xref: /linux/drivers/hv/vmbus_drv.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
60 			      void *args)
61 {
62 	struct pt_regs *regs;
63 
64 	regs = current_pt_regs();
65 
66 	hyperv_report_panic(regs, val);
67 	return NOTIFY_DONE;
68 }
69 
70 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
71 			    void *args)
72 {
73 	struct die_args *die = (struct die_args *)args;
74 	struct pt_regs *regs = die->regs;
75 
76 	hyperv_report_panic(regs, val);
77 	return NOTIFY_DONE;
78 }
79 
80 static struct notifier_block hyperv_die_block = {
81 	.notifier_call = hyperv_die_event,
82 };
83 static struct notifier_block hyperv_panic_block = {
84 	.notifier_call = hyperv_panic_event,
85 };
86 
87 static const char *fb_mmio_name = "fb_range";
88 static struct resource *fb_mmio;
89 static struct resource *hyperv_mmio;
90 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
91 
92 static int vmbus_exists(void)
93 {
94 	if (hv_acpi_dev == NULL)
95 		return -ENODEV;
96 
97 	return 0;
98 }
99 
100 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
101 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
102 {
103 	int i;
104 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
105 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
106 }
107 
108 static u8 channel_monitor_group(const struct vmbus_channel *channel)
109 {
110 	return (u8)channel->offermsg.monitorid / 32;
111 }
112 
113 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
114 {
115 	return (u8)channel->offermsg.monitorid % 32;
116 }
117 
118 static u32 channel_pending(const struct vmbus_channel *channel,
119 			   const struct hv_monitor_page *monitor_page)
120 {
121 	u8 monitor_group = channel_monitor_group(channel);
122 
123 	return monitor_page->trigger_group[monitor_group].pending;
124 }
125 
126 static u32 channel_latency(const struct vmbus_channel *channel,
127 			   const struct hv_monitor_page *monitor_page)
128 {
129 	u8 monitor_group = channel_monitor_group(channel);
130 	u8 monitor_offset = channel_monitor_offset(channel);
131 
132 	return monitor_page->latency[monitor_group][monitor_offset];
133 }
134 
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136 			   struct hv_monitor_page *monitor_page)
137 {
138 	u8 monitor_group = channel_monitor_group(channel);
139 	u8 monitor_offset = channel_monitor_offset(channel);
140 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142 
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144 		       char *buf)
145 {
146 	struct hv_device *hv_dev = device_to_hv_device(dev);
147 
148 	if (!hv_dev->channel)
149 		return -ENODEV;
150 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153 
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155 			  char *buf)
156 {
157 	struct hv_device *hv_dev = device_to_hv_device(dev);
158 
159 	if (!hv_dev->channel)
160 		return -ENODEV;
161 	return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164 
165 static ssize_t monitor_id_show(struct device *dev,
166 			       struct device_attribute *dev_attr, char *buf)
167 {
168 	struct hv_device *hv_dev = device_to_hv_device(dev);
169 
170 	if (!hv_dev->channel)
171 		return -ENODEV;
172 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175 
176 static ssize_t class_id_show(struct device *dev,
177 			       struct device_attribute *dev_attr, char *buf)
178 {
179 	struct hv_device *hv_dev = device_to_hv_device(dev);
180 
181 	if (!hv_dev->channel)
182 		return -ENODEV;
183 	return sprintf(buf, "{%pUl}\n",
184 		       hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187 
188 static ssize_t device_id_show(struct device *dev,
189 			      struct device_attribute *dev_attr, char *buf)
190 {
191 	struct hv_device *hv_dev = device_to_hv_device(dev);
192 
193 	if (!hv_dev->channel)
194 		return -ENODEV;
195 	return sprintf(buf, "{%pUl}\n",
196 		       hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199 
200 static ssize_t modalias_show(struct device *dev,
201 			     struct device_attribute *dev_attr, char *buf)
202 {
203 	struct hv_device *hv_dev = device_to_hv_device(dev);
204 	char alias_name[VMBUS_ALIAS_LEN + 1];
205 
206 	print_alias_name(hv_dev, alias_name);
207 	return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210 
211 static ssize_t server_monitor_pending_show(struct device *dev,
212 					   struct device_attribute *dev_attr,
213 					   char *buf)
214 {
215 	struct hv_device *hv_dev = device_to_hv_device(dev);
216 
217 	if (!hv_dev->channel)
218 		return -ENODEV;
219 	return sprintf(buf, "%d\n",
220 		       channel_pending(hv_dev->channel,
221 				       vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224 
225 static ssize_t client_monitor_pending_show(struct device *dev,
226 					   struct device_attribute *dev_attr,
227 					   char *buf)
228 {
229 	struct hv_device *hv_dev = device_to_hv_device(dev);
230 
231 	if (!hv_dev->channel)
232 		return -ENODEV;
233 	return sprintf(buf, "%d\n",
234 		       channel_pending(hv_dev->channel,
235 				       vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238 
239 static ssize_t server_monitor_latency_show(struct device *dev,
240 					   struct device_attribute *dev_attr,
241 					   char *buf)
242 {
243 	struct hv_device *hv_dev = device_to_hv_device(dev);
244 
245 	if (!hv_dev->channel)
246 		return -ENODEV;
247 	return sprintf(buf, "%d\n",
248 		       channel_latency(hv_dev->channel,
249 				       vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252 
253 static ssize_t client_monitor_latency_show(struct device *dev,
254 					   struct device_attribute *dev_attr,
255 					   char *buf)
256 {
257 	struct hv_device *hv_dev = device_to_hv_device(dev);
258 
259 	if (!hv_dev->channel)
260 		return -ENODEV;
261 	return sprintf(buf, "%d\n",
262 		       channel_latency(hv_dev->channel,
263 				       vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266 
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268 					   struct device_attribute *dev_attr,
269 					   char *buf)
270 {
271 	struct hv_device *hv_dev = device_to_hv_device(dev);
272 
273 	if (!hv_dev->channel)
274 		return -ENODEV;
275 	return sprintf(buf, "%d\n",
276 		       channel_conn_id(hv_dev->channel,
277 				       vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280 
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282 					   struct device_attribute *dev_attr,
283 					   char *buf)
284 {
285 	struct hv_device *hv_dev = device_to_hv_device(dev);
286 
287 	if (!hv_dev->channel)
288 		return -ENODEV;
289 	return sprintf(buf, "%d\n",
290 		       channel_conn_id(hv_dev->channel,
291 				       vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294 
295 static ssize_t out_intr_mask_show(struct device *dev,
