||
603 	     attr == &dev_attr_client_monitor_conn_id.attr))
604 		return 0;
605 
606 	return attr->mode;
607 }
608 
609 static const struct attribute_group vmbus_dev_group = {
610 	.attrs = vmbus_dev_attrs,
611 	.is_visible = vmbus_dev_attr_is_visible
612 };
613 __ATTRIBUTE_GROUPS(vmbus_dev);
614 
615 /* Set up the attribute for /sys/bus/vmbus/hibernation */
616 static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
617 {
618 	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
619 }
620 
621 static BUS_ATTR_RO(hibernation);
622 
623 static struct attribute *vmbus_bus_attrs[] = {
624 	&bus_attr_hibernation.attr,
625 	NULL,
626 };
627 static const struct attribute_group vmbus_bus_group = {
628 	.attrs = vmbus_bus_attrs,
629 };
630 __ATTRIBUTE_GROUPS(vmbus_bus);
631 
632 /*
633  * vmbus_uevent - add uevent for our device
634  *
635  * This routine is invoked when a device is added or removed on the vmbus to
636  * generate a uevent to udev in the userspace. The udev will then look at its
637  * rule and the uevent generated here to load the appropriate driver
638  *
639  * The alias string will be of the form vmbus:guid where guid is the string
640  * representation of the device guid (each byte of the guid will be
641  * represented with two hex characters.
642  */
643 static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
644 {
645 	const struct hv_device *dev = device_to_hv_device(device);
646 	const char *format = "MODALIAS=vmbus:%*phN";
647 
648 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
649 }
650 
651 static const struct hv_vmbus_device_id *
652 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
653 {
654 	if (id == NULL)
655 		return NULL; /* empty device table */
656 
657 	for (; !guid_is_null(&id->guid); id++)
658 		if (guid_equal(&id->guid, guid))
659 			return id;
660 
661 	return NULL;
662 }
663 
664 static const struct hv_vmbus_device_id *
665 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
666 {
667 	const struct hv_vmbus_device_id *id = NULL;
668 	struct vmbus_dynid *dynid;
669 
670 	spin_lock(&drv->dynids.lock);
671 	list_for_each_entry(dynid, &drv->dynids.list, node) {
672 		if (guid_equal(&dynid->id.guid, guid)) {
673 			id = &dynid->id;
674 			break;
675 		}
676 	}
677 	spin_unlock(&drv->dynids.lock);
678 
679 	return id;
680 }
681 
682 static const struct hv_vmbus_device_id vmbus_device_null;
683 
684 /*
685  * Return a matching hv_vmbus_device_id pointer.
686  * If there is no match, return NULL.
687  */
688 static const struct hv_vmbus_device_id *hv_vmbus_get_id(const struct hv_driver *drv,
689 							struct hv_device *dev)
690 {
691 	const guid_t *guid = &dev->dev_type;
692 	const struct hv_vmbus_device_id *id;
693 
694 	/* When driver_override is set, only bind to the matching driver */
695 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
696 		return NULL;
697 
698 	/* Look at the dynamic ids first, before the static ones */
699 	id = hv_vmbus_dynid_match((struct hv_driver *)drv, guid);
700 	if (!id)
701 		id = hv_vmbus_dev_match(drv->id_table, guid);
702 
703 	/* driver_override will always match, send a dummy id */
704 	if (!id && dev->driver_override)
705 		id = &vmbus_device_null;
706 
707 	return id;
708 }
709 
710 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
711 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
712 {
713 	struct vmbus_dynid *dynid;
714 
715 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
716 	if (!dynid)
717 		return -ENOMEM;
718 
719 	dynid->id.guid = *guid;
720 
721 	spin_lock(&drv->dynids.lock);
722 	list_add_tail(&dynid->node, &drv->dynids.list);
723 	spin_unlock(&drv->dynids.lock);
724 
725 	return driver_attach(&drv->driver);
726 }
727 
728 static void vmbus_free_dynids(struct hv_driver *drv)
729 {
730 	struct vmbus_dynid *dynid, *n;
731 
732 	spin_lock(&drv->dynids.lock);
733 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
734 		list_del(&dynid->node);
735 		kfree(dynid);
736 	}
737 	spin_unlock(&drv->dynids.lock);
738 }
739 
740 /*
741  * store_new_id - sysfs frontend to vmbus_add_dynid()
742  *
743  * Allow GUIDs to be added to an existing driver via sysfs.
744  */
745 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
746 			    size_t count)
747 {
748 	struct hv_driver *drv = drv_to_hv_drv(driver);
749 	guid_t guid;
750 	ssize_t retval;
751 
752 	retval = guid_parse(buf, &guid);
753 	if (retval)
754 		return retval;
755 
756 	if (hv_vmbus_dynid_match(drv, &guid))
757 		return -EEXIST;
758 
759 	retval = vmbus_add_dynid(drv, &guid);
760 	if (retval)
761 		return retval;
762 	return count;
763 }
764 static DRIVER_ATTR_WO(new_id);
765 
766 /*
767  * store_remove_id - remove a PCI device ID from this driver
768  *
769  * Removes a dynamic pci device ID to this driver.
770  */
771 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
772 			       size_t count)
773 {
774 	struct hv_driver *drv = drv_to_hv_drv(driver);
775 	struct vmbus_dynid *dynid, *n;
776 	guid_t guid;
777 	ssize_t retval;
778 
779 	retval = guid_parse(buf, &guid);
780 	if (retval)
781 		return retval;
782 
783 	retval = -ENODEV;
784 	spin_lock(&drv->dynids.lock);
785 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
786 		struct hv_vmbus_device_id *id = &dynid->id;
787 
788 		if (guid_equal(&id->guid, &guid)) {
789 			list_del(&dynid->node);
790 			kfree(dynid);
791 			retval = count;
792 			break;
793 		}
794 	}
795 	spin_unlock(&drv->dynids.lock);
796 
797 	return retval;
798 }
799 static DRIVER_ATTR_WO(remove_id);
800 
801 static struct attribute *vmbus_drv_attrs[] = {
802 	&driver_attr_new_id.attr,
803 	&driver_attr_remove_id.attr,
804 	NULL,
805 };
806 ATTRIBUTE_GROUPS(vmbus_drv);
807 
808 
809 /*
810  * vmbus_match - Attempt to match the specified device to the specified driver
811  */
812 static int vmbus_match(struct device *device, const struct device_driver *driver)
813 {
814 	const struct hv_driver *drv = drv_to_hv_drv(driver);
815 	struct hv_device *hv_dev = device_to_hv_device(device);
816 
817 	/* The hv_sock driver handles all hv_sock offers. */
818 	if (is_hvsock_channel(hv_dev->channel))
819 		return drv->hvsock;
820 
821 	if (hv_vmbus_get_id(drv, hv_dev))
822 		return 1;
823 
824 	return 0;
825 }
826 
827 /*
828  * vmbus_probe - Add the new vmbus's child device
829  */
830 static int vmbus_probe(struct device *child_device)
831 {
832 	int ret = 0;
833 	struct hv_driver *drv =
834 			drv_to_hv_drv(child_device->driver);
835 	struct hv_device *dev = device_to_hv_device(child_device);
836 	const struct hv_vmbus_device_id *dev_id;
837 
838 	dev_id = hv_vmbus_get_id(drv, dev);
839 	if (drv->probe) {
840 		ret = drv->probe(dev, dev_id);
841 		if (ret != 0)
842 			pr_err("probe failed for device %s (%d)\n",
843 			       dev_name(child_device), ret);
844 
845 	} else {
846 		pr_err("probe not set for driver %s\n",
847 		       dev_name(child_device));
848 		ret = -ENODEV;
849 	}
850 	return ret;
851 }
852 
853 /*
854  * vmbus_dma_configure -- Configure DMA coherence for VMbus device
855  */
856 static int vmbus_dma_configure(struct device *child_device)
857 {
858 	/*
859 	 * On ARM64, propagate the DMA coherence setting from the top level
860 	 * VMbus ACPI device to the child VMbus device being added here.
861 	 * On x86/x64 coherence is assumed and these calls have no effect.
