xref: /linux/drivers/hv/vmbus_drv.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <asm/mshyperv.h>
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/kernel.h>
35 #include <linux/syscore_ops.h>
36 #include <clocksource/hyperv_timer.h>
37 #include "hyperv_vmbus.h"
38 
39 struct vmbus_dynid {
40 	struct list_head node;
41 	struct hv_vmbus_device_id id;
42 };
43 
44 static struct acpi_device  *hv_acpi_dev;
45 
46 static struct completion probe_event;
47 
48 static int hyperv_cpuhp_online;
49 
50 static void *hv_panic_page;
51 
52 /*
53  * Boolean to control whether to report panic messages over Hyper-V.
54  *
55  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
56  */
57 static int sysctl_record_panic_msg = 1;
58 
59 static int hyperv_report_reg(void)
60 {
61 	return !sysctl_record_panic_msg || !hv_panic_page;
62 }
63 
64 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
65 			      void *args)
66 {
67 	struct pt_regs *regs;
68 
69 	vmbus_initiate_unload(true);
70 
71 	/*
72 	 * Hyper-V should be notified only once about a panic.  If we will be
73 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
74 	 * the notification here.
75 	 */
76 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77 	    && hyperv_report_reg()) {
78 		regs = current_pt_regs();
79 		hyperv_report_panic(regs, val, false);
80 	}
81 	return NOTIFY_DONE;
82 }
83 
84 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
85 			    void *args)
86 {
87 	struct die_args *die = (struct die_args *)args;
88 	struct pt_regs *regs = die->regs;
89 
90 	/*
91 	 * Hyper-V should be notified only once about a panic.  If we will be
92 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
93 	 * the notification here.
94 	 */
95 	if (hyperv_report_reg())
96 		hyperv_report_panic(regs, val, true);
97 	return NOTIFY_DONE;
98 }
99 
100 static struct notifier_block hyperv_die_block = {
101 	.notifier_call = hyperv_die_event,
102 };
103 static struct notifier_block hyperv_panic_block = {
104 	.notifier_call = hyperv_panic_event,
105 };
106 
107 static const char *fb_mmio_name = "fb_range";
108 static struct resource *fb_mmio;
109 static struct resource *hyperv_mmio;
110 static DEFINE_MUTEX(hyperv_mmio_lock);
111 
112 static int vmbus_exists(void)
113 {
114 	if (hv_acpi_dev == NULL)
115 		return -ENODEV;
116 
117 	return 0;
118 }
119 
120 static u8 channel_monitor_group(const struct vmbus_channel *channel)
121 {
122 	return (u8)channel->offermsg.monitorid / 32;
123 }
124 
125 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
126 {
127 	return (u8)channel->offermsg.monitorid % 32;
128 }
129 
130 static u32 channel_pending(const struct vmbus_channel *channel,
131 			   const struct hv_monitor_page *monitor_page)
132 {
133 	u8 monitor_group = channel_monitor_group(channel);
134 
135 	return monitor_page->trigger_group[monitor_group].pending;
136 }
137 
138 static u32 channel_latency(const struct vmbus_channel *channel,
139 			   const struct hv_monitor_page *monitor_page)
140 {
141 	u8 monitor_group = channel_monitor_group(channel);
142 	u8 monitor_offset = channel_monitor_offset(channel);
143 
144 	return monitor_page->latency[monitor_group][monitor_offset];
145 }
146 
147 static u32 channel_conn_id(struct vmbus_channel *channel,
148 			   struct hv_monitor_page *monitor_page)
149 {
150 	u8 monitor_group = channel_monitor_group(channel);
151 	u8 monitor_offset = channel_monitor_offset(channel);
152 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
153 }
154 
155 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
156 		       char *buf)
157 {
158 	struct hv_device *hv_dev = device_to_hv_device(dev);
159 
160 	if (!hv_dev->channel)
161 		return -ENODEV;
162 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
163 }
164 static DEVICE_ATTR_RO(id);
165 
166 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
167 			  char *buf)
168 {
169 	struct hv_device *hv_dev = device_to_hv_device(dev);
170 
171 	if (!hv_dev->channel)
172 		return -ENODEV;
173 	return sprintf(buf, "%d\n", hv_dev->channel->state);
174 }
175 static DEVICE_ATTR_RO(state);
176 
177 static ssize_t monitor_id_show(struct device *dev,
178 			       struct device_attribute *dev_attr, char *buf)
179 {
180 	struct hv_device *hv_dev = device_to_hv_device(dev);
181 
182 	if (!hv_dev->channel)
183 		return -ENODEV;
184 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
185 }
186 static DEVICE_ATTR_RO(monitor_id);
187 
188 static ssize_t class_id_show(struct device *dev,
189 			       struct device_attribute *dev_attr, char *buf)
190 {
191 	struct hv_device *hv_dev = device_to_hv_device(dev);
192 
193 	if (!hv_dev->channel)
194 		return -ENODEV;
195 	return sprintf(buf, "{%pUl}\n",
196 		       &hv_dev->channel->offermsg.offer.if_type);
197 }
198 static DEVICE_ATTR_RO(class_id);
199 
200 static ssize_t device_id_show(struct device *dev,
201 			      struct device_attribute *dev_attr, char *buf)
202 {
203 	struct hv_device *hv_dev = device_to_hv_device(dev);
204 
205 	if (!hv_dev->channel)
206 		return -ENODEV;
207 	return sprintf(buf, "{%pUl}\n",
208 		       &hv_dev->channel->offermsg.offer.if_instance);
209 }
210 static DEVICE_ATTR_RO(device_id);
211 
212 static ssize_t modalias_show(struct device *dev,
213 			     struct device_attribute *dev_attr, char *buf)
214 {
215 	struct hv_device *hv_dev = device_to_hv_device(dev);
216 
217 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
218 }
219 static DEVICE_ATTR_RO(modalias);
220 
221 #ifdef CONFIG_NUMA
222 static ssize_t numa_node_show(struct device *dev,
223 			      struct device_attribute *attr, char *buf)
224 {
225 	struct hv_device *hv_dev = device_to_hv_device(dev);
226 
227 	if (!hv_dev->channel)
228 		return -ENODEV;
229 
230 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
231 }
232 static DEVICE_ATTR_RO(numa_node);
233 #endif
234 
235 static ssize_t server_monitor_pending_show(struct device *dev,
236 					   struct device_attribute *dev_attr,
237 					   char *buf)
238 {
239 	struct hv_device *hv_dev = device_to_hv_device(dev);
240 
241 	if (!hv_dev->channel)
242 		return -ENODEV;
243 	return sprintf(buf, "%d\n",
244 		       channel_pending(hv_dev->channel,
245 				       vmbus_connection.monitor_pages[0]));
246 }
247 static DEVICE_ATTR_RO(server_monitor_pending);
248 
249 static ssize_t client_monitor_pending_show(struct device *dev,
250 					   struct device_attribute *dev_attr,
251 					   char *buf)
252 {
253 	struct hv_device *hv_dev = device_to_hv_device(dev);
254 
255 	if (!hv_dev->channel)
256 		return -ENODEV;
257 	return sprintf(buf, "%d\n",
258 		       channel_pending(hv_dev->channel,
259 				       vmbus_connection.monitor_pages[1]));
260 }
261 static DEVICE_ATTR_RO(client_monitor_pending);
262 
263 static ssize_t server_monitor_latency_show(struct device *dev,
264 					   struct device_attribute *dev_attr,
265 					   char *buf)
266 {
267 	struct hv_device *hv_dev = device_to_hv_device(dev);
268 
269 	if (!hv_dev->channel)
270 		return -ENODEV;
271 	return sprintf(buf, "%d\n",
272 		       channel_latency(hv_dev->channel,
273 				       vmbus_connection.monitor_pages[0]));
274 }
275 static DEVICE_ATTR_RO(server_monitor_latency);
276 
277 static ssize_t client_monitor_latency_show(struct device *dev,
278 					   struct device_attribute *dev_attr,
279 					   char *buf)
280 {
281 	struct hv_device *hv_dev = device_to_hv_device(dev);
282 
283 	if (!hv_dev->channel)
284 		return -ENODEV;
285 	return sprintf(buf, "%d\n",
286 		       channel_latency(hv_dev->channel,
287 				       vmbus_connection.monitor_pages[1]));
288 }
289 static DEVICE_ATTR_RO(client_monitor_latency);
290 
291 static ssize_t server_monitor_conn_id_show(struct device *dev,
292 					   struct device_attribute *dev_attr,
293 					   char *buf)
294 {
295 	struct hv_device *hv_dev = device_to_hv_device(dev);
296 
297 	if (!hv_dev->channel)
298 		return -ENODEV;
299 	return sprintf(buf, "%d\n",
300 		       channel_conn_id(hv_dev->channel,
301 				       vmbus_connection.monitor_pages[0]));
302 }
303 static DEVICE_ATTR_RO(server_monitor_conn_id);
304 
305 static ssize_t client_monitor_conn_id_show(struct device *dev,
306 					   struct device_attribute *dev_attr,
307 					   char *buf)
308 {
309 	struct hv_device *hv_dev = device_to_hv_device(dev);
310 
311 	if (!hv_dev->channel)
312 		return -ENODEV;
313 	return sprintf(buf, "%d\n",
314 		       channel_conn_id(hv_dev->channel,
315 				       vmbus_connection.monitor_pages[1]));
316 }
317 static DEVICE_ATTR_RO(client_monitor_conn_id);
318 
319 static ssize_t out_intr_mask_show(struct device *dev,
320 				  struct device_attribute *dev_attr, char *buf)
321 {
322 	struct hv_device *hv_dev = device_to_hv_device(dev);
323 	struct hv_ring_buffer_debug_info outbound;
324 	int ret;
325 
326 	if (!hv_dev->channel)
327 		return -ENODEV;
328 
329 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
330 					  &outbound);
331 	if (ret < 0)
332 		return ret;
333 
334 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
335 }
336 static DEVICE_ATTR_RO(out_intr_mask);
337 
338 static ssize_t out_read_index_show(struct device *dev,
339 				   struct device_attribute *dev_attr, char *buf)
340 {
341 	struct hv_device *hv_dev = device_to_hv_device(dev);
342 	struct hv_ring_buffer_debug_info outbound;
343 	int ret;
344 
345 	if (!hv_dev->channel)
346 		return -ENODEV;
347 
348 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
349 					  &outbound);
350 	if (ret < 0)
351 		return ret;
352 	return sprintf(buf, "%d\n", outbound.current_read_index);
353 }
354 static DEVICE_ATTR_RO(out_read_index);
355 
356 static ssize_t out_write_index_show(struct device *dev,
357 				    struct device_attribute *dev_attr,
358 				    char *buf)
359 {
360 	struct hv_device *hv_dev = device_to_hv_device(dev);