296 				  struct device_attribute *dev_attr, char *buf)
297 {
298 	struct hv_device *hv_dev = device_to_hv_device(dev);
299 	struct hv_ring_buffer_debug_info outbound;
300 
301 	if (!hv_dev->channel)
302 		return -ENODEV;
303 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307 
308 static ssize_t out_read_index_show(struct device *dev,
309 				   struct device_attribute *dev_attr, char *buf)
310 {
311 	struct hv_device *hv_dev = device_to_hv_device(dev);
312 	struct hv_ring_buffer_debug_info outbound;
313 
314 	if (!hv_dev->channel)
315 		return -ENODEV;
316 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 	return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320 
321 static ssize_t out_write_index_show(struct device *dev,
322 				    struct device_attribute *dev_attr,
323 				    char *buf)
324 {
325 	struct hv_device *hv_dev = device_to_hv_device(dev);
326 	struct hv_ring_buffer_debug_info outbound;
327 
328 	if (!hv_dev->channel)
329 		return -ENODEV;
330 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 	return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334 
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336 					 struct device_attribute *dev_attr,
337 					 char *buf)
338 {
339 	struct hv_device *hv_dev = device_to_hv_device(dev);
340 	struct hv_ring_buffer_debug_info outbound;
341 
342 	if (!hv_dev->channel)
343 		return -ENODEV;
344 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348 
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350 					  struct device_attribute *dev_attr,
351 					  char *buf)
352 {
353 	struct hv_device *hv_dev = device_to_hv_device(dev);
354 	struct hv_ring_buffer_debug_info outbound;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362 
363 static ssize_t in_intr_mask_show(struct device *dev,
364 				 struct device_attribute *dev_attr, char *buf)
365 {
366 	struct hv_device *hv_dev = device_to_hv_device(dev);
367 	struct hv_ring_buffer_debug_info inbound;
368 
369 	if (!hv_dev->channel)
370 		return -ENODEV;
371 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375 
376 static ssize_t in_read_index_show(struct device *dev,
377 				  struct device_attribute *dev_attr, char *buf)
378 {
379 	struct hv_device *hv_dev = device_to_hv_device(dev);
380 	struct hv_ring_buffer_debug_info inbound;
381 
382 	if (!hv_dev->channel)
383 		return -ENODEV;
384 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 	return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388 
389 static ssize_t in_write_index_show(struct device *dev,
390 				   struct device_attribute *dev_attr, char *buf)
391 {
392 	struct hv_device *hv_dev = device_to_hv_device(dev);
393 	struct hv_ring_buffer_debug_info inbound;
394 
395 	if (!hv_dev->channel)
396 		return -ENODEV;
397 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 	return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401 
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403 					struct device_attribute *dev_attr,
404 					char *buf)
405 {
406 	struct hv_device *hv_dev = device_to_hv_device(dev);
407 	struct hv_ring_buffer_debug_info inbound;
408 
409 	if (!hv_dev->channel)
410 		return -ENODEV;
411 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415 
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417 					 struct device_attribute *dev_attr,
418 					 char *buf)
419 {
420 	struct hv_device *hv_dev = device_to_hv_device(dev);
421 	struct hv_ring_buffer_debug_info inbound;
422 
423 	if (!hv_dev->channel)
424 		return -ENODEV;
425 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429 
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431 				       struct device_attribute *dev_attr,
432 				       char *buf)
433 {
434 	struct hv_device *hv_dev = device_to_hv_device(dev);
435 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436 	unsigned long flags;
437 	int buf_size = PAGE_SIZE, n_written, tot_written;
438 	struct list_head *cur;
439 
440 	if (!channel)
441 		return -ENODEV;
442 
443 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
444 		channel->offermsg.child_relid, channel->target_cpu);
445 
446 	spin_lock_irqsave(&channel->lock, flags);
447 
448 	list_for_each(cur, &channel->sc_list) {
449 		if (tot_written >= buf_size - 1)
450 			break;
451 
452 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453 		n_written = scnprintf(buf + tot_written,
454 				     buf_size - tot_written,
455 				     "%u:%u\n",
456 				     cur_sc->offermsg.child_relid,
457 				     cur_sc->target_cpu);
458 		tot_written += n_written;
459 	}
460 
461 	spin_unlock_irqrestore(&channel->lock, flags);
462 
463 	return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466 
467 static ssize_t vendor_show(struct device *dev,
468 			   struct device_attribute *dev_attr,
469 			   char *buf)
470 {
471 	struct hv_device *hv_dev = device_to_hv_device(dev);
472 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475 
476 static ssize_t device_show(struct device *dev,
477 			   struct device_attribute *dev_attr,
478 			   char *buf)
479 {
480 	struct hv_device *hv_dev = device_to_hv_device(dev);
481 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484 
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487 	&dev_attr_id.attr,
488 	&dev_attr_state.attr,
489 	&dev_attr_monitor_id.attr,
490 	&dev_attr_class_id.attr,
491 	&dev_attr_device_id.attr,
492 	&dev_attr_modalias.attr,
493 	&dev_attr_server_monitor_pending.attr,
494 	&dev_attr_client_monitor_pending.attr,
495 	&dev_attr_server_monitor_latency.attr,
496 	&dev_attr_client_monitor_latency.attr,
497 	&dev_attr_server_monitor_conn_id.attr,
498 	&dev_attr_client_monitor_conn_id.attr,
499 	&dev_attr_out_intr_mask.attr,
500 	&dev_attr_out_read_index.attr,
501 	&dev_attr_out_write_index.attr,
502 	&dev_attr_out_read_bytes_avail.attr,
503 	&dev_attr_out_write_bytes_avail.attr,
504 	&dev_attr_in_intr_mask.attr,
505 	&dev_attr_in_read_index.attr,
506 	&dev_attr_in_write_index.attr,
507 	&dev_attr_in_read_bytes_avail.attr,
508 	&dev_attr_in_write_bytes_avail.attr,
509 	&dev_attr_channel_vp_mapping.attr,
510 	&dev_attr_vendor.attr,
511 	&dev_attr_device.attr,
512 	NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515 
516 /*
517  * vmbus_uevent - add uevent for our device
518  *
519  * This routine is invoked when a device is added or removed on the vmbus to
520  * generate a uevent to udev in the userspace. The udev will then look at its
521  * rule and the uevent generated here to load the appropriate driver
522  *
523  * The alias string will be of the form vmbus:guid where guid is the string
524  * representation of the device guid (each byte of the guid will be
525  * represented with two hex characters.
