xref: /linux/drivers/hv/vmbus_drv.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include "hyperv_vmbus.h"
45 
46 static struct acpi_device  *hv_acpi_dev;
47 
48 static struct tasklet_struct msg_dpc;
49 static struct completion probe_event;
50 static int irq;
51 
52 
53 static void hyperv_report_panic(struct pt_regs *regs)
54 {
55 	static bool panic_reported;
56 
57 	/*
58 	 * We prefer to report panic on 'die' chain as we have proper
59 	 * registers to report, but if we miss it (e.g. on BUG()) we need
60 	 * to report it on 'panic'.
61 	 */
62 	if (panic_reported)
63 		return;
64 	panic_reported = true;
65 
66 	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
67 	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
68 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
69 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
70 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
71 
72 	/*
73 	 * Let Hyper-V know there is crash data available
74 	 */
75 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
76 }
77 
78 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
79 			      void *args)
80 {
81 	struct pt_regs *regs;
82 
83 	regs = current_pt_regs();
84 
85 	hyperv_report_panic(regs);
86 	return NOTIFY_DONE;
87 }
88 
89 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
90 			    void *args)
91 {
92 	struct die_args *die = (struct die_args *)args;
93 	struct pt_regs *regs = die->regs;
94 
95 	hyperv_report_panic(regs);
96 	return NOTIFY_DONE;
97 }
98 
99 static struct notifier_block hyperv_die_block = {
100 	.notifier_call = hyperv_die_event,
101 };
102 static struct notifier_block hyperv_panic_block = {
103 	.notifier_call = hyperv_panic_event,
104 };
105 
106 struct resource *hyperv_mmio;
107 
108 static int vmbus_exists(void)
109 {
110 	if (hv_acpi_dev == NULL)
111 		return -ENODEV;
112 
113 	return 0;
114 }
115 
116 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
117 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
118 {
119 	int i;
120 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
121 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
122 }
123 
124 static u8 channel_monitor_group(struct vmbus_channel *channel)
125 {
126 	return (u8)channel->offermsg.monitorid / 32;
127 }
128 
129 static u8 channel_monitor_offset(struct vmbus_channel *channel)
130 {
131 	return (u8)channel->offermsg.monitorid % 32;
132 }
133 
134 static u32 channel_pending(struct vmbus_channel *channel,
135 			   struct hv_monitor_page *monitor_page)
136 {
137 	u8 monitor_group = channel_monitor_group(channel);
138 	return monitor_page->trigger_group[monitor_group].pending;
139 }
140 
141 static u32 channel_latency(struct vmbus_channel *channel,
142 			   struct hv_monitor_page *monitor_page)
143 {
144 	u8 monitor_group = channel_monitor_group(channel);
145 	u8 monitor_offset = channel_monitor_offset(channel);
146 	return monitor_page->latency[monitor_group][monitor_offset];
147 }
148 
149 static u32 channel_conn_id(struct vmbus_channel *channel,
150 			   struct hv_monitor_page *monitor_page)
151 {
152 	u8 monitor_group = channel_monitor_group(channel);
153 	u8 monitor_offset = channel_monitor_offset(channel);
154 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
155 }
156 
157 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
158 		       char *buf)
159 {
160 	struct hv_device *hv_dev = device_to_hv_device(dev);
161 
162 	if (!hv_dev->channel)
163 		return -ENODEV;
164 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
165 }
166 static DEVICE_ATTR_RO(id);
167 
168 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
169 			  char *buf)
170 {
171 	struct hv_device *hv_dev = device_to_hv_device(dev);
172 
173 	if (!hv_dev->channel)
174 		return -ENODEV;
175 	return sprintf(buf, "%d\n", hv_dev->channel->state);
176 }
177 static DEVICE_ATTR_RO(state);
178 
179 static ssize_t monitor_id_show(struct device *dev,
180 			       struct device_attribute *dev_attr, char *buf)
181 {
182 	struct hv_device *hv_dev = device_to_hv_device(dev);
183 
184 	if (!hv_dev->channel)
185 		return -ENODEV;
186 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
187 }
188 static DEVICE_ATTR_RO(monitor_id);
189 
190 static ssize_t class_id_show(struct device *dev,
191 			       struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_type.b);
199 }
200 static DEVICE_ATTR_RO(class_id);
201 
202 static ssize_t device_id_show(struct device *dev,
203 			      struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 
207 	if (!hv_dev->channel)
208 		return -ENODEV;
209 	return sprintf(buf, "{%pUl}\n",
210 		       hv_dev->channel->offermsg.offer.if_instance.b);
211 }
212 static DEVICE_ATTR_RO(device_id);
213 
214 static ssize_t modalias_show(struct device *dev,
215 			     struct device_attribute *dev_attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 	char alias_name[VMBUS_ALIAS_LEN + 1];
219 
220 	print_alias_name(hv_dev, alias_name);