862 	 */
863 	hv_setup_dma_ops(child_device,
864 		device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT);
865 	return 0;
866 }
867 
868 /*
869  * vmbus_remove - Remove a vmbus device
870  */
871 static void vmbus_remove(struct device *child_device)
872 {
873 	struct hv_driver *drv;
874 	struct hv_device *dev = device_to_hv_device(child_device);
875 
876 	if (child_device->driver) {
877 		drv = drv_to_hv_drv(child_device->driver);
878 		if (drv->remove)
879 			drv->remove(dev);
880 	}
881 }
882 
883 /*
884  * vmbus_shutdown - Shutdown a vmbus device
885  */
886 static void vmbus_shutdown(struct device *child_device)
887 {
888 	struct hv_driver *drv;
889 	struct hv_device *dev = device_to_hv_device(child_device);
890 
891 
892 	/* The device may not be attached yet */
893 	if (!child_device->driver)
894 		return;
895 
896 	drv = drv_to_hv_drv(child_device->driver);
897 
898 	if (drv->shutdown)
899 		drv->shutdown(dev);
900 }
901 
902 #ifdef CONFIG_PM_SLEEP
903 /*
904  * vmbus_suspend - Suspend a vmbus device
905  */
906 static int vmbus_suspend(struct device *child_device)
907 {
908 	struct hv_driver *drv;
909 	struct hv_device *dev = device_to_hv_device(child_device);
910 
911 	/* The device may not be attached yet */
912 	if (!child_device->driver)
913 		return 0;
914 
915 	drv = drv_to_hv_drv(child_device->driver);
916 	if (!drv->suspend)
917 		return -EOPNOTSUPP;
918 
919 	return drv->suspend(dev);
920 }
921 
922 /*
923  * vmbus_resume - Resume a vmbus device
924  */
925 static int vmbus_resume(struct device *child_device)
926 {
927 	struct hv_driver *drv;
928 	struct hv_device *dev = device_to_hv_device(child_device);
929 
930 	/* The device may not be attached yet */
931 	if (!child_device->driver)
932 		return 0;
933 
934 	drv = drv_to_hv_drv(child_device->driver);
935 	if (!drv->resume)
936 		return -EOPNOTSUPP;
937 
938 	return drv->resume(dev);
939 }
940 #else
941 #define vmbus_suspend NULL
942 #define vmbus_resume NULL
943 #endif /* CONFIG_PM_SLEEP */
944 
945 /*
946  * vmbus_device_release - Final callback release of the vmbus child device
947  */
948 static void vmbus_device_release(struct device *device)
949 {
950 	struct hv_device *hv_dev = device_to_hv_device(device);
951 	struct vmbus_channel *channel = hv_dev->channel;
952 
953 	hv_debug_rm_dev_dir(hv_dev);
954 
955 	mutex_lock(&vmbus_connection.channel_mutex);
956 	hv_process_channel_removal(channel);
957 	mutex_unlock(&vmbus_connection.channel_mutex);
958 	kfree(hv_dev);
959 }
960 
961 /*
962  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
963  *
964  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
965  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
966  * is no way to wake up a Generation-2 VM.
967  *
968  * The other 4 ops are for hibernation.
969  */
970 
971 static const struct dev_pm_ops vmbus_pm = {
972 	.suspend_noirq	= NULL,
973 	.resume_noirq	= NULL,
974 	.freeze_noirq	= vmbus_suspend,
975 	.thaw_noirq	= vmbus_resume,
976 	.poweroff_noirq	= vmbus_suspend,
977 	.restore_noirq	= vmbus_resume,
978 };
979 
980 /* The one and only one */
981 static const struct bus_type  hv_bus = {
982 	.name =		"vmbus",
983 	.match =		vmbus_match,
984 	.shutdown =		vmbus_shutdown,
985 	.remove =		vmbus_remove,
986 	.probe =		vmbus_probe,
987 	.uevent =		vmbus_uevent,
988 	.dma_configure =	vmbus_dma_configure,
989 	.dev_groups =		vmbus_dev_groups,
990 	.drv_groups =		vmbus_drv_groups,
991 	.bus_groups =		vmbus_bus_groups,
992 	.pm =			&vmbus_pm,
993 };
994 
995 struct onmessage_work_context {
996 	struct work_struct work;
997 	struct {
998 		struct hv_message_header header;
999 		u8 payload[];
1000 	} msg;
1001 };
1002 
1003 static void vmbus_onmessage_work(struct work_struct *work)
1004 {
1005 	struct onmessage_work_context *ctx;
1006 
1007 	/* Do not process messages if we're in DISCONNECTED state */
1008 	if (vmbus_connection.conn_state == DISCONNECTED)
1009 		return;
1010 
1011 	ctx = container_of(work, struct onmessage_work_context,
1012 			   work);
1013 	vmbus_onmessage((struct vmbus_channel_message_header *)
1014 			&ctx->msg.payload);
1015 	kfree(ctx);
1016 }
1017 
1018 void vmbus_on_msg_dpc(unsigned long data)
1019 {
1020 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1021 	void *page_addr = hv_cpu->synic_message_page;
1022 	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1023 				  VMBUS_MESSAGE_SINT;
1024 	struct vmbus_channel_message_header *hdr;
1025 	enum vmbus_channel_message_type msgtype;
1026 	const struct vmbus_channel_message_table_entry *entry;
1027 	struct onmessage_work_context *ctx;
1028 	__u8 payload_size;
1029 	u32 message_type;
1030 
1031 	/*
1032 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1033 	 * it is being used in 'struct vmbus_channel_message_header' definition
1034 	 * which is supposed to match hypervisor ABI.
1035 	 */
1036 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1037 
1038 	/*
1039 	 * Since the message is in memory shared with the host, an erroneous or
1040 	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1041 	 * or individual message handlers are executing; to prevent this, copy
1042 	 * the message into private memory.
1043 	 */
1044 	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1045 
1046 	message_type = msg_copy.header.message_type;
1047 	if (message_type == HVMSG_NONE)
1048 		/* no msg */
1049 		return;
1050 
1051 	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1052 	msgtype = hdr->msgtype;
1053 
1054 	trace_vmbus_on_msg_dpc(hdr);
1055 
1056 	if (msgtype >= CHANNELMSG_COUNT) {
1057 		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1058 		goto msg_handled;
1059 	}
1060 
1061 	payload_size = msg_copy.header.payload_size;
1062 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1063 		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1064 		goto msg_handled;
1065 	}
1066 
1067 	entry = &channel_message_table[msgtype];
1068 
1069 	if (!entry->message_handler)
1070 		goto msg_handled;
1071 
1072 	if (payload_size < entry->min_payload_len) {
1073 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1074 		goto msg_handled;
1075 	}
1076 
1077 	if (entry->handler_type	== VMHT_BLOCKING) {
1078 		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1079 		if (ctx == NULL)
1080 			return;
1081 
1082 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1083 		ctx->msg.header = msg_copy.header;
1084 		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1085 
1086 		/*
1087 		 * The host can generate a rescind message while we
1088 		 * may still be handling the original offer. We deal with
1089 		 * this condition by relying on the synchronization provided
1090 		 * by offer_in_progress and by channel_mutex.  See also the
1091 		 * inline comments in vmbus_onoffer_rescind().
1092 		 */
1093 		switch (msgtype) {
1094 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1095 			/*
1096 			 * If we are handling the rescind message;
1097 			 * schedule the work on the global work queue.
1098 			 *
1099 			 * The OFFER message and the RESCIND message should
1100 			 * not be handled by the same serialized work queue,
1101 			 * because the OFFER handler may call vmbus_open(),
1102 			 * which tries to open the channel by sending an
1103 			 * OPEN_CHANNEL message to the host and waits for
1104 			 * the host's response; however, if the host has
1105 			 * rescinded the channel before it receives the
1106 			 * OPEN_CHANNEL message, the host just silently
1107 			 * ignores the OPEN_CHANNEL message; as a result,
1108 			 * the guest's OFFER handler hangs for ever, if we
1109 			 * handle the RESCIND message in the same serialized
1110 			 * work queue: the RESCIND handler can not start to
1111 			 * run before the OFFER handler finishes.
1112 			 */
1113 			if (vmbus_connection.ignore_any_offer_msg)
1114 				break;
1115 			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1116 			break;
1117 
1118 		case CHANNELMSG_OFFERCHANNEL:
1119 			/*
1120 			 * The host sends the offer message of a given channel
1121 			 * before sending the rescind message of the same
1122 			 * channel.  These messages are sent to the guest's
1123 			 * connect CPU; the guest then starts processing them
1124 			 * in the tasklet handler on this CPU:
1125 			 *
1126 			 * VMBUS_CONNECT_CPU
1127 			 *
1128 			 * [vmbus_on_msg_dpc()]
1129 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1130 			 * queue_work()
1131 			 * ...