526  */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529 	struct hv_device *dev = device_to_hv_device(device);
530 	int ret;
531 	char alias_name[VMBUS_ALIAS_LEN + 1];
532 
533 	print_alias_name(dev, alias_name);
534 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535 	return ret;
536 }
537 
538 static const uuid_le null_guid;
539 
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542 	if (uuid_le_cmp(*guid, null_guid))
543 		return false;
544 	return true;
545 }
546 
547 /*
548  * Return a matching hv_vmbus_device_id pointer.
549  * If there is no match, return NULL.
550  */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552 					const uuid_le *guid)
553 {
554 	const struct hv_vmbus_device_id *id = NULL;
555 	struct vmbus_dynid *dynid;
556 
557 	/* Look at the dynamic ids first, before the static ones */
558 	spin_lock(&drv->dynids.lock);
559 	list_for_each_entry(dynid, &drv->dynids.list, node) {
560 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561 			id = &dynid->id;
562 			break;
563 		}
564 	}
565 	spin_unlock(&drv->dynids.lock);
566 
567 	if (id)
568 		return id;
569 
570 	id = drv->id_table;
571 	if (id == NULL)
572 		return NULL; /* empty device table */
573 
574 	for (; !is_null_guid(&id->guid); id++)
575 		if (!uuid_le_cmp(id->guid, *guid))
576 			return id;
577 
578 	return NULL;
579 }
580 
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584 	struct vmbus_dynid *dynid;
585 
586 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587 	if (!dynid)
588 		return -ENOMEM;
589 
590 	dynid->id.guid = *guid;
591 
592 	spin_lock(&drv->dynids.lock);
593 	list_add_tail(&dynid->node, &drv->dynids.list);
594 	spin_unlock(&drv->dynids.lock);
595 
596 	return driver_attach(&drv->driver);
597 }
598 
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601 	struct vmbus_dynid *dynid, *n;
602 
603 	spin_lock(&drv->dynids.lock);
604 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605 		list_del(&dynid->node);
606 		kfree(dynid);
607 	}
608 	spin_unlock(&drv->dynids.lock);
609 }
610 
611 /*
612  * store_new_id - sysfs frontend to vmbus_add_dynid()
613  *
614  * Allow GUIDs to be added to an existing driver via sysfs.
615  */
616 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
617 			    size_t count)
618 {
619 	struct hv_driver *drv = drv_to_hv_drv(driver);
620 	uuid_le guid;
621 	ssize_t retval;
622 
623 	retval = uuid_le_to_bin(buf, &guid);
624 	if (retval)
625 		return retval;
626 
627 	if (hv_vmbus_get_id(drv, &guid))
628 		return -EEXIST;
629 
630 	retval = vmbus_add_dynid(drv, &guid);
631 	if (retval)
632 		return retval;
633 	return count;
634 }
635 static DRIVER_ATTR_WO(new_id);
636 
637 /*
638  * store_remove_id - remove a PCI device ID from this driver
639  *
640  * Removes a dynamic pci device ID to this driver.
641  */
642 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
643 			       size_t count)
644 {
645 	struct hv_driver *drv = drv_to_hv_drv(driver);
646 	struct vmbus_dynid *dynid, *n;
647 	uuid_le guid;
648 	ssize_t retval;
649 
650 	retval = uuid_le_to_bin(buf, &guid);
651 	if (retval)
652 		return retval;
653 
654 	retval = -ENODEV;
655 	spin_lock(&drv->dynids.lock);
656 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
657 		struct hv_vmbus_device_id *id = &dynid->id;
658 
659 		if (!uuid_le_cmp(id->guid, guid)) {
660 			list_del(&dynid->node);
661 			kfree(dynid);
662 			retval = count;
663 			break;
664 		}
665 	}
666 	spin_unlock(&drv->dynids.lock);
667 
668 	return retval;
669 }
670 static DRIVER_ATTR_WO(remove_id);
671 
672 static struct attribute *vmbus_drv_attrs[] = {
673 	&driver_attr_new_id.attr,
674 	&driver_attr_remove_id.attr,
675 	NULL,
676 };
677 ATTRIBUTE_GROUPS(vmbus_drv);
678 
679 
680 /*
681  * vmbus_match - Attempt to match the specified device to the specified driver
682  */
683 static int vmbus_match(struct device *device, struct device_driver *driver)
684 {
685 	struct hv_driver *drv = drv_to_hv_drv(driver);
686 	struct hv_device *hv_dev = device_to_hv_device(device);
687 
688 	/* The hv_sock driver handles all hv_sock offers. */
689 	if (is_hvsock_channel(hv_dev->channel))
690 		return drv->hvsock;
691 
692 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
693 		return 1;
694 
695 	return 0;
696 }
697 
698 /*
699  * vmbus_probe - Add the new vmbus's child device
700  */
701 static int vmbus_probe(struct device *child_device)
702 {
703 	int ret = 0;
704 	struct hv_driver *drv =
705 			drv_to_hv_drv(child_device->driver);
706 	struct hv_device *dev = device_to_hv_device(child_device);
707 	const struct hv_vmbus_device_id *dev_id;
708 
709 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
710 	if (drv->probe) {
711 		ret = drv->probe(dev, dev_id);
712 		if (ret != 0)
713 			pr_err("probe failed for device %s (%d)\n",
714 			       dev_name(child_device), ret);
715 
716 	} else {
717 		pr_err("probe not set for driver %s\n",
718 		       dev_name(child_device));
719 		ret = -ENODEV;
720 	}
721 	return ret;
722 }
723 
724 /*
725  * vmbus_remove - Remove a vmbus device
726  */
727 static int vmbus_remove(struct device *child_device)
728 {
729 	struct hv_driver *drv;
730 	struct hv_device *dev = device_to_hv_device(child_device);