221 	return sprintf(buf, "vmbus:%s\n", alias_name);
222 }
223 static DEVICE_ATTR_RO(modalias);
224 
225 static ssize_t server_monitor_pending_show(struct device *dev,
226 					   struct device_attribute *dev_attr,
227 					   char *buf)
228 {
229 	struct hv_device *hv_dev = device_to_hv_device(dev);
230 
231 	if (!hv_dev->channel)
232 		return -ENODEV;
233 	return sprintf(buf, "%d\n",
234 		       channel_pending(hv_dev->channel,
235 				       vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(server_monitor_pending);
238 
239 static ssize_t client_monitor_pending_show(struct device *dev,
240 					   struct device_attribute *dev_attr,
241 					   char *buf)
242 {
243 	struct hv_device *hv_dev = device_to_hv_device(dev);
244 
245 	if (!hv_dev->channel)
246 		return -ENODEV;
247 	return sprintf(buf, "%d\n",
248 		       channel_pending(hv_dev->channel,
249 				       vmbus_connection.monitor_pages[1]));
250 }
251 static DEVICE_ATTR_RO(client_monitor_pending);
252 
253 static ssize_t server_monitor_latency_show(struct device *dev,
254 					   struct device_attribute *dev_attr,
255 					   char *buf)
256 {
257 	struct hv_device *hv_dev = device_to_hv_device(dev);
258 
259 	if (!hv_dev->channel)
260 		return -ENODEV;
261 	return sprintf(buf, "%d\n",
262 		       channel_latency(hv_dev->channel,
263 				       vmbus_connection.monitor_pages[0]));
264 }
265 static DEVICE_ATTR_RO(server_monitor_latency);
266 
267 static ssize_t client_monitor_latency_show(struct device *dev,
268 					   struct device_attribute *dev_attr,
269 					   char *buf)
270 {
271 	struct hv_device *hv_dev = device_to_hv_device(dev);
272 
273 	if (!hv_dev->channel)
274 		return -ENODEV;
275 	return sprintf(buf, "%d\n",
276 		       channel_latency(hv_dev->channel,
277 				       vmbus_connection.monitor_pages[1]));
278 }
279 static DEVICE_ATTR_RO(client_monitor_latency);
280 
281 static ssize_t server_monitor_conn_id_show(struct device *dev,
282 					   struct device_attribute *dev_attr,
283 					   char *buf)
284 {
285 	struct hv_device *hv_dev = device_to_hv_device(dev);
286 
287 	if (!hv_dev->channel)
288 		return -ENODEV;
289 	return sprintf(buf, "%d\n",
290 		       channel_conn_id(hv_dev->channel,
291 				       vmbus_connection.monitor_pages[0]));
292 }
293 static DEVICE_ATTR_RO(server_monitor_conn_id);
294 
295 static ssize_t client_monitor_conn_id_show(struct device *dev,
296 					   struct device_attribute *dev_attr,
297 					   char *buf)
298 {
299 	struct hv_device *hv_dev = device_to_hv_device(dev);
300 
301 	if (!hv_dev->channel)
302 		return -ENODEV;
303 	return sprintf(buf, "%d\n",
304 		       channel_conn_id(hv_dev->channel,
305 				       vmbus_connection.monitor_pages[1]));
306 }
307 static DEVICE_ATTR_RO(client_monitor_conn_id);
308 
309 static ssize_t out_intr_mask_show(struct device *dev,
310 				  struct device_attribute *dev_attr, char *buf)
311 {
312 	struct hv_device *hv_dev = device_to_hv_device(dev);
313 	struct hv_ring_buffer_debug_info outbound;
314 
315 	if (!hv_dev->channel)
316 		return -ENODEV;
317 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
318 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
319 }
320 static DEVICE_ATTR_RO(out_intr_mask);
321 
322 static ssize_t out_read_index_show(struct device *dev,
323 				   struct device_attribute *dev_attr, char *buf)
324 {
325 	struct hv_device *hv_dev = device_to_hv_device(dev);
326 	struct hv_ring_buffer_debug_info outbound;
327 
328 	if (!hv_dev->channel)
329 		return -ENODEV;
330 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 	return sprintf(buf, "%d\n", outbound.current_read_index);
332 }
333 static DEVICE_ATTR_RO(out_read_index);
334 
335 static ssize_t out_write_index_show(struct device *dev,
336 				    struct device_attribute *dev_attr,
337 				    char *buf)
338 {
339 	struct hv_device *hv_dev = device_to_hv_device(dev);
340 	struct hv_ring_buffer_debug_info outbound;
341 
342 	if (!hv_dev->channel)
343 		return -ENODEV;
344 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 	return sprintf(buf, "%d\n", outbound.current_write_index);
346 }
347 static DEVICE_ATTR_RO(out_write_index);
348 
349 static ssize_t out_read_bytes_avail_show(struct device *dev,
350 					 struct device_attribute *dev_attr,
351 					 char *buf)
352 {
353 	struct hv_device *hv_dev = device_to_hv_device(dev);
354 	struct hv_ring_buffer_debug_info outbound;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
360 }
361 static DEVICE_ATTR_RO(out_read_bytes_avail);
362 
363 static ssize_t out_write_bytes_avail_show(struct device *dev,
364 					  struct device_attribute *dev_attr,
365 					  char *buf)
366 {
367 	struct hv_device *hv_dev = device_to_hv_device(dev);
368 	struct hv_ring_buffer_debug_info outbound;
369 
370 	if (!hv_dev->channel)
371 		return -ENODEV;
372 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
373 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
374 }
