1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/hyperv.h> 40 #include <asm/mshyperv.h> 41 #include <linux/notifier.h> 42 #include <linux/ptrace.h> 43 #include <linux/screen_info.h> 44 #include <linux/kdebug.h> 45 #include <linux/efi.h> 46 #include <linux/random.h> 47 #include "hyperv_vmbus.h" 48 49 struct vmbus_dynid { 50 struct list_head node; 51 struct hv_vmbus_device_id id; 52 }; 53 54 static struct acpi_device *hv_acpi_dev; 55 56 static struct completion probe_event; 57 58 static int hyperv_cpuhp_online; 59 60 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 61 void *args) 62 { 63 struct pt_regs *regs; 64 65 regs = current_pt_regs(); 66 67 hyperv_report_panic(regs, val); 68 return NOTIFY_DONE; 69 } 70 71 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 72 void *args) 73 { 74 struct die_args *die = (struct die_args *)args; 75 struct pt_regs *regs = die->regs; 76 77 hyperv_report_panic(regs, val); 78 return NOTIFY_DONE; 79 } 80 81 static struct notifier_block hyperv_die_block = { 82 .notifier_call = hyperv_die_event, 83 }; 84 static struct notifier_block hyperv_panic_block = { 85 .notifier_call = hyperv_panic_event, 86 }; 87 88 static const char *fb_mmio_name = "fb_range"; 89 static struct resource *fb_mmio; 90 static struct resource *hyperv_mmio; 91 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 92 93 static int vmbus_exists(void) 94 { 95 if (hv_acpi_dev == NULL) 96 return -ENODEV; 97 98 return 0; 99 } 100 101 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 102 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 103 { 104 int i; 105 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 106 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 107 } 108 109 static u8 channel_monitor_group(const struct vmbus_channel *channel) 110 { 111 return (u8)channel->offermsg.monitorid / 32; 112 } 113 114 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 115 { 116 return (u8)channel->offermsg.monitorid % 32; 117 } 118 119 static u32 channel_pending(const struct vmbus_channel *channel, 120 const struct hv_monitor_page *monitor_page) 121 { 122 u8 monitor_group = channel_monitor_group(channel); 123 124 return monitor_page->trigger_group[monitor_group].pending; 125 } 126 127 static u32 channel_latency(const struct vmbus_channel *channel, 128 const struct hv_monitor_page *monitor_page) 129 { 130 u8 monitor_group = channel_monitor_group(channel); 131 u8 monitor_offset = channel_monitor_offset(channel); 132 133 return monitor_page->latency[monitor_group][monitor_offset]; 134 } 135 136 static u32 channel_conn_id(struct vmbus_channel *channel, 137 struct hv_monitor_page *monitor_page) 138 { 139 u8 monitor_group = channel_monitor_group(channel); 140 u8 monitor_offset = channel_monitor_offset(channel); 141 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 142 } 143 144 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 145 char *buf) 146 { 147 struct hv_device *hv_dev = device_to_hv_device(dev); 148 149 if (!hv_dev->channel) 150 return -ENODEV; 151 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 152 } 153 static DEVICE_ATTR_RO(id); 154 155 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 156 char *buf) 157 { 158 struct hv_device *hv_dev = device_to_hv_device(dev); 159 160 if (!hv_dev->channel) 161 return -ENODEV; 162 return sprintf(buf, "%d\n", hv_dev->channel->state); 163 } 164 static DEVICE_ATTR_RO(state); 165 166 static ssize_t monitor_id_show(struct device *dev, 167 struct device_attribute *dev_attr, char *buf) 168 { 169 struct hv_device *hv_dev = device_to_hv_device(dev); 170 171 if (!hv_dev->channel) 172 return -ENODEV; 173 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 174 } 175 static DEVICE_ATTR_RO(monitor_id); 176 177 static ssize_t class_id_show(struct device *dev, 178 struct device_attribute *dev_attr, char *buf) 179 { 180 struct hv_device *hv_dev = device_to_hv_device(dev); 181 182 if (!hv_dev->channel) 183 return -ENODEV; 184 return sprintf(buf, "{%pUl}\n", 185 hv_dev->channel->offermsg.offer.if_type.b); 186 } 187 static DEVICE_ATTR_RO(class_id); 188 189 static ssize_t device_id_show(struct device *dev, 190 struct device_attribute *dev_attr, char *buf) 191 { 192 struct hv_device *hv_dev = device_to_hv_device(dev); 193 194 if (!hv_dev->channel) 195 return -ENODEV; 196 return sprintf(buf, "{%pUl}\n", 197 hv_dev->channel->offermsg.offer.if_instance.b); 198 } 199 static DEVICE_ATTR_RO(device_id); 200 201 static ssize_t modalias_show(struct device *dev, 202 struct device_attribute *dev_attr, char *buf) 203 { 204 struct hv_device *hv_dev = device_to_hv_device(dev); 205 char alias_name[VMBUS_ALIAS_LEN + 1]; 206 207 print_alias_name(hv_dev, alias_name); 208 return sprintf(buf, "vmbus:%s\n", alias_name); 209 } 210 static DEVICE_ATTR_RO(modalias); 211 212 static ssize_t server_monitor_pending_show(struct device *dev, 213 struct device_attribute *dev_attr, 214 char *buf) 215 { 216 struct hv_device *hv_dev = device_to_hv_device(dev); 217 218 if (!hv_dev->channel) 219 return -ENODEV; 220 return sprintf(buf, "%d\n", 221 channel_pending(hv_dev->channel, 222 vmbus_connection.monitor_pages[1])); 223 } 224 static DEVICE_ATTR_RO(server_monitor_pending); 225 226 static ssize_t client_monitor_pending_show(struct device *dev, 227 struct device_attribute *dev_attr, 228 char *buf) 229 { 230 struct hv_device *hv_dev = device_to_hv_device(dev); 231 232 if (!hv_dev->channel) 233 return -ENODEV; 234 return sprintf(buf, "%d\n", 235 channel_pending(hv_dev->channel, 236 vmbus_connection.monitor_pages[1])); 237 } 238 static DEVICE_ATTR_RO(client_monitor_pending); 239 240 static ssize_t server_monitor_latency_show(struct device *dev, 241 struct device_attribute *dev_attr, 242 char *buf) 243 { 244 struct hv_device *hv_dev = device_to_hv_device(dev); 245 246 if (!hv_dev->channel) 247 return -ENODEV; 248 return sprintf(buf, "%d\n", 249 channel_latency(hv_dev->channel, 250 vmbus_connection.monitor_pages[0])); 251 } 252 static DEVICE_ATTR_RO(server_monitor_latency); 253 254 static ssize_t client_monitor_latency_show(struct device *dev, 255 struct device_attribute *dev_attr, 256 char *buf) 257 { 258 struct hv_device *hv_dev = device_to_hv_device(dev); 259 260 if (!hv_dev->channel) 261 return -ENODEV; 262 return sprintf(buf, "%d\n", 263 channel_latency(hv_dev->channel, 264 vmbus_connection.monitor_pages[1])); 265 } 266 static DEVICE_ATTR_RO(client_monitor_latency); 267 268 static ssize_t server_monitor_conn_id_show(struct device *dev, 269 struct device_attribute *dev_attr, 270 char *buf) 271 { 272 struct hv_device *hv_dev = device_to_hv_device(dev); 273 274 if (!hv_dev->channel) 275 return -ENODEV; 276 return sprintf(buf, "%d\n", 277 channel_conn_id(hv_dev->channel, 278 vmbus_connection.monitor_pages[0])); 279 } 280 static DEVICE_ATTR_RO(server_monitor_conn_id); 281 282 static ssize_t client_monitor_conn_id_show(struct device *dev, 283 struct device_attribute *dev_attr, 284 char *buf) 285 { 286 struct hv_device *hv_dev = device_to_hv_device(dev); 287 288 if (!hv_dev->channel) 289 return -ENODEV; 290 return sprintf(buf, "%d\n", 291 channel_conn_id(hv_dev->channel, 292 vmbus_connection.monitor_pages[1])); 293 } 294 static DEVICE_ATTR_RO(client_monitor_conn_id); 295 296 static ssize_t out_intr_mask_show(struct device *dev, 297 struct device_attribute *dev_attr, char *buf) 298 { 299 struct hv_device *hv_dev = device_to_hv_device(dev); 300 struct hv_ring_buffer_debug_info outbound; 301 302 if (!hv_dev->channel) 303 return -ENODEV; 304 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 305 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 306 } 307 static DEVICE_ATTR_RO(out_intr_mask); 308 309 static ssize_t out_read_index_show(struct device *dev, 310 struct device_attribute *dev_attr, char *buf) 311 { 312 struct hv_device *hv_dev = device_to_hv_device(dev); 313 struct hv_ring_buffer_debug_info outbound; 314 315 if (!hv_dev->channel) 316 return -ENODEV; 317 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 318 return sprintf(buf, "%d\n", outbound.current_read_index); 319 } 320 static DEVICE_ATTR_RO(out_read_index); 321 322 static ssize_t out_write_index_show(struct device *dev, 323 struct device_attribute *dev_attr, 324 char *buf) 325 { 326 struct hv_device *hv_dev = device_to_hv_device(dev); 327 struct hv_ring_buffer_debug_info outbound; 328 329 if (!hv_dev->channel) 330 return -ENODEV; 331 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 332 return sprintf(buf, "%d\n", outbound.current_write_index); 333 } 334 static DEVICE_ATTR_RO(out_write_index); 335 336 static ssize_t out_read_bytes_avail_show(struct device *dev, 337 struct device_attribute *dev_attr, 338 char *buf) 339 { 340 struct hv_device *hv_dev = device_to_hv_device(dev); 341 struct hv_ring_buffer_debug_info outbound; 342 343 if (!hv_dev->channel) 344 return -ENODEV; 345 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 346 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 347 } 348 static DEVICE_ATTR_RO(out_read_bytes_avail); 349 350 static ssize_t out_write_bytes_avail_show(struct device *dev, 351 struct device_attribute *dev_attr, 352 char *buf) 353 { 354 struct hv_device *hv_dev = device_to_hv_device(dev); 355 struct hv_ring_buffer_debug_info outbound; 356 357 if (!hv_dev->channel) 358 return -ENODEV; 359 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 360 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 361 } 362 static DEVICE_ATTR_RO(out_write_bytes_avail); 363 364 static ssize_t in_intr_mask_show(struct device *dev, 365 struct device_attribute *dev_attr, char *buf) 366 { 367 struct hv_device *hv_dev = device_to_hv_device(dev); 368 struct hv_ring_buffer_debug_info inbound; 369 370 if (!hv_dev->channel) 371 return -ENODEV; 372 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 373 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 374 } 375 static DEVICE_ATTR_RO(in_intr_mask); 376 377 static ssize_t in_read_index_show(struct device *dev, 378 struct device_attribute *dev_attr, char *buf) 379 { 380 struct hv_device *hv_dev = device_to_hv_device(dev); 381 struct hv_ring_buffer_debug_info inbound; 382 383 if (!hv_dev->channel) 384 return -ENODEV; 385 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 386 return sprintf(buf, "%d\n", inbound.current_read_index); 387 } 388 static DEVICE_ATTR_RO(in_read_index); 389 390 static ssize_t in_write_index_show(struct device *dev, 391 struct device_attribute *dev_attr, char *buf) 392 { 393 struct hv_device *hv_dev = device_to_hv_device(dev); 394 struct hv_ring_buffer_debug_info inbound; 395 396 if (!hv_dev->channel) 397 return -ENODEV; 398 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 399 return sprintf(buf, "%d\n", inbound.current_write_index); 400 } 401 static DEVICE_ATTR_RO(in_write_index); 402 403 static ssize_t in_read_bytes_avail_show(struct device *dev, 404 struct device_attribute *dev_attr, 405 char *buf) 406 { 407 struct hv_device *hv_dev = device_to_hv_device(dev); 408 struct hv_ring_buffer_debug_info inbound; 409 410 if (!hv_dev->channel) 411 return -ENODEV; 412 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 413 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 414 } 415 static DEVICE_ATTR_RO(in_read_bytes_avail); 416 417 static ssize_t in_write_bytes_avail_show(struct device *dev, 418 struct device_attribute *dev_attr, 419 char *buf) 420 { 421 struct hv_device *hv_dev = device_to_hv_device(dev); 422 struct hv_ring_buffer_debug_info inbound; 423 424 if (!hv_dev->channel) 425 return -ENODEV; 426 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 427 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 428 } 429 static DEVICE_ATTR_RO(in_write_bytes_avail); 430 431 static ssize_t channel_vp_mapping_show(struct device *dev, 432 struct device_attribute *dev_attr, 433 char *buf) 434 { 435 struct hv_device *hv_dev = device_to_hv_device(dev); 436 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 437 unsigned long flags; 438 int buf_size = PAGE_SIZE, n_written, tot_written; 439 struct list_head *cur; 440 441 if (!channel) 442 return -ENODEV; 443 444 tot_written = snprintf(buf, buf_size, "%u:%u\n", 445 channel->offermsg.child_relid, channel->target_cpu); 446 447 spin_lock_irqsave(&channel->lock, flags); 448 449 list_for_each(cur, &channel->sc_list) { 450 if (tot_written >= buf_size - 1) 451 break; 452 453 