1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include <linux/random.h> 46 #include "hyperv_vmbus.h" 47 48 struct vmbus_dynid { 49 struct list_head node; 50 struct hv_vmbus_device_id id; 51 }; 52 53 static struct acpi_device *hv_acpi_dev; 54 55 static struct completion probe_event; 56 57 static int hyperv_cpuhp_online; 58 59 static void *hv_panic_page; 60 61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 62 void *args) 63 { 64 struct pt_regs *regs; 65 66 regs = current_pt_regs(); 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 73 void *args) 74 { 75 struct die_args *die = (struct die_args *)args; 76 struct pt_regs *regs = die->regs; 77 78 hyperv_report_panic(regs, val); 79 return NOTIFY_DONE; 80 } 81 82 static struct notifier_block hyperv_die_block = { 83 .notifier_call = hyperv_die_event, 84 }; 85 static struct notifier_block hyperv_panic_block = { 86 .notifier_call = hyperv_panic_event, 87 }; 88 89 static const char *fb_mmio_name = "fb_range"; 90 static struct resource *fb_mmio; 91 static struct resource *hyperv_mmio; 92 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 93 94 static int vmbus_exists(void) 95 { 96 if (hv_acpi_dev == NULL) 97 return -ENODEV; 98 99 return 0; 100 } 101 102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 104 { 105 int i; 106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 108 } 109 110 static u8 channel_monitor_group(const struct vmbus_channel *channel) 111 { 112 return (u8)channel->offermsg.monitorid / 32; 113 } 114 115 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 116 { 117 return (u8)channel->offermsg.monitorid % 32; 118 } 119 120 static u32 channel_pending(const struct vmbus_channel *channel, 121 const struct hv_monitor_page *monitor_page) 122 { 123 u8 monitor_group = channel_monitor_group(channel); 124 125 return monitor_page->trigger_group[monitor_group].pending; 126 } 127 128 static u32 channel_latency(const struct vmbus_channel *channel, 129 const struct hv_monitor_page *monitor_page) 130 { 131 u8 monitor_group = channel_monitor_group(channel); 132 u8 monitor_offset = channel_monitor_offset(channel); 133 134 return monitor_page->latency[monitor_group][monitor_offset]; 135 } 136 137 static u32 channel_conn_id(struct vmbus_channel *channel, 138 struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 u8 monitor_offset = channel_monitor_offset(channel); 142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 143 } 144 145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 146 char *buf) 147 { 148 struct hv_device *hv_dev = device_to_hv_device(dev); 149 150 if (!hv_dev->channel) 151 return -ENODEV; 152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 153 } 154 static DEVICE_ATTR_RO(id); 155 156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 157 char *buf) 158 { 159 struct hv_device *hv_dev = device_to_hv_device(dev); 160 161 if (!hv_dev->channel) 162 return -ENODEV; 163 return sprintf(buf, "%d\n", hv_dev->channel->state); 164 } 165 static DEVICE_ATTR_RO(state); 166 167 static ssize_t monitor_id_show(struct device *dev, 168 struct device_attribute *dev_attr, char *buf) 169 { 170 struct hv_device *hv_dev = device_to_hv_device(dev); 171 172 if (!hv_dev->channel) 173 return -ENODEV; 174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 175 } 176 static DEVICE_ATTR_RO(monitor_id); 177 178 static ssize_t class_id_show(struct device *dev, 179 struct device_attribute *dev_attr, char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "{%pUl}\n", 186 hv_dev->channel->offermsg.offer.if_type.b); 187 } 188 static DEVICE_ATTR_RO(class_id); 189 190 static ssize_t device_id_show(struct device *dev, 191 struct device_attribute *dev_attr, char *buf) 192 { 193 struct hv_device *hv_dev = device_to_hv_device(dev); 194 195 if (!hv_dev->channel) 196 return -ENODEV; 197 return sprintf(buf, "{%pUl}\n", 198 hv_dev->channel->offermsg.offer.if_instance.b); 199 } 200 static DEVICE_ATTR_RO(device_id); 201 202 static ssize_t modalias_show(struct device *dev, 203 struct device_attribute *dev_attr, char *buf) 204 { 205 struct hv_device *hv_dev = device_to_hv_device(dev); 206 char alias_name[VMBUS_ALIAS_LEN + 1]; 207 208 print_alias_name(hv_dev, alias_name); 209 return sprintf(buf, "vmbus:%s\n", alias_name); 210 } 211 static DEVICE_ATTR_RO(modalias); 212 213 #ifdef CONFIG_NUMA 214 static ssize_t numa_node_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct hv_device *hv_dev = device_to_hv_device(dev); 218 219 if (!hv_dev->channel) 220 return -ENODEV; 221 222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 223 } 224 static DEVICE_ATTR_RO(numa_node); 225 #endif 226 227 static ssize_t server_monitor_pending_show(struct device *dev, 228 struct device_attribute *dev_attr, 229 char *buf) 230 { 231 struct hv_device *hv_dev = device_to_hv_device(dev); 232 233 if (!hv_dev->channel) 234 return -ENODEV; 235 return sprintf(buf, "%d\n", 236 channel_pending(hv_dev->channel, 237 vmbus_connection.monitor_pages[1])); 238 } 239 static DEVICE_ATTR_RO(server_monitor_pending); 240 241 static ssize_t client_monitor_pending_show(struct device *dev, 242 struct device_attribute *dev_attr, 243 char *buf) 244 { 245 struct hv_device *hv_dev = device_to_hv_device(dev); 246 247 if (!hv_dev->channel) 248 return -ENODEV; 249 return sprintf(buf, "%d\n", 250 channel_pending(hv_dev->channel, 251 vmbus_connection.monitor_pages[1])); 252 } 253 static DEVICE_ATTR_RO(client_monitor_pending); 254 255 static ssize_t server_monitor_latency_show(struct device *dev, 256 struct device_attribute *dev_attr, 257 char *buf) 258 { 259 struct hv_device *hv_dev = device_to_hv_device(dev); 260 261 if (!hv_dev->channel) 262 return -ENODEV; 263 return sprintf(buf, "%d\n", 264 channel_latency(hv_dev->channel, 265 vmbus_connection.monitor_pages[0])); 266 } 267 static DEVICE_ATTR_RO(server_monitor_latency); 268 269 static ssize_t client_monitor_latency_show(struct device *dev, 270 struct device_attribute *dev_attr, 271 char *buf) 272 { 273 struct hv_device *hv_dev = device_to_hv_device(dev); 274 275 if (!hv_dev->channel) 276 return -ENODEV; 277 return sprintf(buf, "%d\n", 278 channel_latency(hv_dev->channel, 279 vmbus_connection.monitor_pages[1])); 280 } 281 static DEVICE_ATTR_RO(client_monitor_latency); 282 283 static ssize_t server_monitor_conn_id_show(struct device *dev, 284 struct device_attribute *dev_attr, 285 char *buf) 286 { 287 struct hv_device *hv_dev = device_to_hv_device(dev); 288 289 if (!hv_dev->channel) 290 return -ENODEV; 291 return sprintf(buf, "%d\n", 