375 static DEVICE_ATTR_RO(out_write_bytes_avail);
376 
377 static ssize_t in_intr_mask_show(struct device *dev,
378 				 struct device_attribute *dev_attr, char *buf)
379 {
380 	struct hv_device *hv_dev = device_to_hv_device(dev);
381 	struct hv_ring_buffer_debug_info inbound;
382 
383 	if (!hv_dev->channel)
384 		return -ENODEV;
385 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
386 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
387 }
388 static DEVICE_ATTR_RO(in_intr_mask);
389 
390 static ssize_t in_read_index_show(struct device *dev,
391 				  struct device_attribute *dev_attr, char *buf)
392 {
393 	struct hv_device *hv_dev = device_to_hv_device(dev);
394 	struct hv_ring_buffer_debug_info inbound;
395 
396 	if (!hv_dev->channel)
397 		return -ENODEV;
398 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
399 	return sprintf(buf, "%d\n", inbound.current_read_index);
400 }
401 static DEVICE_ATTR_RO(in_read_index);
402 
403 static ssize_t in_write_index_show(struct device *dev,
404 				   struct device_attribute *dev_attr, char *buf)
405 {
406 	struct hv_device *hv_dev = device_to_hv_device(dev);
407 	struct hv_ring_buffer_debug_info inbound;
408 
409 	if (!hv_dev->channel)
410 		return -ENODEV;
411 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 	return sprintf(buf, "%d\n", inbound.current_write_index);
413 }
414 static DEVICE_ATTR_RO(in_write_index);
415 
416 static ssize_t in_read_bytes_avail_show(struct device *dev,
417 					struct device_attribute *dev_attr,
418 					char *buf)
419 {
420 	struct hv_device *hv_dev = device_to_hv_device(dev);
421 	struct hv_ring_buffer_debug_info inbound;
422 
423 	if (!hv_dev->channel)
424 		return -ENODEV;
425 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
427 }
428 static DEVICE_ATTR_RO(in_read_bytes_avail);
429 
430 static ssize_t in_write_bytes_avail_show(struct device *dev,
431 					 struct device_attribute *dev_attr,
432 					 char *buf)
433 {
434 	struct hv_device *hv_dev = device_to_hv_device(dev);
435 	struct hv_ring_buffer_debug_info inbound;
436 
437 	if (!hv_dev->channel)
438 		return -ENODEV;
439 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
440 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
441 }
442 static DEVICE_ATTR_RO(in_write_bytes_avail);
443 
444 static ssize_t channel_vp_mapping_show(struct device *dev,
445 				       struct device_attribute *dev_attr,
446 				       char *buf)
447 {
448 	struct hv_device *hv_dev = device_to_hv_device(dev);
449 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
450 	unsigned long flags;
451 	int buf_size = PAGE_SIZE, n_written, tot_written;
452 	struct list_head *cur;
453 
454 	if (!channel)
455 		return -ENODEV;
456 
457 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
458 		channel->offermsg.child_relid, channel->target_cpu);
459 
460 	spin_lock_irqsave(&channel->lock, flags);
461 
462 	list_for_each(cur, &channel->sc_list) {
463 		if (tot_written >= buf_size - 1)
464 			break;
465 
466 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
467 		n_written = scnprintf(buf + tot_written,
468 				     buf_size - tot_written,
469 				     "%u:%u\n",
470 				     cur_sc->offermsg.child_relid,
471 				     cur_sc->target_cpu);
472 		tot_written += n_written;
473 	}
474 
475 	spin_unlock_irqrestore(&channel->lock, flags);
476 
477 	return tot_written;
478 }
479 static DEVICE_ATTR_RO(channel_vp_mapping);
480 
481 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
482 static struct attribute *vmbus_attrs[] = {
483 	&dev_attr_id.attr,
484 	&dev_attr_state.attr,
485 	&dev_attr_monitor_id.attr,
486 	&dev_attr_class_id.attr,
487 	&dev_attr_device_id.attr,
488 	&dev_attr_modalias.attr,
489 	&dev_attr_server_monitor_pending.attr,
490 	&dev_attr_client_monitor_pending.attr,
491 	&dev_attr_server_monitor_latency.attr,
492 	&dev_attr_client_monitor_latency.attr,
493 	&dev_attr_server_monitor_conn_id.attr,
494 	&dev_attr_client_monitor_conn_id.attr,
495 	&dev_attr_out_intr_mask.attr,
496 	&dev_attr_out_read_index.attr,
497 	&dev_attr_out_write_index.attr,
498 	&dev_attr_out_read_bytes_avail.attr,
499 	&dev_attr_out_write_bytes_avail.attr,
500 	&dev_attr_in_intr_mask.attr,
501 	&dev_attr_in_read_index.attr,
502 	&dev_attr_in_write_index.attr,
503 	&dev_attr_in_read_bytes_avail.attr,
504 	&dev_attr_in_write_bytes_avail.attr,
505 	&dev_attr_channel_vp_mapping.attr,
506 	NULL,
507 };
508 ATTRIBUTE_GROUPS(vmbus);
509 
510 /*
511  * vmbus_uevent - add uevent for our device
512  *
513  * This routine is invoked when a device is added or removed on the vmbus to
514  * generate a uevent to udev in the userspace. The udev will then look at its
515  * rule and the uevent generated here to load the appropriate driver
516  *
517  * The alias string will be of the form vmbus:guid where guid is the string
518  * representation of the device guid (each byte of the guid will be
519  * represented with two hex characters.
