1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include <linux/random.h> 46 #include "hyperv_vmbus.h" 47 48 struct vmbus_dynid { 49 struct list_head node; 50 struct hv_vmbus_device_id id; 51 }; 52 53 static struct acpi_device *hv_acpi_dev; 54 55 static struct completion probe_event; 56 57 static int hyperv_cpuhp_online; 58 59 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 60 void *args) 61 { 62 struct pt_regs *regs; 63 64 regs = current_pt_regs(); 65 66 hyperv_report_panic(regs, val); 67 return NOTIFY_DONE; 68 } 69 70 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 71 void *args) 72 { 73 struct die_args *die = (struct die_args *)args; 74 struct pt_regs *regs = die->regs; 75 76 hyperv_report_panic(regs, val); 77 return NOTIFY_DONE; 78 } 79 80 static struct notifier_block hyperv_die_block = { 81 .notifier_call = hyperv_die_event, 82 }; 83 static struct notifier_block hyperv_panic_block = { 84 .notifier_call = hyperv_panic_event, 85 }; 86 87 static const char *fb_mmio_name = "fb_range"; 88 static struct resource *fb_mmio; 89 static struct resource *hyperv_mmio; 90 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 91 92 static int vmbus_exists(void) 93 { 94 if (hv_acpi_dev == NULL) 95 return -ENODEV; 96 97 return 0; 98 } 99 100 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 101 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 102 { 103 int i; 104 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 105 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 106 } 107 108 static u8 channel_monitor_group(const struct vmbus_channel *channel) 109 { 110 return (u8)channel->offermsg.monitorid / 32; 111 } 112 113 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 114 { 115 return (u8)channel->offermsg.monitorid % 32; 116 } 117 118 static u32 channel_pending(const struct vmbus_channel *channel, 119 const struct hv_monitor_page *monitor_page) 120 { 121 u8 monitor_group = channel_monitor_group(channel); 122 123 return monitor_page->trigger_group[monitor_group].pending; 124 } 125 126 static u32 channel_latency(const struct vmbus_channel *channel, 127 const struct hv_monitor_page *monitor_page) 128 { 129 u8 monitor_group = channel_monitor_group(channel); 130 u8 monitor_offset = channel_monitor_offset(channel); 131 132 return monitor_page->latency[monitor_group][monitor_offset]; 133 } 134 135 static u32 channel_conn_id(struct vmbus_channel *channel, 136 struct hv_monitor_page *monitor_page) 137 { 138 u8 monitor_group = channel_monitor_group(channel); 139 u8 monitor_offset = channel_monitor_offset(channel); 140 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 141 } 142 143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 144 char *buf) 145 { 146 struct hv_device *hv_dev = device_to_hv_device(dev); 147 148 if (!hv_dev->channel) 149 return -ENODEV; 150 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 151 } 152 static DEVICE_ATTR_RO(id); 153 154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 155 char *buf) 156 { 157 struct hv_device *hv_dev = device_to_hv_device(dev); 158 159 if (!hv_dev->channel) 160 return -ENODEV; 161 return sprintf(buf, "%d\n", hv_dev->channel->state); 162 } 163 static DEVICE_ATTR_RO(state); 164 165 static ssize_t monitor_id_show(struct device *dev, 166 struct device_attribute *dev_attr, char *buf) 167 { 168 struct hv_device *hv_dev = device_to_hv_device(dev); 169 170 if (!hv_dev->channel) 171 return -ENODEV; 172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 173 } 174 static DEVICE_ATTR_RO(monitor_id); 175 176 static ssize_t class_id_show(struct device *dev, 177 struct device_attribute *dev_attr, char *buf) 178 { 179 struct hv_device *hv_dev = device_to_hv_device(dev); 180 181 if (!hv_dev->channel) 182 return -ENODEV; 183 return sprintf(buf, "{%pUl}\n", 184 hv_dev->channel->offermsg.offer.if_type.b); 185 } 186 static DEVICE_ATTR_RO(class_id); 187 188 static