292 channel_conn_id(hv_dev->channel, 293 vmbus_connection.monitor_pages[0])); 294 } 295 static DEVICE_ATTR_RO(server_monitor_conn_id); 296 297 static ssize_t client_monitor_conn_id_show(struct device *dev, 298 struct device_attribute *dev_attr, 299 char *buf) 300 { 301 struct hv_device *hv_dev = device_to_hv_device(dev); 302 303 if (!hv_dev->channel) 304 return -ENODEV; 305 return sprintf(buf, "%d\n", 306 channel_conn_id(hv_dev->channel, 307 vmbus_connection.monitor_pages[1])); 308 } 309 static DEVICE_ATTR_RO(client_monitor_conn_id); 310 311 static ssize_t out_intr_mask_show(struct device *dev, 312 struct device_attribute *dev_attr, char *buf) 313 { 314 struct hv_device *hv_dev = device_to_hv_device(dev); 315 struct hv_ring_buffer_debug_info outbound; 316 317 if (!hv_dev->channel) 318 return -ENODEV; 319 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 320 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 321 } 322 static DEVICE_ATTR_RO(out_intr_mask); 323 324 static ssize_t out_read_index_show(struct device *dev, 325 struct device_attribute *dev_attr, char *buf) 326 { 327 struct hv_device *hv_dev = device_to_hv_device(dev); 328 struct hv_ring_buffer_debug_info outbound; 329 330 if (!hv_dev->channel) 331 return -ENODEV; 332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 333 return sprintf(buf, "%d\n", outbound.current_read_index); 334 } 335 static DEVICE_ATTR_RO(out_read_index); 336 337 static ssize_t out_write_index_show(struct device *dev, 338 struct device_attribute *dev_attr, 339 char *buf) 340 { 341 struct hv_device *hv_dev = device_to_hv_device(dev); 342 struct hv_ring_buffer_debug_info outbound; 343 344 if (!hv_dev->channel) 345 return -ENODEV; 346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 347 return sprintf(buf, "%d\n", outbound.current_write_index); 348 } 349 static DEVICE_ATTR_RO(out_write_index); 350 351 static ssize_t out_read_bytes_avail_show(struct device *dev, 352 struct device_attribute *dev_attr, 353 char *buf) 354 { 355 struct hv_device *hv_dev = device_to_hv_device(dev); 356 struct hv_ring_buffer_debug_info outbound; 357 358 if (!hv_dev->channel) 359 return -ENODEV; 360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 361 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 362 } 363 static DEVICE_ATTR_RO(out_read_bytes_avail); 364 365 static ssize_t out_write_bytes_avail_show(struct device *dev, 366 struct device_attribute *dev_attr, 367 char *buf) 368 { 369 struct hv_device *hv_dev = device_to_hv_device(dev); 370 struct hv_ring_buffer_debug_info outbound; 371 372 if (!hv_dev->channel) 373 return -ENODEV; 374 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 375 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 376 } 377 static DEVICE_ATTR_RO(out_write_bytes_avail); 378 379 static ssize_t in_intr_mask_show(struct device *dev, 380 struct device_attribute *dev_attr, char *buf) 381 { 382 struct hv_device *hv_dev = device_to_hv_device(dev); 383 struct hv_ring_buffer_debug_info inbound; 384 385 if (!hv_dev->channel) 386 return -ENODEV; 387 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 388 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 389 } 390 static DEVICE_ATTR_RO(in_intr_mask); 391 392 static ssize_t in_read_index_show(struct device *dev, 393 struct device_attribute *dev_attr, char *buf) 394 { 395 struct hv_device *hv_dev = device_to_hv_device(dev); 396 struct hv_ring_buffer_debug_info inbound; 397 398 if (!hv_dev->channel) 399 return -ENODEV; 400 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 401 return sprintf(buf, "%d\n", inbound.current_read_index); 402 } 403 static DEVICE_ATTR_RO(in_read_index); 404 405 static ssize_t in_write_index_show(struct device *dev, 406 struct device_attribute *dev_attr, char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info inbound; 410 411 if (!hv_dev->channel) 412 return -ENODEV; 413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 414 return sprintf(buf, "%d\n", inbound.current_write_index); 415 } 416 static DEVICE_ATTR_RO(in_write_index); 417 418 static ssize_t in_read_bytes_avail_show(struct device *dev, 419 struct device_attribute *dev_attr, 420 char *buf) 421 { 422 struct hv_device *hv_dev = device_to_hv_device(dev); 423 struct hv_ring_buffer_debug_info inbound; 424 425 if (!hv_dev->channel) 426 return -ENODEV; 427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 428 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 429 } 430 static DEVICE_ATTR_RO(in_read_bytes_avail); 431 432 static ssize_t in_write_bytes_avail_show(struct device *dev, 433 struct device_attribute *dev_attr, 434 char *buf) 435 { 436 struct hv_device *hv_dev = device_to_hv_device(dev); 437 struct hv_ring_buffer_debug_info inbound; 438 439 if (!hv_dev->channel) 440 return -ENODEV; 441 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 442 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 443 } 444 static DEVICE_ATTR_RO(in_write_bytes_avail); 445 446 static ssize_t channel_vp_mapping_show(struct device *dev, 447 struct device_attribute *dev_attr, 448 char *buf) 449 { 450 struct hv_device *hv_dev = device_to_hv_device(dev); 451 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 452 unsigned long flags; 453 int buf_size = PAGE_SIZE, n_written, tot_written; 454 struct list_head *cur; 455 456 if (!channel) 457 return -ENODEV; 458 459 tot_written = snprintf(buf, buf_size, "%u:%u\n", 460 channel->offermsg.child_relid, channel->target_cpu); 461 462 spin_lock_irqsave(&channel->lock, flags); 463 464 list_for_each(cur, &channel->sc_list) { 465 if (tot_written >= buf_size - 1) 466 break; 467 468 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 469 n_written = scnprintf(buf + tot_written, 470 buf_size - tot_written, 471 "%u:%u\n", 472 cur_sc->offermsg.child_relid, 473 cur_sc->target_cpu); 474 tot_written += n_written; 475 } 476 477 spin_unlock_irqrestore(&channel->lock, flags); 478 479 return tot_written; 480 } 481 static DEVICE_ATTR_RO(channel_vp_mapping); 482 483 static ssize_t vendor_show(struct device *dev, 484 struct device_attribute *dev_attr, 485 char *buf) 486 { 487 struct hv_device *hv_dev = device_to_hv_device(dev); 488 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 489 } 490 static DEVICE_ATTR_RO(vendor); 491 492 static ssize_t device_show(struct device *dev, 493 struct device_attribute *dev_attr, 494 char *buf) 495 { 496 struct hv_device *hv_dev = device_to_hv_device(dev); 497 return sprintf(buf, "0x%x\n", hv_dev->device_id); 498 } 499 static DEVICE_ATTR_RO(device); 