520  */
521 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
522 {
523 	struct hv_device *dev = device_to_hv_device(device);
524 	int ret;
525 	char alias_name[VMBUS_ALIAS_LEN + 1];
526 
527 	print_alias_name(dev, alias_name);
528 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
529 	return ret;
530 }
531 
532 static const uuid_le null_guid;
533 
534 static inline bool is_null_guid(const __u8 *guid)
535 {
536 	if (memcmp(guid, &null_guid, sizeof(uuid_le)))
537 		return false;
538 	return true;
539 }
540 
541 /*
542  * Return a matching hv_vmbus_device_id pointer.
543  * If there is no match, return NULL.
544  */
545 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
546 					const struct hv_vmbus_device_id *id,
547 					const __u8 *guid)
548 {
549 	for (; !is_null_guid(id->guid); id++)
550 		if (!memcmp(&id->guid, guid, sizeof(uuid_le)))
551 			return id;
552 
553 	return NULL;
554 }
555 
556 
557 
558 /*
559  * vmbus_match - Attempt to match the specified device to the specified driver
560  */
561 static int vmbus_match(struct device *device, struct device_driver *driver)
562 {
563 	struct hv_driver *drv = drv_to_hv_drv(driver);
564 	struct hv_device *hv_dev = device_to_hv_device(device);
565 
566 	if (hv_vmbus_get_id(drv->id_table, hv_dev->dev_type.b))
567 		return 1;
568 
569 	return 0;
570 }
571 
572 /*
573  * vmbus_probe - Add the new vmbus's child device
574  */
575 static int vmbus_probe(struct device *child_device)
576 {
577 	int ret = 0;
578 	struct hv_driver *drv =
579 			drv_to_hv_drv(child_device->driver);
580 	struct hv_device *dev = device_to_hv_device(child_device);
581 	const struct hv_vmbus_device_id *dev_id;
582 
583 	dev_id = hv_vmbus_get_id(drv->id_table, dev->dev_type.b);
584 	if (drv->probe) {
585 		ret = drv->probe(dev, dev_id);
586 		if (ret != 0)
587 			pr_err("probe failed for device %s (%d)\n",
588 			       dev_name(child_device), ret);
589 
590 	} else {
591 		pr_err("probe not set for driver %s\n",
592 		       dev_name(child_device));
593 		ret = -ENODEV;
594 	}
595 	return ret;
596 }
597 
598 /*
599  * vmbus_remove - Remove a vmbus device
600  */
601 static int vmbus_remove(struct device *child_device)
602 {
603 	struct hv_driver *drv;
604 	struct hv_device *dev = device_to_hv_device(child_device);
605 	u32 relid = dev->channel->offermsg.child_relid;
606 
607 	if (child_device->driver) {
608 		drv = drv_to_hv_drv(child_device->driver);
609 		if (drv->remove)
610 			drv->remove(dev);
611 		else {
612 			hv_process_channel_removal(dev->channel, relid);
613 			pr_err("remove not set for driver %s\n",
614 				dev_name(child_device));
615 		}
616 	} else {
617 		/*
618 		 * We don't have a driver for this device; deal with the
619 		 * rescind message by removing the channel.