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 454 n_written = scnprintf(buf + tot_written, 455 buf_size - tot_written, 456 "%u:%u\n", 457 cur_sc->offermsg.child_relid, 458 cur_sc->target_cpu); 459 tot_written += n_written; 460 } 461 462 spin_unlock_irqrestore(&channel->lock, flags); 463 464 return tot_written; 465 } 466 static DEVICE_ATTR_RO(channel_vp_mapping); 467 468 static ssize_t vendor_show(struct device *dev, 469 struct device_attribute *dev_attr, 470 char *buf) 471 { 472 struct hv_device *hv_dev = device_to_hv_device(dev); 473 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 474 } 475 static DEVICE_ATTR_RO(vendor); 476 477 static ssize_t device_show(struct device *dev, 478 struct device_attribute *dev_attr, 479 char *buf) 480 { 481 struct hv_device *hv_dev = device_to_hv_device(dev); 482 return sprintf(buf, "0x%x\n", hv_dev->device_id); 483 } 484 static DEVICE_ATTR_RO(device); 485 486 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 487 static struct attribute *vmbus_dev_attrs[] = { 488 &dev_attr_id.attr, 489 &dev_attr_state.attr, 490 &dev_attr_monitor_id.attr, 491 &dev_attr_class_id.attr, 492 &dev_attr_device_id.attr, 493 &dev_attr_modalias.attr, 494 &dev_attr_server_monitor_pending.attr, 495 &dev_attr_client_monitor_pending.attr, 496 &dev_attr_server_monitor_latency.attr, 497 &dev_attr_client_monitor_latency.attr, 498 &dev_attr_server_monitor_conn_id.attr, 499 &dev_attr_client_monitor_conn_id.attr, 500 &dev_attr_out_intr_mask.attr, 501 &dev_attr_out_read_index.attr, 502 &dev_attr_out_write_index.attr, 503 &dev_attr_out_read_bytes_avail.attr, 504 &dev_attr_out_write_bytes_avail.attr, 505 &dev_attr_in_intr_mask.attr, 506 &dev_attr_in_read_index.attr, 507 &dev_attr_in_write_index.attr, 508 &dev_attr_in_read_bytes_avail.attr, 509 &dev_attr_in_write_bytes_avail.attr, 510 &dev_attr_channel_vp_mapping.attr, 511 &dev_attr_vendor.attr, 512 &dev_attr_device.attr, 513 NULL, 514 }; 515 ATTRIBUTE_GROUPS(vmbus_dev); 516 517 /* 518 * vmbus_uevent - add uevent for our device 519 * 520 * This routine is invoked when a device is added or removed on the vmbus to 521 * generate a uevent to udev in the userspace. The udev will then look at its 522 * rule and the uevent generated here to load the appropriate driver 523 * 524 * The alias string will be of the form vmbus:guid where guid is the string 525 * representation of the device guid (each byte of the guid will be 526 * represented with two hex characters. 527 */ 528 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 529 { 530 struct hv_device *dev = device_to_hv_device(device); 531 int ret; 532 char alias_name[VMBUS_ALIAS_LEN + 1]; 533 534 print_alias_name(dev, alias_name); 535 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 536 return ret; 537 } 538 539 static const uuid_le null_guid; 540 541 static inline bool is_null_guid(const uuid_le *guid) 542 { 543 if (uuid_le_cmp(*guid, null_guid)) 544 return false; 545 return true; 546 } 547 548 /* 549 * Return a matching hv_vmbus_device_id pointer. 550 * If there is no match, return NULL. 551 */ 552 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 553 const uuid_le *guid) 554 { 555 const struct hv_vmbus_device_id *id = NULL; 556 struct vmbus_dynid *dynid; 557 558 /* Look at the dynamic ids first, before the static ones */ 559 spin_lock(&drv->dynids.lock); 560 list_for_each_entry(dynid, &drv->dynids.list, node) { 561 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 562 id = &dynid->id; 563 break; 564 } 565 } 566 spin_unlock(&drv->dynids.lock); 567 568 if (id) 569 return id; 570 571 id = drv->id_table; 572 if (id == NULL) 573 return NULL; /* empty device table */ 574 575 for (; !is_null_guid(&id->guid); id++) 576 if (!uuid_le_cmp(id->guid, *guid)) 577 return id; 578 579 return NULL; 580 } 581 582 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 583 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 584 { 585 struct vmbus_dynid *dynid; 586 587 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 588 if (!dynid) 589 return -ENOMEM; 590 591 dynid->id.guid = *guid; 592 593 spin_lock(&drv->dynids.lock); 594 list_add_tail(&dynid->node, &drv->dynids.list); 595 spin_unlock(&drv->dynids.lock); 596 597 return driver_attach(&drv->driver); 598 } 599 600 static void vmbus_free_dynids(struct hv_driver *drv) 601 { 602 struct vmbus_dynid *dynid, *n; 603 604 spin_lock(&drv->dynids.lock); 605 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 606 list_del(&dynid->node); 607 kfree(dynid); 608 } 609 spin_unlock(&drv->dynids.lock); 610 } 611 612 /* 613 * store_new_id - sysfs frontend to vmbus_add_dynid() 614 * 615 * Allow GUIDs to be added to an existing driver via sysfs. 616 */ 617 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 618 size_t count) 619 { 620 struct hv_driver *drv = drv_to_hv_drv(driver); 621 uuid_le guid; 622 ssize_t retval; 623 624 retval = uuid_le_to_bin(buf, &guid); 625 if (retval) 626 return retval; 627 628 if (hv_vmbus_get_id(drv, &guid)) 629 return -EEXIST; 630 631 retval = vmbus_add_dynid(drv, &guid); 632 if (retval) 633 return retval; 634 return count; 635 } 636 static DRIVER_ATTR_WO(new_id); 637 638 /* 639 * store_remove_id - remove a PCI device ID from this driver 640 * 641 * Removes a dynamic pci device ID to this driver. 