361 	struct hv_ring_buffer_debug_info outbound;
362 	int ret;
363 
364 	if (!hv_dev->channel)
365 		return -ENODEV;
366 
367 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
368 					  &outbound);
369 	if (ret < 0)
370 		return ret;
371 	return sprintf(buf, "%d\n", outbound.current_write_index);
372 }
373 static DEVICE_ATTR_RO(out_write_index);
374 
375 static ssize_t out_read_bytes_avail_show(struct device *dev,
376 					 struct device_attribute *dev_attr,
377 					 char *buf)
378 {
379 	struct hv_device *hv_dev = device_to_hv_device(dev);
380 	struct hv_ring_buffer_debug_info outbound;
381 	int ret;
382 
383 	if (!hv_dev->channel)
384 		return -ENODEV;
385 
386 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
387 					  &outbound);
388 	if (ret < 0)
389 		return ret;
390 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
391 }
392 static DEVICE_ATTR_RO(out_read_bytes_avail);
393 
394 static ssize_t out_write_bytes_avail_show(struct device *dev,
395 					  struct device_attribute *dev_attr,
396 					  char *buf)
397 {
398 	struct hv_device *hv_dev = device_to_hv_device(dev);
399 	struct hv_ring_buffer_debug_info outbound;
400 	int ret;
401 
402 	if (!hv_dev->channel)
403 		return -ENODEV;
404 
405 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
406 					  &outbound);
407 	if (ret < 0)
408 		return ret;
409 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
410 }
411 static DEVICE_ATTR_RO(out_write_bytes_avail);
412 
413 static ssize_t in_intr_mask_show(struct device *dev,
414 				 struct device_attribute *dev_attr, char *buf)
415 {
416 	struct hv_device *hv_dev = device_to_hv_device(dev);
417 	struct hv_ring_buffer_debug_info inbound;
418 	int ret;
419 
420 	if (!hv_dev->channel)
421 		return -ENODEV;
422 
423 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 	if (ret < 0)
425 		return ret;
426 
427 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
428 }
429 static DEVICE_ATTR_RO(in_intr_mask);
430 
431 static ssize_t in_read_index_show(struct device *dev,
432 				  struct device_attribute *dev_attr, char *buf)
433 {
434 	struct hv_device *hv_dev = device_to_hv_device(dev);
435 	struct hv_ring_buffer_debug_info inbound;
436 	int ret;
437 
438 	if (!hv_dev->channel)
439 		return -ENODEV;
440 
441 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 	if (ret < 0)
443 		return ret;
444 
445 	return sprintf(buf, "%d\n", inbound.current_read_index);
446 }
447 static DEVICE_ATTR_RO(in_read_index);
448 
449 static ssize_t in_write_index_show(struct device *dev,
450 				   struct device_attribute *dev_attr, char *buf)
451 {
452 	struct hv_device *hv_dev = device_to_hv_device(dev);
453 	struct hv_ring_buffer_debug_info inbound;
454 	int ret;
455 
456 	if (!hv_dev->channel)
457 		return -ENODEV;
458 
459 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
460 	if (ret < 0)
461 		return ret;
462 
463 	return sprintf(buf, "%d\n", inbound.current_write_index);
464 }
465 static DEVICE_ATTR_RO(in_write_index);
466 
467 static ssize_t in_read_bytes_avail_show(struct device *dev,
468 					struct device_attribute *dev_attr,
469 					char *buf)
470 {
471 	struct hv_device *hv_dev = device_to_hv_device(dev);
472 	struct hv_ring_buffer_debug_info inbound;
473 	int ret;
474 
475 	if (!hv_dev->channel)
476 		return -ENODEV;
477 
478 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
479 	if (ret < 0)
480 		return ret;
481 
482 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
483 }
484 static DEVICE_ATTR_RO(in_read_bytes_avail);
485 
486 static ssize_t in_write_bytes_avail_show(struct device *dev,
487 					 struct device_attribute *dev_attr,
488 					 char *buf)
489 {
490 	struct hv_device *hv_dev = device_to_hv_device(dev);
491 	struct hv_ring_buffer_debug_info inbound;
492 	int ret;
493 
494 	if (!hv_dev->channel)
495 		return -ENODEV;
496 
497 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
498 	if (ret < 0)
499 		return ret;
500 
501 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
502 }
503 static DEVICE_ATTR_RO(in_write_bytes_avail);
504 
505 static ssize_t channel_vp_mapping_show(struct device *dev,
506 				       struct device_attribute *dev_attr,
507 				       char *buf)
508 {
509 	struct hv_device *hv_dev = device_to_hv_device(dev);
510 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
511 	unsigned long flags;
512 	int buf_size = PAGE_SIZE, n_written, tot_written;
513 	struct list_head *cur;
514 
515 	if (!channel)
516 		return -ENODEV;
517 
518 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
519 		channel->offermsg.child_relid, channel->target_cpu);
520 
521 	spin_lock_irqsave(&channel->lock, flags);
522 
523 	list_for_each(cur, &channel->sc_list) {
524 		if (tot_written >= buf_size - 1)
525 			break;
526 
527 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
528 		n_written = scnprintf(buf + tot_written,
529 				     buf_size - tot_written,
530 				     "%u:%u\n",
531 				     cur_sc->offermsg.child_relid,
532 				     cur_sc->target_cpu);
533 		tot_written += n_written;
534 	}
535 
536 	spin_unlock_irqrestore(&channel->lock, flags);
537 
538 	return tot_written;
539 }
540 static DEVICE_ATTR_RO(channel_vp_mapping);
541 
542 static ssize_t vendor_show(struct device *dev,
543 			   struct device_attribute *dev_attr,
544 			   char *buf)
545 {
546 	struct hv_device *hv_dev = device_to_hv_device(dev);
547 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
548 }
549 static DEVICE_ATTR_RO(vendor);
550 
551 static ssize_t device_show(struct device *dev,
552 			   struct device_attribute *dev_attr,
553 			   char *buf)
554 {
555 	struct hv_device *hv_dev = device_to_hv_device(dev);
556 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
557 }
558 static DEVICE_ATTR_RO(device);
559 
560 static ssize_t driver_override_store(struct device *dev,
561 				     struct device_attribute *attr,
562 				     const char *buf, size_t count)
563 {
564 	struct hv_device *hv_dev = device_to_hv_device(dev);
565 	char *driver_override, *old, *cp;
566 
567 	/* We need to keep extra room for a newline */
568 	if (count >= (PAGE_SIZE - 1))
569 		return -EINVAL;
570 
571 	driver_override = kstrndup(buf, count, GFP_KERNEL);
572 	if (!driver_override)
573 		return -ENOMEM;
574 
575 	cp = strchr(driver_override, '\n');
576 	if (cp)
577 		*cp = '\0';
578 
579 	device_lock(dev);
580 	old = hv_dev->driver_override;
581 	if (strlen(driver_override)) {
582 		hv_dev->driver_override = driver_override;
583 	} else {
584 		kfree(driver_override);
585 		hv_dev->driver_override = NULL;
586 	}
587 	device_unlock(dev);
588 
589 	kfree(old);
590 
591 	return count;
592 }
593 
594 static ssize_t driver_override_show(struct device *dev,
595 				    struct device_attribute *attr, char *buf)
596 {
597 	struct hv_device *hv_dev = device_to_hv_device(dev);
598 	ssize_t len;
599 
600 	device_lock(dev);
601 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
602 	device_unlock(dev);
603 
604 	return len;
605 }
606 static DEVICE_ATTR_RW(driver_override);
607 
608 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
609 static struct attribute *vmbus_dev_attrs[] = {
610 	&dev_attr_id.attr,
611 	&dev_attr_state.attr,
612 	&dev_attr_monitor_id.attr,
613 	&dev_attr_class_id.attr,
614 	&dev_attr_device_id.attr,
615 	&dev_attr_modalias.attr,
616 #ifdef CONFIG_NUMA
617 	&dev_attr_numa_node.attr,
618 #endif
619 	&dev_attr_server_monitor_pending.attr,
620 	&dev_attr_client_monitor_pending.attr,
621 	&dev_attr_server_monitor_latency.attr,
622 	&dev_attr_client_monitor_latency.attr,
623 	&dev_attr_server_monitor_conn_id.attr,
624 	&dev_attr_client_monitor_conn_id.attr,
625 	&dev_attr_out_intr_mask.attr,
626 	&dev_attr_out_read_index.attr,
627 	&dev_attr_out_write_index.attr,
628 	&dev_attr_out_read_bytes_avail.attr,
629 	&dev_attr_out_write_bytes_avail.attr,
630 	&dev_attr_in_intr_mask.attr,
631 	&dev_attr_in_read_index.attr,
632 	&dev_attr_in_write_index.attr,
633 	&dev_attr_in_read_bytes_avail.attr,
634 	&dev_attr_in_write_bytes_avail.attr,
635 	&dev_attr_channel_vp_mapping.attr,
636 	&dev_attr_vendor.attr,
637 	&dev_attr_device.attr,
638 	&dev_attr_driver_override.attr,
639 	NULL,
640 };
641 
642 /*
643  * Device-level attribute_group callback function. Returns the permission for
644  * each attribute, and returns 0 if an attribute is not visible.
645  */
646 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
647 					 struct attribute *attr, int idx)
648 {
649 	struct device *dev = kobj_to_dev(kobj);
650 	const struct hv_device *hv_dev = device_to_hv_device(dev);
651 
652 	/* Hide the monitor attributes if the monitor mechanism is not used. */
653 	if (!hv_dev->channel->offermsg.monitor_allocated &&
654 	    (attr == &dev_attr_monitor_id.attr ||
655 	     attr == &dev_attr_server_monitor_pending.attr ||
656 	     attr == &dev_attr_client_monitor_pending.attr ||
657 	     attr == &dev_attr_server_monitor_latency.attr ||
658 	     attr == &dev_attr_client_monitor_latency.attr ||
659 	     attr == &dev_attr_server_monitor_conn_id.attr ||
660 	     attr == &dev_attr_client_monitor_conn_id.attr))
661 		return 0;
662 
663 	return attr->mode;
664 }
665 
666 static const struct attribute_group vmbus_dev_group = {
667 	.attrs = vmbus_dev_attrs,
668 	.is_visible = vmbus_dev_attr_is_visible
669 };
670 __ATTRIBUTE_GROUPS(vmbus_dev);
671 
672 /*
673  * vmbus_uevent - add uevent for our device
674  *
675  * This routine is invoked when a device is added or removed on the vmbus to
676  * generate a uevent to udev in the userspace. The udev will then look at its
677  * rule and the uevent generated here to load the appropriate driver
678  *
679  * The alias string will be of the form vmbus:guid where guid is the string
680  * representation of the device guid (each byte of the guid will be
681  * represented with two hex characters.