500 501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 502 static struct attribute *vmbus_dev_attrs[] = { 503 &dev_attr_id.attr, 504 &dev_attr_state.attr, 505 &dev_attr_monitor_id.attr, 506 &dev_attr_class_id.attr, 507 &dev_attr_device_id.attr, 508 &dev_attr_modalias.attr, 509 #ifdef CONFIG_NUMA 510 &dev_attr_numa_node.attr, 511 #endif 512 &dev_attr_server_monitor_pending.attr, 513 &dev_attr_client_monitor_pending.attr, 514 &dev_attr_server_monitor_latency.attr, 515 &dev_attr_client_monitor_latency.attr, 516 &dev_attr_server_monitor_conn_id.attr, 517 &dev_attr_client_monitor_conn_id.attr, 518 &dev_attr_out_intr_mask.attr, 519 &dev_attr_out_read_index.attr, 520 &dev_attr_out_write_index.attr, 521 &dev_attr_out_read_bytes_avail.attr, 522 &dev_attr_out_write_bytes_avail.attr, 523 &dev_attr_in_intr_mask.attr, 524 &dev_attr_in_read_index.attr, 525 &dev_attr_in_write_index.attr, 526 &dev_attr_in_read_bytes_avail.attr, 527 &dev_attr_in_write_bytes_avail.attr, 528 &dev_attr_channel_vp_mapping.attr, 529 &dev_attr_vendor.attr, 530 &dev_attr_device.attr, 531 NULL, 532 }; 533 ATTRIBUTE_GROUPS(vmbus_dev); 534 535 /* 536 * vmbus_uevent - add uevent for our device 537 * 538 * This routine is invoked when a device is added or removed on the vmbus to 539 * generate a uevent to udev in the userspace. The udev will then look at its 540 * rule and the uevent generated here to load the appropriate driver 541 * 542 * The alias string will be of the form vmbus:guid where guid is the string 543 * representation of the device guid (each byte of the guid will be 544 * represented with two hex characters. 545 */ 546 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 547 { 548 struct hv_device *dev = device_to_hv_device(device); 549 int ret; 550 char alias_name[VMBUS_ALIAS_LEN + 1]; 551 552 print_alias_name(dev, alias_name); 553 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 554 return ret; 555 } 556 557 static const uuid_le null_guid; 558 559 static inline bool is_null_guid(const uuid_le *guid) 560 { 561 if (uuid_le_cmp(*guid, null_guid)) 562 return false; 563 return true; 564 } 565 566 /* 567 * Return a matching hv_vmbus_device_id pointer. 568 * If there is no match, return NULL. 569 */ 570 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 571 const uuid_le *guid) 572 { 573 const struct hv_vmbus_device_id *id = NULL; 574 struct vmbus_dynid *dynid; 575 576 /* Look at the dynamic ids first, before the static ones */ 577 spin_lock(&drv->dynids.lock); 578 list_for_each_entry(dynid, &drv->dynids.list, node) { 579 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 580 id = &dynid->id; 581 break; 582 } 583 } 584 spin_unlock(&drv->dynids.lock); 585 586 if (id) 587 return id; 588 589 id = drv->id_table; 590 if (id == NULL) 591 return NULL; /* empty device table */ 592 593 for (; !is_null_guid(&id->guid); id++) 594 if (!uuid_le_cmp(id->guid, *guid)) 595 return id; 596 597 return NULL; 598 } 599 600 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 601 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 602 { 603 struct vmbus_dynid *dynid; 604 605 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 606 if (!dynid) 607 return -ENOMEM; 608 609 dynid->id.guid = *guid; 610 611 spin_lock(&drv->dynids.lock); 612 list_add_tail(&dynid->node, &drv->dynids.list); 613 spin_unlock(&drv->dynids.lock); 614 615 return driver_attach(&drv->driver); 616 } 617 618 static void vmbus_free_dynids(struct hv_driver *drv) 619 { 620 struct vmbus_dynid *dynid, *n; 621 622 spin_lock(&drv->dynids.lock); 623 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 624 list_del(&dynid->node); 625 kfree(dynid); 626 } 627 spin_unlock(&drv->dynids.lock); 628 } 629 630 /* 631 * store_new_id - sysfs frontend to vmbus_add_dynid() 632 * 633 * Allow GUIDs to be added to an existing driver via sysfs. 634 */ 635 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 636 size_t count) 637 { 638 struct hv_driver *drv = drv_to_hv_drv(driver); 639 uuid_le guid; 640 ssize_t retval; 641 642 retval = uuid_le_to_bin(buf, &guid); 643 if (retval) 644 return retval; 645 646 if (hv_vmbus_get_id(drv, &guid)) 647 return -EEXIST; 648 649 retval = vmbus_add_dynid(drv, &guid); 650 if (retval) 651 return retval; 652 return count; 653 } 654 static DRIVER_ATTR_WO(new_id); 655 656 /* 657 * store_remove_id - remove a PCI device ID from this driver 658 * 659 * Removes a dynamic pci device ID to this driver. 660 */ 661 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 662 size_t count) 663 { 664 struct hv_driver *drv = drv_to_hv_drv(driver); 665 struct vmbus_dynid *dynid, *n; 666 uuid_le guid; 667 ssize_t retval; 668 669 retval = uuid_le_to_bin(buf, &guid); 670 if (retval) 671 return retval; 672 673 retval = -ENODEV; 674 spin_lock(&drv->dynids.lock); 675 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 676 struct hv_vmbus_device_id *id = &dynid->id; 677 678 if (!uuid_le_cmp(id->guid, guid)) { 679 list_del(&dynid->node); 680 kfree(dynid); 681 retval = count; 682 break; 683 } 684 } 685 spin_unlock(&drv->dynids.lock); 686 687 return retval; 688 } 689 static DRIVER_ATTR_WO(remove_id); 690 691 static struct attribute *vmbus_drv_attrs[] = { 692 &driver_attr_new_id.attr, 693 &driver_attr_remove_id.attr, 694 NULL, 695 }; 696 ATTRIBUTE_GROUPS(vmbus_drv); 697 698 699 /* 700 * vmbus_match - Attempt to match the specified device to the specified driver 701 */ 702 static int vmbus_match(struct device *device, struct device_driver *driver) 703 { 704 struct hv_driver *drv = drv_to_hv_drv(driver); 705 struct hv_device *hv_dev = device_to_hv_device(device); 706 707 /* The hv_sock driver handles all hv_sock offers. */ 708 if (is_hvsock_channel(hv_dev->channel)) 709 return drv->hvsock; 710 711 if (hv_vmbus_get_id(drv, &hv_dev->dev_type)) 712 return 1; 713 714 return 0; 715 } 716 717 /* 718 * vmbus_probe - Add the new vmbus's child device 719 */ 720 static int vmbus_probe(struct device *child_device) 721 { 722 int ret = 0; 723 struct hv_driver *drv = 724 drv_to_hv_drv(child_device->driver); 725 struct hv_device *dev = device_to_hv_device(child_device); 726 const struct hv_vmbus_device_id *dev_id; 727 728 dev_id = hv_vmbus_get_id(drv, &dev->dev_type); 729 if (drv->probe) { 730 ret = drv->probe(dev, dev_id); 731 if (ret != 0) 732 pr_err("probe failed for device %s (%d)\n", 733 dev_name(child_device), ret); 734 735 } else { 736 pr_err("probe not set for driver %s\n", 737 dev_name(child_device)); 738 ret = -ENODEV; 739 } 740 return ret; 741 } 742 743 /* 744 * vmbus_remove - Remove a vmbus device 745 */ 746 static int vmbus_remove(struct device *child_device) 747 { 748 struct hv_driver *drv; 749 struct hv_device *dev = device_to_hv_device(child_device); 750 751 if (child_device->driver) { 752 drv = drv_to_hv_drv(child_device->driver); 753 if (drv->remove) 754 drv->remove(dev); 755 } 756 757 return 0; 758 } 759 760 761 /* 762 * vmbus_shutdown - Shutdown a vmbus device 763 */ 764 static void vmbus_shutdown(struct device *child_device) 765 { 766 struct hv_driver *drv; 767 struct hv_device *dev = device_to_hv_device(child_device); 768 769 770 /* The device may not be attached yet */ 771 if (!child_device->driver) 772 return; 773 774 drv = drv_to_hv_drv(child_device->driver); 775 776 if (drv->shutdown) 777 drv->shutdown(dev); 778 } 779 780 781 /* 782 * vmbus_device_release - Final callback release of the vmbus child device 783 */ 784 static void vmbus_device_release(struct device *device) 785 { 786 struct hv_device *hv_dev = device_to_hv_device(device); 787 struct vmbus_channel *channel = hv_dev->channel; 788 789 mutex_lock(&vmbus_connection.channel_mutex); 790 hv_process_channel_removal(channel->offermsg.child_relid); 791 mutex_unlock(&vmbus_connection.channel_mutex); 792 kfree(hv_dev); 793 794 } 795 796 /* The one and only one */ 797 static struct bus_type hv_bus = { 798 .name = "vmbus", 799 .match = vmbus_match, 800 .shutdown = vmbus_shutdown, 801 .remove = vmbus_remove, 802 .probe = vmbus_probe, 803 .uevent = vmbus_uevent, 804 .dev_groups = vmbus_dev_groups, 805 .drv_groups = vmbus_drv_groups, 806 }; 807 808 struct onmessage_work_context { 809 struct work_struct work; 810 struct hv_message msg; 811 }; 812 813 static void vmbus_onmessage_work(struct work_struct *work) 814 { 815 struct onmessage_work_context *ctx; 816 817 /* Do not process messages if we're in DISCONNECTED state */ 818 if (vmbus_connection.conn_state == DISCONNECTED) 819 return; 820 821 ctx = container_of(work, struct onmessage_work_context, 822 work); 823 vmbus_onmessage(&ctx->msg); 824 kfree(ctx); 825 } 826 827 static void hv_process_timer_expiration(struct hv_message *msg, 828 struct hv_per_cpu_context *hv_cpu) 829 { 830 struct clock_event_device *dev = hv_cpu->clk_evt; 831 832 if (dev->event_handler) 833 dev->event_handler(dev); 834 835 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 836 } 837 838 void vmbus_on_msg_dpc(unsigned long data) 839 { 840 struct hv_per_cpu_context *hv_cpu = (void *)data; 841 void *page_addr = hv_cpu->synic_message_page; 842 struct hv_message *msg = (struct hv_message *)page_addr + 843 VMBUS_MESSAGE_SINT; 844 struct vmbus_channel_message_header *hdr; 845 const struct vmbus_channel_message_table_entry *entry; 846 struct onmessage_work_context *ctx; 847 u32 message_type = msg->header.message_type; 848 849 if (message_type == HVMSG_NONE) 850 /* no msg */ 851 return; 852 853 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 854 855 trace_vmbus_on_msg_dpc(hdr); 856 857 if (hdr->msgtype >= CHANNELMSG_COUNT) { 858 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 859 goto msg_handled; 860 } 861 862 entry = &channel_message_table[hdr->msgtype]; 863 if (entry->handler_type == VMHT_BLOCKING) { 864 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 865 if (ctx == NULL) 866 return; 867 868 INIT_WORK(&ctx->work, vmbus_onmessage_work); 869 memcpy(&ctx->msg, msg, sizeof(*msg)); 870 871 /* 872 * The host can generate a rescind message while we 873 * may still be handling the original offer. We deal with 874 * this condition by ensuring the processing is done on the 875 * same CPU. 876 */ 877 switch (hdr->msgtype) { 878 case CHANNELMSG_RESCIND_CHANNELOFFER: 879 /* 880 * If we are handling the rescind message; 881 * schedule the work on the global work queue. 882 */ 883 schedule_work_on(vmbus_connection.connect_cpu, 884 &ctx->work); 885 break; 886 887 case CHANNELMSG_OFFERCHANNEL: 888 atomic_inc(&vmbus_connection.offer_in_progress); 889 queue_work_on(vmbus_connection.connect_cpu, 890 vmbus_connection.work_queue, 891 &ctx->work); 892 break; 893 894 default: 895 queue_work(vmbus_connection.work_queue, &ctx->work); 896 } 897 } else 898 entry->message_handler(hdr); 899 900 msg_handled: 901 vmbus_signal_eom(msg, message_type); 902 } 903 904 905 /* 906 * Direct callback for channels using other deferred processing 907 */ 908 static void vmbus_channel_isr(struct vmbus_channel *channel) 909 { 910 void (*callback_fn)(void *); 911 912 callback_fn = READ_ONCE(channel->onchannel_callback); 913 if (likely(callback_fn != NULL)) 914 (*callback_fn)(channel->channel_callback_context); 915 } 916 917 /* 918 * Schedule all channels with events pending 919 */ 920 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 921 { 922 unsigned long *recv_int_page; 923 u32 maxbits, relid; 924 925 if (vmbus_proto_version < VERSION_WIN8) { 926 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 927 recv_int_page = vmbus_connection.recv_int_page; 928 } else { 929 /* 930 * When the host is win8 and beyond, the event page 931 * can be directly checked to get the id of the channel 932 * that has the interrupt pending. 933 */ 934 void *page_addr = hv_cpu->synic_event_page; 935 union hv_synic_event_flags *event 936 = (union hv_synic_event_flags *)page_addr + 937 VMBUS_MESSAGE_SINT; 938 939 maxbits = HV_EVENT_FLAGS_COUNT; 940 recv_int_page = event->flags; 941 } 942 943 if (unlikely(!recv_int_page)) 944 return; 945 946 for_each_set_bit(relid, recv_int_page, maxbits) { 947 struct vmbus_channel *channel; 948 949 if (!sync_test_and_clear_bit(relid, recv_int_page)) 950 continue; 951 952 /* Special case - vmbus channel protocol msg */ 953 if (relid == 0) 954 continue; 955 956 rcu_read_lock(); 957 958 /* Find channel based on relid */ 959 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 960 if (channel->offermsg.child_relid != relid) 961 continue; 962 963 if (channel->rescind) 964 continue; 965 966 trace_vmbus_chan_sched(channel); 967 968 ++channel->interrupts; 969 970 switch (channel->callback_mode) { 971 case HV_CALL_ISR: 972 vmbus_channel_isr(channel); 973 break; 974 975 case HV_CALL_BATCHED: 976 hv_begin_read(&channel->inbound); 977 /* fallthrough */ 978 case HV_CALL_DIRECT: 979 tasklet_schedule(&channel->callback_event); 980 } 981 } 982 983 rcu_read_unlock(); 984 } 985 } 986 987 static void vmbus_isr(void) 988 { 989 struct hv_per_cpu_context *hv_cpu 990 = this_cpu_ptr(hv_context.cpu_context); 991 void *page_addr = hv_cpu->synic_event_page; 992 struct hv_message *msg; 993 union