642 */ 643 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 644 size_t count) 645 { 646 struct hv_driver *drv = drv_to_hv_drv(driver); 647 struct vmbus_dynid *dynid, *n; 648 uuid_le guid; 649 ssize_t retval; 650 651 retval = uuid_le_to_bin(buf, &guid); 652 if (retval) 653 return retval; 654 655 retval = -ENODEV; 656 spin_lock(&drv->dynids.lock); 657 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 658 struct hv_vmbus_device_id *id = &dynid->id; 659 660 if (!uuid_le_cmp(id->guid, guid)) { 661 list_del(&dynid->node); 662 kfree(dynid); 663 retval = count; 664 break; 665 } 666 } 667 spin_unlock(&drv->dynids.lock); 668 669 return retval; 670 } 671 static DRIVER_ATTR_WO(remove_id); 672 673 static struct attribute *vmbus_drv_attrs[] = { 674 &driver_attr_new_id.attr, 675 &driver_attr_remove_id.attr, 676 NULL, 677 }; 678 ATTRIBUTE_GROUPS(vmbus_drv); 679 680 681 /* 682 * vmbus_match - Attempt to match the specified device to the specified driver 683 */ 684 static int vmbus_match(struct device *device, struct device_driver *driver) 685 { 686 struct hv_driver *drv = drv_to_hv_drv(driver); 687 struct hv_device *hv_dev = device_to_hv_device(device); 688 689 /* The hv_sock driver handles all hv_sock offers. */ 690 if (is_hvsock_channel(hv_dev->channel)) 691 return drv->hvsock; 692 693 if (hv_vmbus_get_id(drv, &hv_dev->dev_type)) 694 return 1; 695 696 return 0; 697 } 698 699 /* 700 * vmbus_probe - Add the new vmbus's child device 701 */ 702 static int vmbus_probe(struct device *child_device) 703 { 704 int ret = 0; 705 struct hv_driver *drv = 706 drv_to_hv_drv(child_device->driver); 707 struct hv_device *dev = device_to_hv_device(child_device); 708 const struct hv_vmbus_device_id *dev_id; 709 710 dev_id = hv_vmbus_get_id(drv, &dev->dev_type); 711 if (drv->probe) { 712 ret = drv->probe(dev, dev_id); 713 if (ret != 0) 714 pr_err("probe failed for device %s (%d)\n", 715 dev_name(child_device), ret); 716 717 } else { 718 pr_err("probe not set for driver %s\n", 719 dev_name(child_device)); 720 ret = -ENODEV; 721 } 722 return ret; 723 } 724 725 /* 726 * vmbus_remove - Remove a vmbus device 727 */ 728 static int vmbus_remove(struct device *child_device) 729 { 730 struct hv_driver *drv; 731 struct hv_device *dev = device_to_hv_device(child_device); 732 733 if (child_device->driver) { 734 drv = drv_to_hv_drv(child_device->driver); 735 if (drv->remove) 736 drv->remove(dev); 737 } 738 739 return 0; 740 } 741 742 743 /* 744 * vmbus_shutdown - Shutdown a vmbus device 745 */ 746 static void vmbus_shutdown(struct device *child_device) 747 { 748 struct hv_driver *drv; 749 struct hv_device *dev = device_to_hv_device(child_device); 750 751 752 /* The device may not be attached yet */ 753 if (!child_device->driver) 754 return; 755 756 drv = drv_to_hv_drv(child_device->driver); 757 758 if (drv->shutdown) 759 drv->shutdown(dev); 760 } 761 762 763 /* 764 * vmbus_device_release - Final callback release of the vmbus child device 765 */ 766 static void vmbus_device_release(struct device *device) 767 { 768 struct hv_device *hv_dev = device_to_hv_device(device); 769 struct vmbus_channel *channel = hv_dev->channel; 770 771 mutex_lock(&vmbus_connection.channel_mutex); 772 hv_process_channel_removal(channel->offermsg.child_relid); 773 mutex_unlock(&vmbus_connection.channel_mutex); 774 kfree(hv_dev); 775 776 } 777 778 /* The one and only one */ 779 static struct bus_type hv_bus = { 780 .name = "vmbus", 781 .match = vmbus_match, 782 .shutdown = vmbus_shutdown, 783 .remove = vmbus_remove, 784 .probe = vmbus_probe, 785 .uevent = vmbus_uevent, 786 .dev_groups = vmbus_dev_groups, 787 .drv_groups = vmbus_drv_groups, 788 }; 789 790 struct onmessage_work_context { 791 struct work_struct work; 792 struct hv_message msg; 793 }; 794 795 static void vmbus_onmessage_work(struct work_struct *work) 796 { 797 struct onmessage_work_context *ctx; 798 799 /* Do not process messages if we're in DISCONNECTED state */ 800 if (vmbus_connection.conn_state == DISCONNECTED) 801 return; 802 803 ctx = container_of(work, struct onmessage_work_context, 804 work); 805 vmbus_onmessage(&ctx->msg); 806 kfree(ctx); 807 } 808 809 static void hv_process_timer_expiration(struct hv_message *msg, 810 struct hv_per_cpu_context *hv_cpu) 811 { 812 struct clock_event_device *dev = hv_cpu->clk_evt; 813 814 if (dev->event_handler) 815 dev->event_handler(dev); 816 817 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 818 } 819 820 void vmbus_on_msg_dpc(unsigned long data) 821 { 822 struct hv_per_cpu_context *hv_cpu = (void *)data; 823 void *page_addr = hv_cpu->synic_message_page; 824 struct hv_message *msg = (struct hv_message *)page_addr + 825 VMBUS_MESSAGE_SINT; 826 struct vmbus_channel_message_header *hdr; 827 const struct vmbus_channel_message_table_entry *entry; 828 struct onmessage_work_context *ctx; 829 u32 message_type = msg->header.message_type; 830 831 if (message_type == HVMSG_NONE) 832 /* no msg */ 833 return; 834 835 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 836 837 trace_vmbus_on_msg_dpc(hdr); 838 839 if (hdr->msgtype >= CHANNELMSG_COUNT) { 840 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 841 goto msg_handled; 842 } 843 844 entry = &channel_message_table[hdr->msgtype]; 845 if (entry->handler_type == VMHT_BLOCKING) { 846 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 847 if (ctx == NULL) 848 return; 849 850 INIT_WORK(&ctx->work, vmbus_onmessage_work); 851 memcpy(&ctx->msg, msg, sizeof(*msg)); 852 853 /* 854 * The host can generate a rescind message while we 855 * may still be handling the original offer. We deal with 856 * this condition by ensuring the processing is done on the 857 * same CPU. 858 */ 859 switch (hdr->msgtype) { 860 case CHANNELMSG_RESCIND_CHANNELOFFER: 861 /* 862 * If we are handling the rescind message; 863 * schedule the work on the global work queue. 864 */ 865 schedule_work_on(vmbus_connection.connect_cpu, 866 &ctx->work); 867 break; 868 869 case CHANNELMSG_OFFERCHANNEL: 870 atomic_inc(&vmbus_connection.offer_in_progress); 871 queue_work_on(vmbus_connection.connect_cpu, 872 vmbus_connection.work_queue, 873 &ctx->work); 874 break; 875 876 default: 877 queue_work(vmbus_connection.work_queue, &ctx->work); 878 } 879 } else 880 entry->message_handler(hdr); 881 882 msg_handled: 883 vmbus_signal_eom(msg, message_type); 884 } 885 886 887 /* 888 * Direct callback for channels using other deferred processing 889 */ 890 static void vmbus_channel_isr(struct vmbus_channel *channel) 891 { 892 void (*callback_fn)(void *); 893 894 callback_fn = READ_ONCE(channel->onchannel_callback); 895 if (likely(callback_fn != NULL)) 896 (*callback_fn)(channel->channel_callback_context); 897 } 898 899 /* 900 * Schedule all channels with events pending 901 */ 902 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 903 { 904 unsigned long *recv_int_page; 905 u32 maxbits, relid; 906 907 if (vmbus_proto_version < VERSION_WIN8) { 908 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 909 recv_int_page = vmbus_connection.recv_int_page; 910 } else { 911 /* 912 * When the host is win8 and beyond, the event page 913 * can be directly checked to get the id of the channel 914 * that has the interrupt pending. 