682  */
683 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
684 {
685 	struct hv_device *dev = device_to_hv_device(device);
686 	const char *format = "MODALIAS=vmbus:%*phN";
687 
688 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
689 }
690 
691 static const struct hv_vmbus_device_id *
692 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
693 {
694 	if (id == NULL)
695 		return NULL; /* empty device table */
696 
697 	for (; !guid_is_null(&id->guid); id++)
698 		if (guid_equal(&id->guid, guid))
699 			return id;
700 
701 	return NULL;
702 }
703 
704 static const struct hv_vmbus_device_id *
705 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
706 {
707 	const struct hv_vmbus_device_id *id = NULL;
708 	struct vmbus_dynid *dynid;
709 
710 	spin_lock(&drv->dynids.lock);
711 	list_for_each_entry(dynid, &drv->dynids.list, node) {
712 		if (guid_equal(&dynid->id.guid, guid)) {
713 			id = &dynid->id;
714 			break;
715 		}
716 	}
717 	spin_unlock(&drv->dynids.lock);
718 
719 	return id;
720 }
721 
722 static const struct hv_vmbus_device_id vmbus_device_null;
723 
724 /*
725  * Return a matching hv_vmbus_device_id pointer.
726  * If there is no match, return NULL.
727  */
728 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
729 							struct hv_device *dev)
730 {
731 	const guid_t *guid = &dev->dev_type;
732 	const struct hv_vmbus_device_id *id;
733 
734 	/* When driver_override is set, only bind to the matching driver */
735 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
736 		return NULL;
737 
738 	/* Look at the dynamic ids first, before the static ones */
739 	id = hv_vmbus_dynid_match(drv, guid);
740 	if (!id)
741 		id = hv_vmbus_dev_match(drv->id_table, guid);
742 
743 	/* driver_override will always match, send a dummy id */
744 	if (!id && dev->driver_override)
745 		id = &vmbus_device_null;
746 
747 	return id;
748 }
749 
750 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
751 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
752 {
753 	struct vmbus_dynid *dynid;
754 
755 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
756 	if (!dynid)
757 		return -ENOMEM;
758 
759 	dynid->id.guid = *guid;
760 
761 	spin_lock(&drv->dynids.lock);
762 	list_add_tail(&dynid->node, &drv->dynids.list);
763 	spin_unlock(&drv->dynids.lock);
764 
765 	return driver_attach(&drv->driver);
766 }
767 
768 static void vmbus_free_dynids(struct hv_driver *drv)
769 {
770 	struct vmbus_dynid *dynid, *n;
771 
772 	spin_lock(&drv->dynids.lock);
773 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
774 		list_del(&dynid->node);
775 		kfree(dynid);
776 	}
777 	spin_unlock(&drv->dynids.lock);
778 }
779 
780 /*
781  * store_new_id - sysfs frontend to vmbus_add_dynid()
782  *
783  * Allow GUIDs to be added to an existing driver via sysfs.
784  */
785 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
786 			    size_t count)
787 {
788 	struct hv_driver *drv = drv_to_hv_drv(driver);
789 	guid_t guid;
790 	ssize_t retval;
791 
792 	retval = guid_parse(buf, &guid);
793 	if (retval)
794 		return retval;
795 
796 	if (hv_vmbus_dynid_match(drv, &guid))
797 		return -EEXIST;
798 
799 	retval = vmbus_add_dynid(drv, &guid);
800 	if (retval)
801 		return retval;
802 	return count;
803 }
804 static DRIVER_ATTR_WO(new_id);
805 
806 /*
807  * store_remove_id - remove a PCI device ID from this driver
808  *
809  * Removes a dynamic pci device ID to this driver.
810  */
811 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
812 			       size_t count)
813 {
814 	struct hv_driver *drv = drv_to_hv_drv(driver);
815 	struct vmbus_dynid *dynid, *n;
816 	guid_t guid;
817 	ssize_t retval;
818 
819 	retval = guid_parse(buf, &guid);
820 	if (retval)
821 		return retval;
822 
823 	retval = -ENODEV;
824 	spin_lock(&drv->dynids.lock);
825 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
826 		struct hv_vmbus_device_id *id = &dynid->id;
827 
828 		if (guid_equal(&id->guid, &guid)) {
829 			list_del(&dynid->node);
830 			kfree(dynid);
831 			retval = count;
832 			break;
833 		}
834 	}
835 	spin_unlock(&drv->dynids.lock);
836 
837 	return retval;
838 }
839 static DRIVER_ATTR_WO(remove_id);
840 
841 static struct attribute *vmbus_drv_attrs[] = {
842 	&driver_attr_new_id.attr,
843 	&driver_attr_remove_id.attr,
844 	NULL,
845 };
846 ATTRIBUTE_GROUPS(vmbus_drv);
847 
848 
849 /*
850  * vmbus_match - Attempt to match the specified device to the specified driver
851  */
852 static int vmbus_match(struct device *device, struct device_driver *driver)
853 {
854 	struct hv_driver *drv = drv_to_hv_drv(driver);
855 	struct hv_device *hv_dev = device_to_hv_device(device);
856 
857 	/* The hv_sock driver handles all hv_sock offers. */
858 	if (is_hvsock_channel(hv_dev->channel))
859 		return drv->hvsock;
860 
861 	if (hv_vmbus_get_id(drv, hv_dev))
862 		return 1;
863 
864 	return 0;
865 }
866 
867 /*
868  * vmbus_probe - Add the new vmbus's child device
869  */
870 static int vmbus_probe(struct device *child_device)
871 {
872 	int ret = 0;
873 	struct hv_driver *drv =
874 			drv_to_hv_drv(child_device->driver);
875 	struct hv_device *dev = device_to_hv_device(child_device);
876 	const struct hv_vmbus_device_id *dev_id;
877 
878 	dev_id = hv_vmbus_get_id(drv, dev);
879 	if (drv->probe) {
880 		ret = drv->probe(dev, dev_id);
881 		if (ret != 0)
882 			pr_err("probe failed for device %s (%d)\n",
883 			       dev_name(child_device), ret);
884 
885 	} else {
886 		pr_err("probe not set for driver %s\n",
887 		       dev_name(child_device));
888 		ret = -ENODEV;
889 	}
890 	return ret;
891 }
892 
893 /*
894  * vmbus_remove - Remove a vmbus device
895  */
896 static int vmbus_remove(struct device *child_device)
897 {
898 	struct hv_driver *drv;
899 	struct hv_device *dev = device_to_hv_device(child_device);
900 
901 	if (child_device->driver) {
902 		drv = drv_to_hv_drv(child_device->driver);
903 		if (drv->remove)
904 			drv->remove(dev);
905 	}
906 
907 	return 0;
908 }
909 
910 
911 /*
912  * vmbus_shutdown - Shutdown a vmbus device
913  */
914 static void vmbus_shutdown(struct device *child_device)
915 {
916 	struct hv_driver *drv;
917 	struct hv_device *dev = device_to_hv_device(child_device);
918 
919 
920 	/* The device may not be attached yet */
921 	if (!child_device->driver)
922 		return;
923 
924 	drv = drv_to_hv_drv(child_device->driver);
925 
926 	if (drv->shutdown)
927 		drv->shutdown(dev);
928 }
929 
930 #ifdef CONFIG_PM_SLEEP
931 /*
932  * vmbus_suspend - Suspend a vmbus device
933  */
934 static int vmbus_suspend(struct device *child_device)
935 {
936 	struct hv_driver *drv;
937 	struct hv_device *dev = device_to_hv_device(child_device);
938 
939 	/* The device may not be attached yet */
940 	if (!child_device->driver)
941 		return 0;
942 
943 	drv = drv_to_hv_drv(child_device->driver);
944 	if (!drv->suspend)
945 		return -EOPNOTSUPP;
946 
947 	return drv->suspend(dev);
948 }
949 
950 /*
951  * vmbus_resume - Resume a vmbus device
952  */
953 static int vmbus_resume(struct device *child_device)
954 {
955 	struct hv_driver *drv;
956 	struct hv_device *dev = device_to_hv_device(child_device);
957 
958 	/* The device may not be attached yet */
959 	if (!child_device->driver)
960 		return 0;
961 
962 	drv = drv_to_hv_drv(child_device->driver);
963 	if (!drv->resume)
964 		return -EOPNOTSUPP;
965 
966 	return drv->resume(dev);
967 }
968 #else
969 #define vmbus_suspend NULL
970 #define vmbus_resume NULL
971 #endif /* CONFIG_PM_SLEEP */
972 
973 /*
974  * vmbus_device_release - Final callback release of the vmbus child device
975  */
976 static void vmbus_device_release(struct device *device)
977 {
978 	struct hv_device *hv_dev = device_to_hv_device(device);
979 	struct vmbus_channel *channel = hv_dev->channel;
980 
981 	hv_debug_rm_dev_dir(hv_dev);
982 
983 	mutex_lock(&vmbus_connection.channel_mutex);
984 	hv_process_channel_removal(channel);
985 	mutex_unlock(&vmbus_connection.channel_mutex);
986 	kfree(hv_dev);
987 }
988 
989 /*
990  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
991  *
992  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
993  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
994  * is no way to wake up a Generation-2 VM.
995  *
996  * The other 4 ops are for hibernation.