ssize_t device_id_show(struct device *dev, 189 struct device_attribute *dev_attr, char *buf) 190 { 191 struct hv_device *hv_dev = device_to_hv_device(dev); 192 193 if (!hv_dev->channel) 194 return -ENODEV; 195 return sprintf(buf, "{%pUl}\n", 196 hv_dev->channel->offermsg.offer.if_instance.b); 197 } 198 static DEVICE_ATTR_RO(device_id); 199 200 static ssize_t modalias_show(struct device *dev, 201 struct device_attribute *dev_attr, char *buf) 202 { 203 struct hv_device *hv_dev = device_to_hv_device(dev); 204 char alias_name[VMBUS_ALIAS_LEN + 1]; 205 206 print_alias_name(hv_dev, alias_name); 207 return sprintf(buf, "vmbus:%s\n", alias_name); 208 } 209 static DEVICE_ATTR_RO(modalias); 210 211 static ssize_t server_monitor_pending_show(struct device *dev, 212 struct device_attribute *dev_attr, 213 char *buf) 214 { 215 struct hv_device *hv_dev = device_to_hv_device(dev); 216 217 if (!hv_dev->channel) 218 return -ENODEV; 219 return sprintf(buf, "%d\n", 220 channel_pending(hv_dev->channel, 221 vmbus_connection.monitor_pages[1])); 222 } 223 static DEVICE_ATTR_RO(server_monitor_pending); 224 225 static ssize_t client_monitor_pending_show(struct device *dev, 226 struct device_attribute *dev_attr, 227 char *buf) 228 { 229 struct hv_device *hv_dev = device_to_hv_device(dev); 230 231 if (!hv_dev->channel) 232 return -ENODEV; 233 return sprintf(buf, "%d\n", 234 channel_pending(hv_dev->channel, 235 vmbus_connection.monitor_pages[1])); 236 } 237 static DEVICE_ATTR_RO(client_monitor_pending); 238 239 static ssize_t server_monitor_latency_show(struct device *dev, 240 struct device_attribute *dev_attr, 241 char *buf) 242 { 243 struct hv_device *hv_dev = device_to_hv_device(dev); 244 245 if (!hv_dev->channel) 246 return -ENODEV; 247 return sprintf(buf, "%d\n", 248 channel_latency(hv_dev->channel, 249 vmbus_connection.monitor_pages[0])); 250 } 251 static DEVICE_ATTR_RO(server_monitor_latency); 252 253 static ssize_t client_monitor_latency_show(struct device *dev, 254 struct device_attribute *dev_attr, 255 char *buf) 256 { 257 struct hv_device *hv_dev = device_to_hv_device(dev); 258 259 if (!hv_dev->channel) 260 return -ENODEV; 261 return sprintf(buf, "%d\n", 262 channel_latency(hv_dev->channel, 263 vmbus_connection.monitor_pages[1])); 264 } 265 static DEVICE_ATTR_RO(client_monitor_latency); 266 267 static ssize_t server_monitor_conn_id_show(struct device *dev, 268 struct device_attribute *dev_attr, 269 char *buf) 270 { 271 struct hv_device *hv_dev = device_to_hv_device(dev); 272 273 if (!hv_dev->channel) 274 return -ENODEV; 275 return sprintf(buf, "%d\n", 276 channel_conn_id(hv_dev->channel, 277 vmbus_connection.monitor_pages[0])); 278 } 279 static DEVICE_ATTR_RO(server_monitor_conn_id); 280 281 static ssize_t client_monitor_conn_id_show(struct device *dev, 282 struct device_attribute *dev_attr, 283 char *buf) 284 { 285 struct hv_device *hv_dev = device_to_hv_device(dev); 286 287 if (!hv_dev->channel) 288 return -ENODEV; 289 return sprintf(buf, "%d\n", 290 channel_conn_id(hv_dev->channel, 291 vmbus_connection.monitor_pages[1])); 292 } 293 static DEVICE_ATTR_RO(client_monitor_conn_id); 294 295 static ssize_t out_intr_mask_show(struct device *dev, 296 struct device_attribute *dev_attr, char *buf) 297 { 298 struct hv_device *hv_dev = device_to_hv_device(dev); 299 struct hv_ring_buffer_debug_info outbound; 300 301 if (!hv_dev->channel) 302 return -ENODEV; 303 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 304 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 305 } 306 static DEVICE_ATTR_RO(out_intr_mask); 307 308 static ssize_t out_read_index_show(struct device *dev, 309 struct device_attribute *dev_attr, char *buf) 310 { 311 struct hv_device *hv_dev = device_to_hv_device(dev); 312 struct hv_ring_buffer_debug_info outbound; 313 314 if (!hv_dev->channel) 315 return -ENODEV; 316 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 317 