1132 			 * [vmbus_on_msg_dpc()]
1133 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1134 			 *
1135 			 * We rely on the memory-ordering properties of the
1136 			 * queue_work() and schedule_work() primitives, which
1137 			 * guarantee that the atomic increment will be visible
1138 			 * to the CPUs which will execute the offer & rescind
1139 			 * works by the time these works will start execution.
1140 			 */
1141 			if (vmbus_connection.ignore_any_offer_msg)
1142 				break;
1143 			atomic_inc(&vmbus_connection.offer_in_progress);
1144 			fallthrough;
1145 
1146 		default:
1147 			queue_work(vmbus_connection.work_queue, &ctx->work);
1148 		}
1149 	} else
1150 		entry->message_handler(hdr);
1151 
1152 msg_handled:
1153 	vmbus_signal_eom(msg, message_type);
1154 }
1155 
1156 #ifdef CONFIG_PM_SLEEP
1157 /*
1158  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1159  * hibernation, because hv_sock connections can not persist across hibernation.
1160  */
1161 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1162 {
1163 	struct onmessage_work_context *ctx;
1164 	struct vmbus_channel_rescind_offer *rescind;
1165 
1166 	WARN_ON(!is_hvsock_channel(channel));
1167 
1168 	/*
1169 	 * Allocation size is small and the allocation should really not fail,
1170 	 * otherwise the state of the hv_sock connections ends up in limbo.
1171 	 */
1172 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1173 		      GFP_KERNEL | __GFP_NOFAIL);
1174 
1175 	/*
1176 	 * So far, these are not really used by Linux. Just set them to the
1177 	 * reasonable values conforming to the definitions of the fields.
1178 	 */
1179 	ctx->msg.header.message_type = 1;
1180 	ctx->msg.header.payload_size = sizeof(*rescind);
1181 
1182 	/* These values are actually used by Linux. */
1183 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1184 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1185 	rescind->child_relid = channel->offermsg.child_relid;
1186 
1187 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1188 
1189 	queue_work(vmbus_connection.work_queue, &ctx->work);
1190 }
1191 #endif /* CONFIG_PM_SLEEP */
1192 
1193 /*
1194  * Schedule all channels with events pending
1195  */
1196 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1197 {
1198 	unsigned long *recv_int_page;
1199 	u32 maxbits, relid;
1200 
1201 	/*
1202 	 * The event page can be directly checked to get the id of
1203 	 * the channel that has the interrupt pending.
1204 	 */
1205 	void *page_addr = hv_cpu->synic_event_page;
1206 	union hv_synic_event_flags *event
1207 		= (union hv_synic_event_flags *)page_addr +
1208 					 VMBUS_MESSAGE_SINT;
1209 
1210 	maxbits = HV_EVENT_FLAGS_COUNT;
1211 	recv_int_page = event->flags;
1212 
1213 	if (unlikely(!recv_int_page))
1214 		return;
1215 
1216 	for_each_set_bit(relid, recv_int_page, maxbits) {
1217 		void (*callback_fn)(void *context);
1218 		struct vmbus_channel *channel;
1219 
1220 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1221 			continue;
1222 
1223 		/* Special case - vmbus channel protocol msg */
1224 		if (relid == 0)
1225 			continue;
1226 
1227 		/*
1228 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1229 		 * Guarantees that the channel data structure doesn't
1230 		 * get freed while the channel pointer below is being
1231 		 * dereferenced.
1232 		 */
1233 		rcu_read_lock();
1234 
1235 		/* Find channel based on relid */
1236 		channel = relid2channel(relid);
1237 		if (channel == NULL)
1238 			goto sched_unlock_rcu;
1239 
1240 		if (channel->rescind)
1241 			goto sched_unlock_rcu;
1242 
1243 		/*
1244 		 * Make sure that the ring buffer data structure doesn't get
1245 		 * freed while we dereference the ring buffer pointer.  Test
1246 		 * for the channel's onchannel_callback being NULL within a
1247 		 * sched_lock critical section.  See also the inline comments
1248 		 * in vmbus_reset_channel_cb().
1249 		 */
1250 		spin_lock(&channel->sched_lock);
1251 
1252 		callback_fn = channel->onchannel_callback;
1253 		if (unlikely(callback_fn == NULL))
1254 			goto sched_unlock;
1255 
1256 		trace_vmbus_chan_sched(channel);
1257 
1258 		++channel->interrupts;
1259 
1260 		switch (channel->callback_mode) {
1261 		case HV_CALL_ISR:
1262 			(*callback_fn)(channel->channel_callback_context);
1263 			break;
1264 
1265 		case HV_CALL_BATCHED:
1266 			hv_begin_read(&channel->inbound);
1267 			fallthrough;
1268 		case HV_CALL_DIRECT:
1269 			tasklet_schedule(&channel->callback_event);
1270 		}
1271 
1272 sched_unlock:
1273 		spin_unlock(&channel->sched_lock);
1274 sched_unlock_rcu:
1275 		rcu_read_unlock();
1276 	}
1277 }
1278 
1279 static void vmbus_isr(void)
1280 {
1281 	struct hv_per_cpu_context *hv_cpu
1282 		= this_cpu_ptr(hv_context.cpu_context);
1283 	void *page_addr;
1284 	struct hv_message *msg;
1285 
1286 	vmbus_chan_sched(hv_cpu);
1287 
1288 	page_addr = hv_cpu->synic_message_page;
1289 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1290 
1291 	/* Check if there are actual msgs to be processed */
1292 	if (msg->header.message_type != HVMSG_NONE) {
1293 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1294 			hv_stimer0_isr();
1295 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1296 		} else
1297 			tasklet_schedule(&hv_cpu->msg_dpc);
1298 	}
1299 
1300 	add_interrupt_randomness(vmbus_interrupt);
1301 }
1302 
1303 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1304 {
1305 	vmbus_isr();
1306 	return IRQ_HANDLED;
1307 }
1308 
1309 static void vmbus_percpu_work(struct work_struct *work)
1310 {
1311 	unsigned int cpu = smp_processor_id();
1312 
1313 	hv_synic_init(cpu);
1314 }
1315 
1316 /*
1317  * vmbus_bus_init -Main vmbus driver initialization routine.
1318  *
1319  * Here, we
1320  *	- initialize the vmbus driver context
1321  *	- invoke the vmbus hv main init routine
1322  *	- retrieve the channel offers
1323  */
1324 static int vmbus_bus_init(void)
1325 {
1326 	int ret, cpu;
1327 	struct work_struct __percpu *works;
1328 
1329 	ret = hv_init();
1330 	if (ret != 0) {
1331 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1332 		return ret;
1333 	}
1334 
1335 	ret = bus_register(&hv_bus);
1336 	if (ret)
1337 		return ret;
1338 
1339 	/*
1340 	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1341 	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1342 	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1343 	 * If not on such an architecture (e.g., x86/x64), then rely on
1344 	 * code in the arch-specific portion of the code tree to connect
1345 	 * the VMbus interrupt handler.
1346 	 */
1347 
1348 	if (vmbus_irq == -1) {
1349 		hv_setup_vmbus_handler(vmbus_isr);
1350 	} else {
1351 		vmbus_evt = alloc_percpu(long);
1352 		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1353 				"Hyper-V VMbus", vmbus_evt);
1354 		if (ret) {
1355 			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1356 					vmbus_irq, ret);
1357 			free_percpu(vmbus_evt);
1358 			goto err_setup;
1359 		}
1360 	}
1361 
1362 	ret = hv_synic_alloc();
1363 	if (ret)
1364 		goto err_alloc;
1365 
1366 	works = alloc_percpu(struct work_struct);
1367 	if (!works) {
1368 		ret = -ENOMEM;
1369 		goto err_alloc;
1370 	}
1371 
1372 	/*
1373 	 * Initialize the per-cpu interrupt state and stimer state.
1374 	 * Then connect to the host.