hv_synic_event_flags *event; 994 bool handled = false; 995 996 if (unlikely(page_addr == NULL)) 997 return; 998 999 event = (union hv_synic_event_flags *)page_addr + 1000 VMBUS_MESSAGE_SINT; 1001 /* 1002 * Check for events before checking for messages. This is the order 1003 * in which events and messages are checked in Windows guests on 1004 * Hyper-V, and the Windows team suggested we do the same. 1005 */ 1006 1007 if ((vmbus_proto_version == VERSION_WS2008) || 1008 (vmbus_proto_version == VERSION_WIN7)) { 1009 1010 /* Since we are a child, we only need to check bit 0 */ 1011 if (sync_test_and_clear_bit(0, event->flags)) 1012 handled = true; 1013 } else { 1014 /* 1015 * Our host is win8 or above. The signaling mechanism 1016 * has changed and we can directly look at the event page. 1017 * If bit n is set then we have an interrup on the channel 1018 * whose id is n. 1019 */ 1020 handled = true; 1021 } 1022 1023 if (handled) 1024 vmbus_chan_sched(hv_cpu); 1025 1026 page_addr = hv_cpu->synic_message_page; 1027 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1028 1029 /* Check if there are actual msgs to be processed */ 1030 if (msg->header.message_type != HVMSG_NONE) { 1031 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1032 hv_process_timer_expiration(msg, hv_cpu); 1033 else 1034 tasklet_schedule(&hv_cpu->msg_dpc); 1035 } 1036 1037 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1038 } 1039 1040 /* 1041 * Boolean to control whether to report panic messages over Hyper-V. 1042 * 1043 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1044 */ 1045 static int sysctl_record_panic_msg = 1; 1046 1047 /* 1048 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1049 * buffer and call into Hyper-V to transfer the data. 1050 */ 1051 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1052 enum kmsg_dump_reason reason) 1053 { 1054 size_t bytes_written; 1055 phys_addr_t panic_pa; 1056 1057 /* We are only interested in panics. */ 1058 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1059 return; 1060 1061 panic_pa = virt_to_phys(hv_panic_page); 1062 1063 /* 1064 * Write dump contents to the page. No need to synchronize; panic should 1065 * be single-threaded. 1066 */ 1067 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1068 &bytes_written); 1069 if (bytes_written) 1070 hyperv_report_panic_msg(panic_pa, bytes_written); 1071 } 1072 1073 static struct kmsg_dumper hv_kmsg_dumper = { 1074 .dump = hv_kmsg_dump, 1075 }; 1076 1077 static struct ctl_table_header *hv_ctl_table_hdr; 1078 static int zero; 1079 static int one = 1; 1080 1081 /* 1082 * sysctl option to allow the user to control whether kmsg data should be 1083 * reported to Hyper-V on panic. 1084 */ 1085 static struct ctl_table hv_ctl_table[] = { 1086 { 1087 .procname = "hyperv_record_panic_msg", 1088 .data = &sysctl_record_panic_msg, 1089 .maxlen = sizeof(int), 1090 .mode = 0644, 1091 .proc_handler = proc_dointvec_minmax, 1092 .extra1 = &zero, 1093 .extra2 = &one 1094 }, 1095 {} 1096 }; 1097 1098 static struct ctl_table hv_root_table[] = { 1099 { 1100 .procname = "kernel", 1101 .mode = 0555, 1102 .child = hv_ctl_table 1103 }, 1104 {} 1105 }; 1106 1107 /* 1108 * vmbus_bus_init -Main vmbus driver initialization routine. 1109 * 1110 * Here, we 1111 * - initialize the vmbus driver context 1112 * - invoke the vmbus hv main init routine 1113 * - retrieve the channel offers 1114 */ 1115 static int vmbus_bus_init(void) 1116 { 1117 int ret; 1118 1119 /* Hypervisor initialization...setup hypercall page..etc */ 1120 ret = hv_init(); 1121 if (ret != 0) { 1122 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1123 return ret; 1124 } 1125 1126 ret = bus_register(&hv_bus); 1127 if (ret) 1128 return ret; 1129 1130 hv_setup_vmbus_irq(vmbus_isr); 1131 1132 ret = hv_synic_alloc(); 1133 if (ret) 1134 goto err_alloc; 1135 /* 1136 * Initialize the per-cpu interrupt state and 1137 * connect to the host. 1138 */ 1139 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1140 hv_synic_init, hv_synic_cleanup); 1141 if (ret < 0) 1142 goto err_alloc; 1143 hyperv_cpuhp_online = ret; 1144 1145 ret = vmbus_connect(); 1146 if (ret) 1147 goto err_connect; 1148 1149 /* 1150 * Only register if the crash MSRs are available 1151 */ 1152 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1153 u64 hyperv_crash_ctl; 1154 /* 1155 * Sysctl registration is not fatal, since by default 1156 * reporting is enabled. 1157 */ 1158 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1159 if (!hv_ctl_table_hdr) 1160 pr_err("Hyper-V: sysctl table register error"); 1161 1162 /* 1163 * Register for panic kmsg callback only if the right 1164 * capability is supported by the hypervisor. 1165 */ 1166 hv_get_crash_ctl(hyperv_crash_ctl); 1167 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1168 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1169 if (hv_panic_page) { 1170 ret = kmsg_dump_register(&hv_kmsg_dumper); 1171 if (ret) 1172 pr_err("Hyper-V: kmsg dump register " 1173 "error 0x%x\n", ret); 1174 } else 1175 pr_err("Hyper-V: panic message page memory " 1176 "allocation failed"); 1177 } 1178 1179 register_die_notifier(&hyperv_die_block); 1180 atomic_notifier_chain_register(&panic_notifier_list, 1181 &hyperv_panic_block); 1182 } 1183 1184 vmbus_request_offers(); 1185 1186 return 0; 1187 1188 err_connect: 1189 cpuhp_remove_state(hyperv_cpuhp_online); 1190 err_alloc: 1191 hv_synic_free(); 1192 hv_remove_vmbus_irq(); 1193 1194 bus_unregister(&hv_bus); 1195 free_page((unsigned long)hv_panic_page); 1196 unregister_sysctl_table(hv_ctl_table_hdr); 1197 hv_ctl_table_hdr = NULL; 1198 return ret; 1199 } 1200 1201 /** 1202 * __vmbus_child_driver_register() - Register a vmbus's driver 1203 * @hv_driver: Pointer to driver structure you want to register 1204 * @owner: owner module of the drv 1205 * @mod_name: module name string 1206 * 1207 * Registers the given driver with Linux through the 'driver_register()' call 1208 * and sets up the hyper-v vmbus handling for this driver. 