997  */
998 
999 static const struct dev_pm_ops vmbus_pm = {
1000 	.suspend_noirq	= NULL,
1001 	.resume_noirq	= NULL,
1002 	.freeze_noirq	= vmbus_suspend,
1003 	.thaw_noirq	= vmbus_resume,
1004 	.poweroff_noirq	= vmbus_suspend,
1005 	.restore_noirq	= vmbus_resume,
1006 };
1007 
1008 /* The one and only one */
1009 static struct bus_type  hv_bus = {
1010 	.name =		"vmbus",
1011 	.match =		vmbus_match,
1012 	.shutdown =		vmbus_shutdown,
1013 	.remove =		vmbus_remove,
1014 	.probe =		vmbus_probe,
1015 	.uevent =		vmbus_uevent,
1016 	.dev_groups =		vmbus_dev_groups,
1017 	.drv_groups =		vmbus_drv_groups,
1018 	.pm =			&vmbus_pm,
1019 };
1020 
1021 struct onmessage_work_context {
1022 	struct work_struct work;
1023 	struct {
1024 		struct hv_message_header header;
1025 		u8 payload[];
1026 	} msg;
1027 };
1028 
1029 static void vmbus_onmessage_work(struct work_struct *work)
1030 {
1031 	struct onmessage_work_context *ctx;
1032 
1033 	/* Do not process messages if we're in DISCONNECTED state */
1034 	if (vmbus_connection.conn_state == DISCONNECTED)
1035 		return;
1036 
1037 	ctx = container_of(work, struct onmessage_work_context,
1038 			   work);
1039 	vmbus_onmessage((struct vmbus_channel_message_header *)
1040 			&ctx->msg.payload);
1041 	kfree(ctx);
1042 }
1043 
1044 void vmbus_on_msg_dpc(unsigned long data)
1045 {
1046 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1047 	void *page_addr = hv_cpu->synic_message_page;
1048 	struct hv_message *msg = (struct hv_message *)page_addr +
1049 				  VMBUS_MESSAGE_SINT;
1050 	struct vmbus_channel_message_header *hdr;
1051 	const struct vmbus_channel_message_table_entry *entry;
1052 	struct onmessage_work_context *ctx;
1053 	u32 message_type = msg->header.message_type;
1054 
1055 	/*
1056 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1057 	 * it is being used in 'struct vmbus_channel_message_header' definition
1058 	 * which is supposed to match hypervisor ABI.
1059 	 */
1060 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1061 
1062 	if (message_type == HVMSG_NONE)
1063 		/* no msg */
1064 		return;
1065 
1066 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1067 
1068 	trace_vmbus_on_msg_dpc(hdr);
1069 
1070 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1071 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1072 		goto msg_handled;
1073 	}
1074 
1075 	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1076 		WARN_ONCE(1, "payload size is too large (%d)\n",
1077 			  msg->header.payload_size);
1078 		goto msg_handled;
1079 	}
1080 
1081 	entry = &channel_message_table[hdr->msgtype];
1082 
1083 	if (!entry->message_handler)
1084 		goto msg_handled;
1085 
1086 	if (msg->header.payload_size < entry->min_payload_len) {
1087 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
1088 			  hdr->msgtype, msg->header.payload_size);
1089 		goto msg_handled;
1090 	}
1091 
1092 	if (entry->handler_type	== VMHT_BLOCKING) {
1093 		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
1094 			      GFP_ATOMIC);
1095 		if (ctx == NULL)
1096 			return;
1097 
1098 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1099 		memcpy(&ctx->msg, msg, sizeof(msg->header) +
1100 		       msg->header.payload_size);
1101 
1102 		/*
1103 		 * The host can generate a rescind message while we
1104 		 * may still be handling the original offer. We deal with
1105 		 * this condition by relying on the synchronization provided
1106 		 * by offer_in_progress and by channel_mutex.  See also the
1107 		 * inline comments in vmbus_onoffer_rescind().
1108 		 */
1109 		switch (hdr->msgtype) {
1110 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1111 			/*
1112 			 * If we are handling the rescind message;
1113 			 * schedule the work on the global work queue.
1114 			 *
1115 			 * The OFFER message and the RESCIND message should
1116 			 * not be handled by the same serialized work queue,
1117 			 * because the OFFER handler may call vmbus_open(),
1118 			 * which tries to open the channel by sending an
1119 			 * OPEN_CHANNEL message to the host and waits for
1120 			 * the host's response; however, if the host has
1121 			 * rescinded the channel before it receives the
1122 			 * OPEN_CHANNEL message, the host just silently
1123 			 * ignores the OPEN_CHANNEL message; as a result,
1124 			 * the guest's OFFER handler hangs for ever, if we
1125 			 * handle the RESCIND message in the same serialized
1126 			 * work queue: the RESCIND handler can not start to
1127 			 * run before the OFFER handler finishes.
1128 			 */
1129 			schedule_work(&ctx->work);
1130 			break;
1131 
1132 		case CHANNELMSG_OFFERCHANNEL:
1133 			/*
1134 			 * The host sends the offer message of a given channel
1135 			 * before sending the rescind message of the same
1136 			 * channel.  These messages are sent to the guest's
1137 			 * connect CPU; the guest then starts processing them
1138 			 * in the tasklet handler on this CPU:
1139 			 *
1140 			 * VMBUS_CONNECT_CPU
1141 			 *
1142 			 * [vmbus_on_msg_dpc()]
1143 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1144 			 * queue_work()
1145 			 * ...
1146 			 * [vmbus_on_msg_dpc()]
1147 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1148 			 *
1149 			 * We rely on the memory-ordering properties of the
1150 			 * queue_work() and schedule_work() primitives, which
1151 			 * guarantee that the atomic increment will be visible
1152 			 * to the CPUs which will execute the offer & rescind
1153 			 * works by the time these works will start execution.
1154 			 */
1155 			atomic_inc(&vmbus_connection.offer_in_progress);
1156 			fallthrough;
1157 
1158 		default:
1159 			queue_work(vmbus_connection.work_queue, &ctx->work);
1160 		}
1161 	} else
1162 		entry->message_handler(hdr);
1163 
1164 msg_handled:
1165 	vmbus_signal_eom(msg, message_type);
1166 }
1167 
1168 #ifdef CONFIG_PM_SLEEP
1169 /*
1170  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1171  * hibernation, because hv_sock connections can not persist across hibernation.
1172  */
1173 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1174 {
1175 	struct onmessage_work_context *ctx;
1176 	struct vmbus_channel_rescind_offer *rescind;
1177 
1178 	WARN_ON(!is_hvsock_channel(channel));
1179 
1180 	/*
1181 	 * Allocation size is small and the allocation should really not fail,
1182 	 * otherwise the state of the hv_sock connections ends up in limbo.
1183 	 */
1184 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1185 		      GFP_KERNEL | __GFP_NOFAIL);
1186 
1187 	/*
1188 	 * So far, these are not really used by Linux. Just set them to the
1189 	 * reasonable values conforming to the definitions of the fields.
1190 	 */
1191 	ctx->msg.header.message_type = 1;
1192 	ctx->msg.header.payload_size = sizeof(*rescind);
1193 
1194 	/* These values are actually used by Linux. */
1195 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1196 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1197 	rescind->child_relid = channel->offermsg.child_relid;
1198 
1199 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1200 
1201 	queue_work(vmbus_connection.work_queue, &ctx->work);
1202 }
1203 #endif /* CONFIG_PM_SLEEP */
1204 
1205 /*
1206  * Schedule all channels with events pending
1207  */
1208 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1209 {
1210 	unsigned long *recv_int_page;
1211 	u32 maxbits, relid;
1212 
1213 	if (vmbus_proto_version < VERSION_WIN8) {
1214 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1215 		recv_int_page = vmbus_connection.recv_int_page;
1216 	} else {
1217 		/*
1218 		 * When the host is win8 and beyond, the event page
1219 		 * can be directly checked to get the id of the channel
1220 		 * that has the interrupt pending.
1221 		 */
1222 		void *page_addr = hv_cpu->synic_event_page;
1223 		union hv_synic_event_flags *event
1224 			= (union hv_synic_event_flags *)page_addr +
1225 						 VMBUS_MESSAGE_SINT;
1226 
1227 		maxbits = HV_EVENT_FLAGS_COUNT;
1228 		recv_int_page = event->flags;
1229 	}
1230 
1231 	if (unlikely(!recv_int_page))
1232 		return;
1233 
1234 	for_each_set_bit(relid, recv_int_page, maxbits) {
1235 		void (*callback_fn)(void *context);
1236 		struct vmbus_channel *channel;
1237 
1238 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1239 			continue;
1240 
1241 		/* Special case - vmbus channel protocol msg */
1242 		if (relid == 0)
1243 			continue;
1244 
1245 		/*
1246 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1247 		 * Guarantees that the channel data structure doesn't
1248 		 * get freed while the channel pointer below is being
1249 		 * dereferenced.
1250 		 */
1251 		rcu_read_lock();
1252 
1253 		/* Find channel based on relid */
1254 		channel = relid2channel(relid);
1255 		if (channel == NULL)
1256 			goto sched_unlock_rcu;
1257 
1258 		if (channel->rescind)
1259 			goto sched_unlock_rcu;
1260 
1261 		/*
1262 		 * Make sure that the ring buffer data structure doesn't get
1263 		 * freed while we dereference the ring buffer pointer.  Test
1264 		 * for the channel's onchannel_callback being NULL within a
1265 		 * sched_lock critical section.  See also the inline comments
1266 		 * in vmbus_reset_channel_cb().
1267 		 */
1268 		spin_lock(&channel->sched_lock);
1269 
1270 		callback_fn = channel->onchannel_callback;
1271 		if (unlikely(callback_fn == NULL))
1272 			goto sched_unlock;
1273 
1274 		trace_vmbus_chan_sched(channel);
1275 
1276 		++channel->interrupts;
1277 
1278 		switch (channel->callback_mode) {
1279 		case HV_CALL_ISR:
1280 			(*callback_fn)(channel->channel_callback_context);
1281 			break;
1282 
1283 		case HV_CALL_BATCHED:
1284 			hv_begin_read(&channel->inbound);
1285 			fallthrough;
1286 		case HV_CALL_DIRECT:
1287 			tasklet_schedule(&channel->callback_event);
1288 		}
1289 
1290 sched_unlock:
1291 		spin_unlock(&channel->sched_lock);
1292 sched_unlock_rcu:
1293 		rcu_read_unlock();
1294 	}
1295 }
1296 
1297 static void vmbus_isr(void)
1298 {
1299 	struct hv_per_cpu_context *hv_cpu
1300 		= this_cpu_ptr(hv_context.cpu_context);
1301 	void *page_addr = hv_cpu->synic_event_page;
1302 	struct hv_message *msg;
1303 	union hv_synic_event_flags *event;
1304 	bool handled = false;
1305 
1306 	if (unlikely(page_addr == NULL))
1307 		return;
1308 
1309 	event = (union hv_synic_event_flags *)page_addr +
1310 					 VMBUS_MESSAGE_SINT;
1311 	/*
1312 	 * Check for events before checking for messages. This is the order
1313 	 * in which events and messages are checked in Windows guests on
1314 	 * Hyper-V, and the Windows team suggested we do the same.