return sprintf(buf, "%d\n", outbound.current_read_index); 318 } 319 static DEVICE_ATTR_RO(out_read_index); 320 321 static ssize_t out_write_index_show(struct device *dev, 322 struct device_attribute *dev_attr, 323 char *buf) 324 { 325 struct hv_device *hv_dev = device_to_hv_device(dev); 326 struct hv_ring_buffer_debug_info outbound; 327 328 if (!hv_dev->channel) 329 return -ENODEV; 330 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 331 return sprintf(buf, "%d\n", outbound.current_write_index); 332 } 333 static DEVICE_ATTR_RO(out_write_index); 334 335 static ssize_t out_read_bytes_avail_show(struct device *dev, 336 struct device_attribute *dev_attr, 337 char *buf) 338 { 339 struct hv_device *hv_dev = device_to_hv_device(dev); 340 struct hv_ring_buffer_debug_info outbound; 341 342 if (!hv_dev->channel) 343 return -ENODEV; 344 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 345 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 346 } 347 static DEVICE_ATTR_RO(out_read_bytes_avail); 348 349 static ssize_t out_write_bytes_avail_show(struct device *dev, 350 struct device_attribute *dev_attr, 351 char *buf) 352 { 353 struct hv_device *hv_dev = device_to_hv_device(dev); 354 struct hv_ring_buffer_debug_info outbound; 355 356 if (!hv_dev->channel) 357 return -ENODEV; 358 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 359 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 360 } 361 static DEVICE_ATTR_RO(out_write_bytes_avail); 362 363 static ssize_t in_intr_mask_show(struct device *dev, 364 struct device_attribute *dev_attr, char *buf) 365 { 366 struct hv_device *hv_dev = device_to_hv_device(dev); 367 struct hv_ring_buffer_debug_info inbound; 368 369 if (!hv_dev->channel) 370 return -ENODEV; 371 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 372 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 373 } 374 static DEVICE_ATTR_RO(in_intr_mask); 375 376 static ssize_t in_read_index_show(struct device *dev, 377 struct device_attribute *dev_attr, char *buf) 378 { 379 struct hv_device *hv_dev = device_to_hv_device(dev); 380 struct hv_ring_buffer_debug_info inbound; 381 382 if (!hv_dev->channel) 383 return -ENODEV; 384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 385 return sprintf(buf, "%d\n", inbound.current_read_index); 386 } 387 static DEVICE_ATTR_RO(in_read_index); 388 389 static ssize_t in_write_index_show(struct device *dev, 390 struct device_attribute *dev_attr, char *buf) 391 { 392 struct hv_device *hv_dev = device_to_hv_device(dev); 393 struct hv_ring_buffer_debug_info inbound; 394 395 if (!hv_dev->channel) 396 return -ENODEV; 397 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 398 return sprintf(buf, "%d\n", inbound.current_write_index); 399 } 400 static DEVICE_ATTR_RO(in_write_index); 401 402 static ssize_t in_read_bytes_avail_show(struct device *dev, 403 struct device_attribute *dev_attr, 404 char *buf) 405 { 406 struct hv_device *hv_dev = device_to_hv_device(dev); 407 struct hv_ring_buffer_debug_info inbound; 408 409 if (!hv_dev->channel) 410 return -ENODEV; 411 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 412 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 413 } 414 static DEVICE_ATTR_RO(in_read_bytes_avail); 415 416 static ssize_t in_write_bytes_avail_show(struct device *dev, 417 struct device_attribute *dev_attr, 418 char *buf) 419 { 420 struct hv_device *hv_dev = device_to_hv_device(dev); 421 struct hv_ring_buffer_debug_info inbound; 422 423 if (!hv_dev->channel) 424 return -ENODEV; 425 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 426 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 427 } 428 static DEVICE_ATTR_RO(in_write_bytes_avail); 429 430 static ssize_t channel_vp_mapping_show(struct device *dev, 431 struct device_attribute *dev_attr, 432 char *buf) 433 { 434 struct hv_device *hv_dev = device_to_hv_device(dev); 435 