1375 	 */
1376 	cpus_read_lock();
1377 	for_each_online_cpu(cpu) {
1378 		struct work_struct *work = per_cpu_ptr(works, cpu);
1379 
1380 		INIT_WORK(work, vmbus_percpu_work);
1381 		schedule_work_on(cpu, work);
1382 	}
1383 
1384 	for_each_online_cpu(cpu)
1385 		flush_work(per_cpu_ptr(works, cpu));
1386 
1387 	/* Register the callbacks for possible CPU online/offline'ing */
1388 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1389 						   hv_synic_init, hv_synic_cleanup);
1390 	cpus_read_unlock();
1391 	free_percpu(works);
1392 	if (ret < 0)
1393 		goto err_alloc;
1394 	hyperv_cpuhp_online = ret;
1395 
1396 	ret = vmbus_connect();
1397 	if (ret)
1398 		goto err_connect;
1399 
1400 	/*
1401 	 * Always register the vmbus unload panic notifier because we
1402 	 * need to shut the VMbus channel connection on panic.
1403 	 */
1404 	atomic_notifier_chain_register(&panic_notifier_list,
1405 			       &hyperv_panic_vmbus_unload_block);
1406 
1407 	vmbus_request_offers();
1408 
1409 	return 0;
1410 
1411 err_connect:
1412 	cpuhp_remove_state(hyperv_cpuhp_online);
1413 err_alloc:
1414 	hv_synic_free();
1415 	if (vmbus_irq == -1) {
1416 		hv_remove_vmbus_handler();
1417 	} else {
1418 		free_percpu_irq(vmbus_irq, vmbus_evt);
1419 		free_percpu(vmbus_evt);
1420 	}
1421 err_setup:
1422 	bus_unregister(&hv_bus);
1423 	return ret;
1424 }
1425 
1426 /**
1427  * __vmbus_driver_register() - Register a vmbus's driver
1428  * @hv_driver: Pointer to driver structure you want to register
1429  * @owner: owner module of the drv
1430  * @mod_name: module name string
1431  *
1432  * Registers the given driver with Linux through the 'driver_register()' call
1433  * and sets up the hyper-v vmbus handling for this driver.
1434  * It will return the state of the 'driver_register()' call.
1435  *
1436  */
1437 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1438 {
1439 	int ret;
1440 
1441 	pr_info("registering driver %s\n", hv_driver->name);
1442 
1443 	ret = vmbus_exists();
1444 	if (ret < 0)
1445 		return ret;
1446 
1447 	hv_driver->driver.name = hv_driver->name;
1448 	hv_driver->driver.owner = owner;
1449 	hv_driver->driver.mod_name = mod_name;
1450 	hv_driver->driver.bus = &hv_bus;
1451 
1452 	spin_lock_init(&hv_driver->dynids.lock);
1453 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1454 
1455 	ret = driver_register(&hv_driver->driver);
1456 
1457 	return ret;
1458 }
1459 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1460 
1461 /**
1462  * vmbus_driver_unregister() - Unregister a vmbus's driver
1463  * @hv_driver: Pointer to driver structure you want to
1464  *             un-register
1465  *
1466  * Un-register the given driver that was previous registered with a call to
1467  * vmbus_driver_register()
1468  */
1469 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1470 {
1471 	pr_info("unregistering driver %s\n", hv_driver->name);
1472 
1473 	if (!vmbus_exists()) {
1474 		driver_unregister(&hv_driver->driver);
1475 		vmbus_free_dynids(hv_driver);
1476 	}
1477 }
1478 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1479 
1480 
1481 /*
1482  * Called when last reference to channel is gone.
1483  */
1484 static void vmbus_chan_release(struct kobject *kobj)
1485 {
1486 	struct vmbus_channel *channel
1487 		= container_of(kobj, struct vmbus_channel, kobj);
1488 
1489 	kfree_rcu(channel, rcu);
1490 }
1491 
1492 struct vmbus_chan_attribute {
1493 	struct attribute attr;
1494 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1495 	ssize_t (*store)(struct vmbus_channel *chan,
1496 			 const char *buf, size_t count);
1497 };
1498 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1499 	struct vmbus_chan_attribute chan_attr_##_name \
1500 		= __ATTR(_name, _mode, _show, _store)
1501 #define VMBUS_CHAN_ATTR_RW(_name) \
1502 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1503 #define VMBUS_CHAN_ATTR_RO(_name) \
1504 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1505 #define VMBUS_CHAN_ATTR_WO(_name) \
1506 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1507 
1508 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1509 				    struct attribute *attr, char *buf)
1510 {
1511 	const struct vmbus_chan_attribute *attribute
1512 		= container_of(attr, struct vmbus_chan_attribute, attr);
1513 	struct vmbus_channel *chan
1514 		= container_of(kobj, struct vmbus_channel, kobj);
1515 
1516 	if (!attribute->show)
1517 		return -EIO;
1518 
1519 	return attribute->show(chan, buf);
1520 }
1521 
1522 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1523 				     struct attribute *attr, const char *buf,
1524 				     size_t count)
1525 {
1526 	const struct vmbus_chan_attribute *attribute
1527 		= container_of(attr, struct vmbus_chan_attribute, attr);
1528 	struct vmbus_channel *chan
1529 		= container_of(kobj, struct vmbus_channel, kobj);
1530 
1531 	if (!attribute->store)
1532 		return -EIO;
1533 
1534 	return attribute->store(chan, buf, count);
1535 }
1536 
1537 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1538 	.show = vmbus_chan_attr_show,
1539 	.store = vmbus_chan_attr_store,
1540 };
1541 
1542 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1543 {
1544 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1545 	ssize_t ret;
1546 
1547 	mutex_lock(&rbi->ring_buffer_mutex);
1548 	if (!rbi->ring_buffer) {
1549 		mutex_unlock(&rbi->ring_buffer_mutex);
1550 		return -EINVAL;
1551 	}
1552 
1553 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1554 	mutex_unlock(&rbi->ring_buffer_mutex);
1555 	return ret;
1556 }
1557 static VMBUS_CHAN_ATTR_RO(out_mask);
1558 
1559 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1560 {
1561 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1562 	ssize_t ret;
1563 
1564 	mutex_lock(&rbi->ring_buffer_mutex);
1565 	if (!rbi->ring_buffer) {
1566 		mutex_unlock(&rbi->ring_buffer_mutex);
1567 		return -EINVAL;
1568 	}
1569 
1570 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1571 	mutex_unlock(&rbi->ring_buffer_mutex);
1572 	return ret;
1573 }
1574 static VMBUS_CHAN_ATTR_RO(in_mask);
1575 
1576 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1577 {
1578 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1579 	ssize_t ret;
1580 
1581 	mutex_lock(&rbi->ring_buffer_mutex);
1582 	if (!rbi->ring_buffer) {
1583 		mutex_unlock(&rbi->ring_buffer_mutex);
1584 		return -EINVAL;
1585 	}
1586 
1587 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1588 	mutex_unlock(&rbi->ring_buffer_mutex);
1589 	return ret;
1590 }
1591 static VMBUS_CHAN_ATTR_RO(read_avail);
1592 
1593 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1594 {
1595 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1596 	ssize_t ret;
1597 
1598 	mutex_lock(&rbi->ring_buffer_mutex);
1599 	if (!rbi->ring_buffer) {
1600 		mutex_unlock(&rbi->ring_buffer_mutex);
1601 		return -EINVAL;
1602 	}
1603 
1604 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1605 	mutex_unlock(&rbi->ring_buffer_mutex);
1606 	return ret;
1607 }
1608 static VMBUS_CHAN_ATTR_RO(write_avail);
1609 
1610 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1611 {
1612 	return sprintf(buf, "%u\n", channel->target_cpu);
1613 }
1614 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1615 				const char *buf, size_t count)
1616 {
1617 	u32 target_cpu, origin_cpu;
1618 	ssize_t ret = count;
1619 
1620 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1621 		return -EIO;
1622 
1623 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1624 		return -EIO;
1625 
1626 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1627 	if (target_cpu >= nr_cpumask_bits)
1628 		return -EINVAL;
1629 
1630 	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1631 		return -EINVAL;
1632 
1633 	/* No CPUs should come up or down during this. */
1634 	cpus_read_lock();
1635 
1636 	if (!cpu_online(target_cpu)) {
1637 		cpus_read_unlock();
1638 		return -EINVAL;
1639 	}
1640 
1641 	/*
1642 	 * Synchronizes target_cpu_store() and channel closure:
1643 	 *
1644 	 * { Initially: state = CHANNEL_OPENED }
1645 	 *
1646 	 * CPU1				CPU2
1647 	 *
1648 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1649 	 *
1650 	 * LOCK channel_mutex		LOCK channel_mutex
1651 	 * LOAD r1 = state		LOAD r2 = state
1652 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1653 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1654 	 *   [...]			  SEND CLOSECHANNEL
1655 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1656 	 *
1657 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1658 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1659 	 *
1660 	 * Note.  The host processes the channel messages "sequentially", in
1661 	 * the order in which they are received on a per-partition basis.