1315 	 */
1316 
1317 	if ((vmbus_proto_version == VERSION_WS2008) ||
1318 		(vmbus_proto_version == VERSION_WIN7)) {
1319 
1320 		/* Since we are a child, we only need to check bit 0 */
1321 		if (sync_test_and_clear_bit(0, event->flags))
1322 			handled = true;
1323 	} else {
1324 		/*
1325 		 * Our host is win8 or above. The signaling mechanism
1326 		 * has changed and we can directly look at the event page.
1327 		 * If bit n is set then we have an interrup on the channel
1328 		 * whose id is n.
1329 		 */
1330 		handled = true;
1331 	}
1332 
1333 	if (handled)
1334 		vmbus_chan_sched(hv_cpu);
1335 
1336 	page_addr = hv_cpu->synic_message_page;
1337 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1338 
1339 	/* Check if there are actual msgs to be processed */
1340 	if (msg->header.message_type != HVMSG_NONE) {
1341 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1342 			hv_stimer0_isr();
1343 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1344 		} else
1345 			tasklet_schedule(&hv_cpu->msg_dpc);
1346 	}
1347 
1348 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1349 }
1350 
1351 /*
1352  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1353  * buffer and call into Hyper-V to transfer the data.
1354  */
1355 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1356 			 enum kmsg_dump_reason reason)
1357 {
1358 	size_t bytes_written;
1359 	phys_addr_t panic_pa;
1360 
1361 	/* We are only interested in panics. */
1362 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1363 		return;
1364 
1365 	panic_pa = virt_to_phys(hv_panic_page);
1366 
1367 	/*
1368 	 * Write dump contents to the page. No need to synchronize; panic should
1369 	 * be single-threaded.
1370 	 */
1371 	kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1372 			     &bytes_written);
1373 	if (bytes_written)
1374 		hyperv_report_panic_msg(panic_pa, bytes_written);
1375 }
1376 
1377 static struct kmsg_dumper hv_kmsg_dumper = {
1378 	.dump = hv_kmsg_dump,
1379 };
1380 
1381 static struct ctl_table_header *hv_ctl_table_hdr;
1382 
1383 /*
1384  * sysctl option to allow the user to control whether kmsg data should be
1385  * reported to Hyper-V on panic.
1386  */
1387 static struct ctl_table hv_ctl_table[] = {
1388 	{
1389 		.procname       = "hyperv_record_panic_msg",
1390 		.data           = &sysctl_record_panic_msg,
1391 		.maxlen         = sizeof(int),
1392 		.mode           = 0644,
1393 		.proc_handler   = proc_dointvec_minmax,
1394 		.extra1		= SYSCTL_ZERO,
1395 		.extra2		= SYSCTL_ONE
1396 	},
1397 	{}
1398 };
1399 
1400 static struct ctl_table hv_root_table[] = {
1401 	{
1402 		.procname	= "kernel",
1403 		.mode		= 0555,
1404 		.child		= hv_ctl_table
1405 	},
1406 	{}
1407 };
1408 
1409 /*
1410  * vmbus_bus_init -Main vmbus driver initialization routine.
1411  *
1412  * Here, we
1413  *	- initialize the vmbus driver context
1414  *	- invoke the vmbus hv main init routine
1415  *	- retrieve the channel offers
1416  */
1417 static int vmbus_bus_init(void)
1418 {
1419 	int ret;
1420 
1421 	ret = hv_init();
1422 	if (ret != 0) {
1423 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1424 		return ret;
1425 	}
1426 
1427 	ret = bus_register(&hv_bus);
1428 	if (ret)
1429 		return ret;
1430 
1431 	hv_setup_vmbus_irq(vmbus_isr);
1432 
1433 	ret = hv_synic_alloc();
1434 	if (ret)
1435 		goto err_alloc;
1436 
1437 	/*
1438 	 * Initialize the per-cpu interrupt state and stimer state.
1439 	 * Then connect to the host.
1440 	 */
1441 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1442 				hv_synic_init, hv_synic_cleanup);
1443 	if (ret < 0)
1444 		goto err_cpuhp;
1445 	hyperv_cpuhp_online = ret;
1446 
1447 	ret = vmbus_connect();
1448 	if (ret)
1449 		goto err_connect;
1450 
1451 	/*
1452 	 * Only register if the crash MSRs are available
1453 	 */
1454 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1455 		u64 hyperv_crash_ctl;
1456 		/*
1457 		 * Sysctl registration is not fatal, since by default
1458 		 * reporting is enabled.
1459 		 */
1460 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1461 		if (!hv_ctl_table_hdr)
1462 			pr_err("Hyper-V: sysctl table register error");
1463 
1464 		/*
1465 		 * Register for panic kmsg callback only if the right
1466 		 * capability is supported by the hypervisor.
1467 		 */
1468 		hv_get_crash_ctl(hyperv_crash_ctl);
1469 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1470 			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1471 			if (hv_panic_page) {
1472 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1473 				if (ret) {
1474 					pr_err("Hyper-V: kmsg dump register "
1475 						"error 0x%x\n", ret);
1476 					hv_free_hyperv_page(
1477 					    (unsigned long)hv_panic_page);
1478 					hv_panic_page = NULL;
1479 				}
1480 			} else
1481 				pr_err("Hyper-V: panic message page memory "
1482 					"allocation failed");
1483 		}
1484 
1485 		register_die_notifier(&hyperv_die_block);
1486 	}
1487 
1488 	/*
1489 	 * Always register the panic notifier because we need to unload
1490 	 * the VMbus channel connection to prevent any VMbus
1491 	 * activity after the VM panics.
1492 	 */
1493 	atomic_notifier_chain_register(&panic_notifier_list,
1494 			       &hyperv_panic_block);
1495 
1496 	vmbus_request_offers();
1497 
1498 	return 0;
1499 
1500 err_connect:
1501 	cpuhp_remove_state(hyperv_cpuhp_online);
1502 err_cpuhp:
1503 	hv_synic_free();
1504 err_alloc:
1505 	hv_remove_vmbus_irq();
1506 
1507 	bus_unregister(&hv_bus);
1508 	unregister_sysctl_table(hv_ctl_table_hdr);
1509 	hv_ctl_table_hdr = NULL;
1510 	return ret;
1511 }
1512 
1513 /**
1514  * __vmbus_child_driver_register() - Register a vmbus's driver
1515  * @hv_driver: Pointer to driver structure you want to register
1516  * @owner: owner module of the drv
1517  * @mod_name: module name string
1518  *
1519  * Registers the given driver with Linux through the 'driver_register()' call
1520  * and sets up the hyper-v vmbus handling for this driver.
1521  * It will return the state of the 'driver_register()' call.
1522  *
1523  */
1524 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1525 {
1526 	int ret;
1527 
1528 	pr_info("registering driver %s\n", hv_driver->name);
1529 
1530 	ret = vmbus_exists();
1531 	if (ret < 0)
1532 		return ret;
1533 
1534 	hv_driver->driver.name = hv_driver->name;
1535 	hv_driver->driver.owner = owner;
1536 	hv_driver->driver.mod_name = mod_name;
1537 	hv_driver->driver.bus = &hv_bus;
1538 
1539 	spin_lock_init(&hv_driver->dynids.lock);
1540 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1541 
1542 	ret = driver_register(&hv_driver->driver);
1543 
1544 	return ret;
1545 }
1546 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1547 
1548 /**
1549  * vmbus_driver_unregister() - Unregister a vmbus's driver
1550  * @hv_driver: Pointer to driver structure you want to
1551  *             un-register
1552  *
1553  * Un-register the given driver that was previous registered with a call to
1554  * vmbus_driver_register()
1555  */
1556 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1557 {
1558 	pr_info("unregistering driver %s\n", hv_driver->name);
1559 
1560 	if (!vmbus_exists()) {
1561 		driver_unregister(&hv_driver->driver);
1562 		vmbus_free_dynids(hv_driver);
1563 	}
1564 }
1565 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1566 
1567 
1568 /*
1569  * Called when last reference to channel is gone.