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 436 unsigned long flags; 437 int buf_size = PAGE_SIZE, n_written, tot_written; 438 struct list_head *cur; 439 440 if (!channel) 441 return -ENODEV; 442 443 tot_written = snprintf(buf, buf_size, "%u:%u\n", 444 channel->offermsg.child_relid, channel->target_cpu); 445 446 spin_lock_irqsave(&channel->lock, flags); 447 448 list_for_each(cur, &channel->sc_list) { 449 if (tot_written >= buf_size - 1) 450 break; 451 452 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 453 n_written = scnprintf(buf + tot_written, 454 buf_size - tot_written, 455 "%u:%u\n", 456 cur_sc->offermsg.child_relid, 457 cur_sc->target_cpu); 458 tot_written += n_written; 459 } 460 461 spin_unlock_irqrestore(&channel->lock, flags); 462 463 return tot_written; 464 } 465 static DEVICE_ATTR_RO(channel_vp_mapping); 466 467 static ssize_t vendor_show(struct device *dev, 468 struct device_attribute *dev_attr, 469 char *buf) 470 { 471 struct hv_device *hv_dev = device_to_hv_device(dev); 472 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 473 } 474 static DEVICE_ATTR_RO(vendor); 475 476 static ssize_t device_show(struct device *dev, 477 struct device_attribute *dev_attr, 478 char *buf) 479 { 480 struct hv_device *hv_dev = device_to_hv_device(dev); 481 return sprintf(buf, "0x%x\n", hv_dev->device_id); 482 } 483 static DEVICE_ATTR_RO(device); 484 485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 486 static struct attribute *vmbus_dev_attrs[] = { 487 &dev_attr_id.attr, 488 &dev_attr_state.attr, 489 &dev_attr_monitor_id.attr, 490 &dev_attr_class_id.attr, 491 &dev_attr_device_id.attr, 492 &dev_attr_modalias.attr, 493 &dev_attr_server_monitor_pending.attr, 494 &dev_attr_client_monitor_pending.attr, 495 &dev_attr_server_monitor_latency.attr, 496 &dev_attr_client_monitor_latency.attr, 497 &dev_attr_server_monitor_conn_id.attr, 498 &dev_attr_client_monitor_conn_id.attr, 499 &dev_attr_out_intr_mask.attr, 500 &dev_attr_out_read_index.attr, 501 &dev_attr_out_write_index.attr, 502 &dev_attr_out_read_bytes_avail.attr, 503 &dev_attr_out_write_bytes_avail.attr, 504 &dev_attr_in_intr_mask.attr, 505 &dev_attr_in_read_index.attr, 506 &dev_attr_in_write_index.attr, 507 &dev_attr_in_read_bytes_avail.attr, 508 &dev_attr_in_write_bytes_avail.attr, 509 &dev_attr_channel_vp_mapping.attr, 510 &dev_attr_vendor.attr, 511 &dev_attr_device.attr, 512 NULL, 513 }; 514 ATTRIBUTE_GROUPS(vmbus_dev); 515 516 /* 517 * vmbus_uevent - add uevent for our device 518 * 519 * This routine is invoked when a device is added or removed on the vmbus to 520 * generate a uevent to udev in the userspace. The udev will then look at its 521 * rule and the uevent generated here to load the appropriate driver 522 * 523 * The alias string will be of the form vmbus:guid where guid is the string 524 * representation of the device guid (each byte of the guid will be 525 * represented with two hex characters. 526 */ 527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 528 { 529 struct hv_device *dev = device_to_hv_device(device); 530 int ret; 531 char alias_name[VMBUS_ALIAS_LEN + 1]; 532 533 print_alias_name(dev, alias_name); 534 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 535 return ret; 536 } 537 538 static const uuid_le null_guid; 539 540 static inline bool is_null_guid(const uuid_le *guid) 541 { 542 if (uuid_le_cmp(*guid, null_guid)) 543 return false; 544 return true; 545 } 546 547 /* 548 * Return a matching hv_vmbus_device_id pointer. 