731 
732 	if (child_device->driver) {
733 		drv = drv_to_hv_drv(child_device->driver);
734 		if (drv->remove)
735 			drv->remove(dev);
736 	}
737 
738 	return 0;
739 }
740 
741 
742 /*
743  * vmbus_shutdown - Shutdown a vmbus device
744  */
745 static void vmbus_shutdown(struct device *child_device)
746 {
747 	struct hv_driver *drv;
748 	struct hv_device *dev = device_to_hv_device(child_device);
749 
750 
751 	/* The device may not be attached yet */
752 	if (!child_device->driver)
753 		return;
754 
755 	drv = drv_to_hv_drv(child_device->driver);
756 
757 	if (drv->shutdown)
758 		drv->shutdown(dev);
759 }
760 
761 
762 /*
763  * vmbus_device_release - Final callback release of the vmbus child device
764  */
765 static void vmbus_device_release(struct device *device)
766 {
767 	struct hv_device *hv_dev = device_to_hv_device(device);
768 	struct vmbus_channel *channel = hv_dev->channel;
769 
770 	mutex_lock(&vmbus_connection.channel_mutex);
771 	hv_process_channel_removal(channel->offermsg.child_relid);
772 	mutex_unlock(&vmbus_connection.channel_mutex);
773 	kfree(hv_dev);
774 
775 }
776 
777 /* The one and only one */
778 static struct bus_type  hv_bus = {
779 	.name =		"vmbus",
780 	.match =		vmbus_match,
781 	.shutdown =		vmbus_shutdown,
782 	.remove =		vmbus_remove,
783 	.probe =		vmbus_probe,
784 	.uevent =		vmbus_uevent,
785 	.dev_groups =		vmbus_dev_groups,
786 	.drv_groups =		vmbus_drv_groups,
787 };
788 
789 struct onmessage_work_context {
790 	struct work_struct work;
791 	struct hv_message msg;
792 };
793 
794 static void vmbus_onmessage_work(struct work_struct *work)
795 {
796 	struct onmessage_work_context *ctx;
797 
798 	/* Do not process messages if we're in DISCONNECTED state */
799 	if (vmbus_connection.conn_state == DISCONNECTED)
800 		return;
801 
802 	ctx = container_of(work, struct onmessage_work_context,
803 			   work);
804 	vmbus_onmessage(&ctx->msg);
805 	kfree(ctx);
806 }
807 
808 static void hv_process_timer_expiration(struct hv_message *msg,
809 					struct hv_per_cpu_context *hv_cpu)
810 {
811 	struct clock_event_device *dev = hv_cpu->clk_evt;
812 
813 	if (dev->event_handler)
814 		dev->event_handler(dev);
815 
816 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
817 }
818 
819 void vmbus_on_msg_dpc(unsigned long data)
820 {
821 	struct hv_per_cpu_context *hv_cpu = (void *)data;
822 	void *page_addr = hv_cpu->synic_message_page;
823 	struct hv_message *msg = (struct hv_message *)page_addr +
824 				  VMBUS_MESSAGE_SINT;
825 	struct vmbus_channel_message_header *hdr;
826 	const struct vmbus_channel_message_table_entry *entry;
827 	struct onmessage_work_context *ctx;
828 	u32 message_type = msg->header.message_type;
829 
830 	if (message_type == HVMSG_NONE)
831 		/* no msg */
832 		return;
833 
834 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
835 
836 	trace_vmbus_on_msg_dpc(hdr);
837 
838 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
839 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
840 		goto msg_handled;
841 	}
842 
843 	entry = &channel_message_table[hdr->msgtype];
844 	if (entry->handler_type	== VMHT_BLOCKING) {
845 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
846 		if (ctx == NULL)
847 			return;
848 
849 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
850 		memcpy(&ctx->msg, msg, sizeof(*msg));
851 
852 		/*
853 		 * The host can generate a rescind message while we
854 		 * may still be handling the original offer. We deal with
855 		 * this condition by ensuring the processing is done on the
856 		 * same CPU.
857 		 */
858 		switch (hdr->msgtype) {
859 		case CHANNELMSG_RESCIND_CHANNELOFFER:
860 			/*
861 			 * If we are handling the rescind message;
862 			 * schedule the work on the global work queue.
863 			 */
864 			schedule_work_on(vmbus_connection.connect_cpu,
865 					 &ctx->work);
866 			break;
867 
868 		case CHANNELMSG_OFFERCHANNEL:
869 			atomic_inc(&vmbus_connection.offer_in_progress);
870 			queue_work_on(vmbus_connection.connect_cpu,
871 				      vmbus_connection.work_queue,
872 				      &ctx->work);
873 			break;
874 
875 		default:
876 			queue_work(vmbus_connection.work_queue, &ctx->work);
877 		}
878 	} else
879 		entry->message_handler(hdr);
880 
881 msg_handled:
882 	vmbus_signal_eom(msg, message_type);
883 }
884 
885 
886 /*
887  * Direct callback for channels using other deferred processing
888  */
889 static void vmbus_channel_isr(struct vmbus_channel *channel)
890 {
891 	void (*callback_fn)(void *);
892 
893 	callback_fn = READ_ONCE(channel->onchannel_callback);
894 	if (likely(callback_fn != NULL))
895 		(*callback_fn)(channel->channel_callback_context);
896 }
897 
898 /*
899  * Schedule all channels with events pending
900  */
901 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
902 {
903 	unsigned long *recv_int_page;
904 	u32 maxbits, relid;
905 
906 	if (vmbus_proto_version < VERSION_WIN8) {
907 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
908 		recv_int_page = vmbus_connection.recv_int_page;
909 	} else {
910 		/*
911 		 * When the host is win8 and beyond, the event page
912 		 * can be directly checked to get the id of the channel
913 		 * that has the interrupt pending.