1662 	 */
1663 	mutex_lock(&vmbus_connection.channel_mutex);
1664 
1665 	/*
1666 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1667 	 * avoid sending the message and fail here for such channels.
1668 	 */
1669 	if (channel->state != CHANNEL_OPENED_STATE) {
1670 		ret = -EIO;
1671 		goto cpu_store_unlock;
1672 	}
1673 
1674 	origin_cpu = channel->target_cpu;
1675 	if (target_cpu == origin_cpu)
1676 		goto cpu_store_unlock;
1677 
1678 	if (vmbus_send_modifychannel(channel,
1679 				     hv_cpu_number_to_vp_number(target_cpu))) {
1680 		ret = -EIO;
1681 		goto cpu_store_unlock;
1682 	}
1683 
1684 	/*
1685 	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1686 	 *
1687 	 * Warning.  At this point, there is *no* guarantee that the host will
1688 	 * have successfully processed the vmbus_send_modifychannel() request.
1689 	 * See the header comment of vmbus_send_modifychannel() for more info.
1690 	 *
1691 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1692 	 * result in missed interrupts if the "old" target CPU is taken offline
1693 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1694 	 * But apart from this offlining scenario, the code tolerates such
1695 	 * lags.  It will function correctly even if a channel interrupt comes
1696 	 * in on a CPU that is different from the channel target_cpu value.
1697 	 */
1698 
1699 	channel->target_cpu = target_cpu;
1700 
1701 	/* See init_vp_index(). */
1702 	if (hv_is_perf_channel(channel))
1703 		hv_update_allocated_cpus(origin_cpu, target_cpu);
1704 
1705 	/* Currently set only for storvsc channels. */
1706 	if (channel->change_target_cpu_callback) {
1707 		(*channel->change_target_cpu_callback)(channel,
1708 				origin_cpu, target_cpu);
1709 	}
1710 
1711 cpu_store_unlock:
1712 	mutex_unlock(&vmbus_connection.channel_mutex);
1713 	cpus_read_unlock();
1714 	return ret;
1715 }
1716 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1717 
1718 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1719 				    char *buf)
1720 {
1721 	return sprintf(buf, "%d\n",
1722 		       channel_pending(channel,
1723 				       vmbus_connection.monitor_pages[1]));
1724 }
1725 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1726 
1727 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1728 				    char *buf)
1729 {
1730 	return sprintf(buf, "%d\n",
1731 		       channel_latency(channel,
1732 				       vmbus_connection.monitor_pages[1]));
1733 }
1734 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1735 
1736 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1737 {
1738 	return sprintf(buf, "%llu\n", channel->interrupts);
1739 }
1740 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1741 
1742 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1743 {
1744 	return sprintf(buf, "%llu\n", channel->sig_events);
1745 }
1746 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1747 
1748 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1749 					 char *buf)
1750 {
1751 	return sprintf(buf, "%llu\n",
1752 		       (unsigned long long)channel->intr_in_full);
1753 }
1754 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1755 
1756 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1757 					   char *buf)
1758 {
1759 	return sprintf(buf, "%llu\n",
1760 		       (unsigned long long)channel->intr_out_empty);
1761 }
1762 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1763 
1764 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1765 					   char *buf)
1766 {
1767 	return sprintf(buf, "%llu\n",
1768 		       (unsigned long long)channel->out_full_first);
1769 }
1770 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1771 
1772 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1773 					   char *buf)
1774 {
1775 	return sprintf(buf, "%llu\n",
1776 		       (unsigned long long)channel->out_full_total);
1777 }
1778 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1779 
1780 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1781 					  char *buf)
1782 {
1783 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1784 }
1785 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1786 
1787 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1788 				  char *buf)
1789 {
1790 	return sprintf(buf, "%u\n",
1791 		       channel->offermsg.offer.sub_channel_index);
1792 }
1793 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1794 
1795 static struct attribute *vmbus_chan_attrs[] = {
1796 	&chan_attr_out_mask.attr,
1797 	&chan_attr_in_mask.attr,
1798 	&chan_attr_read_avail.attr,
1799 	&chan_attr_write_avail.attr,
1800 	&chan_attr_cpu.attr,
1801 	&chan_attr_pending.attr,
1802 	&chan_attr_latency.attr,
1803 	&chan_attr_interrupts.attr,
1804 	&chan_attr_events.attr,
1805 	&chan_attr_intr_in_full.attr,
1806 	&chan_attr_intr_out_empty.attr,
1807 	&chan_attr_out_full_first.attr,
1808 	&chan_attr_out_full_total.attr,
1809 	&chan_attr_monitor_id.attr,
1810 	&chan_attr_subchannel_id.attr,
1811 	NULL
1812 };
1813 
1814 /*
1815  * Channel-level attribute_group callback function. Returns the permission for
1816  * each attribute, and returns 0 if an attribute is not visible.
1817  */
1818 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1819 					  struct attribute *attr, int idx)
1820 {
1821 	const struct vmbus_channel *channel =
1822 		container_of(kobj, struct vmbus_channel, kobj);
1823 
1824 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1825 	if (!channel->offermsg.monitor_allocated &&
1826 	    (attr == &chan_attr_pending.attr ||
1827 	     attr == &chan_attr_latency.attr ||
1828 	     attr == &chan_attr_monitor_id.attr))
1829 		return 0;
1830 
1831 	return attr->mode;
1832 }
1833 
1834 static const struct attribute_group vmbus_chan_group = {
1835 	.attrs = vmbus_chan_attrs,
1836 	.is_visible = vmbus_chan_attr_is_visible
1837 };
1838 
1839 static const struct kobj_type vmbus_chan_ktype = {
1840 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1841 	.release = vmbus_chan_release,
1842 };
1843 
1844 /*
1845  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1846  */
1847 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1848 {
1849 	const struct device *device = &dev->device;
1850 	struct kobject *kobj = &channel->kobj;
1851 	u32 relid = channel->offermsg.child_relid;
1852 	int ret;
1853 
1854 	kobj->kset = dev->channels_kset;
1855 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1856 				   "%u", relid);
1857 	if (ret) {
1858 		kobject_put(kobj);
1859 		return ret;
1860 	}
1861 
1862 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1863 
1864 	if (ret) {
1865 		/*
1866 		 * The calling functions' error handling paths will cleanup the
1867 		 * empty channel directory.
1868 		 */
1869 		kobject_put(kobj);
1870 		dev_err(device, "Unable to set up channel sysfs files\n");
1871 		return ret;
1872 	}
1873 
1874 	kobject_uevent(kobj, KOBJ_ADD);
1875 
1876 	return 0;
1877 }
1878 
1879 /*
1880  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1881  */
1882 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1883 {
1884 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1885 }
1886 
1887 /*
1888  * vmbus_device_create - Creates and registers a new child device
1889  * on the vmbus.
1890  */
1891 struct hv_device *vmbus_device_create(const guid_t *type,
1892 				      const guid_t *instance,
1893 				      struct vmbus_channel *channel)
1894 {
1895 	struct hv_device *child_device_obj;
1896 
1897 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1898 	if (!child_device_obj) {
1899 		pr_err("Unable to allocate device object for child device\n");
1900 		return NULL;
1901 	}
1902 
1903 	child_device_obj->channel = channel;
1904 	guid_copy(&child_device_obj->dev_type, type);
1905 	guid_copy(&child_device_obj->dev_instance, instance);
1906 	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
1907 
1908 	return child_device_obj;
1909 }
1910 
1911 /*
1912  * vmbus_device_register - Register the child device
1913  */
1914 int vmbus_device_register(struct hv_device *child_device_obj)
1915 {
1916 	struct kobject *kobj = &child_device_obj->device.kobj;
1917 	int ret;
1918 
1919 	dev_set_name(&child_device_obj->device, "%pUl",
1920 		     &child_device_obj->channel->offermsg.offer.if_instance);
1921 
1922 	child_device_obj->device.bus = &hv_bus;
1923 	child_device_obj->device.parent = hv_dev;
1924 	child_device_obj->device.release = vmbus_device_release;
1925 
1926 	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1927 	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1928 	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
1929 
1930 	/*
1931 	 * Register with the LDM. This will kick off the driver/device
1932 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1933 	 */
1934 	ret = device_register(&child_device_obj->device);
1935 	if (ret) {
1936 		pr_err("Unable to register child device\n");
1937 		put_device(&child_device_obj->device);
1938 		return ret;
1939 	}
1940 
1941 	child_device_obj->channels_kset = kset_create_and_add("channels",
1942 							      NULL, kobj);
1943 	if (!child_device_obj->channels_kset) {
1944 		ret = -ENOMEM;
1945 		goto err_dev_unregister;
1946 	}
1947 
1948 	ret = vmbus_add_channel_kobj(child_device_obj,
1949 				     child_device_obj->channel);
1950 	if (ret) {
1951 		pr_err("Unable to register primary channeln");
1952 		goto err_kset_unregister;
1953 	}
1954 	hv_debug_add_dev_dir(child_device_obj);
1955 
1956 	return 0;
1957 
1958 err_kset_unregister:
1959 	kset_unregister(child_device_obj->channels_kset);
1960 
1961 err_dev_unregister:
1962 	device_unregister(&child_device_obj->device);
1963 	return ret;
1964 }
1965 
1966 /*
1967  * vmbus_device_unregister - Remove the specified child device
1968  * from the vmbus.