915 */ 916 void *page_addr = hv_cpu->synic_event_page; 917 union hv_synic_event_flags *event 918 = (union hv_synic_event_flags *)page_addr + 919 VMBUS_MESSAGE_SINT; 920 921 maxbits = HV_EVENT_FLAGS_COUNT; 922 recv_int_page = event->flags; 923 } 924 925 if (unlikely(!recv_int_page)) 926 return; 927 928 for_each_set_bit(relid, recv_int_page, maxbits) { 929 struct vmbus_channel *channel; 930 931 if (!sync_test_and_clear_bit(relid, recv_int_page)) 932 continue; 933 934 /* Special case - vmbus channel protocol msg */ 935 if (relid == 0) 936 continue; 937 938 rcu_read_lock(); 939 940 /* Find channel based on relid */ 941 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 942 if (channel->offermsg.child_relid != relid) 943 continue; 944 945 if (channel->rescind) 946 continue; 947 948 trace_vmbus_chan_sched(channel); 949 950 ++channel->interrupts; 951 952 switch (channel->callback_mode) { 953 case HV_CALL_ISR: 954 vmbus_channel_isr(channel); 955 break; 956 957 case HV_CALL_BATCHED: 958 hv_begin_read(&channel->inbound); 959 /* fallthrough */ 960 case HV_CALL_DIRECT: 961 tasklet_schedule(&channel->callback_event); 962 } 963 } 964 965 rcu_read_unlock(); 966 } 967 } 968 969 static void vmbus_isr(void) 970 { 971 struct hv_per_cpu_context *hv_cpu 972 = this_cpu_ptr(hv_context.cpu_context); 973 void *page_addr = hv_cpu->synic_event_page; 974 struct hv_message *msg; 975 union hv_synic_event_flags *event; 976 bool handled = false; 977 978 if (unlikely(page_addr == NULL)) 979 return; 980 981 event = (union hv_synic_event_flags *)page_addr + 982 VMBUS_MESSAGE_SINT; 983 /* 984 * Check for events before checking for messages. This is the order 985 * in which events and messages are checked in Windows guests on 986 * Hyper-V, and the Windows team suggested we do the same. 987 */ 988 989 if ((vmbus_proto_version == VERSION_WS2008) || 990 (vmbus_proto_version == VERSION_WIN7)) { 991 992 /* Since we are a child, we only need to check bit 0 */ 993 if (sync_test_and_clear_bit(0, event->flags)) 994 handled = true; 995 } else { 996 /* 997 * Our host is win8 or above. The signaling mechanism 998 * has changed and we can directly look at the event page. 999 * If bit n is set then we have an interrup on the channel 1000 * whose id is n. 1001 */ 1002 handled = true; 1003 } 1004 1005 if (handled) 1006 vmbus_chan_sched(hv_cpu); 1007 1008 page_addr = hv_cpu->synic_message_page; 1009 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1010 1011 /* Check if there are actual msgs to be processed */ 1012 if (msg->header.message_type != HVMSG_NONE) { 1013 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1014 hv_process_timer_expiration(msg, hv_cpu); 1015 else 1016 tasklet_schedule(&hv_cpu->msg_dpc); 1017 } 1018 1019 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1020 } 1021 1022 1023 /* 1024 * vmbus_bus_init -Main vmbus driver initialization routine. 1025 * 1026 * Here, we 1027 * - initialize the vmbus driver context 1028 * - invoke the vmbus hv main init routine 1029 * - retrieve the channel offers 1030 */ 1031 static int vmbus_bus_init(void) 1032 { 1033 int ret; 1034 1035 /* Hypervisor initialization...setup hypercall page..etc */ 1036 ret = hv_init(); 1037 if (ret != 0) { 1038 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1039 return ret; 1040 } 1041 1042 ret = bus_register(&hv_bus); 1043 if (ret) 1044 return ret; 1045 1046 hv_setup_vmbus_irq(vmbus_isr); 1047 1048 ret = hv_synic_alloc(); 1049 if (ret) 1050 goto err_alloc; 1051 /* 1052 * Initialize the per-cpu interrupt state and 1053 * connect to the host. 1054 */ 1055 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1056 hv_synic_init, hv_synic_cleanup); 1057 if (ret < 0) 1058 goto err_alloc; 1059 hyperv_cpuhp_online = ret; 1060 1061 ret = vmbus_connect(); 1062 if (ret) 1063 goto err_connect; 1064 1065 /* 1066 * Only register if the crash MSRs are available 1067 */ 1068 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1069 register_die_notifier(&hyperv_die_block); 1070 atomic_notifier_chain_register(&panic_notifier_list, 1071 &hyperv_panic_block); 1072 } 1073 1074 vmbus_request_offers(); 1075 1076 return 0; 1077 1078 err_connect: 1079 cpuhp_remove_state(hyperv_cpuhp_online); 1080 err_alloc: 1081 hv_synic_free(); 1082 hv_remove_vmbus_irq(); 1083 1084 bus_unregister(&hv_bus); 1085 1086 return ret; 1087 } 1088 1089 /** 1090 * __vmbus_child_driver_register() - Register a vmbus's driver 1091 * @hv_driver: Pointer to driver structure you want to register 1092 * @owner: owner module of the drv 1093 * @mod_name: module name string 1094 * 1095 * Registers the given driver with Linux through the 'driver_register()' call 1096 * and sets up the hyper-v vmbus handling for this driver. 1097 * It will return the state of the 'driver_register()' call. 1098 * 1099 */ 1100 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1101 { 1102 int ret; 1103 1104 pr_info("registering driver %s\n", hv_driver->name); 1105 1106 ret = vmbus_exists(); 1107 if (ret < 0) 1108 return ret; 1109 1110 hv_driver->driver.name = hv_driver->name; 1111 hv_driver->driver.owner = owner; 1112 hv_driver->driver.mod_name = mod_name; 1113 hv_driver->driver.bus = &hv_bus; 1114 1115 spin_lock_init(&hv_driver->dynids.lock); 1116 INIT_LIST_HEAD(&hv_driver->dynids.list); 1117 1118 ret = driver_register(&hv_driver->driver); 1119 1120 return ret; 1121 } 1122 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1123 1124 /** 1125 * vmbus_driver_unregister() - Unregister a vmbus's driver 1126 * @hv_driver: Pointer to driver structure you want to 1127 * un-register 1128 * 1129 * Un-register the given driver that was previous registered with a call to 1130 * vmbus_driver_register() 1131 */ 1132 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1133 { 1134 pr_info("unregistering driver %s\n", hv_driver->name); 1135 1136 if (!vmbus_exists()) { 1137 driver_unregister(&hv_driver->driver); 1138 vmbus_free_dynids(hv_driver); 1139 } 1140 } 1141 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1142 1143 1144 /* 1145 * Called when last reference to channel is