1570  */
1571 static void vmbus_chan_release(struct kobject *kobj)
1572 {
1573 	struct vmbus_channel *channel
1574 		= container_of(kobj, struct vmbus_channel, kobj);
1575 
1576 	kfree_rcu(channel, rcu);
1577 }
1578 
1579 struct vmbus_chan_attribute {
1580 	struct attribute attr;
1581 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1582 	ssize_t (*store)(struct vmbus_channel *chan,
1583 			 const char *buf, size_t count);
1584 };
1585 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1586 	struct vmbus_chan_attribute chan_attr_##_name \
1587 		= __ATTR(_name, _mode, _show, _store)
1588 #define VMBUS_CHAN_ATTR_RW(_name) \
1589 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1590 #define VMBUS_CHAN_ATTR_RO(_name) \
1591 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1592 #define VMBUS_CHAN_ATTR_WO(_name) \
1593 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1594 
1595 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1596 				    struct attribute *attr, char *buf)
1597 {
1598 	const struct vmbus_chan_attribute *attribute
1599 		= container_of(attr, struct vmbus_chan_attribute, attr);
1600 	struct vmbus_channel *chan
1601 		= container_of(kobj, struct vmbus_channel, kobj);
1602 
1603 	if (!attribute->show)
1604 		return -EIO;
1605 
1606 	return attribute->show(chan, buf);
1607 }
1608 
1609 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1610 				     struct attribute *attr, const char *buf,
1611 				     size_t count)
1612 {
1613 	const struct vmbus_chan_attribute *attribute
1614 		= container_of(attr, struct vmbus_chan_attribute, attr);
1615 	struct vmbus_channel *chan
1616 		= container_of(kobj, struct vmbus_channel, kobj);
1617 
1618 	if (!attribute->store)
1619 		return -EIO;
1620 
1621 	return attribute->store(chan, buf, count);
1622 }
1623 
1624 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1625 	.show = vmbus_chan_attr_show,
1626 	.store = vmbus_chan_attr_store,
1627 };
1628 
1629 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1630 {
1631 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1632 	ssize_t ret;
1633 
1634 	mutex_lock(&rbi->ring_buffer_mutex);
1635 	if (!rbi->ring_buffer) {
1636 		mutex_unlock(&rbi->ring_buffer_mutex);
1637 		return -EINVAL;
1638 	}
1639 
1640 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1641 	mutex_unlock(&rbi->ring_buffer_mutex);
1642 	return ret;
1643 }
1644 static VMBUS_CHAN_ATTR_RO(out_mask);
1645 
1646 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1647 {
1648 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1649 	ssize_t ret;
1650 
1651 	mutex_lock(&rbi->ring_buffer_mutex);
1652 	if (!rbi->ring_buffer) {
1653 		mutex_unlock(&rbi->ring_buffer_mutex);
1654 		return -EINVAL;
1655 	}
1656 
1657 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1658 	mutex_unlock(&rbi->ring_buffer_mutex);
1659 	return ret;
1660 }
1661 static VMBUS_CHAN_ATTR_RO(in_mask);
1662 
1663 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1664 {
1665 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1666 	ssize_t ret;
1667 
1668 	mutex_lock(&rbi->ring_buffer_mutex);
1669 	if (!rbi->ring_buffer) {
1670 		mutex_unlock(&rbi->ring_buffer_mutex);
1671 		return -EINVAL;
1672 	}
1673 
1674 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1675 	mutex_unlock(&rbi->ring_buffer_mutex);
1676 	return ret;
1677 }
1678 static VMBUS_CHAN_ATTR_RO(read_avail);
1679 
1680 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1681 {
1682 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1683 	ssize_t ret;
1684 
1685 	mutex_lock(&rbi->ring_buffer_mutex);
1686 	if (!rbi->ring_buffer) {
1687 		mutex_unlock(&rbi->ring_buffer_mutex);
1688 		return -EINVAL;
1689 	}
1690 
1691 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1692 	mutex_unlock(&rbi->ring_buffer_mutex);
1693 	return ret;
1694 }
1695 static VMBUS_CHAN_ATTR_RO(write_avail);
1696 
1697 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1698 {
1699 	return sprintf(buf, "%u\n", channel->target_cpu);
1700 }
1701 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1702 				const char *buf, size_t count)
1703 {
1704 	u32 target_cpu, origin_cpu;
1705 	ssize_t ret = count;
1706 
1707 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1708 		return -EIO;
1709 
1710 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1711 		return -EIO;
1712 
1713 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1714 	if (target_cpu >= nr_cpumask_bits)
1715 		return -EINVAL;
1716 
1717 	/* No CPUs should come up or down during this. */
1718 	cpus_read_lock();
1719 
1720 	if (!cpumask_test_cpu(target_cpu, cpu_online_mask)) {
1721 		cpus_read_unlock();
1722 		return -EINVAL;
1723 	}
1724 
1725 	/*
1726 	 * Synchronizes target_cpu_store() and channel closure:
1727 	 *
1728 	 * { Initially: state = CHANNEL_OPENED }
1729 	 *
1730 	 * CPU1				CPU2
1731 	 *
1732 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1733 	 *
1734 	 * LOCK channel_mutex		LOCK channel_mutex
1735 	 * LOAD r1 = state		LOAD r2 = state
1736 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1737 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1738 	 *   [...]			  SEND CLOSECHANNEL
1739 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1740 	 *
1741 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1742 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1743 	 *
1744 	 * Note.  The host processes the channel messages "sequentially", in
1745 	 * the order in which they are received on a per-partition basis.
1746 	 */
1747 	mutex_lock(&vmbus_connection.channel_mutex);
1748 
1749 	/*
1750 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1751 	 * avoid sending the message and fail here for such channels.
1752 	 */
1753 	if (channel->state != CHANNEL_OPENED_STATE) {
1754 		ret = -EIO;
1755 		goto cpu_store_unlock;
1756 	}
1757 
1758 	origin_cpu = channel->target_cpu;
1759 	if (target_cpu == origin_cpu)
1760 		goto cpu_store_unlock;
1761 
1762 	if (vmbus_send_modifychannel(channel->offermsg.child_relid,
1763 				     hv_cpu_number_to_vp_number(target_cpu))) {
1764 		ret = -EIO;
1765 		goto cpu_store_unlock;
1766 	}
1767 
1768 	/*
1769 	 * Warning.  At this point, there is *no* guarantee that the host will
1770 	 * have successfully processed the vmbus_send_modifychannel() request.
1771 	 * See the header comment of vmbus_send_modifychannel() for more info.
1772 	 *
1773 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1774 	 * result in missed interrupts if the "old" target CPU is taken offline
1775 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1776 	 * But apart from this offlining scenario, the code tolerates such
1777 	 * lags.  It will function correctly even if a channel interrupt comes
1778 	 * in on a CPU that is different from the channel target_cpu value.
1779 	 */
1780 
1781 	channel->target_cpu = target_cpu;
1782 	channel->target_vp = hv_cpu_number_to_vp_number(target_cpu);
1783 	channel->numa_node = cpu_to_node(target_cpu);
1784 
1785 	/* See init_vp_index(). */
1786 	if (hv_is_perf_channel(channel))
1787 		hv_update_alloced_cpus(origin_cpu, target_cpu);
1788 
1789 	/* Currently set only for storvsc channels. */
1790 	if (channel->change_target_cpu_callback) {
1791 		(*channel->change_target_cpu_callback)(channel,
1792 				origin_cpu, target_cpu);
1793 	}
1794 
1795 cpu_store_unlock:
1796 	mutex_unlock(&vmbus_connection.channel_mutex);
1797 	cpus_read_unlock();
1798 	return ret;
1799 }
1800 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1801 
1802 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1803 				    char *buf)
1804 {
1805 	return sprintf(buf, "%d\n",
1806 		       channel_pending(channel,
1807 				       vmbus_connection.monitor_pages[1]));
1808 }
1809 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1810 
1811 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1812 				    char *buf)
1813 {
1814 	return sprintf(buf, "%d\n",
1815 		       channel_latency(channel,
1816 				       vmbus_connection.monitor_pages[1]));
1817 }
1818 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1819 
1820 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1821 {
1822 	return sprintf(buf, "%llu\n", channel->interrupts);
1823 }
1824 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1825 
1826 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1827 {
1828 	return sprintf(buf, "%llu\n", channel->sig_events);
1829 }
1830 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1831 
1832 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1833 					 char *buf)
1834 {
1835 	return sprintf(buf, "%llu\n",
1836 		       (unsigned long long)channel->intr_in_full);
1837 }
1838 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1839 
1840 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1841 					   char *buf)
1842 {
1843 	return sprintf(buf, "%llu\n",
1844 		       (unsigned long long)channel->intr_out_empty);
1845 }
1846 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1847 
1848 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1849 					   char *buf)
1850 {
1851 	return sprintf(buf, "%llu\n",
1852 		       (unsigned long long)channel->out_full_first);
1853 }
1854 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1855 
1856 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1857 					   char *buf)
1858 {
1859 	return sprintf(buf, "%llu\n",
1860 		       (unsigned long long)channel->out_full_total);
1861 }
1862 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1863 
1864 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1865 					  char *buf)
1866 {
1867 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1868 }
1869 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1870 
1871 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1872 				  char *buf)
1873 {
1874 	return sprintf(buf, "%u\n",
1875 		       channel->offermsg.offer.sub_channel_index);
1876 }
1877 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1878 
1879 static struct attribute *vmbus_chan_attrs[] = {
1880 	&chan_attr_out_mask.attr,
1881 	&chan_attr_in_mask.attr,
1882 	&chan_attr_read_avail.attr,
1883 	&chan_attr_write_avail.attr,
1884 	&chan_attr_cpu.attr,
1885 	&chan_attr_pending.attr,
1886 	&chan_attr_latency.attr,
1887 	&chan_attr_interrupts.attr,
1888 	&chan_attr_events.attr,
1889 	&chan_attr_intr_in_full.attr,
1890 	&chan_attr_intr_out_empty.attr,
1891 	&chan_attr_out_full_first.attr,
1892 	&chan_attr_out_full_total.attr,
1893 	&chan_attr_monitor_id.attr,
1894 	&chan_attr_subchannel_id.attr,
1895 	NULL
1896 };
1897 
1898 /*
1899  * Channel-level attribute_group callback function. Returns the permission for
1900  * each attribute, and returns 0 if an attribute is not visible.
1901  */
1902 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1903 					  struct attribute *attr, int idx)
1904 {
1905 	const struct vmbus_channel *channel =
1906 		container_of(kobj, struct vmbus_channel, kobj);
1907 
1908 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1909 	if (!channel->offermsg.monitor_allocated &&
1910 	    (attr == &chan_attr_pending.attr ||
1911 	     attr == &chan_attr_latency.attr ||
1912 	     attr == &chan_attr_monitor_id.attr))
1913 		return 0;
1914 
1915 	return attr->mode;
1916 }
1917 
1918 static struct attribute_group vmbus_chan_group = {
1919 	.attrs = vmbus_chan_attrs,
1920 	.is_visible = vmbus_chan_attr_is_visible
1921 };
1922 
1923 static struct kobj_type vmbus_chan_ktype = {
1924 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1925 	.release = vmbus_chan_release,
1926 };
1927 
1928 /*
1929  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1930  */
1931 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1932 {
1933 	const struct device *device = &dev->device;
1934 	struct kobject *kobj = &channel->kobj;
1935 	u32 relid = channel->offermsg.child_relid;
1936 	int ret;
1937 
1938 	kobj->kset = dev->channels_kset;
1939 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1940 				   "%u", relid);
1941 	if (ret)
1942 		return ret;
1943 
1944 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1945 
1946 	if (ret) {
1947 		/*
1948 		 * The calling functions' error handling paths will cleanup the
1949 		 * empty channel directory.
1950 		 */
1951 		dev_err(device, "Unable to set up channel sysfs files\n");
1952 		return ret;
1953 	}
1954 
1955 	kobject_uevent(kobj, KOBJ_ADD);
1956 
1957 	return 0;
1958 }
1959 
1960 /*
1961  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1962  */
1963 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1964 {
1965 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1966 }
1967 
1968 /*
1969  * vmbus_device_create - Creates and registers a new child device
1970  * on the vmbus.