620 		 */
621 		hv_process_channel_removal(dev->channel, relid);
622 	}
623 
624 	return 0;
625 }
626 
627 
628 /*
629  * vmbus_shutdown - Shutdown a vmbus device
630  */
631 static void vmbus_shutdown(struct device *child_device)
632 {
633 	struct hv_driver *drv;
634 	struct hv_device *dev = device_to_hv_device(child_device);
635 
636 
637 	/* The device may not be attached yet */
638 	if (!child_device->driver)
639 		return;
640 
641 	drv = drv_to_hv_drv(child_device->driver);
642 
643 	if (drv->shutdown)
644 		drv->shutdown(dev);
645 
646 	return;
647 }
648 
649 
650 /*
651  * vmbus_device_release - Final callback release of the vmbus child device
652  */
653 static void vmbus_device_release(struct device *device)
654 {
655 	struct hv_device *hv_dev = device_to_hv_device(device);
656 
657 	kfree(hv_dev);
658 
659 }
660 
661 /* The one and only one */
662 static struct bus_type  hv_bus = {
663 	.name =		"vmbus",
664 	.match =		vmbus_match,
665 	.shutdown =		vmbus_shutdown,
666 	.remove =		vmbus_remove,
667 	.probe =		vmbus_probe,
668 	.uevent =		vmbus_uevent,
669 	.dev_groups =		vmbus_groups,
670 };
671 
672 struct onmessage_work_context {
673 	struct work_struct work;
674 	struct hv_message msg;
675 };
676 
677 static void vmbus_onmessage_work(struct work_struct *work)
678 {
679 	struct onmessage_work_context *ctx;
680 
681 	/* Do not process messages if we're in DISCONNECTED state */
682 	if (vmbus_connection.conn_state == DISCONNECTED)
683 		return;
684 
685 	ctx = container_of(work, struct onmessage_work_context,
686 			   work);
687 	vmbus_onmessage(&ctx->msg);
688 	kfree(ctx);
689 }
690 
691 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
692 {
693 	struct clock_event_device *dev = hv_context.clk_evt[cpu];
694 
695 	if (dev->event_handler)
696 		dev->event_handler(dev);
697 
698 	msg->header.message_type = HVMSG_NONE;
699 
700 	/*
701 	 * Make sure the write to MessageType (ie set to
702 	 * HVMSG_NONE) happens before we read the
703 	 * MessagePending and EOMing. Otherwise, the EOMing
704 	 * will not deliver any more messages since there is
705 	 * no empty slot
706 	 */
707 	mb();
708 
709 	if (msg->header.message_flags.msg_pending) {
710 		/*
711 		 * This will cause message queue rescan to
712 		 * possibly deliver another msg from the
713 		 * hypervisor
714 		 */
715 		wrmsrl(HV_X64_MSR_EOM, 0);
716 	}
717 }
718 
719 static void vmbus_on_msg_dpc(unsigned long data)
720 {
721 	int cpu = smp_processor_id();
722 	void *page_addr = hv_context.synic_message_page[cpu];
723 	struct hv_message *msg = (struct hv_message *)page_addr +
724 				  VMBUS_MESSAGE_SINT;
725 	struct vmbus_channel_message_header *hdr;
726 	struct vmbus_channel_message_table_entry *entry;
727 	struct onmessage_work_context *ctx;
728 
729 	while (1) {
730 		if (msg->header.message_type == HVMSG_NONE)
731 			/* no msg */
732 			break;
733 
734 		hdr = (struct vmbus_channel_message_header *)msg->u.payload;
735 
736 		if (hdr->msgtype >= CHANNELMSG_COUNT) {
737 			WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
738 			goto msg_handled;
739 		}
740 
741 		entry = &channel_message_table[hdr->msgtype];
742 		if (entry->handler_type	== VMHT_BLOCKING) {
743 			ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
744 			if (ctx == NULL)
745 				continue;
746 
747 			INIT_WORK(&ctx->work, vmbus_onmessage_work);
748 			memcpy(&ctx->msg, msg, sizeof(*msg));
749 
750 			queue_work(vmbus_connection.work_queue, &ctx->work);
751 		} else
752 			entry->message_handler(hdr);
753 
754 msg_handled:
755 		msg->header.message_type = HVMSG_NONE;
756 
757 		/*
758 		 * Make sure the write to MessageType (ie set to
759 		 * HVMSG_NONE) happens before we read the
760 		 * MessagePending and EOMing. Otherwise, the EOMing
761 		 * will not deliver any more messages since there is
762 		 * no empty slot
763 		 */
764 		mb();
765 
766 		if (msg->header.message_flags.msg_pending) {
767 			/*
768 			 * This will cause message queue rescan to
769 			 * possibly deliver another msg from the
770 			 * hypervisor
771 			 */
772 			wrmsrl(HV_X64_MSR_EOM, 0);
773 		}
774 	}
775 }
776 
777 static void vmbus_isr(void)
778 {
779 	int cpu = smp_processor_id();
780 	void *page_addr;
781 	struct hv_message *msg;
782 	union hv_synic_event_flags *event;
783 	bool handled = false;
784 
785 	page_addr = hv_context.synic_event_page[cpu];
786 	if (page_addr == NULL)
787 		return;
788 
789 	event = (union hv_synic_event_flags *)page_addr +
790 					 VMBUS_MESSAGE_SINT;
791 	/*
792 	 * Check for events before checking for messages. This is the order
793 	 * in which events and messages are checked in Windows guests on
794 	 * Hyper-V, and the Windows team suggested we do the same.
795 	 */
796 
797 	if ((vmbus_proto_version == VERSION_WS2008) ||
798 		(vmbus_proto_version == VERSION_WIN7)) {
799 
800 		/* Since we are a child, we only need to check bit 0 */
801 		if (sync_test_and_clear_bit(0,
802 			(unsigned long *) &event->flags32[0])) {
803 			handled = true;
804 		}
805 	} else {
806 		/*
807 		 * Our host is win8 or above. The signaling mechanism
808 		 * has changed and we can directly look at the event page.
809 		 * If bit n is set then we have an interrup on the channel
810 		 * whose id is n.
811 		 */
812 		handled = true;
813 	}
814 
815 	if (handled)
816 		tasklet_schedule(hv_context.event_dpc[cpu]);
817 
818 
819 	page_addr = hv_context.synic_message_page[cpu];
820 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
821 
822 	/* Check if there are actual msgs to be processed */
823 	if (msg->header.message_type != HVMSG_NONE) {
824 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
825 			hv_process_timer_expiration(msg, cpu);
826 		else
827 			tasklet_schedule(&msg_dpc);
828 	}
829 }
830 
831 
832 /*
833  * vmbus_bus_init -Main vmbus driver initialization routine.