549 * If there is no match, return NULL. 550 */ 551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 552 const uuid_le *guid) 553 { 554 const struct hv_vmbus_device_id *id = NULL; 555 struct vmbus_dynid *dynid; 556 557 /* Look at the dynamic ids first, before the static ones */ 558 spin_lock(&drv->dynids.lock); 559 list_for_each_entry(dynid, &drv->dynids.list, node) { 560 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 561 id = &dynid->id; 562 break; 563 } 564 } 565 spin_unlock(&drv->dynids.lock); 566 567 if (id) 568 return id; 569 570 id = drv->id_table; 571 if (id == NULL) 572 return NULL; /* empty device table */ 573 574 for (; !is_null_guid(&id->guid); id++) 575 if (!uuid_le_cmp(id->guid, *guid)) 576 return id; 577 578 return NULL; 579 } 580 581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 583 { 584 struct vmbus_dynid *dynid; 585 586 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 587 if (!dynid) 588 return -ENOMEM; 589 590 dynid->id.guid = *guid; 591 592 spin_lock(&drv->dynids.lock); 593 list_add_tail(&dynid->node, &drv->dynids.list); 594 spin_unlock(&drv->dynids.lock); 595 596 return driver_attach(&drv->driver); 597 } 598 599 static void vmbus_free_dynids(struct hv_driver *drv) 600 { 601 struct vmbus_dynid *dynid, *n; 602 603 spin_lock(&drv->dynids.lock); 604 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 605 list_del(&dynid->node); 606 kfree(dynid); 607 } 608 spin_unlock(&drv->dynids.lock); 609 } 610 611 /* 612 * store_new_id - sysfs frontend to vmbus_add_dynid() 613 * 614 * Allow GUIDs to be added to an existing driver via sysfs. 615 */ 616 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 617 size_t count) 618 { 619 struct hv_driver *drv = drv_to_hv_drv(driver); 620 uuid_le guid; 621 ssize_t retval; 622 623 retval = uuid_le_to_bin(buf, &guid); 624 if (retval) 625 return retval; 626 627 if (hv_vmbus_get_id(drv, &guid)) 628 return -EEXIST; 629 630 retval = vmbus_add_dynid(drv, &guid); 631 if (retval) 632 return retval; 633 return count; 634 } 635 static DRIVER_ATTR_WO(new_id); 636 637 /* 638 * store_remove_id - remove a PCI device ID from this driver 639 * 640 * Removes a dynamic pci device ID to this driver. 641 */ 642 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 643 size_t count) 644 { 645 struct hv_driver *drv = drv_to_hv_drv(driver); 646 struct vmbus_dynid *dynid, *n; 647 uuid_le guid; 648 ssize_t retval; 649 650 retval = uuid_le_to_bin(buf, &guid); 651 if (retval) 652 return retval; 653 654 retval = -ENODEV; 655 spin_lock(&drv->dynids.lock); 656 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 657 struct hv_vmbus_device_id *id = &dynid->id; 658 659 if (!uuid_le_cmp(id->guid, guid)) { 660 list_del(&dynid->node); 661 kfree(dynid); 662 retval = count; 663 break; 664 } 665 } 666 spin_unlock(&drv->dynids.lock); 667 668 return retval; 669 } 670 static DRIVER_ATTR_WO(remove_id); 671 672 static struct attribute *vmbus_drv_attrs[] = { 673 &driver_attr_new_id.attr, 674 &driver_attr_remove_id.attr, 675 NULL, 676 }; 677 ATTRIBUTE_GROUPS(vmbus_drv); 678 679 680 /* 681 * vmbus_match - Attempt to match the specified device to the specified driver 682 */ 683 static int vmbus_match(struct device *device, struct device_driver *driver) 684 { 685 struct hv_driver *drv = drv_to_hv_drv(driver); 686 struct hv_device *hv_dev = device_to_hv_device(device); 687 688 /* The hv_sock driver handles all hv_sock offers. */ 689 if (is_hvsock_channel(hv_dev->channel)) 690 return drv->hvsock; 691 692 if (hv_vmbus_get_id(drv, &hv_dev->dev_type)) 693 return 1; 694 695 return 0; 696 } 697 698 /* 699 * vmbus_probe - Add the new vmbus's child device 700 */ 701 static int vmbus_probe(struct device *child_device) 702 { 703 int ret = 0; 704 struct hv_driver *drv = 705 drv_to_hv_drv(child_device->driver); 706 struct hv_device *dev = device_to_hv_device(child_device); 707 const struct hv_vmbus_device_id *dev_id; 708 709 dev_id = hv_vmbus_get_id(drv, &dev->dev_type); 710 if (drv->probe) { 711 ret = drv->probe(dev, dev_id); 712 if (ret != 0) 713 pr_err("probe failed for device %s (%d)\n", 714 dev_name(child_device), ret); 715 716 } else { 717 pr_err("probe not set for driver %s\n", 718 dev_name(child_device)); 719 ret = -ENODEV; 720 } 721 return ret; 722 } 723 724 /* 725 * vmbus_remove - Remove a vmbus device 726 */ 727 static int