914 		 */
915 		void *page_addr = hv_cpu->synic_event_page;
916 		union hv_synic_event_flags *event
917 			= (union hv_synic_event_flags *)page_addr +
918 						 VMBUS_MESSAGE_SINT;
919 
920 		maxbits = HV_EVENT_FLAGS_COUNT;
921 		recv_int_page = event->flags;
922 	}
923 
924 	if (unlikely(!recv_int_page))
925 		return;
926 
927 	for_each_set_bit(relid, recv_int_page, maxbits) {
928 		struct vmbus_channel *channel;
929 
930 		if (!sync_test_and_clear_bit(relid, recv_int_page))
931 			continue;
932 
933 		/* Special case - vmbus channel protocol msg */
934 		if (relid == 0)
935 			continue;
936 
937 		rcu_read_lock();
938 
939 		/* Find channel based on relid */
940 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
941 			if (channel->offermsg.child_relid != relid)
942 				continue;
943 
944 			if (channel->rescind)
945 				continue;
946 
947 			trace_vmbus_chan_sched(channel);
948 
949 			++channel->interrupts;
950 
951 			switch (channel->callback_mode) {
952 			case HV_CALL_ISR:
953 				vmbus_channel_isr(channel);
954 				break;
955 
956 			case HV_CALL_BATCHED:
957 				hv_begin_read(&channel->inbound);
958 				/* fallthrough */
959 			case HV_CALL_DIRECT:
960 				tasklet_schedule(&channel->callback_event);
961 			}
962 		}
963 
964 		rcu_read_unlock();
965 	}
966 }
967 
968 static void vmbus_isr(void)
969 {
970 	struct hv_per_cpu_context *hv_cpu
971 		= this_cpu_ptr(hv_context.cpu_context);
972 	void *page_addr = hv_cpu->synic_event_page;
973 	struct hv_message *msg;
974 	union hv_synic_event_flags *event;
975 	bool handled = false;
976 
977 	if (unlikely(page_addr == NULL))
978 		return;
979 
980 	event = (union hv_synic_event_flags *)page_addr +
981 					 VMBUS_MESSAGE_SINT;
982 	/*
983 	 * Check for events before checking for messages. This is the order
984 	 * in which events and messages are checked in Windows guests on
985 	 * Hyper-V, and the Windows team suggested we do the same.
986 	 */
987 
988 	if ((vmbus_proto_version == VERSION_WS2008) ||
989 		(vmbus_proto_version == VERSION_WIN7)) {
990 
991 		/* Since we are a child, we only need to check bit 0 */
992 		if (sync_test_and_clear_bit(0, event->flags))
993 			handled = true;
994 	} else {
995 		/*
996 		 * Our host is win8 or above. The signaling mechanism
997 		 * has changed and we can directly look at the event page.
998 		 * If bit n is set then we have an interrup on the channel
999 		 * whose id is n.
1000 		 */
1001 		handled = true;
1002 	}
1003 
1004 	if (handled)
1005 		vmbus_chan_sched(hv_cpu);
1006 
1007 	page_addr = hv_cpu->synic_message_page;
1008 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1009 
1010 	/* Check if there are actual msgs to be processed */
1011 	if (msg->header.message_type != HVMSG_NONE) {
1012 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1013 			hv_process_timer_expiration(msg, hv_cpu);
1014 		else
1015 			tasklet_schedule(&hv_cpu->msg_dpc);
1016 	}
1017 
1018 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1019 }
1020 
1021 
1022 /*
1023  * vmbus_bus_init -Main vmbus driver initialization routine.
1024  *
1025  * Here, we
1026  *	- initialize the vmbus driver context
1027  *	- invoke the vmbus hv main init routine
1028  *	- retrieve the channel offers
1029  */
1030 static int vmbus_bus_init(void)
1031 {
1032 	int ret;
1033 
1034 	/* Hypervisor initialization...setup hypercall page..etc */
1035 	ret = hv_init();
1036 	if (ret != 0) {
1037 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1038 		return ret;
1039 	}
1040 
1041 	ret = bus_register(&hv_bus);
1042 	if (ret)
1043 		return ret;
1044 
1045 	hv_setup_vmbus_irq(vmbus_isr);
1046 
1047 	ret = hv_synic_alloc();
1048 	if (ret)
1049 		goto err_alloc;
1050 	/*
1051 	 * Initialize the per-cpu interrupt state and
1052 	 * connect to the host.
1053 	 */
1054 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1055 				hv_synic_init, hv_synic_cleanup);
1056 	if (ret < 0)
1057 		goto err_alloc;
1058 	hyperv_cpuhp_online = ret;
1059 
1060 	ret = vmbus_connect();
1061 	if (ret)
1062 		goto err_connect;
1063 
1064 	/*
1065 	 * Only register if the crash MSRs are available
1066 	 */
1067 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1068 		register_die_notifier(&hyperv_die_block);
1069 		atomic_notifier_chain_register(&panic_notifier_list,
1070 					       &hyperv_panic_block);
1071 	}
1072 
1073 	vmbus_request_offers();
1074 
1075 	return 0;
1076 
1077 err_connect:
1078 	cpuhp_remove_state(hyperv_cpuhp_online);
1079 err_alloc:
1080 	hv_synic_free();
1081 	hv_remove_vmbus_irq();
1082 
1083 	bus_unregister(&hv_bus);
1084 
1085 	return ret;
1086 }
1087 
1088 /**
1089  * __vmbus_child_driver_register() - Register a vmbus's driver
1090  * @hv_driver: Pointer to driver structure you want to register
1091  * @owner: owner module of the drv
1092  * @mod_name: module name string
1093  *
1094  * Registers the given driver with Linux through the 'driver_register()' call
1095  * and sets up the hyper-v vmbus handling for this driver.
1096  * It will return the state of the 'driver_register()' call.
1097  *
1098  */
1099 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1100 {
1101 	int ret;
1102 
1103 	pr_info("registering driver %s\n", hv_driver->name);
1104 
1105 	ret = vmbus_exists();
1106 	if (ret < 0)
1107 		return ret;
1108 
1109 	hv_driver->driver.name = hv_driver->name;
1110 	hv_driver->driver.owner = owner;
1111 	hv_driver->driver.mod_name = mod_name;
1112 	hv_driver->driver.bus = &hv_bus;
1113 
1114 	spin_lock_init(&hv_driver->dynids.lock);
1115 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1116 
1117 	ret = driver_register(&hv_driver->driver);
1118 
1119 	return ret;
1120 }
1121 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1122 
1123 /**
1124  * vmbus_driver_unregister() - Unregister a vmbus's driver
1125  * @hv_driver: Pointer to driver structure you want to
1126  *             un-register
1127  *
1128  * Un-register the given driver that was previous registered with a call to
1129  * vmbus_driver_register()
1130  */
1131 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1132 {
1133 	pr_info("unregistering driver %s\n", hv_driver->name);
1134 
1135 	if (!vmbus_exists()) {
1136 		driver_unregister(&hv_driver->driver);
1137 		vmbus_free_dynids(hv_driver);
1138 	}
1139 }
1140 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1141 
1142 
1143 /*
1144  * Called when last reference to channel is gone.