834  *
835  * Here, we
836  *	- initialize the vmbus driver context
837  *	- invoke the vmbus hv main init routine
838  *	- get the irq resource
839  *	- retrieve the channel offers
840  */
841 static int vmbus_bus_init(int irq)
842 {
843 	int ret;
844 
845 	/* Hypervisor initialization...setup hypercall page..etc */
846 	ret = hv_init();
847 	if (ret != 0) {
848 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
849 		return ret;
850 	}
851 
852 	tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
853 
854 	ret = bus_register(&hv_bus);
855 	if (ret)
856 		goto err_cleanup;
857 
858 	hv_setup_vmbus_irq(vmbus_isr);
859 
860 	ret = hv_synic_alloc();
861 	if (ret)
862 		goto err_alloc;
863 	/*
864 	 * Initialize the per-cpu interrupt state and
865 	 * connect to the host.
866 	 */
867 	on_each_cpu(hv_synic_init, NULL, 1);
868 	ret = vmbus_connect();
869 	if (ret)
870 		goto err_alloc;
871 
872 	if (vmbus_proto_version > VERSION_WIN7)
873 		cpu_hotplug_disable();
874 
875 	/*
876 	 * Only register if the crash MSRs are available
877 	 */
878 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
879 		register_die_notifier(&hyperv_die_block);
880 		atomic_notifier_chain_register(&panic_notifier_list,
881 					       &hyperv_panic_block);
882 	}
883 
884 	vmbus_request_offers();
885 
886 	return 0;
887 
888 err_alloc:
889 	hv_synic_free();
890 	hv_remove_vmbus_irq();
891 
892 	bus_unregister(&hv_bus);
893 
894 err_cleanup:
895 	hv_cleanup();
896 
897 	return ret;
898 }
899 
900 /**
901  * __vmbus_child_driver_register() - Register a vmbus's driver
902  * @hv_driver: Pointer to driver structure you want to register
903  * @owner: owner module of the drv
904  * @mod_name: module name string
905  *
906  * Registers the given driver with Linux through the 'driver_register()' call
907  * and sets up the hyper-v vmbus handling for this driver.
908  * It will return the state of the 'driver_register()' call.
909  *
910  */
911 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
912 {
913 	int ret;
914 
915 	pr_info("registering driver %s\n", hv_driver->name);
916 
917 	ret = vmbus_exists();
918 	if (ret < 0)
919 		return ret;
920 
921 	hv_driver->driver.name = hv_driver->name;
922 	hv_driver->driver.owner = owner;
923 	hv_driver->driver.mod_name = mod_name;
924 	hv_driver->driver.bus = &hv_bus;
925 
926 	ret = driver_register(&hv_driver->driver);
927 
928 	return ret;
929 }
930 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
931 
932 /**
933  * vmbus_driver_unregister() - Unregister a vmbus's driver
934  * @hv_driver: Pointer to driver structure you want to
935  *             un-register
936  *
937  * Un-register the given driver that was previous registered with a call to
938  * vmbus_driver_register()
939  */
940 void vmbus_driver_unregister(struct hv_driver *hv_driver)
941 {
942 	pr_info("unregistering driver %s\n", hv_driver->name);
943 
944 	if (!vmbus_exists())
945 		driver_unregister(&hv_driver->driver);
946 }
947 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
948 
949 /*
950  * vmbus_device_create - Creates and registers a new child device
951  * on the vmbus.
952  */
953 struct hv_device *vmbus_device_create(const uuid_le *type,
954 				      const uuid_le *instance,
955 				      struct vmbus_channel *channel)
956 {
957 	struct hv_device *child_device_obj;
958 
959 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
960 	if (!child_device_obj) {
961 		pr_err("Unable to allocate device object for child device\n");
962 		return NULL;
963 	}
964 
965 	child_device_obj->channel = channel;
966 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
967 	memcpy(&child_device_obj->dev_instance, instance,
968 	       sizeof(uuid_le));
969 
970 
971 	return child_device_obj;
972 }
973 
974 /*
975  * vmbus_device_register - Register the child device
976  */
977 int vmbus_device_register(struct hv_device *child_device_obj)
978 {
979 	int ret = 0;
980 
981 	dev_set_name(&child_device_obj->device, "vmbus_%d",
982 		     child_device_obj->channel->id);
983 
984 	child_device_obj->device.bus = &hv_bus;
985 	child_device_obj->device.parent = &hv_acpi_dev->dev;
986 	child_device_obj->device.release = vmbus_device_release;
987 
988 	/*
989 	 * Register with the LDM. This will kick off the driver/device
990 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
991 	 */
992 	ret = device_register(&child_device_obj->device);
993 
994 	if (ret)
995 		pr_err("Unable to register child device\n");
996 	else
997 		pr_debug("child device %s registered\n",
998 			dev_name(&child_device_obj->device));
999 
1000 	return ret;
1001 }
1002 
1003 /*
1004  * vmbus_device_unregister - Remove the specified child device
1005  * from the vmbus.