gone. 1146 */ 1147 static void vmbus_chan_release(struct kobject *kobj) 1148 { 1149 struct vmbus_channel *channel 1150 = container_of(kobj, struct vmbus_channel, kobj); 1151 1152 kfree_rcu(channel, rcu); 1153 } 1154 1155 struct vmbus_chan_attribute { 1156 struct attribute attr; 1157 ssize_t (*show)(const struct vmbus_channel *chan, char *buf); 1158 ssize_t (*store)(struct vmbus_channel *chan, 1159 const char *buf, size_t count); 1160 }; 1161 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1162 struct vmbus_chan_attribute chan_attr_##_name \ 1163 = __ATTR(_name, _mode, _show, _store) 1164 #define VMBUS_CHAN_ATTR_RW(_name) \ 1165 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1166 #define VMBUS_CHAN_ATTR_RO(_name) \ 1167 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1168 #define VMBUS_CHAN_ATTR_WO(_name) \ 1169 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1170 1171 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1172 struct attribute *attr, char *buf) 1173 { 1174 const struct vmbus_chan_attribute *attribute 1175 = container_of(attr, struct vmbus_chan_attribute, attr); 1176 const struct vmbus_channel *chan 1177 = container_of(kobj, struct vmbus_channel, kobj); 1178 1179 if (!attribute->show) 1180 return -EIO; 1181 1182 return attribute->show(chan, buf); 1183 } 1184 1185 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1186 .show = vmbus_chan_attr_show, 1187 }; 1188 1189 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf) 1190 { 1191 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1192 1193 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1194 } 1195 static VMBUS_CHAN_ATTR_RO(out_mask); 1196 1197 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf) 1198 { 1199 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1200 1201 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1202 } 1203 static VMBUS_CHAN_ATTR_RO(in_mask); 1204 1205 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf) 1206 { 1207 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1208 1209 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1210 } 1211 static VMBUS_CHAN_ATTR_RO(read_avail); 1212 1213 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf) 1214 { 1215 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1216 1217 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1218 } 1219 static VMBUS_CHAN_ATTR_RO(write_avail); 1220 1221 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf) 1222 { 1223 return sprintf(buf, "%u\n", channel->target_cpu); 1224 } 1225 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1226 1227 static ssize_t channel_pending_show(const struct vmbus_channel *channel, 1228 char *buf) 1229 { 1230 return sprintf(buf, "%d\n", 1231 channel_pending(channel, 1232 vmbus_connection.monitor_pages[1])); 1233 } 1234 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1235 1236 static ssize_t channel_latency_show(const struct vmbus_channel *channel, 1237 char *buf) 1238 { 1239 return sprintf(buf, "%d\n", 1240 channel_latency(channel, 1241 vmbus_connection.monitor_pages[1])); 1242 } 1243 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1244 1245 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf) 1246 { 1247 return sprintf(buf, "%llu\n", channel->interrupts); 1248 } 1249 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1250 1251 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf) 1252 { 1253 return sprintf(buf, "%llu\n", channel->sig_events); 1254 } 1255 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1256 1257 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel, 1258 char *buf) 1259 { 1260 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1261 } 1262 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1263 1264 static ssize_t subchannel_id_show(const struct vmbus_channel *channel, 1265 char *buf) 1266 { 1267 return sprintf(buf, "%u\n", 1268 channel->offermsg.offer.sub_channel_index); 1269 } 1270 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1271 1272 static struct attribute *vmbus_chan_attrs[] = { 1273 &chan_attr_out_mask.attr, 1274 &chan_attr_in_mask.attr, 1275 &chan_attr_read_avail.attr, 1276 &chan_attr_write_avail.attr, 1277 &chan_attr_cpu.attr, 1278 &chan_attr_pending.attr, 1279 &chan_attr_latency.attr, 1280 &chan_attr_interrupts.attr, 1281 &chan_attr_events.attr, 1282 &chan_attr_monitor_id.attr, 1283 &chan_attr_subchannel_id.attr, 1284 NULL 1285 }; 1286 1287 static struct kobj_type vmbus_chan_ktype = { 1288 .sysfs_ops = &vmbus_chan_sysfs_ops, 1289 .release = vmbus_chan_release, 1290 .default_attrs = vmbus_chan_attrs, 1291 }; 1292 1293 /* 1294 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1295 */ 1296 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1297 { 1298 struct kobject *kobj = &channel->kobj; 1299 u32 relid = channel->offermsg.child_relid; 1300 int ret; 1301 1302 kobj->kset = dev->channels_kset; 1303 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1304 "%u", relid); 1305 if (ret) 1306 return ret; 1307 1308 kobject_uevent(kobj, KOBJ_ADD); 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * vmbus_device_create - Creates and registers a new child device 1315 * on the vmbus. 1316 */ 1317 struct hv_device *vmbus_device_create(const uuid_le *type, 1318 const uuid_le *instance, 1319 struct vmbus_channel *channel) 1320 { 1321 struct hv_device *child_device_obj; 1322 1323 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1324 if (!child_device_obj) { 1325 pr_err("Unable to allocate device object for child device\n"); 1326 return NULL; 1327 } 1328 1329 child_device_obj->channel = channel; 1330 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1331 memcpy(&child_device_obj->dev_instance, instance, 1332 sizeof(uuid_le)); 1333 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1334 1335 1336 return child_device_obj; 1337 } 1338 1339 /* 1340 * vmbus_device_register - Register the child device 1341 */ 1342 int vmbus_device_register(struct hv_device *child_device_obj) 1343 { 1344 struct kobject *kobj = &child_device_obj->device.kobj; 1345 int ret; 1346 1347 dev_set_name(&child_device_obj->device, "%pUl", 1348 child_device_obj->channel->offermsg.offer.if_instance.b); 