1971  */
1972 struct hv_device *vmbus_device_create(const guid_t *type,
1973 				      const guid_t *instance,
1974 				      struct vmbus_channel *channel)
1975 {
1976 	struct hv_device *child_device_obj;
1977 
1978 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1979 	if (!child_device_obj) {
1980 		pr_err("Unable to allocate device object for child device\n");
1981 		return NULL;
1982 	}
1983 
1984 	child_device_obj->channel = channel;
1985 	guid_copy(&child_device_obj->dev_type, type);
1986 	guid_copy(&child_device_obj->dev_instance, instance);
1987 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1988 
1989 	return child_device_obj;
1990 }
1991 
1992 /*
1993  * vmbus_device_register - Register the child device
1994  */
1995 int vmbus_device_register(struct hv_device *child_device_obj)
1996 {
1997 	struct kobject *kobj = &child_device_obj->device.kobj;
1998 	int ret;
1999 
2000 	dev_set_name(&child_device_obj->device, "%pUl",
2001 		     &child_device_obj->channel->offermsg.offer.if_instance);
2002 
2003 	child_device_obj->device.bus = &hv_bus;
2004 	child_device_obj->device.parent = &hv_acpi_dev->dev;
2005 	child_device_obj->device.release = vmbus_device_release;
2006 
2007 	/*
2008 	 * Register with the LDM. This will kick off the driver/device
2009 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2010 	 */
2011 	ret = device_register(&child_device_obj->device);
2012 	if (ret) {
2013 		pr_err("Unable to register child device\n");
2014 		return ret;
2015 	}
2016 
2017 	child_device_obj->channels_kset = kset_create_and_add("channels",
2018 							      NULL, kobj);
2019 	if (!child_device_obj->channels_kset) {
2020 		ret = -ENOMEM;
2021 		goto err_dev_unregister;
2022 	}
2023 
2024 	ret = vmbus_add_channel_kobj(child_device_obj,
2025 				     child_device_obj->channel);
2026 	if (ret) {
2027 		pr_err("Unable to register primary channeln");
2028 		goto err_kset_unregister;
2029 	}
2030 	hv_debug_add_dev_dir(child_device_obj);
2031 
2032 	return 0;
2033 
2034 err_kset_unregister:
2035 	kset_unregister(child_device_obj->channels_kset);
2036 
2037 err_dev_unregister:
2038 	device_unregister(&child_device_obj->device);
2039 	return ret;
2040 }
2041 
2042 /*
2043  * vmbus_device_unregister - Remove the specified child device
2044  * from the vmbus.
2045  */
2046 void vmbus_device_unregister(struct hv_device *device_obj)
2047 {
2048 	pr_debug("child device %s unregistered\n",
2049 		dev_name(&device_obj->device));
2050 
2051 	kset_unregister(device_obj->channels_kset);
2052 
2053 	/*
2054 	 * Kick off the process of unregistering the device.
2055 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2056 	 */
2057 	device_unregister(&device_obj->device);
2058 }
2059 
2060 
2061 /*
2062  * VMBUS is an acpi enumerated device. Get the information we
2063  * need from DSDT.
2064  */
2065 #define VTPM_BASE_ADDRESS 0xfed40000
2066 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2067 {
2068 	resource_size_t start = 0;
2069 	resource_size_t end = 0;
2070 	struct resource *new_res;
2071 	struct resource **old_res = &hyperv_mmio;
2072 	struct resource **prev_res = NULL;
2073 
2074 	switch (res->type) {
2075 
2076 	/*
2077 	 * "Address" descriptors are for bus windows. Ignore
2078 	 * "memory" descriptors, which are for registers on
2079 	 * devices.
2080 	 */
2081 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2082 		start = res->data.address32.address.minimum;
2083 		end = res->data.address32.address.maximum;
2084 		break;
2085 
2086 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2087 		start = res->data.address64.address.minimum;
2088 		end = res->data.address64.address.maximum;
2089 		break;
2090 
2091 	default:
2092 		/* Unused resource type */
2093 		return AE_OK;
2094 
2095 	}
2096 	/*
2097 	 * Ignore ranges that are below 1MB, as they're not
2098 	 * necessary or useful here.
2099 	 */
2100 	if (end < 0x100000)
2101 		return AE_OK;
2102 
2103 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2104 	if (!new_res)
2105 		return AE_NO_MEMORY;
2106 
2107 	/* If this range overlaps the virtual TPM, truncate it. */
2108 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2109 		end = VTPM_BASE_ADDRESS;
2110 
2111 	new_res->name = "hyperv mmio";
2112 	new_res->flags = IORESOURCE_MEM;
2113 	new_res->start = start;
2114 	new_res->end = end;
2115 
2116 	/*
2117 	 * If two ranges are adjacent, merge them.
2118 	 */
2119 	do {
2120 		if (!*old_res) {
2121 			*old_res = new_res;
2122 			break;
2123 		}
2124 
2125 		if (((*old_res)->end + 1) == new_res->start) {
2126 			(*old_res)->end = new_res->end;
2127 			kfree(new_res);
2128 			break;
2129 		}
2130 
2131 		if ((*old_res)->start == new_res->end + 1) {
2132 			(*old_res)->start = new_res->start;
2133 			kfree(new_res);
2134 			break;
2135 		}
2136 
2137 		if ((*old_res)->start > new_res->end) {
2138 			new_res->sibling = *old_res;
2139 			if (prev_res)
2140 				(*prev_res)->sibling = new_res;
2141 			*old_res = new_res;
2142 			break;
2143 		}
2144 
2145 		prev_res = old_res;
2146 		old_res = &(*old_res)->sibling;
2147 
2148 	} while (1);
2149 
2150 	return AE_OK;
2151 }
2152 
2153 static int vmbus_acpi_remove(struct acpi_device *device)
2154 {
2155 	struct resource *cur_res;
2156 	struct resource *next_res;
2157 
2158 	if (hyperv_mmio) {
2159 		if (fb_mmio) {
2160 			__release_region(hyperv_mmio, fb_mmio->start,
2161 					 resource_size(fb_mmio));
2162 			fb_mmio = NULL;
2163 		}
2164 
2165 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2166 			next_res = cur_res->sibling;
2167 			kfree(cur_res);
2168 		}
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static void vmbus_reserve_fb(void)
2175 {
2176 	int size;
2177 	/*
2178 	 * Make a claim for the frame buffer in the resource tree under the
2179 	 * first node, which will be the one below 4GB.  The length seems to
2180 	 * be underreported, particularly in a Generation 1 VM.  So start out
2181 	 * reserving a larger area and make it smaller until it succeeds.
2182 	 */
2183 
2184 	if (screen_info.lfb_base) {
2185 		if (efi_enabled(EFI_BOOT))
2186 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2187 		else
2188 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2189 
2190 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2191 			fb_mmio = __request_region(hyperv_mmio,
2192 						   screen_info.lfb_base, size,
2193 						   fb_mmio_name, 0);
2194 		}
2195 	}
2196 }
2197 
2198 /**
2199  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2200  * @new:		If successful, supplied a pointer to the
2201  *			allocated MMIO space.
2202  * @device_obj:		Identifies the caller
2203  * @min:		Minimum guest physical address of the
2204  *			allocation
2205  * @max:		Maximum guest physical address
2206  * @size:		Size of the range to be allocated
2207  * @align:		Alignment of the range to be allocated
2208  * @fb_overlap_ok:	Whether this allocation can be allowed
2209  *			to overlap the video frame buffer.
2210  *
2211  * This function walks the resources granted to VMBus by the
2212  * _CRS object in the ACPI namespace underneath the parent
2213  * "bridge" whether that's a root PCI bus in the Generation 1
2214  * case or a Module Device in the Generation 2 case.  It then
2215  * attempts to allocate from the global MMIO pool in a way that
2216  * matches the constraints supplied in these parameters and by
2217  * that _CRS.
2218  *
2219  * Return: 0 on success, -errno on failure
2220  */
2221 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2222 			resource_size_t min, resource_size_t max,
2223 			resource_size_t size, resource_size_t align,
2224 			bool fb_overlap_ok)
2225 {
2226 	struct resource *iter, *shadow;
2227 	resource_size_t range_min, range_max, start;
2228 	const char *dev_n = dev_name(&device_obj->device);
2229 	int retval;
2230 
2231 	retval = -ENXIO;
2232 	mutex_lock(&hyperv_mmio_lock);
2233 
2234 	/*
2235 	 * If overlaps with frame buffers are allowed, then first attempt to
2236 	 * make the allocation from within the reserved region.  Because it
2237 	 * is already reserved, no shadow allocation is necessary.
2238 	 */
2239 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2240 	    !(max < fb_mmio->start)) {
2241 
2242 		range_min = fb_mmio->start;
2243 		range_max = fb_mmio->end;
2244 		start = (range_min + align - 1) & ~(align - 1);
2245 		for (; start + size - 1 <= range_max; start += align) {
2246 			*new = request_mem_region_exclusive(start, size, dev_n);
2247 			if (*new) {
2248 				retval = 0;
2249 				goto exit;
2250 			}
2251 		}
2252 	}
2253 
2254 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2255 		if ((iter->start >= max) || (iter->end <= min))
2256 			continue;
2257 
2258 		range_min = iter->start;
2259 		range_max = iter->end;
2260 		start = (range_min + align - 1) & ~(align - 1);
2261 		for (; start + size - 1 <= range_max; start += align) {
2262 			shadow = __request_region(iter, start, size, NULL,
2263 						  IORESOURCE_BUSY);
2264 			if (!shadow)
2265 				continue;
2266 
2267 			*new = request_mem_region_exclusive(start, size, dev_n);
2268 			if (*new) {
2269 				shadow->name = (char *)*new;
2270 				retval = 0;
2271 				goto exit;
2272 			}
2273 
2274 			__release_region(iter, start, size);
2275 		}
2276 	}
2277 
2278 exit:
2279 	mutex_unlock(&hyperv_mmio_lock);
2280 	return retval;
2281 }
2282 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2283 
2284 /**
2285  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2286  * @start:		Base address of region to release.
2287  * @size:		Size of the range to be allocated
2288  *
2289  * This function releases anything requested by
2290  * vmbus_mmio_allocate().
2291  */
2292 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2293 {
2294 	struct resource *iter;
2295 
2296 	mutex_lock(&hyperv_mmio_lock);
2297 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2298 		if ((iter->start >= start + size) || (iter->end <= start))
2299 			continue;
2300 
2301 		__release_region(iter, start, size);
2302 	}
2303 	release_mem_region(start, size);
2304 	mutex_unlock(&hyperv_mmio_lock);
2305 
2306 }
2307 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2308 
2309 static int vmbus_acpi_add(struct acpi_device *device)
2310 {
2311 	acpi_status result;
2312 	int ret_val = -ENODEV;
2313 	struct acpi_device *ancestor;
2314 
2315 	hv_acpi_dev = device;
2316 
2317 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2318 					vmbus_walk_resources, NULL);
2319 
2320 	if (ACPI_FAILURE(result))
2321 		goto acpi_walk_err;
2322 	/*
2323 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2324 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2325 	 */
2326 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2327 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2328 					     vmbus_walk_resources, NULL);
2329 
2330 		if (ACPI_FAILURE(result))
2331 			continue;
2332 		if (hyperv_mmio) {
2333 			vmbus_reserve_fb();
2334 			break;
2335 		}
2336 	}
2337 	ret_val = 0;
2338 
2339 acpi_walk_err:
2340 	complete(&probe_event);
2341 	if (ret_val)
2342 		vmbus_acpi_remove(device);
2343 	return ret_val;
2344 }
2345 
2346 #ifdef CONFIG_PM_SLEEP
2347 static int vmbus_bus_suspend(struct device *dev)
2348 {
2349 	struct vmbus_channel *channel, *sc;
2350 	unsigned long flags;
2351 
2352 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2353 		/*
2354 		 * We wait here until the completion of any channel
2355 		 * offers that are currently in progress.