1209 * It will return the state of the 'driver_register()' call. 1210 * 1211 */ 1212 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1213 { 1214 int ret; 1215 1216 pr_info("registering driver %s\n", hv_driver->name); 1217 1218 ret = vmbus_exists(); 1219 if (ret < 0) 1220 return ret; 1221 1222 hv_driver->driver.name = hv_driver->name; 1223 hv_driver->driver.owner = owner; 1224 hv_driver->driver.mod_name = mod_name; 1225 hv_driver->driver.bus = &hv_bus; 1226 1227 spin_lock_init(&hv_driver->dynids.lock); 1228 INIT_LIST_HEAD(&hv_driver->dynids.list); 1229 1230 ret = driver_register(&hv_driver->driver); 1231 1232 return ret; 1233 } 1234 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1235 1236 /** 1237 * vmbus_driver_unregister() - Unregister a vmbus's driver 1238 * @hv_driver: Pointer to driver structure you want to 1239 * un-register 1240 * 1241 * Un-register the given driver that was previous registered with a call to 1242 * vmbus_driver_register() 1243 */ 1244 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1245 { 1246 pr_info("unregistering driver %s\n", hv_driver->name); 1247 1248 if (!vmbus_exists()) { 1249 driver_unregister(&hv_driver->driver); 1250 vmbus_free_dynids(hv_driver); 1251 } 1252 } 1253 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1254 1255 1256 /* 1257 * Called when last reference to channel is gone. 1258 */ 1259 static void vmbus_chan_release(struct kobject *kobj) 1260 { 1261 struct vmbus_channel *channel 1262 = container_of(kobj, struct vmbus_channel, kobj); 1263 1264 kfree_rcu(channel, rcu); 1265 } 1266 1267 struct vmbus_chan_attribute { 1268 struct attribute attr; 1269 ssize_t (*show)(const struct vmbus_channel *chan, char *buf); 1270 ssize_t (*store)(struct vmbus_channel *chan, 1271 const char *buf, size_t count); 1272 }; 1273 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1274 struct vmbus_chan_attribute chan_attr_##_name \ 1275 = __ATTR(_name, _mode, _show, _store) 1276 #define VMBUS_CHAN_ATTR_RW(_name) \ 1277 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1278 #define VMBUS_CHAN_ATTR_RO(_name) \ 1279 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1280 #define VMBUS_CHAN_ATTR_WO(_name) \ 1281 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1282 1283 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1284 struct attribute *attr, char *buf) 1285 { 1286 const struct vmbus_chan_attribute *attribute 1287 = container_of(attr, struct vmbus_chan_attribute, attr); 1288 const struct vmbus_channel *chan 1289 = container_of(kobj, struct vmbus_channel, kobj); 1290 1291 if (!attribute->show) 1292 return -EIO; 1293 1294 return attribute->show(chan, buf); 1295 } 1296 1297 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1298 .show = vmbus_chan_attr_show, 1299 }; 1300 1301 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf) 1302 { 1303 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1304 1305 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1306 } 1307 static VMBUS_CHAN_ATTR_RO(out_mask); 1308 1309 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf) 1310 { 1311 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1312 1313 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1314 } 1315 static VMBUS_CHAN_ATTR_RO(in_mask); 1316 1317 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf) 1318 { 1319 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1320 1321 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1322 } 1323 static VMBUS_CHAN_ATTR_RO(read_avail); 1324 1325 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf) 1326 { 1327 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1328 1329 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1330 } 1331 static VMBUS_CHAN_ATTR_RO(write_avail); 1332 1333 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf) 1334 { 1335 return sprintf(buf, "%u\n", channel->target_cpu); 1336 } 1337 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1338 1339 static ssize_t channel_pending_show(const struct vmbus_channel *channel, 1340 char *buf) 1341 { 1342 return sprintf(buf, "%d\n", 1343 channel_pending(channel, 1344 vmbus_connection.monitor_pages[1])); 1345 } 1346 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1347 1348 static ssize_t channel_latency_show(const struct vmbus_channel *channel, 1349 char *buf) 1350 { 1351 return sprintf(buf, "%d\n", 1352 channel_latency(channel, 1353 vmbus_connection.monitor_pages[1])); 1354 } 1355 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1356 1357 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf) 1358 { 1359 return sprintf(buf, "%llu\n", channel->interrupts); 1360 } 1361 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1362 1363 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf) 1364 { 1365 return sprintf(buf, "%llu\n", channel->sig_events); 1366 } 1367 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1368 1369 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel, 1370 char *buf) 1371 { 1372 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1373 } 1374 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1375 1376 static ssize_t subchannel_id_show(const struct vmbus_channel *channel, 1377 char *buf) 1378 { 1379 return sprintf(buf, "%u\n", 1380 channel->offermsg.offer.sub_channel_index); 1381 } 1382 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1383 1384 static struct attribute *vmbus_chan_attrs[] = { 1385 &chan_attr_out_mask.attr, 1386 &chan_attr_in_mask.attr, 1387 &chan_attr_read_avail.attr, 1388 &chan_attr_write_avail.attr, 1389 &chan_attr_cpu.attr, 1390 &chan_attr_pending.attr, 1391 &chan_attr_latency.attr, 1392 &chan_attr_interrupts.attr, 1393 &chan_attr_events.attr, 1394 &chan_attr_monitor_id.attr, 1395 &chan_attr_subchannel_id.attr, 1396 NULL 1397 }; 1398 1399 static struct kobj_type vmbus_chan_ktype = { 1400 .sysfs_ops = &vmbus_chan_sysfs_ops, 1401 .release = vmbus_chan_release, 1402 .default_attrs = vmbus_chan_attrs, 1403 }; 1404 1405 /* 1406 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1407 */ 1408 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1409 { 1410 struct kobject *kobj = &channel->kobj; 1411 u32 relid = channel->offermsg.child_relid; 1412 int ret; 1413 1414 kobj->kset = dev->channels_kset; 1415 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1416 "%u", relid); 1417 if (ret) 1418 return ret; 1419 1420 kobject_uevent(kobj, KOBJ_ADD); 1421 1422 return 0; 1423 } 1424 1425 /* 1426 * vmbus_device_create - Creates and registers a new child device 1427 * on the vmbus. 