1349 1350 child_device_obj->device.bus = &hv_bus; 1351 child_device_obj->device.parent = &hv_acpi_dev->dev; 1352 child_device_obj->device.release = vmbus_device_release; 1353 1354 /* 1355 * Register with the LDM. This will kick off the driver/device 1356 * binding...which will eventually call vmbus_match() and vmbus_probe() 1357 */ 1358 ret = device_register(&child_device_obj->device); 1359 if (ret) { 1360 pr_err("Unable to register child device\n"); 1361 return ret; 1362 } 1363 1364 child_device_obj->channels_kset = kset_create_and_add("channels", 1365 NULL, kobj); 1366 if (!child_device_obj->channels_kset) { 1367 ret = -ENOMEM; 1368 goto err_dev_unregister; 1369 } 1370 1371 ret = vmbus_add_channel_kobj(child_device_obj, 1372 child_device_obj->channel); 1373 if (ret) { 1374 pr_err("Unable to register primary channeln"); 1375 goto err_kset_unregister; 1376 } 1377 1378 return 0; 1379 1380 err_kset_unregister: 1381 kset_unregister(child_device_obj->channels_kset); 1382 1383 err_dev_unregister: 1384 device_unregister(&child_device_obj->device); 1385 return ret; 1386 } 1387 1388 /* 1389 * vmbus_device_unregister - Remove the specified child device 1390 * from the vmbus. 1391 */ 1392 void vmbus_device_unregister(struct hv_device *device_obj) 1393 { 1394 pr_debug("child device %s unregistered\n", 1395 dev_name(&device_obj->device)); 1396 1397 kset_unregister(device_obj->channels_kset); 1398 1399 /* 1400 * Kick off the process of unregistering the device. 1401 * This will call vmbus_remove() and eventually vmbus_device_release() 1402 */ 1403 device_unregister(&device_obj->device); 1404 } 1405 1406 1407 /* 1408 * VMBUS is an acpi enumerated device. Get the information we 1409 * need from DSDT. 1410 */ 1411 #define VTPM_BASE_ADDRESS 0xfed40000 1412 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1413 { 1414 resource_size_t start = 0; 1415 resource_size_t end = 0; 1416 struct resource *new_res; 1417 struct resource **old_res = &hyperv_mmio; 1418 struct resource **prev_res = NULL; 1419 1420 switch (res->type) { 1421 1422 /* 1423 * "Address" descriptors are for bus windows. Ignore 1424 * "memory" descriptors, which are for registers on 1425 * devices. 1426 */ 1427 case ACPI_RESOURCE_TYPE_ADDRESS32: 1428 start = res->data.address32.address.minimum; 1429 end = res->data.address32.address.maximum; 1430 break; 1431 1432 case ACPI_RESOURCE_TYPE_ADDRESS64: 1433 start = res->data.address64.address.minimum; 1434 end = res->data.address64.address.maximum; 1435 break; 1436 1437 default: 1438 /* Unused resource type */ 1439 return AE_OK; 1440 1441 } 1442 /* 1443 * Ignore ranges that are below 1MB, as they're not 1444 * necessary or useful here. 1445 */ 1446 if (end < 0x100000) 1447 return AE_OK; 1448 1449 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1450 if (!new_res) 1451 return AE_NO_MEMORY; 1452 1453 /* If this range overlaps the virtual TPM, truncate it. */ 1454 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1455 end = VTPM_BASE_ADDRESS; 1456 1457 new_res->name = "hyperv mmio"; 1458 new_res->flags = IORESOURCE_MEM; 1459 new_res->start = start; 1460 new_res->end = end; 1461 1462 /* 1463 * If two ranges are adjacent, merge them. 1464 */ 1465 do { 1466 if (!*old_res) { 1467 *old_res = new_res; 1468 break; 1469 } 1470 1471 if (((*old_res)->end + 1) == new_res->start) { 1472 (*old_res)->end = new_res->end; 1473 kfree(new_res); 1474 break; 1475 } 1476 1477 if ((*old_res)->start == new_res->end + 1) { 1478 (*old_res)->start = new_res->start; 1479 kfree(new_res); 1480 break; 1481 } 1482 1483 if ((*old_res)->start > new_res->end) { 1484 new_res->sibling = *old_res; 1485 if (prev_res) 1486 (*prev_res)->sibling = new_res; 1487 *old_res = new_res; 1488 break; 1489 } 1490 1491 prev_res = old_res; 1492 old_res = &(*old_res)->sibling; 1493 1494 } while (1); 1495 1496 return AE_OK; 1497 } 1498 1499 static int vmbus_acpi_remove(struct acpi_device *device) 1500 { 1501 struct resource *cur_res; 1502 struct resource *next_res; 1503 1504 if (hyperv_mmio) { 1505 if (fb_mmio) { 1506 __release_region(hyperv_mmio, fb_mmio->start, 1507 resource_size(fb_mmio)); 1508 fb_mmio = NULL; 1509 } 1510 1511 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1512 next_res = cur_res->sibling; 1513 kfree(cur_res); 1514 } 1515 } 1516 1517 return 0; 1518 } 1519 1520 static void vmbus_reserve_fb(void) 1521 { 1522 int size; 1523 /* 1524 * Make a claim for the frame buffer in the resource tree under the 1525 * first node, which will be the one below 4GB. The length seems to 1526 * be underreported, particularly in a Generation 1 VM. So start out 1527 * reserving a larger area and make it smaller until it succeeds. 1528 */ 1529 1530 if (screen_info.lfb_base) { 1531 if (efi_enabled(EFI_BOOT)) 1532 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1533 else 1534 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1535 1536 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1537 fb_mmio = __request_region(hyperv_mmio, 1538 screen_info.lfb_base, size, 1539 fb_mmio_name, 0); 1540 } 1541 } 1542 } 1543 1544 /** 1545 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1546 * @new: If successful, supplied a pointer to the 1547 * allocated MMIO space. 1548 * @device_obj: Identifies the caller 1549 * @min: Minimum guest physical address of the 1550 * allocation 1551 * @max: Maximum guest physical address 1552 * @size: Size of the range to be allocated 1553 * @align: Alignment of the range to be allocated 1554 * @fb_overlap_ok: Whether this allocation can be allowed 1555 * to overlap the video frame buffer. 1556 * 1557 * This function walks the resources granted to VMBus by the 1558 * _CRS object in the ACPI namespace underneath the parent 1559 * "bridge" whether that's a root PCI bus in the Generation 1 1560 * case or a Module Device in the Generation 2 case. It then 1561 * attempts to allocate from the global MMIO pool in a way that 1562 * matches the constraints supplied in these parameters and by 1563 * that _CRS. 1564 * 1565 * Return: 0 on success, -errno on failure 1566 */ 1567 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1568 resource_size_t min, resource_size_t max, 1569 resource_size_t size, resource_size_t align, 1570 bool fb_overlap_ok) 1571 { 1572 struct resource *iter, *shadow; 1573 resource_size_t range_min, range_max, start; 1574 const char *dev_n = dev_name(&device_obj->device); 1575 int retval; 1576 1577 retval = -ENXIO; 1578 down(&hyperv_mmio_lock); 1579 1580 /* 1581 * If overlaps with frame buffers are allowed, then first attempt to 1582 * make the allocation from within the reserved region. Because it 1583 * is already reserved, no shadow allocation is necessary. 