1969  */
1970 void vmbus_device_unregister(struct hv_device *device_obj)
1971 {
1972 	pr_debug("child device %s unregistered\n",
1973 		dev_name(&device_obj->device));
1974 
1975 	kset_unregister(device_obj->channels_kset);
1976 
1977 	/*
1978 	 * Kick off the process of unregistering the device.
1979 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1980 	 */
1981 	device_unregister(&device_obj->device);
1982 }
1983 EXPORT_SYMBOL_GPL(vmbus_device_unregister);
1984 
1985 #ifdef CONFIG_ACPI
1986 /*
1987  * VMBUS is an acpi enumerated device. Get the information we
1988  * need from DSDT.
1989  */
1990 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1991 {
1992 	resource_size_t start = 0;
1993 	resource_size_t end = 0;
1994 	struct resource *new_res;
1995 	struct resource **old_res = &hyperv_mmio;
1996 	struct resource **prev_res = NULL;
1997 	struct resource r;
1998 
1999 	switch (res->type) {
2000 
2001 	/*
2002 	 * "Address" descriptors are for bus windows. Ignore
2003 	 * "memory" descriptors, which are for registers on
2004 	 * devices.
2005 	 */
2006 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2007 		start = res->data.address32.address.minimum;
2008 		end = res->data.address32.address.maximum;
2009 		break;
2010 
2011 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2012 		start = res->data.address64.address.minimum;
2013 		end = res->data.address64.address.maximum;
2014 		break;
2015 
2016 	/*
2017 	 * The IRQ information is needed only on ARM64, which Hyper-V
2018 	 * sets up in the extended format. IRQ information is present
2019 	 * on x86/x64 in the non-extended format but it is not used by
2020 	 * Linux. So don't bother checking for the non-extended format.
2021 	 */
2022 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2023 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2024 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2025 			return AE_ERROR;
2026 		}
2027 		/* ARM64 INTID for VMbus */
2028 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2029 		/* Linux IRQ number */
2030 		vmbus_irq = r.start;
2031 		return AE_OK;
2032 
2033 	default:
2034 		/* Unused resource type */
2035 		return AE_OK;
2036 
2037 	}
2038 	/*
2039 	 * Ignore ranges that are below 1MB, as they're not
2040 	 * necessary or useful here.
2041 	 */
2042 	if (end < 0x100000)
2043 		return AE_OK;
2044 
2045 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2046 	if (!new_res)
2047 		return AE_NO_MEMORY;
2048 
2049 	/* If this range overlaps the virtual TPM, truncate it. */
2050 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2051 		end = VTPM_BASE_ADDRESS;
2052 
2053 	new_res->name = "hyperv mmio";
2054 	new_res->flags = IORESOURCE_MEM;
2055 	new_res->start = start;
2056 	new_res->end = end;
2057 
2058 	/*
2059 	 * If two ranges are adjacent, merge them.
2060 	 */
2061 	do {
2062 		if (!*old_res) {
2063 			*old_res = new_res;
2064 			break;
2065 		}
2066 
2067 		if (((*old_res)->end + 1) == new_res->start) {
2068 			(*old_res)->end = new_res->end;
2069 			kfree(new_res);
2070 			break;
2071 		}
2072 
2073 		if ((*old_res)->start == new_res->end + 1) {
2074 			(*old_res)->start = new_res->start;
2075 			kfree(new_res);
2076 			break;
2077 		}
2078 
2079 		if ((*old_res)->start > new_res->end) {
2080 			new_res->sibling = *old_res;
2081 			if (prev_res)
2082 				(*prev_res)->sibling = new_res;
2083 			*old_res = new_res;
2084 			break;
2085 		}
2086 
2087 		prev_res = old_res;
2088 		old_res = &(*old_res)->sibling;
2089 
2090 	} while (1);
2091 
2092 	return AE_OK;
2093 }
2094 #endif
2095 
2096 static void vmbus_mmio_remove(void)
2097 {
2098 	struct resource *cur_res;
2099 	struct resource *next_res;
2100 
2101 	if (hyperv_mmio) {
2102 		if (fb_mmio) {
2103 			__release_region(hyperv_mmio, fb_mmio->start,
2104 					 resource_size(fb_mmio));
2105 			fb_mmio = NULL;
2106 		}
2107 
2108 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2109 			next_res = cur_res->sibling;
2110 			kfree(cur_res);
2111 		}
2112 	}
2113 }
2114 
2115 static void __maybe_unused vmbus_reserve_fb(void)
2116 {
2117 	resource_size_t start = 0, size;
2118 	struct pci_dev *pdev;
2119 
2120 	if (efi_enabled(EFI_BOOT)) {
2121 		/* Gen2 VM: get FB base from EFI framebuffer */
2122 		if (IS_ENABLED(CONFIG_SYSFB)) {
2123 			start = screen_info.lfb_base;
2124 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2125 		}
2126 	} else {
2127 		/* Gen1 VM: get FB base from PCI */
2128 		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2129 				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2130 		if (!pdev)
2131 			return;
2132 
2133 		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2134 			start = pci_resource_start(pdev, 0);
2135 			size = pci_resource_len(pdev, 0);
2136 		}
2137 
2138 		/*
2139 		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2140 		 * grab it later.
2141 		 */
2142 		pci_dev_put(pdev);
2143 	}
2144 
2145 	if (!start)
2146 		return;
2147 
2148 	/*
2149 	 * Make a claim for the frame buffer in the resource tree under the
2150 	 * first node, which will be the one below 4GB.  The length seems to
2151 	 * be underreported, particularly in a Generation 1 VM.  So start out
2152 	 * reserving a larger area and make it smaller until it succeeds.
2153 	 */
2154 	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2155 		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2156 }
2157 
2158 /**
2159  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2160  * @new:		If successful, supplied a pointer to the
2161  *			allocated MMIO space.
2162  * @device_obj:		Identifies the caller
2163  * @min:		Minimum guest physical address of the
2164  *			allocation
2165  * @max:		Maximum guest physical address
2166  * @size:		Size of the range to be allocated
2167  * @align:		Alignment of the range to be allocated
2168  * @fb_overlap_ok:	Whether this allocation can be allowed
2169  *			to overlap the video frame buffer.
2170  *
2171  * This function walks the resources granted to VMBus by the
2172  * _CRS object in the ACPI namespace underneath the parent
2173  * "bridge" whether that's a root PCI bus in the Generation 1
2174  * case or a Module Device in the Generation 2 case.  It then
2175  * attempts to allocate from the global MMIO pool in a way that
2176  * matches the constraints supplied in these parameters and by
2177  * that _CRS.
2178  *
2179  * Return: 0 on success, -errno on failure
2180  */
2181 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2182 			resource_size_t min, resource_size_t max,
2183 			resource_size_t size, resource_size_t align,
2184 			bool fb_overlap_ok)
2185 {
2186 	struct resource *iter, *shadow;
2187 	resource_size_t range_min, range_max, start, end;
2188 	const char *dev_n = dev_name(&device_obj->device);
2189 	int retval;
2190 
2191 	retval = -ENXIO;
2192 	mutex_lock(&hyperv_mmio_lock);
2193 
2194 	/*
2195 	 * If overlaps with frame buffers are allowed, then first attempt to
2196 	 * make the allocation from within the reserved region.  Because it
2197 	 * is already reserved, no shadow allocation is necessary.