1428 */ 1429 struct hv_device *vmbus_device_create(const uuid_le *type, 1430 const uuid_le *instance, 1431 struct vmbus_channel *channel) 1432 { 1433 struct hv_device *child_device_obj; 1434 1435 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1436 if (!child_device_obj) { 1437 pr_err("Unable to allocate device object for child device\n"); 1438 return NULL; 1439 } 1440 1441 child_device_obj->channel = channel; 1442 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1443 memcpy(&child_device_obj->dev_instance, instance, 1444 sizeof(uuid_le)); 1445 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1446 1447 1448 return child_device_obj; 1449 } 1450 1451 /* 1452 * vmbus_device_register - Register the child device 1453 */ 1454 int vmbus_device_register(struct hv_device *child_device_obj) 1455 { 1456 struct kobject *kobj = &child_device_obj->device.kobj; 1457 int ret; 1458 1459 dev_set_name(&child_device_obj->device, "%pUl", 1460 child_device_obj->channel->offermsg.offer.if_instance.b); 1461 1462 child_device_obj->device.bus = &hv_bus; 1463 child_device_obj->device.parent = &hv_acpi_dev->dev; 1464 child_device_obj->device.release = vmbus_device_release; 1465 1466 /* 1467 * Register with the LDM. This will kick off the driver/device 1468 * binding...which will eventually call vmbus_match() and vmbus_probe() 1469 */ 1470 ret = device_register(&child_device_obj->device); 1471 if (ret) { 1472 pr_err("Unable to register child device\n"); 1473 return ret; 1474 } 1475 1476 child_device_obj->channels_kset = kset_create_and_add("channels", 1477 NULL, kobj); 1478 if (!child_device_obj->channels_kset) { 1479 ret = -ENOMEM; 1480 goto err_dev_unregister; 1481 } 1482 1483 ret = vmbus_add_channel_kobj(child_device_obj, 1484 child_device_obj->channel); 1485 if (ret) { 1486 pr_err("Unable to register primary channeln"); 1487 goto err_kset_unregister; 1488 } 1489 1490 return 0; 1491 1492 err_kset_unregister: 1493 kset_unregister(child_device_obj->channels_kset); 1494 1495 err_dev_unregister: 1496 device_unregister(&child_device_obj->device); 1497 return ret; 1498 } 1499 1500 /* 1501 * vmbus_device_unregister - Remove the specified child device 1502 * from the vmbus. 1503 */ 1504 void vmbus_device_unregister(struct hv_device *device_obj) 1505 { 1506 pr_debug("child device %s unregistered\n", 1507 dev_name(&device_obj->device)); 1508 1509 kset_unregister(device_obj->channels_kset); 1510 1511 /* 1512 * Kick off the process of unregistering the device. 1513 * This will call vmbus_remove() and eventually vmbus_device_release() 1514 */ 1515 device_unregister(&device_obj->device); 1516 } 1517 1518 1519 /* 1520 * VMBUS is an acpi enumerated device. Get the information we 1521 * need from DSDT. 1522 */ 1523 #define VTPM_BASE_ADDRESS 0xfed40000 1524 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1525 { 1526 resource_size_t start = 0; 1527 resource_size_t end = 0; 1528 struct resource *new_res; 1529 struct resource **old_res = &hyperv_mmio; 1530 struct resource **prev_res = NULL; 1531 1532 switch (res->type) { 1533 1534 /* 1535 * "Address" descriptors are for bus windows. Ignore 1536 * "memory" descriptors, which are for registers on 1537 * devices. 1538 */ 1539 case ACPI_RESOURCE_TYPE_ADDRESS32: 1540 start = res->data.address32.address.minimum; 1541 end = res->data.address32.address.maximum; 1542 break; 1543 1544 case ACPI_RESOURCE_TYPE_ADDRESS64: 1545 start = res->data.address64.address.minimum; 1546 end = res->data.address64.address.maximum; 1547 break; 1548 1549 default: 1550 /* Unused resource type */ 1551 return AE_OK; 1552 1553 } 1554 /* 1555 * Ignore ranges that are below 1MB, as they're not 1556 * necessary or useful here. 1557 */ 1558 if (end < 0x100000) 1559 return AE_OK; 1560 1561 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1562 if (!new_res) 1563 return AE_NO_MEMORY; 1564 1565 /* If this range overlaps the virtual TPM, truncate it. */ 1566 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1567 end = VTPM_BASE_ADDRESS; 1568 1569 new_res->name = "hyperv mmio"; 1570 new_res->flags = IORESOURCE_MEM; 1571 new_res->start = start; 1572 new_res->end = end; 1573 1574 /* 1575 * If two ranges are adjacent, merge them. 1576 */ 1577 do { 1578 if (!*old_res) { 1579 *old_res = new_res; 1580 break; 1581 } 1582 1583 if (((*old_res)->end + 1) == new_res->start) { 1584 (*old_res)->end = new_res->end; 1585 kfree(new_res); 1586 break; 1587 } 1588 1589 if ((*old_res)->start == new_res->end + 1) { 1590 (*old_res)->start = new_res->start; 1591 kfree(new_res); 1592 break; 1593 } 1594 1595 if ((*old_res)->start > new_res->end) { 1596 new_res->sibling = *old_res; 1597 if (prev_res) 1598 (*prev_res)->sibling = new_res; 1599 *old_res = new_res; 1600 break; 1601 } 1602 1603 prev_res = old_res; 1604 old_res = &(*old_res)->sibling; 1605 1606 } while (1); 1607 1608 return AE_OK; 1609 } 1610 1611 static int vmbus_acpi_remove(struct acpi_device *device) 1612 { 1613 struct resource *cur_res; 1614 struct resource *next_res; 1615 1616 if (hyperv_mmio) { 1617 if (fb_mmio) { 1618 __release_region(hyperv_mmio, fb_mmio->start, 1619 resource_size(fb_mmio)); 1620 fb_mmio = NULL; 1621 } 1622 1623 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1624 next_res = cur_res->sibling; 1625 kfree(cur_res); 1626 } 1627 } 1628 1629 return 0; 1630 } 1631 1632 static void vmbus_reserve_fb(void) 1633 { 1634 int size; 1635 /* 1636 * Make a claim for the frame buffer in the resource tree under the 1637 * first node, which will be the one below 4GB. The length seems to 1638 * be underreported, particularly in a Generation 1 VM. So start out 1639 * reserving a larger area and make it smaller until it succeeds. 1640 */ 1641 1642 if (screen_info.lfb_base) { 1643 if (efi_enabled(EFI_BOOT)) 1644 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1645 else 1646 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1647 1648 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1649 fb_mmio = __request_region(hyperv_mmio, 1650 screen_info.lfb_base, size, 1651 fb_mmio_name, 0); 1652 } 1653 } 1654 } 1655 1656 /** 1657 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1658 * @new: If successful, supplied a pointer to the 1659 * allocated MMIO space. 1660 * @device_obj: Identifies the caller 1661 * @min: Minimum guest physical address of the 1662 * allocation 1663 * @max: Maximum guest physical address 1664 * @size: Size of the range to be allocated 1665 * @align: Alignment of the range to be allocated 1666 * @fb_overlap_ok: Whether this allocation can be allowed 1667 * to overlap the video frame buffer. 