1006  */
1007 void vmbus_device_unregister(struct hv_device *device_obj)
1008 {
1009 	pr_debug("child device %s unregistered\n",
1010 		dev_name(&device_obj->device));
1011 
1012 	/*
1013 	 * Kick off the process of unregistering the device.
1014 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1015 	 */
1016 	device_unregister(&device_obj->device);
1017 }
1018 
1019 
1020 /*
1021  * VMBUS is an acpi enumerated device. Get the information we
1022  * need from DSDT.
1023  */
1024 #define VTPM_BASE_ADDRESS 0xfed40000
1025 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1026 {
1027 	resource_size_t start = 0;
1028 	resource_size_t end = 0;
1029 	struct resource *new_res;
1030 	struct resource **old_res = &hyperv_mmio;
1031 	struct resource **prev_res = NULL;
1032 
1033 	switch (res->type) {
1034 	case ACPI_RESOURCE_TYPE_IRQ:
1035 		irq = res->data.irq.interrupts[0];
1036 		return AE_OK;
1037 
1038 	/*
1039 	 * "Address" descriptors are for bus windows. Ignore
1040 	 * "memory" descriptors, which are for registers on
1041 	 * devices.
1042 	 */
1043 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1044 		start = res->data.address32.address.minimum;
1045 		end = res->data.address32.address.maximum;
1046 		break;
1047 
1048 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1049 		start = res->data.address64.address.minimum;
1050 		end = res->data.address64.address.maximum;
1051 		break;
1052 
1053 	default:
1054 		/* Unused resource type */
1055 		return AE_OK;
1056 
1057 	}
1058 	/*
1059 	 * Ignore ranges that are below 1MB, as they're not
1060 	 * necessary or useful here.
1061 	 */
1062 	if (end < 0x100000)
1063 		return AE_OK;
1064 
1065 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1066 	if (!new_res)
1067 		return AE_NO_MEMORY;
1068 
1069 	/* If this range overlaps the virtual TPM, truncate it. */
1070 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1071 		end = VTPM_BASE_ADDRESS;
1072 
1073 	new_res->name = "hyperv mmio";
1074 	new_res->flags = IORESOURCE_MEM;
1075 	new_res->start = start;
1076 	new_res->end = end;
1077 
1078 	do {
1079 		if (!*old_res) {
1080 			*old_res = new_res;
1081 			break;
1082 		}
1083 
1084 		if ((*old_res)->end < new_res->start) {
1085 			new_res->sibling = *old_res;
1086 			if (prev_res)
1087 				(*prev_res)->sibling = new_res;
1088 			*old_res = new_res;
1089 			break;
1090 		}
1091 
1092 		prev_res = old_res;
1093 		old_res = &(*old_res)->sibling;
1094 
1095 	} while (1);
1096 
1097 	return AE_OK;
1098 }
1099 
1100 static int vmbus_acpi_remove(struct acpi_device *device)
1101 {
1102 	struct resource *cur_res;
1103 	struct resource *next_res;
1104 
1105 	if (hyperv_mmio) {
1106 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1107 			next_res = cur_res->sibling;
1108 			kfree(cur_res);
1109 		}
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 /**
1116  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1117  * @new:		If successful, supplied a pointer to the
1118  *			allocated MMIO space.
1119  * @device_obj:		Identifies the caller
1120  * @min:		Minimum guest physical address of the
1121  *			allocation
1122  * @max:		Maximum guest physical address
1123  * @size:		Size of the range to be allocated
1124  * @align:		Alignment of the range to be allocated
1125  * @fb_overlap_ok:	Whether this allocation can be allowed
1126  *			to overlap the video frame buffer.
1127  *
1128  * This function walks the resources granted to VMBus by the
1129  * _CRS object in the ACPI namespace underneath the parent
1130  * "bridge" whether that's a root PCI bus in the Generation 1
1131  * case or a Module Device in the Generation 2 case.  It then
1132  * attempts to allocate from the global MMIO pool in a way that
1133  * matches the constraints supplied in these parameters and by
1134  * that _CRS.
1135  *
1136  * Return: 0 on success, -errno on failure
1137  */
1138 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1139 			resource_size_t min, resource_size_t max,
1140 			resource_size_t size, resource_size_t align,
1141 			bool fb_overlap_ok)
1142 {
1143 	struct resource *iter;
1144 	resource_size_t range_min, range_max, start, local_min, local_max;
1145 	const char *dev_n = dev_name(&device_obj->device);
1146 	u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1147 	int i;
1148 
1149 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1150 		if ((iter->start >= max) || (iter->end <= min))
1151 			continue;
1152 
1153 		range_min = iter->start;
1154 		range_max = iter->end;
1155 
1156 		/* If this range overlaps the frame buffer, split it into
1157 		   two tries. */
1158 		for (i = 0; i < 2; i++) {
1159 			local_min = range_min;
1160 			local_max = range_max;
1161 			if (fb_overlap_ok || (range_min >= fb_end) ||
1162 			    (range_max <= screen_info.lfb_base)) {
1163 				i++;
1164 			} else {
1165 				if ((range_min <= screen_info.lfb_base) &&
1166 				    (range_max >= screen_info.lfb_base)) {
1167 					/*
1168 					 * The frame buffer is in this window,
1169 					 * so trim this into the part that
1170 					 * preceeds the frame buffer.