2198 	 */
2199 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2200 	    !(max < fb_mmio->start)) {
2201 
2202 		range_min = fb_mmio->start;
2203 		range_max = fb_mmio->end;
2204 		start = (range_min + align - 1) & ~(align - 1);
2205 		for (; start + size - 1 <= range_max; start += align) {
2206 			*new = request_mem_region_exclusive(start, size, dev_n);
2207 			if (*new) {
2208 				retval = 0;
2209 				goto exit;
2210 			}
2211 		}
2212 	}
2213 
2214 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2215 		if ((iter->start >= max) || (iter->end <= min))
2216 			continue;
2217 
2218 		range_min = iter->start;
2219 		range_max = iter->end;
2220 		start = (range_min + align - 1) & ~(align - 1);
2221 		for (; start + size - 1 <= range_max; start += align) {
2222 			end = start + size - 1;
2223 
2224 			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2225 			if (!fb_overlap_ok && fb_mmio &&
2226 			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2227 			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2228 				continue;
2229 
2230 			shadow = __request_region(iter, start, size, NULL,
2231 						  IORESOURCE_BUSY);
2232 			if (!shadow)
2233 				continue;
2234 
2235 			*new = request_mem_region_exclusive(start, size, dev_n);
2236 			if (*new) {
2237 				shadow->name = (char *)*new;
2238 				retval = 0;
2239 				goto exit;
2240 			}
2241 
2242 			__release_region(iter, start, size);
2243 		}
2244 	}
2245 
2246 exit:
2247 	mutex_unlock(&hyperv_mmio_lock);
2248 	return retval;
2249 }
2250 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2251 
2252 /**
2253  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2254  * @start:		Base address of region to release.
2255  * @size:		Size of the range to be allocated
2256  *
2257  * This function releases anything requested by
2258  * vmbus_mmio_allocate().
2259  */
2260 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2261 {
2262 	struct resource *iter;
2263 
2264 	mutex_lock(&hyperv_mmio_lock);
2265 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2266 		if ((iter->start >= start + size) || (iter->end <= start))
2267 			continue;
2268 
2269 		__release_region(iter, start, size);
2270 	}
2271 	release_mem_region(start, size);
2272 	mutex_unlock(&hyperv_mmio_lock);
2273 
2274 }
2275 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2276 
2277 #ifdef CONFIG_ACPI
2278 static int vmbus_acpi_add(struct platform_device *pdev)
2279 {
2280 	acpi_status result;
2281 	int ret_val = -ENODEV;
2282 	struct acpi_device *ancestor;
2283 	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2284 
2285 	hv_dev = &device->dev;
2286 
2287 	/*
2288 	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2289 	 * method on the top level VMbus device in the DSDT. But devices
2290 	 * are hardware coherent in all current Hyper-V use cases, so fix
2291 	 * up the ACPI device to behave as if _CCA is present and indicates
2292 	 * hardware coherence.
2293 	 */
2294 	ACPI_COMPANION_SET(&device->dev, device);
2295 	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2296 	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2297 		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2298 		device->flags.cca_seen = true;
2299 		device->flags.coherent_dma = true;
2300 	}
2301 
2302 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2303 					vmbus_walk_resources, NULL);
2304 
2305 	if (ACPI_FAILURE(result))
2306 		goto acpi_walk_err;
2307 	/*
2308 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2309 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2310 	 */
2311 	for (ancestor = acpi_dev_parent(device);
2312 	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2313 	     ancestor = acpi_dev_parent(ancestor)) {
2314 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2315 					     vmbus_walk_resources, NULL);
2316 
2317 		if (ACPI_FAILURE(result))
2318 			continue;
2319 		if (hyperv_mmio) {
2320 			vmbus_reserve_fb();
2321 			break;
2322 		}
2323 	}
2324 	ret_val = 0;
2325 
2326 acpi_walk_err:
2327 	if (ret_val)
2328 		vmbus_mmio_remove();
2329 	return ret_val;
2330 }
2331 #else
2332 static int vmbus_acpi_add(struct platform_device *pdev)
2333 {
2334 	return 0;
2335 }
2336 #endif
2337 
2338 static int vmbus_device_add(struct platform_device *pdev)
2339 {
2340 	struct resource **cur_res = &hyperv_mmio;
2341 	struct of_range range;
2342 	struct of_range_parser parser;
2343 	struct device_node *np = pdev->dev.of_node;
2344 	int ret;
2345 
2346 	hv_dev = &pdev->dev;
2347 
2348 	ret = of_range_parser_init(&parser, np);
2349 	if (ret)
2350 		return ret;
2351 
2352 	for_each_of_range(&parser, &range) {
2353 		struct resource *res;
2354 
2355 		res = kzalloc(sizeof(*res), GFP_KERNEL);
2356 		if (!res) {
2357 			vmbus_mmio_remove();
2358 			return -ENOMEM;
2359 		}
2360 
2361 		res->name = "hyperv mmio";
2362 		res->flags = range.flags;
2363 		res->start = range.cpu_addr;
2364 		res->end = range.cpu_addr + range.size;
2365 
2366 		*cur_res = res;
2367 		cur_res = &res->sibling;
2368 	}
2369 
2370 	return ret;
2371 }
2372 
2373 static int vmbus_platform_driver_probe(struct platform_device *pdev)
2374 {
2375 	if (acpi_disabled)
2376 		return vmbus_device_add(pdev);
2377 	else
2378 		return vmbus_acpi_add(pdev);
2379 }
2380 
2381 static void vmbus_platform_driver_remove(struct platform_device *pdev)
2382 {
2383 	vmbus_mmio_remove();
2384 }
2385 
2386 #ifdef CONFIG_PM_SLEEP
2387 static int vmbus_bus_suspend(struct device *dev)
2388 {
2389 	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2390 			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2391 	struct vmbus_channel *channel, *sc;
2392 
2393 	tasklet_disable(&hv_cpu->msg_dpc);
2394 	vmbus_connection.ignore_any_offer_msg = true;
2395 	/* The tasklet_enable() takes care of providing a memory barrier */
2396 	tasklet_enable(&hv_cpu->msg_dpc);
2397 
2398 	/* Drain all the workqueues as we are in suspend */
2399 	drain_workqueue(vmbus_connection.rescind_work_queue);
2400 	drain_workqueue(vmbus_connection.work_queue);
2401 	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2402 	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2403 
2404 	mutex_lock(&vmbus_connection.channel_mutex);
2405 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2406 		if (!is_hvsock_channel(channel))
2407 			continue;
2408 
2409 		vmbus_force_channel_rescinded(channel);
2410 	}
2411 	mutex_unlock(&vmbus_connection.channel_mutex);
2412 
2413 	/*
2414 	 * Wait until all the sub-channels and hv_sock channels have been
2415 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2416 	 * they would conflict with the new sub-channels that will be created
2417 	 * in the resume path. hv_sock channels should also be destroyed, but
2418 	 * a hv_sock channel of an established hv_sock connection can not be
2419 	 * really destroyed since it may still be referenced by the userspace
2420 	 * application, so we just force the hv_sock channel to be rescinded
2421 	 * by vmbus_force_channel_rescinded(), and the userspace application
2422 	 * will thoroughly destroy the channel after hibernation.
2423 	 *
2424 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2425 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2426 	 */
2427 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2428 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2429 
2430 	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2431 		pr_err("Can not suspend due to a previous failed resuming\n");
2432 		return -EBUSY;
2433 	}
2434 
2435 	mutex_lock(&vmbus_connection.channel_mutex);
2436 
2437 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2438 		/*
2439 		 * Remove the channel from the array of channels and invalidate
2440 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2441 		 * up the relid (and other fields, if necessary) and add the
2442 		 * channel back to the array.
2443 		 */
2444 		vmbus_channel_unmap_relid(channel);
2445 		channel->offermsg.child_relid = INVALID_RELID;
2446 
2447 		if (is_hvsock_channel(channel)) {
2448 			if (!channel->rescind) {
2449 				pr_err("hv_sock channel not rescinded!\n");
2450 				WARN_ON_ONCE(1);
2451 			}
2452 			continue;
2453 		}
2454 
2455 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2456 			pr_err("Sub-channel not deleted!\n");
2457 			WARN_ON_ONCE(1);
2458 		}
2459 
2460 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2461 	}
2462 
2463 	mutex_unlock(&vmbus_connection.channel_mutex);
2464 
2465 	vmbus_initiate_unload(false);
2466 
2467 	/* Reset the event for the next resume. */
2468 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2469 
2470 	return 0;
2471 }
2472 
2473 static int vmbus_bus_resume(struct device *dev)
2474 {
2475 	struct vmbus_channel_msginfo *msginfo;
2476 	size_t msgsize;
2477 	int ret;
2478 
2479 	vmbus_connection.ignore_any_offer_msg = false;
2480 
2481 	/*
2482 	 * We only use the 'vmbus_proto_version', which was in use before
2483 	 * hibernation, to re-negotiate with the host.