1145  */
1146 static void vmbus_chan_release(struct kobject *kobj)
1147 {
1148 	struct vmbus_channel *channel
1149 		= container_of(kobj, struct vmbus_channel, kobj);
1150 
1151 	kfree_rcu(channel, rcu);
1152 }
1153 
1154 struct vmbus_chan_attribute {
1155 	struct attribute attr;
1156 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1157 	ssize_t (*store)(struct vmbus_channel *chan,
1158 			 const char *buf, size_t count);
1159 };
1160 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1161 	struct vmbus_chan_attribute chan_attr_##_name \
1162 		= __ATTR(_name, _mode, _show, _store)
1163 #define VMBUS_CHAN_ATTR_RW(_name) \
1164 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1165 #define VMBUS_CHAN_ATTR_RO(_name) \
1166 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1167 #define VMBUS_CHAN_ATTR_WO(_name) \
1168 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1169 
1170 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1171 				    struct attribute *attr, char *buf)
1172 {
1173 	const struct vmbus_chan_attribute *attribute
1174 		= container_of(attr, struct vmbus_chan_attribute, attr);
1175 	const struct vmbus_channel *chan
1176 		= container_of(kobj, struct vmbus_channel, kobj);
1177 
1178 	if (!attribute->show)
1179 		return -EIO;
1180 
1181 	return attribute->show(chan, buf);
1182 }
1183 
1184 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1185 	.show = vmbus_chan_attr_show,
1186 };
1187 
1188 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1189 {
1190 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1191 
1192 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1193 }
1194 static VMBUS_CHAN_ATTR_RO(out_mask);
1195 
1196 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1197 {
1198 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1199 
1200 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1201 }
1202 static VMBUS_CHAN_ATTR_RO(in_mask);
1203 
1204 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1205 {
1206 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1207 
1208 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1209 }
1210 static VMBUS_CHAN_ATTR_RO(read_avail);
1211 
1212 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1213 {
1214 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1215 
1216 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1217 }
1218 static VMBUS_CHAN_ATTR_RO(write_avail);
1219 
1220 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1221 {
1222 	return sprintf(buf, "%u\n", channel->target_cpu);
1223 }
1224 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1225 
1226 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1227 				    char *buf)
1228 {
1229 	return sprintf(buf, "%d\n",
1230 		       channel_pending(channel,
1231 				       vmbus_connection.monitor_pages[1]));
1232 }
1233 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1234 
1235 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1236 				    char *buf)
1237 {
1238 	return sprintf(buf, "%d\n",
1239 		       channel_latency(channel,
1240 				       vmbus_connection.monitor_pages[1]));
1241 }
1242 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1243 
1244 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1245 {
1246 	return sprintf(buf, "%llu\n", channel->interrupts);
1247 }
1248 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1249 
1250 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1251 {
1252 	return sprintf(buf, "%llu\n", channel->sig_events);
1253 }
1254 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1255 
1256 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1257 					  char *buf)
1258 {
1259 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1260 }
1261 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1262 
1263 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1264 				  char *buf)
1265 {
1266 	return sprintf(buf, "%u\n",
1267 		       channel->offermsg.offer.sub_channel_index);
1268 }
1269 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1270 
1271 static struct attribute *vmbus_chan_attrs[] = {
1272 	&chan_attr_out_mask.attr,
1273 	&chan_attr_in_mask.attr,
1274 	&chan_attr_read_avail.attr,
1275 	&chan_attr_write_avail.attr,
1276 	&chan_attr_cpu.attr,
1277 	&chan_attr_pending.attr,
1278 	&chan_attr_latency.attr,
1279 	&chan_attr_interrupts.attr,
1280 	&chan_attr_events.attr,
1281 	&chan_attr_monitor_id.attr,
1282 	&chan_attr_subchannel_id.attr,
1283 	NULL
1284 };
1285 
1286 static struct kobj_type vmbus_chan_ktype = {
1287 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1288 	.release = vmbus_chan_release,
1289 	.default_attrs = vmbus_chan_attrs,
1290 };
1291 
1292 /*
1293  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1294  */
1295 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1296 {
1297 	struct kobject *kobj = &channel->kobj;
1298 	u32 relid = channel->offermsg.child_relid;
1299 	int ret;
1300 
1301 	kobj->kset = dev->channels_kset;
1302 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1303 				   "%u", relid);
1304 	if (ret)
1305 		return ret;
1306 
1307 	kobject_uevent(kobj, KOBJ_ADD);
1308 
1309 	return 0;
1310 }
1311 
1312 /*
1313  * vmbus_device_create - Creates and registers a new child device
1314  * on the vmbus.
1315  */
1316 struct hv_device *vmbus_device_create(const uuid_le *type,
1317 				      const uuid_le *instance,
1318 				      struct vmbus_channel *channel)
1319 {
1320 	struct hv_device *child_device_obj;
1321 
1322 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1323 	if (!child_device_obj) {
1324 		pr_err("Unable to allocate device object for child device\n");
1325 		return NULL;
1326 	}
1327 
1328 	child_device_obj->channel = channel;
1329 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1330 	memcpy(&child_device_obj->dev_instance, instance,
1331 	       sizeof(uuid_le));
1332 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1333 
1334 
1335 	return child_device_obj;
1336 }
1337 
1338 /*
1339  * vmbus_device_register - Register the child device
1340  */
1341 int vmbus_device_register(struct hv_device *child_device_obj)
1342 {
1343 	struct kobject *kobj = &child_device_obj->device.kobj;
1344 	int ret;
1345 
1346 	dev_set_name(&child_device_obj->device, "%pUl",
1347 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1348 
1349 	child_device_obj->device.bus = &hv_bus;
1350 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1351 	child_device_obj->device.release = vmbus_device_release;
1352 
1353 	/*
1354 	 * Register with the LDM. This will kick off the driver/device
1355 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1356 	 */
1357 	ret = device_register(&child_device_obj->device);
1358 	if (ret) {
1359 		pr_err("Unable to register child device\n");
1360 		return ret;
1361 	}
1362 
1363 	child_device_obj->channels_kset = kset_create_and_add("channels",
1364 							      NULL, kobj);
1365 	if (!child_device_obj->channels_kset) {
1366 		ret = -ENOMEM;
1367 		goto err_dev_unregister;
1368 	}
1369 
1370 	ret = vmbus_add_channel_kobj(child_device_obj,
1371 				     child_device_obj->channel);
1372 	if (ret) {
1373 		pr_err("Unable to register primary channeln");
1374 		goto err_kset_unregister;
1375 	}
1376 
1377 	return 0;
1378 
1379 err_kset_unregister:
1380 	kset_unregister(child_device_obj->channels_kset);
1381 
1382 err_dev_unregister:
1383 	device_unregister(&child_device_obj->device);
1384 	return ret;
1385 }
1386 
1387 /*
1388  * vmbus_device_unregister - Remove the specified child device
1389  * from the vmbus.