1171 					 */
1172 					local_max = screen_info.lfb_base - 1;
1173 					range_min = fb_end;
1174 				} else {
1175 					range_min = fb_end;
1176 					continue;
1177 				}
1178 			}
1179 
1180 			start = (local_min + align - 1) & ~(align - 1);
1181 			for (; start + size - 1 <= local_max; start += align) {
1182 				*new = request_mem_region_exclusive(start, size,
1183 								    dev_n);
1184 				if (*new)
1185 					return 0;
1186 			}
1187 		}
1188 	}
1189 
1190 	return -ENXIO;
1191 }
1192 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1193 
1194 static int vmbus_acpi_add(struct acpi_device *device)
1195 {
1196 	acpi_status result;
1197 	int ret_val = -ENODEV;
1198 	struct acpi_device *ancestor;
1199 
1200 	hv_acpi_dev = device;
1201 
1202 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1203 					vmbus_walk_resources, NULL);
1204 
1205 	if (ACPI_FAILURE(result))
1206 		goto acpi_walk_err;
1207 	/*
1208 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1209 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1210 	 */
1211 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1212 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1213 					     vmbus_walk_resources, NULL);
1214 
1215 		if (ACPI_FAILURE(result))
1216 			continue;
1217 		if (hyperv_mmio)
1218 			break;
1219 	}
1220 	ret_val = 0;
1221 
1222 acpi_walk_err:
1223 	complete(&probe_event);
1224 	if (ret_val)
1225 		vmbus_acpi_remove(device);
1226 	return ret_val;
1227 }
1228 
1229 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1230 	{"VMBUS", 0},
1231 	{"VMBus", 0},
1232 	{"", 0},
1233 };
1234 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1235 
1236 static struct acpi_driver vmbus_acpi_driver = {
1237 	.name = "vmbus",
1238 	.ids = vmbus_acpi_device_ids,
1239 	.ops = {
1240 		.add = vmbus_acpi_add,
1241 		.remove = vmbus_acpi_remove,
1242 	},
1243 };
1244 
1245 static void hv_kexec_handler(void)
1246 {
1247 	int cpu;
1248 
1249 	hv_synic_clockevents_cleanup();
1250 	vmbus_initiate_unload();
1251 	for_each_online_cpu(cpu)
1252 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1253 	hv_cleanup();
1254 };
1255 
1256 static void hv_crash_handler(struct pt_regs *regs)
1257 {
1258 	vmbus_initiate_unload();
1259 	/*
1260 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1261 	 * doing the cleanup for current CPU only. This should be sufficient
1262 	 * for kdump.
1263 	 */
1264 	hv_synic_cleanup(NULL);
1265 	hv_cleanup();
1266 };
1267 
1268 static int __init hv_acpi_init(void)
1269 {
1270 	int ret, t;
1271 
1272 	if (x86_hyper != &x86_hyper_ms_hyperv)
1273 		return -ENODEV;
1274 
1275 	init_completion(&probe_event);
1276 
1277 	/*
1278 	 * Get irq resources first.
1279 	 */
1280 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1281 
1282 	if (ret)
1283 		return ret;
1284 
1285 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1286 	if (t == 0) {
1287 		ret = -ETIMEDOUT;
1288 		goto cleanup;
1289 	}
1290 
1291 	if (irq <= 0) {
1292 		ret = -ENODEV;
1293 		goto cleanup;
1294 	}
1295 
1296 	ret = vmbus_bus_init(irq);
1297 	if (ret)
1298 		goto cleanup;
1299 
1300 	hv_setup_kexec_handler(hv_kexec_handler);
1301 	hv_setup_crash_handler(hv_crash_handler);
1302 
1303 	return 0;
1304 
1305 cleanup:
1306 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1307 	hv_acpi_dev = NULL;
1308 	return ret;
1309 }
1310 
1311 static void __exit vmbus_exit(void)
1312 {
1313 	int cpu;
1314 
1315 	hv_remove_kexec_handler();
1316 	hv_remove_crash_handler();
1317 	vmbus_connection.conn_state = DISCONNECTED;
1318 	hv_synic_clockevents_cleanup();
1319 	vmbus_disconnect();
1320 	hv_remove_vmbus_irq();
1321 	tasklet_kill(&msg_dpc);
1322 	vmbus_free_channels();
1323 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1324 		unregister_die_notifier(&hyperv_die_block);
1325 		atomic_notifier_chain_unregister(&panic_notifier_list,
1326 						 &hyperv_panic_block);
1327 	}
1328 	bus_unregister(&hv_bus);
1329 	hv_cleanup();
1330 	for_each_online_cpu(cpu) {
1331 		tasklet_kill(hv_context.event_dpc[cpu]);
1332 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1333 	}
1334 	hv_synic_free();
1335 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1336 	if (vmbus_proto_version > VERSION_WIN7)
1337 		cpu_hotplug_enable();
1338 }
1339 
1340 
1341 MODULE_LICENSE("GPL");
1342 
1343 subsys_initcall(hv_acpi_init);
1344 module_exit(vmbus_exit);
1345