1668 * 1669 * This function walks the resources granted to VMBus by the 1670 * _CRS object in the ACPI namespace underneath the parent 1671 * "bridge" whether that's a root PCI bus in the Generation 1 1672 * case or a Module Device in the Generation 2 case. It then 1673 * attempts to allocate from the global MMIO pool in a way that 1674 * matches the constraints supplied in these parameters and by 1675 * that _CRS. 1676 * 1677 * Return: 0 on success, -errno on failure 1678 */ 1679 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1680 resource_size_t min, resource_size_t max, 1681 resource_size_t size, resource_size_t align, 1682 bool fb_overlap_ok) 1683 { 1684 struct resource *iter, *shadow; 1685 resource_size_t range_min, range_max, start; 1686 const char *dev_n = dev_name(&device_obj->device); 1687 int retval; 1688 1689 retval = -ENXIO; 1690 down(&hyperv_mmio_lock); 1691 1692 /* 1693 * If overlaps with frame buffers are allowed, then first attempt to 1694 * make the allocation from within the reserved region. Because it 1695 * is already reserved, no shadow allocation is necessary. 1696 */ 1697 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1698 !(max < fb_mmio->start)) { 1699 1700 range_min = fb_mmio->start; 1701 range_max = fb_mmio->end; 1702 start = (range_min + align - 1) & ~(align - 1); 1703 for (; start + size - 1 <= range_max; start += align) { 1704 *new = request_mem_region_exclusive(start, size, dev_n); 1705 if (*new) { 1706 retval = 0; 1707 goto exit; 1708 } 1709 } 1710 } 1711 1712 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1713 if ((iter->start >= max) || (iter->end <= min)) 1714 continue; 1715 1716 range_min = iter->start; 1717 range_max = iter->end; 1718 start = (range_min + align - 1) & ~(align - 1); 1719 for (; start + size - 1 <= range_max; start += align) { 1720 shadow = __request_region(iter, start, size, NULL, 1721 IORESOURCE_BUSY); 1722 if (!shadow) 1723 continue; 1724 1725 *new = request_mem_region_exclusive(start, size, dev_n); 1726 if (*new) { 1727 shadow->name = (char *)*new; 1728 retval = 0; 1729 goto exit; 1730 } 1731 1732 __release_region(iter, start, size); 1733 } 1734 } 1735 1736 exit: 1737 up(&hyperv_mmio_lock); 1738 return retval; 1739 } 1740 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1741 1742 /** 1743 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1744 * @start: Base address of region to release. 1745 * @size: Size of the range to be allocated 1746 * 1747 * This function releases anything requested by 1748 * vmbus_mmio_allocate(). 1749 */ 1750 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1751 { 1752 struct resource *iter; 1753 1754 down(&hyperv_mmio_lock); 1755 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1756 if ((iter->start >= start + size) || (iter->end <= start)) 1757 continue; 1758 1759 __release_region(iter, start, size); 1760 } 1761 release_mem_region(start, size); 1762 up(&hyperv_mmio_lock); 1763 1764 } 1765 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1766 1767 static int vmbus_acpi_add(struct acpi_device *device) 1768 { 1769 acpi_status result; 1770 int ret_val = -ENODEV; 1771 struct acpi_device *ancestor; 1772 1773 hv_acpi_dev = device; 1774 1775 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1776 vmbus_walk_resources, NULL); 1777 1778 if (ACPI_FAILURE(result)) 1779 goto acpi_walk_err; 1780 /* 1781 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1782 * firmware) is the VMOD that has the mmio ranges. Get that. 1783 */ 1784 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1785 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1786 vmbus_walk_resources, NULL); 1787 1788 if (ACPI_FAILURE(result)) 1789 continue; 1790 if (hyperv_mmio) { 1791 vmbus_reserve_fb(); 1792 break; 1793 } 1794 } 1795 ret_val = 0; 1796 1797 acpi_walk_err: 1798 complete(&probe_event); 1799 if (ret_val) 1800 vmbus_acpi_remove(device); 1801 return ret_val; 1802 } 1803 1804 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1805 {"VMBUS", 0}, 1806 {"VMBus", 0}, 1807 {"", 0}, 1808 }; 1809 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1810 1811 static struct acpi_driver vmbus_acpi_driver = { 1812 .name = "vmbus", 1813 .ids = vmbus_acpi_device_ids, 1814 .ops = { 1815 .add = vmbus_acpi_add, 1816 .remove = vmbus_acpi_remove, 1817 }, 1818 }; 1819 1820 static void hv_kexec_handler(void) 1821 { 1822 hv_synic_clockevents_cleanup(); 1823 vmbus_initiate_unload(false); 1824 vmbus_connection.conn_state = DISCONNECTED; 1825 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1826 mb(); 1827 cpuhp_remove_state(hyperv_cpuhp_online); 1828 hyperv_cleanup(); 1829 }; 1830 1831 static void hv_crash_handler(struct pt_regs *regs) 1832 { 1833 vmbus_initiate_unload(true); 1834 /* 1835 * In crash handler we can't schedule synic cleanup for all CPUs, 1836 * doing the cleanup for current CPU only. This should be sufficient 1837 * for kdump. 1838 */ 1839 vmbus_connection.conn_state = DISCONNECTED; 1840 hv_synic_cleanup(smp_processor_id()); 1841 hyperv_cleanup(); 1842 }; 1843 1844 static int __init hv_acpi_init(void) 1845 { 1846 int ret, t; 1847 1848 if (!hv_is_hyperv_initialized()) 1849 return -ENODEV; 1850 1851 init_completion(&probe_event); 1852 1853 /* 1854 * Get ACPI resources first. 1855 */ 1856 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1857 1858 if (ret) 1859 return ret; 1860 1861 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1862 if (t == 0) { 1863 ret = -ETIMEDOUT; 1864 goto cleanup; 1865 } 1866 1867 ret = vmbus_bus_init(); 1868 if (ret) 1869 goto cleanup; 1870 1871 hv_setup_kexec_handler(hv_kexec_handler); 1872 hv_setup_crash_handler(hv_crash_handler); 1873 1874 return 0; 1875 1876 cleanup: 1877 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1878 hv_acpi_dev = NULL; 1879 return ret; 1880 } 1881 1882 static void __exit vmbus_exit(void) 1883 { 1884 int cpu; 1885 1886 hv_remove_kexec_handler(); 1887 hv_remove_crash_handler(); 1888 vmbus_connection.conn_state = DISCONNECTED; 1889 hv_synic_clockevents_cleanup(); 1890 vmbus_disconnect(); 1891 hv_remove_vmbus_irq(); 1892 for_each_online_cpu(cpu) { 1893 struct hv_per_cpu_context *hv_cpu 1894 = per_cpu_ptr(hv_context.cpu_context, cpu); 1895 1896 tasklet_kill(&hv_cpu->msg_dpc); 1897 } 1898 vmbus_free_channels(); 1899 1900 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1901 kmsg_dump_unregister(&hv_kmsg_dumper); 1902 unregister_die_notifier(&hyperv_die_block); 1903 atomic_notifier_chain_unregister(&panic_notifier_list, 1904 &hyperv_panic_block); 1905 } 1906 1907 free_page((unsigned long)hv_panic_page); 1908 unregister_sysctl_table(hv_ctl_table_hdr); 1909 hv_ctl_table_hdr = NULL; 1910 bus_unregister(&hv_bus); 1911 1912 cpuhp_remove_state(hyperv_cpuhp_online); 1913 hv_synic_free(); 1914 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1915 } 1916 1917 1918 MODULE_LICENSE("GPL"); 1919 1920 subsys_initcall(hv_acpi_init); 1921 module_exit(vmbus_exit); 1922