1390  */
1391 void vmbus_device_unregister(struct hv_device *device_obj)
1392 {
1393 	pr_debug("child device %s unregistered\n",
1394 		dev_name(&device_obj->device));
1395 
1396 	kset_unregister(device_obj->channels_kset);
1397 
1398 	/*
1399 	 * Kick off the process of unregistering the device.
1400 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1401 	 */
1402 	device_unregister(&device_obj->device);
1403 }
1404 
1405 
1406 /*
1407  * VMBUS is an acpi enumerated device. Get the information we
1408  * need from DSDT.
1409  */
1410 #define VTPM_BASE_ADDRESS 0xfed40000
1411 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1412 {
1413 	resource_size_t start = 0;
1414 	resource_size_t end = 0;
1415 	struct resource *new_res;
1416 	struct resource **old_res = &hyperv_mmio;
1417 	struct resource **prev_res = NULL;
1418 
1419 	switch (res->type) {
1420 
1421 	/*
1422 	 * "Address" descriptors are for bus windows. Ignore
1423 	 * "memory" descriptors, which are for registers on
1424 	 * devices.
1425 	 */
1426 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1427 		start = res->data.address32.address.minimum;
1428 		end = res->data.address32.address.maximum;
1429 		break;
1430 
1431 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1432 		start = res->data.address64.address.minimum;
1433 		end = res->data.address64.address.maximum;
1434 		break;
1435 
1436 	default:
1437 		/* Unused resource type */
1438 		return AE_OK;
1439 
1440 	}
1441 	/*
1442 	 * Ignore ranges that are below 1MB, as they're not
1443 	 * necessary or useful here.
1444 	 */
1445 	if (end < 0x100000)
1446 		return AE_OK;
1447 
1448 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1449 	if (!new_res)
1450 		return AE_NO_MEMORY;
1451 
1452 	/* If this range overlaps the virtual TPM, truncate it. */
1453 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1454 		end = VTPM_BASE_ADDRESS;
1455 
1456 	new_res->name = "hyperv mmio";
1457 	new_res->flags = IORESOURCE_MEM;
1458 	new_res->start = start;
1459 	new_res->end = end;
1460 
1461 	/*
1462 	 * If two ranges are adjacent, merge them.
1463 	 */
1464 	do {
1465 		if (!*old_res) {
1466 			*old_res = new_res;
1467 			break;
1468 		}
1469 
1470 		if (((*old_res)->end + 1) == new_res->start) {
1471 			(*old_res)->end = new_res->end;
1472 			kfree(new_res);
1473 			break;
1474 		}
1475 
1476 		if ((*old_res)->start == new_res->end + 1) {
1477 			(*old_res)->start = new_res->start;
1478 			kfree(new_res);
1479 			break;
1480 		}
1481 
1482 		if ((*old_res)->start > new_res->end) {
1483 			new_res->sibling = *old_res;
1484 			if (prev_res)
1485 				(*prev_res)->sibling = new_res;
1486 			*old_res = new_res;
1487 			break;
1488 		}
1489 
1490 		prev_res = old_res;
1491 		old_res = &(*old_res)->sibling;
1492 
1493 	} while (1);
1494 
1495 	return AE_OK;
1496 }
1497 
1498 static int vmbus_acpi_remove(struct acpi_device *device)
1499 {
1500 	struct resource *cur_res;
1501 	struct resource *next_res;
1502 
1503 	if (hyperv_mmio) {
1504 		if (fb_mmio) {
1505 			__release_region(hyperv_mmio, fb_mmio->start,
1506 					 resource_size(fb_mmio));
1507 			fb_mmio = NULL;
1508 		}
1509 
1510 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1511 			next_res = cur_res->sibling;
1512 			kfree(cur_res);
1513 		}
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 static void vmbus_reserve_fb(void)
1520 {
1521 	int size;
1522 	/*
1523 	 * Make a claim for the frame buffer in the resource tree under the
1524 	 * first node, which will be the one below 4GB.  The length seems to
1525 	 * be underreported, particularly in a Generation 1 VM.  So start out
1526 	 * reserving a larger area and make it smaller until it succeeds.
1527 	 */
1528 
1529 	if (screen_info.lfb_base) {
1530 		if (efi_enabled(EFI_BOOT))
1531 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1532 		else
1533 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1534 
1535 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1536 			fb_mmio = __request_region(hyperv_mmio,
1537 						   screen_info.lfb_base, size,
1538 						   fb_mmio_name, 0);
1539 		}
1540 	}
1541 }
1542 
1543 /**
1544  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1545  * @new:		If successful, supplied a pointer to the
1546  *			allocated MMIO space.
1547  * @device_obj:		Identifies the caller
1548  * @min:		Minimum guest physical address of the
1549  *			allocation
1550  * @max:		Maximum guest physical address
1551  * @size:		Size of the range to be allocated
1552  * @align:		Alignment of the range to be allocated
1553  * @fb_overlap_ok:	Whether this allocation can be allowed
1554  *			to overlap the video frame buffer.
1555  *
1556  * This function walks the resources granted to VMBus by the
1557  * _CRS object in the ACPI namespace underneath the parent
1558  * "bridge" whether that's a root PCI bus in the Generation 1
1559  * case or a Module Device in the Generation 2 case.  It then
1560  * attempts to allocate from the global MMIO pool in a way that
1561  * matches the constraints supplied in these parameters and by
1562  * that _CRS.
1563  *
1564  * Return: 0 on success, -errno on failure
1565  */
1566 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1567 			resource_size_t min, resource_size_t max,
1568 			resource_size_t size, resource_size_t align,
1569 			bool fb_overlap_ok)
1570 {
1571 	struct resource *iter, *shadow;
1572 	resource_size_t range_min, range_max, start;
1573 	const char *dev_n = dev_name(&device_obj->device);
1574 	int retval;
1575 
1576 	retval = -ENXIO;
1577 	down(&hyperv_mmio_lock);
1578 
1579 	/*
1580 	 * If overlaps with frame buffers are allowed, then first attempt to
1581 	 * make the allocation from within the reserved region.  Because it
1582 	 * is already reserved, no shadow allocation is necessary.