1584 */ 1585 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1586 !(max < fb_mmio->start)) { 1587 1588 range_min = fb_mmio->start; 1589 range_max = fb_mmio->end; 1590 start = (range_min + align - 1) & ~(align - 1); 1591 for (; start + size - 1 <= range_max; start += align) { 1592 *new = request_mem_region_exclusive(start, size, dev_n); 1593 if (*new) { 1594 retval = 0; 1595 goto exit; 1596 } 1597 } 1598 } 1599 1600 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1601 if ((iter->start >= max) || (iter->end <= min)) 1602 continue; 1603 1604 range_min = iter->start; 1605 range_max = iter->end; 1606 start = (range_min + align - 1) & ~(align - 1); 1607 for (; start + size - 1 <= range_max; start += align) { 1608 shadow = __request_region(iter, start, size, NULL, 1609 IORESOURCE_BUSY); 1610 if (!shadow) 1611 continue; 1612 1613 *new = request_mem_region_exclusive(start, size, dev_n); 1614 if (*new) { 1615 shadow->name = (char *)*new; 1616 retval = 0; 1617 goto exit; 1618 } 1619 1620 __release_region(iter, start, size); 1621 } 1622 } 1623 1624 exit: 1625 up(&hyperv_mmio_lock); 1626 return retval; 1627 } 1628 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1629 1630 /** 1631 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1632 * @start: Base address of region to release. 1633 * @size: Size of the range to be allocated 1634 * 1635 * This function releases anything requested by 1636 * vmbus_mmio_allocate(). 1637 */ 1638 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1639 { 1640 struct resource *iter; 1641 1642 down(&hyperv_mmio_lock); 1643 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1644 if ((iter->start >= start + size) || (iter->end <= start)) 1645 continue; 1646 1647 __release_region(iter, start, size); 1648 } 1649 release_mem_region(start, size); 1650 up(&hyperv_mmio_lock); 1651 1652 } 1653 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1654 1655 static int vmbus_acpi_add(struct acpi_device *device) 1656 { 1657 acpi_status result; 1658 int ret_val = -ENODEV; 1659 struct acpi_device *ancestor; 1660 1661 hv_acpi_dev = device; 1662 1663 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1664 vmbus_walk_resources, NULL); 1665 1666 if (ACPI_FAILURE(result)) 1667 goto acpi_walk_err; 1668 /* 1669 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1670 * firmware) is the VMOD that has the mmio ranges. Get that. 1671 */ 1672 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1673 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1674 vmbus_walk_resources, NULL); 1675 1676 if (ACPI_FAILURE(result)) 1677 continue; 1678 if (hyperv_mmio) { 1679 vmbus_reserve_fb(); 1680 break; 1681 } 1682 } 1683 ret_val = 0; 1684 1685 acpi_walk_err: 1686 complete(&probe_event); 1687 if (ret_val) 1688 vmbus_acpi_remove(device); 1689 return ret_val; 1690 } 1691 1692 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1693 {"VMBUS", 0}, 1694 {"VMBus", 0}, 1695 {"", 0}, 1696 }; 1697 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1698 1699 static struct acpi_driver vmbus_acpi_driver = { 1700 .name = "vmbus", 1701 .ids = vmbus_acpi_device_ids, 1702 .ops = { 1703 .add = vmbus_acpi_add, 1704 .remove = vmbus_acpi_remove, 1705 }, 1706 }; 1707 1708 static void hv_kexec_handler(void) 1709 { 1710 hv_synic_clockevents_cleanup(); 1711 vmbus_initiate_unload(false); 1712 vmbus_connection.conn_state = DISCONNECTED; 1713 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1714 mb(); 1715 cpuhp_remove_state(hyperv_cpuhp_online); 1716 hyperv_cleanup(); 1717 }; 1718 1719 static void hv_crash_handler(struct pt_regs *regs) 1720 { 1721 vmbus_initiate_unload(true); 1722 /* 1723 * In crash handler we can't schedule synic cleanup for all CPUs, 1724 * doing the cleanup for current CPU only. This should be sufficient 1725 * for kdump. 1726 */ 1727 vmbus_connection.conn_state = DISCONNECTED; 1728 hv_synic_cleanup(smp_processor_id()); 1729 hyperv_cleanup(); 1730 }; 1731 1732 static int __init hv_acpi_init(void) 1733 { 1734 int ret, t; 1735 1736 if (!hv_is_hyperv_initialized()) 1737 return -ENODEV; 1738 1739 init_completion(&probe_event); 1740 1741 /* 1742 * Get ACPI resources first. 1743 */ 1744 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1745 1746 if (ret) 1747 return ret; 1748 1749 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1750 if (t == 0) { 1751 ret = -ETIMEDOUT; 1752 goto cleanup; 1753 } 1754 1755 ret = vmbus_bus_init(); 1756 if (ret) 1757 goto cleanup; 1758 1759 hv_setup_kexec_handler(hv_kexec_handler); 1760 hv_setup_crash_handler(hv_crash_handler); 1761 1762 return 0; 1763 1764 cleanup: 1765 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1766 hv_acpi_dev = NULL; 1767 return ret; 1768 } 1769 1770 static void __exit vmbus_exit(void) 1771 { 1772 int cpu; 1773 1774 hv_remove_kexec_handler(); 1775 hv_remove_crash_handler(); 1776 vmbus_connection.conn_state = DISCONNECTED; 1777 hv_synic_clockevents_cleanup(); 1778 vmbus_disconnect(); 1779 hv_remove_vmbus_irq(); 1780 for_each_online_cpu(cpu) { 1781 struct hv_per_cpu_context *hv_cpu 1782 = per_cpu_ptr(hv_context.cpu_context, cpu); 1783 1784 tasklet_kill(&hv_cpu->msg_dpc); 1785 } 1786 vmbus_free_channels(); 1787 1788 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1789 unregister_die_notifier(&hyperv_die_block); 1790 atomic_notifier_chain_unregister(&panic_notifier_list, 1791 &hyperv_panic_block); 1792 } 1793 bus_unregister(&hv_bus); 1794 1795 cpuhp_remove_state(hyperv_cpuhp_online); 1796 hv_synic_free(); 1797 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1798 } 1799 1800 1801 MODULE_LICENSE("GPL"); 1802 1803 subsys_initcall(hv_acpi_init); 1804 module_exit(vmbus_exit); 1805