2356 		 */
2357 		msleep(1);
2358 	}
2359 
2360 	mutex_lock(&vmbus_connection.channel_mutex);
2361 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2362 		if (!is_hvsock_channel(channel))
2363 			continue;
2364 
2365 		vmbus_force_channel_rescinded(channel);
2366 	}
2367 	mutex_unlock(&vmbus_connection.channel_mutex);
2368 
2369 	/*
2370 	 * Wait until all the sub-channels and hv_sock channels have been
2371 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2372 	 * they would conflict with the new sub-channels that will be created
2373 	 * in the resume path. hv_sock channels should also be destroyed, but
2374 	 * a hv_sock channel of an established hv_sock connection can not be
2375 	 * really destroyed since it may still be referenced by the userspace
2376 	 * application, so we just force the hv_sock channel to be rescinded
2377 	 * by vmbus_force_channel_rescinded(), and the userspace application
2378 	 * will thoroughly destroy the channel after hibernation.
2379 	 *
2380 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2381 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2382 	 */
2383 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2384 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2385 
2386 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);
2387 
2388 	mutex_lock(&vmbus_connection.channel_mutex);
2389 
2390 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2391 		/*
2392 		 * Remove the channel from the array of channels and invalidate
2393 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2394 		 * up the relid (and other fields, if necessary) and add the
2395 		 * channel back to the array.
2396 		 */
2397 		vmbus_channel_unmap_relid(channel);
2398 		channel->offermsg.child_relid = INVALID_RELID;
2399 
2400 		if (is_hvsock_channel(channel)) {
2401 			if (!channel->rescind) {
2402 				pr_err("hv_sock channel not rescinded!\n");
2403 				WARN_ON_ONCE(1);
2404 			}
2405 			continue;
2406 		}
2407 
2408 		spin_lock_irqsave(&channel->lock, flags);
2409 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2410 			pr_err("Sub-channel not deleted!\n");
2411 			WARN_ON_ONCE(1);
2412 		}
2413 		spin_unlock_irqrestore(&channel->lock, flags);
2414 
2415 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2416 	}
2417 
2418 	mutex_unlock(&vmbus_connection.channel_mutex);
2419 
2420 	vmbus_initiate_unload(false);
2421 
2422 	/* Reset the event for the next resume. */
2423 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2424 
2425 	return 0;
2426 }
2427 
2428 static int vmbus_bus_resume(struct device *dev)
2429 {
2430 	struct vmbus_channel_msginfo *msginfo;
2431 	size_t msgsize;
2432 	int ret;
2433 
2434 	/*
2435 	 * We only use the 'vmbus_proto_version', which was in use before
2436 	 * hibernation, to re-negotiate with the host.
2437 	 */
2438 	if (!vmbus_proto_version) {
2439 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2440 		return -EINVAL;
2441 	}
2442 
2443 	msgsize = sizeof(*msginfo) +
2444 		  sizeof(struct vmbus_channel_initiate_contact);
2445 
2446 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2447 
2448 	if (msginfo == NULL)
2449 		return -ENOMEM;
2450 
2451 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2452 
2453 	kfree(msginfo);
2454 
2455 	if (ret != 0)
2456 		return ret;
2457 
2458 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2459 
2460 	vmbus_request_offers();
2461 
2462 	wait_for_completion(&vmbus_connection.ready_for_resume_event);
2463 
2464 	/* Reset the event for the next suspend. */
2465 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2466 
2467 	return 0;
2468 }
2469 #else
2470 #define vmbus_bus_suspend NULL
2471 #define vmbus_bus_resume NULL
2472 #endif /* CONFIG_PM_SLEEP */
2473 
2474 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2475 	{"VMBUS", 0},
2476 	{"VMBus", 0},
2477 	{"", 0},
2478 };
2479 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2480 
2481 /*
2482  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2483  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2484  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2485  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2486  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2487  * resume callback must also run via the "noirq" ops.
2488  *
2489  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2490  * earlier in this file before vmbus_pm.
2491  */
2492 
2493 static const struct dev_pm_ops vmbus_bus_pm = {
2494 	.suspend_noirq	= NULL,
2495 	.resume_noirq	= NULL,
2496 	.freeze_noirq	= vmbus_bus_suspend,
2497 	.thaw_noirq	= vmbus_bus_resume,
2498 	.poweroff_noirq	= vmbus_bus_suspend,
2499 	.restore_noirq	= vmbus_bus_resume
2500 };
2501 
2502 static struct acpi_driver vmbus_acpi_driver = {
2503 	.name = "vmbus",
2504 	.ids = vmbus_acpi_device_ids,
2505 	.ops = {
2506 		.add = vmbus_acpi_add,
2507 		.remove = vmbus_acpi_remove,
2508 	},
2509 	.drv.pm = &vmbus_bus_pm,
2510 };
2511 
2512 static void hv_kexec_handler(void)
2513 {
2514 	hv_stimer_global_cleanup();
2515 	vmbus_initiate_unload(false);
2516 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2517 	mb();
2518 	cpuhp_remove_state(hyperv_cpuhp_online);
2519 	hyperv_cleanup();
2520 };
2521 
2522 static void hv_crash_handler(struct pt_regs *regs)
2523 {
2524 	int cpu;
2525 
2526 	vmbus_initiate_unload(true);
2527 	/*
2528 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2529 	 * doing the cleanup for current CPU only. This should be sufficient
2530 	 * for kdump.
2531 	 */
2532 	cpu = smp_processor_id();
2533 	hv_stimer_cleanup(cpu);
2534 	hv_synic_disable_regs(cpu);
2535 	hyperv_cleanup();
2536 };
2537 
2538 static int hv_synic_suspend(void)
2539 {
2540 	/*
2541 	 * When we reach here, all the non-boot CPUs have been offlined.
2542 	 * If we're in a legacy configuration where stimer Direct Mode is
2543 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2544 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2545 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2546 	 *
2547 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2548 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2549 	 * 1) it's unnecessary as interrupts remain disabled between
2550 	 * syscore_suspend() and syscore_resume(): see create_image() and
2551 	 * resume_target_kernel()
2552 	 * 2) the stimer on CPU0 is automatically disabled later by
2553 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2554 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2555 	 * 3) a warning would be triggered if we call
2556 	 * clockevents_unbind_device(), which may sleep, in an
2557 	 * interrupts-disabled context.
2558 	 */
2559 
2560 	hv_synic_disable_regs(0);
2561 
2562 	return 0;
2563 }
2564 
2565 static void hv_synic_resume(void)
2566 {
2567 	hv_synic_enable_regs(0);
2568 
2569 	/*
2570 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2571 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2572 	 * automatically re-enabled in timekeeping_resume().
2573 	 */
2574 }
2575 
2576 /* The callbacks run only on CPU0, with irqs_disabled. */
2577 static struct syscore_ops hv_synic_syscore_ops = {
2578 	.suspend = hv_synic_suspend,
2579 	.resume = hv_synic_resume,
2580 };
2581 
2582 static int __init hv_acpi_init(void)
2583 {
2584 	int ret, t;
2585 
2586 	if (!hv_is_hyperv_initialized())
2587 		return -ENODEV;
2588 
2589 	init_completion(&probe_event);
2590 
2591 	/*
2592 	 * Get ACPI resources first.
2593 	 */
2594 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2595 
2596 	if (ret)
2597 		return ret;
2598 
2599 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2600 	if (t == 0) {
2601 		ret = -ETIMEDOUT;
2602 		goto cleanup;
2603 	}
2604 	hv_debug_init();
2605 
2606 	ret = vmbus_bus_init();
2607 	if (ret)
2608 		goto cleanup;
2609 
2610 	hv_setup_kexec_handler(hv_kexec_handler);
2611 	hv_setup_crash_handler(hv_crash_handler);
2612 
2613 	register_syscore_ops(&hv_synic_syscore_ops);
2614 
2615 	return 0;
2616 
2617 cleanup:
2618 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2619 	hv_acpi_dev = NULL;
2620 	return ret;
2621 }
2622 
2623 static void __exit vmbus_exit(void)
2624 {
2625 	int cpu;
2626 
2627 	unregister_syscore_ops(&hv_synic_syscore_ops);
2628 
2629 	hv_remove_kexec_handler();
2630 	hv_remove_crash_handler();
2631 	vmbus_connection.conn_state = DISCONNECTED;
2632 	hv_stimer_global_cleanup();
2633 	vmbus_disconnect();
2634 	hv_remove_vmbus_irq();
2635 	for_each_online_cpu(cpu) {
2636 		struct hv_per_cpu_context *hv_cpu
2637 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2638 
2639 		tasklet_kill(&hv_cpu->msg_dpc);
2640 	}
2641 	hv_debug_rm_all_dir();
2642 
2643 	vmbus_free_channels();
2644 	kfree(vmbus_connection.channels);
2645 
2646 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2647 		kmsg_dump_unregister(&hv_kmsg_dumper);
2648 		unregister_die_notifier(&hyperv_die_block);
2649 		atomic_notifier_chain_unregister(&panic_notifier_list,
2650 						 &hyperv_panic_block);
2651 	}
2652 
2653 	free_page((unsigned long)hv_panic_page);
2654 	unregister_sysctl_table(hv_ctl_table_hdr);
2655 	hv_ctl_table_hdr = NULL;
2656 	bus_unregister(&hv_bus);
2657 
2658 	cpuhp_remove_state(hyperv_cpuhp_online);
2659 	hv_synic_free();
2660 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2661 }
2662 
2663 
2664 MODULE_LICENSE("GPL");
2665 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2666 
2667 subsys_initcall(hv_acpi_init);
2668 module_exit(vmbus_exit);
2669