1583 	 */
1584 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1585 	    !(max < fb_mmio->start)) {
1586 
1587 		range_min = fb_mmio->start;
1588 		range_max = fb_mmio->end;
1589 		start = (range_min + align - 1) & ~(align - 1);
1590 		for (; start + size - 1 <= range_max; start += align) {
1591 			*new = request_mem_region_exclusive(start, size, dev_n);
1592 			if (*new) {
1593 				retval = 0;
1594 				goto exit;
1595 			}
1596 		}
1597 	}
1598 
1599 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1600 		if ((iter->start >= max) || (iter->end <= min))
1601 			continue;
1602 
1603 		range_min = iter->start;
1604 		range_max = iter->end;
1605 		start = (range_min + align - 1) & ~(align - 1);
1606 		for (; start + size - 1 <= range_max; start += align) {
1607 			shadow = __request_region(iter, start, size, NULL,
1608 						  IORESOURCE_BUSY);
1609 			if (!shadow)
1610 				continue;
1611 
1612 			*new = request_mem_region_exclusive(start, size, dev_n);
1613 			if (*new) {
1614 				shadow->name = (char *)*new;
1615 				retval = 0;
1616 				goto exit;
1617 			}
1618 
1619 			__release_region(iter, start, size);
1620 		}
1621 	}
1622 
1623 exit:
1624 	up(&hyperv_mmio_lock);
1625 	return retval;
1626 }
1627 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1628 
1629 /**
1630  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1631  * @start:		Base address of region to release.
1632  * @size:		Size of the range to be allocated
1633  *
1634  * This function releases anything requested by
1635  * vmbus_mmio_allocate().
1636  */
1637 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1638 {
1639 	struct resource *iter;
1640 
1641 	down(&hyperv_mmio_lock);
1642 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1643 		if ((iter->start >= start + size) || (iter->end <= start))
1644 			continue;
1645 
1646 		__release_region(iter, start, size);
1647 	}
1648 	release_mem_region(start, size);
1649 	up(&hyperv_mmio_lock);
1650 
1651 }
1652 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1653 
1654 static int vmbus_acpi_add(struct acpi_device *device)
1655 {
1656 	acpi_status result;
1657 	int ret_val = -ENODEV;
1658 	struct acpi_device *ancestor;
1659 
1660 	hv_acpi_dev = device;
1661 
1662 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1663 					vmbus_walk_resources, NULL);
1664 
1665 	if (ACPI_FAILURE(result))
1666 		goto acpi_walk_err;
1667 	/*
1668 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1669 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1670 	 */
1671 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1672 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1673 					     vmbus_walk_resources, NULL);
1674 
1675 		if (ACPI_FAILURE(result))
1676 			continue;
1677 		if (hyperv_mmio) {
1678 			vmbus_reserve_fb();
1679 			break;
1680 		}
1681 	}
1682 	ret_val = 0;
1683 
1684 acpi_walk_err:
1685 	complete(&probe_event);
1686 	if (ret_val)
1687 		vmbus_acpi_remove(device);
1688 	return ret_val;
1689 }
1690 
1691 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1692 	{"VMBUS", 0},
1693 	{"VMBus", 0},
1694 	{"", 0},
1695 };
1696 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1697 
1698 static struct acpi_driver vmbus_acpi_driver = {
1699 	.name = "vmbus",
1700 	.ids = vmbus_acpi_device_ids,
1701 	.ops = {
1702 		.add = vmbus_acpi_add,
1703 		.remove = vmbus_acpi_remove,
1704 	},
1705 };
1706 
1707 static void hv_kexec_handler(void)
1708 {
1709 	hv_synic_clockevents_cleanup();
1710 	vmbus_initiate_unload(false);
1711 	vmbus_connection.conn_state = DISCONNECTED;
1712 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1713 	mb();
1714 	cpuhp_remove_state(hyperv_cpuhp_online);
1715 	hyperv_cleanup();
1716 };
1717 
1718 static void hv_crash_handler(struct pt_regs *regs)
1719 {
1720 	vmbus_initiate_unload(true);
1721 	/*
1722 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1723 	 * doing the cleanup for current CPU only. This should be sufficient
1724 	 * for kdump.
1725 	 */
1726 	vmbus_connection.conn_state = DISCONNECTED;
1727 	hv_synic_cleanup(smp_processor_id());
1728 	hyperv_cleanup();
1729 };
1730 
1731 static int __init hv_acpi_init(void)
1732 {
1733 	int ret, t;
1734 
1735 	if (!hv_is_hyperv_initialized())
1736 		return -ENODEV;
1737 
1738 	init_completion(&probe_event);
1739 
1740 	/*
1741 	 * Get ACPI resources first.
1742 	 */
1743 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1744 
1745 	if (ret)
1746 		return ret;
1747 
1748 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1749 	if (t == 0) {
1750 		ret = -ETIMEDOUT;
1751 		goto cleanup;
1752 	}
1753 
1754 	ret = vmbus_bus_init();
1755 	if (ret)
1756 		goto cleanup;
1757 
1758 	hv_setup_kexec_handler(hv_kexec_handler);
1759 	hv_setup_crash_handler(hv_crash_handler);
1760 
1761 	return 0;
1762 
1763 cleanup:
1764 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1765 	hv_acpi_dev = NULL;
1766 	return ret;
1767 }
1768 
1769 static void __exit vmbus_exit(void)
1770 {
1771 	int cpu;
1772 
1773 	hv_remove_kexec_handler();
1774 	hv_remove_crash_handler();
1775 	vmbus_connection.conn_state = DISCONNECTED;
1776 	hv_synic_clockevents_cleanup();
1777 	vmbus_disconnect();
1778 	hv_remove_vmbus_irq();
1779 	for_each_online_cpu(cpu) {
1780 		struct hv_per_cpu_context *hv_cpu
1781 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1782 
1783 		tasklet_kill(&hv_cpu->msg_dpc);
1784 	}
1785 	vmbus_free_channels();
1786 
1787 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1788 		unregister_die_notifier(&hyperv_die_block);
1789 		atomic_notifier_chain_unregister(&panic_notifier_list,
1790 						 &hyperv_panic_block);
1791 	}
1792 	bus_unregister(&hv_bus);
1793 
1794 	cpuhp_remove_state(hyperv_cpuhp_online);
1795 	hv_synic_free();
1796 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1797 }
1798 
1799 
1800 MODULE_LICENSE("GPL");
1801 
1802 subsys_initcall(hv_acpi_init);
1803 module_exit(vmbus_exit);
1804