2484 	 */
2485 	if (!vmbus_proto_version) {
2486 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2487 		return -EINVAL;
2488 	}
2489 
2490 	msgsize = sizeof(*msginfo) +
2491 		  sizeof(struct vmbus_channel_initiate_contact);
2492 
2493 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2494 
2495 	if (msginfo == NULL)
2496 		return -ENOMEM;
2497 
2498 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2499 
2500 	kfree(msginfo);
2501 
2502 	if (ret != 0)
2503 		return ret;
2504 
2505 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2506 
2507 	vmbus_request_offers();
2508 
2509 	if (wait_for_completion_timeout(
2510 		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2511 		pr_err("Some vmbus device is missing after suspending?\n");
2512 
2513 	/* Reset the event for the next suspend. */
2514 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2515 
2516 	return 0;
2517 }
2518 #else
2519 #define vmbus_bus_suspend NULL
2520 #define vmbus_bus_resume NULL
2521 #endif /* CONFIG_PM_SLEEP */
2522 
2523 static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2524 	{
2525 		.compatible = "microsoft,vmbus",
2526 	},
2527 	{
2528 		/* sentinel */
2529 	},
2530 };
2531 MODULE_DEVICE_TABLE(of, vmbus_of_match);
2532 
2533 static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2534 	{"VMBUS", 0},
2535 	{"VMBus", 0},
2536 	{"", 0},
2537 };
2538 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2539 
2540 /*
2541  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2542  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2543  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2544  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2545  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2546  * resume callback must also run via the "noirq" ops.
2547  *
2548  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2549  * earlier in this file before vmbus_pm.
2550  */
2551 
2552 static const struct dev_pm_ops vmbus_bus_pm = {
2553 	.suspend_noirq	= NULL,
2554 	.resume_noirq	= NULL,
2555 	.freeze_noirq	= vmbus_bus_suspend,
2556 	.thaw_noirq	= vmbus_bus_resume,
2557 	.poweroff_noirq	= vmbus_bus_suspend,
2558 	.restore_noirq	= vmbus_bus_resume
2559 };
2560 
2561 static struct platform_driver vmbus_platform_driver = {
2562 	.probe = vmbus_platform_driver_probe,
2563 	.remove_new = vmbus_platform_driver_remove,
2564 	.driver = {
2565 		.name = "vmbus",
2566 		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2567 		.of_match_table = of_match_ptr(vmbus_of_match),
2568 		.pm = &vmbus_bus_pm,
2569 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2570 	}
2571 };
2572 
2573 static void hv_kexec_handler(void)
2574 {
2575 	hv_stimer_global_cleanup();
2576 	vmbus_initiate_unload(false);
2577 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2578 	mb();
2579 	cpuhp_remove_state(hyperv_cpuhp_online);
2580 };
2581 
2582 static void hv_crash_handler(struct pt_regs *regs)
2583 {
2584 	int cpu;
2585 
2586 	vmbus_initiate_unload(true);
2587 	/*
2588 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2589 	 * doing the cleanup for current CPU only. This should be sufficient
2590 	 * for kdump.
2591 	 */
2592 	cpu = smp_processor_id();
2593 	hv_stimer_cleanup(cpu);
2594 	hv_synic_disable_regs(cpu);
2595 };
2596 
2597 static int hv_synic_suspend(void)
2598 {
2599 	/*
2600 	 * When we reach here, all the non-boot CPUs have been offlined.
2601 	 * If we're in a legacy configuration where stimer Direct Mode is
2602 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2603 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2604 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2605 	 *
2606 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2607 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2608 	 * 1) it's unnecessary as interrupts remain disabled between
2609 	 * syscore_suspend() and syscore_resume(): see create_image() and
2610 	 * resume_target_kernel()
2611 	 * 2) the stimer on CPU0 is automatically disabled later by
2612 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2613 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2614 	 * 3) a warning would be triggered if we call
2615 	 * clockevents_unbind_device(), which may sleep, in an
2616 	 * interrupts-disabled context.
2617 	 */
2618 
2619 	hv_synic_disable_regs(0);
2620 
2621 	return 0;
2622 }
2623 
2624 static void hv_synic_resume(void)
2625 {
2626 	hv_synic_enable_regs(0);
2627 
2628 	/*
2629 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2630 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2631 	 * automatically re-enabled in timekeeping_resume().
2632 	 */
2633 }
2634 
2635 /* The callbacks run only on CPU0, with irqs_disabled. */
2636 static struct syscore_ops hv_synic_syscore_ops = {
2637 	.suspend = hv_synic_suspend,
2638 	.resume = hv_synic_resume,
2639 };
2640 
2641 static int __init hv_acpi_init(void)
2642 {
2643 	int ret;
2644 
2645 	if (!hv_is_hyperv_initialized())
2646 		return -ENODEV;
2647 
2648 	if (hv_root_partition && !hv_nested)
2649 		return 0;
2650 
2651 	/*
2652 	 * Get ACPI resources first.
2653 	 */
2654 	ret = platform_driver_register(&vmbus_platform_driver);
2655 	if (ret)
2656 		return ret;
2657 
2658 	if (!hv_dev) {
2659 		ret = -ENODEV;
2660 		goto cleanup;
2661 	}
2662 
2663 	/*
2664 	 * If we're on an architecture with a hardcoded hypervisor
2665 	 * vector (i.e. x86/x64), override the VMbus interrupt found
2666 	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2667 	 * normal Linux IRQ mechanism is not used in this case.
2668 	 */
2669 #ifdef HYPERVISOR_CALLBACK_VECTOR
2670 	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2671 	vmbus_irq = -1;
2672 #endif
2673 
2674 	hv_debug_init();
2675 
2676 	ret = vmbus_bus_init();
2677 	if (ret)
2678 		goto cleanup;
2679 
2680 	hv_setup_kexec_handler(hv_kexec_handler);
2681 	hv_setup_crash_handler(hv_crash_handler);
2682 
2683 	register_syscore_ops(&hv_synic_syscore_ops);
2684 
2685 	return 0;
2686 
2687 cleanup:
2688 	platform_driver_unregister(&vmbus_platform_driver);
2689 	hv_dev = NULL;
2690 	return ret;
2691 }
2692 
2693 static void __exit vmbus_exit(void)
2694 {
2695 	int cpu;
2696 
2697 	unregister_syscore_ops(&hv_synic_syscore_ops);
2698 
2699 	hv_remove_kexec_handler();
2700 	hv_remove_crash_handler();
2701 	vmbus_connection.conn_state = DISCONNECTED;
2702 	hv_stimer_global_cleanup();
2703 	vmbus_disconnect();
2704 	if (vmbus_irq == -1) {
2705 		hv_remove_vmbus_handler();
2706 	} else {
2707 		free_percpu_irq(vmbus_irq, vmbus_evt);
2708 		free_percpu(vmbus_evt);
2709 	}
2710 	for_each_online_cpu(cpu) {
2711 		struct hv_per_cpu_context *hv_cpu
2712 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2713 
2714 		tasklet_kill(&hv_cpu->msg_dpc);
2715 	}
2716 	hv_debug_rm_all_dir();
2717 
2718 	vmbus_free_channels();
2719 	kfree(vmbus_connection.channels);
2720 
2721 	/*
2722 	 * The vmbus panic notifier is always registered, hence we should
2723 	 * also unconditionally unregister it here as well.
2724 	 */
2725 	atomic_notifier_chain_unregister(&panic_notifier_list,
2726 					&hyperv_panic_vmbus_unload_block);
2727 
2728 	bus_unregister(&hv_bus);
2729 
2730 	cpuhp_remove_state(hyperv_cpuhp_online);
2731 	hv_synic_free();
2732 	platform_driver_unregister(&vmbus_platform_driver);
2733 }
2734 
2735 
2736 MODULE_LICENSE("GPL");
2737 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2738 
2739 subsys_initcall(hv_acpi_init);
2740 module_exit(vmbus_exit);
2741