vmbus_remove(struct device *child_device) 728 { 729 struct hv_driver *drv; 730 struct hv_device *dev = device_to_hv_device(child_device); 731 732 if (child_device->driver) { 733 drv = drv_to_hv_drv(child_device->driver); 734 if (drv->remove) 735 drv->remove(dev); 736 } 737 738 return 0; 739 } 740 741 742 /* 743 * vmbus_shutdown - Shutdown a vmbus device 744 */ 745 static void vmbus_shutdown(struct device *child_device) 746 { 747 struct hv_driver *drv; 748 struct hv_device *dev = device_to_hv_device(child_device); 749 750 751 /* The device may not be attached yet */ 752 if (!child_device->driver) 753 return; 754 755 drv = drv_to_hv_drv(child_device->driver); 756 757 if (drv->shutdown) 758 drv->shutdown(dev); 759 } 760 761 762 /* 763 * vmbus_device_release - Final callback release of the vmbus child device 764 */ 765 static void vmbus_device_release(struct device *device) 766 { 767 struct hv_device *hv_dev = device_to_hv_device(device); 768 struct vmbus_channel *channel = hv_dev->channel; 769 770 mutex_lock(&vmbus_connection.channel_mutex); 771 hv_process_channel_removal(channel->offermsg.child_relid); 772 mutex_unlock(&vmbus_connection.channel_mutex); 773 kfree(hv_dev); 774 775 } 776 777 /* The one and only one */ 778 static struct bus_type hv_bus = { 779 .name = "vmbus", 780 .match = vmbus_match, 781 .shutdown = vmbus_shutdown, 782 .remove = vmbus_remove, 783 .probe = vmbus_probe, 784 .uevent = vmbus_uevent, 785 .dev_groups = vmbus_dev_groups, 786 .drv_groups = vmbus_drv_groups, 787 }; 788 789 struct onmessage_work_context { 790 struct work_struct work; 791 struct hv_message msg; 792 }; 793 794 static void vmbus_onmessage_work(struct work_struct *work) 795 { 796 struct onmessage_work_context *ctx; 797 798 /* Do not process messages if we're in DISCONNECTED state */ 799 if (vmbus_connection.conn_state == DISCONNECTED) 800 return; 801 802 ctx = container_of(work, struct onmessage_work_context, 803 work); 804 vmbus_onmessage(&ctx->msg); 805 kfree(ctx); 806 } 807 808 static void hv_process_timer_expiration(struct hv_message *msg, 809 struct hv_per_cpu_context *hv_cpu) 810 { 811 struct clock_event_device *dev = hv_cpu->clk_evt; 812 813 if (dev->event_handler) 814 dev->event_handler(dev); 815 816 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 817 } 818 819 void vmbus_on_msg_dpc(unsigned long data) 820 { 821 struct hv_per_cpu_context *hv_cpu = (void *)data; 822 void *page_addr = hv_cpu->synic_message_page; 823 struct hv_message *msg = (struct hv_message *)page_addr + 824 VMBUS_MESSAGE_SINT; 825 struct vmbus_channel_message_header *hdr; 826 const struct vmbus_channel_message_table_entry *entry; 827 struct onmessage_work_context *ctx; 828 u32 message_type = msg->header.message_type; 829 830 if (message_type == HVMSG_NONE) 831 /* no msg */ 832 return; 833 834 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 835 836 trace_vmbus_on_msg_dpc(hdr); 837 838 if (hdr->msgtype >= CHANNELMSG_COUNT) { 839 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 840 goto msg_handled; 841 } 842 843 entry = &channel_message_table[hdr->msgtype]; 844 if (entry->handler_type == VMHT_BLOCKING) { 845 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 846 if (ctx == NULL) 847 return; 848 849 INIT_WORK(&ctx->work, vmbus_onmessage_work); 850 memcpy(&ctx->msg, msg, sizeof(*msg)); 851 852 /* 853 * The host can generate a rescind message while we 854 * may still be handling the original offer. We deal with 855 * this condition by ensuring the processing is done on the 856 * same CPU. 857 */ 858 switch (hdr->msgtype) { 859 case CHANNELMSG_RESCIND_CHANNELOFFER: 860 /* 861 * If we are handling the rescind message; 862 * schedule the work on the global work queue. 863 */ 864 schedule_work_on(vmbus_connection.connect_cpu, 865 &ctx->work); 866 break; 867 868 case CHANNELMSG_OFFERCHANNEL: 869 atomic_inc(&vmbus_connection.offer_in_progress); 870 queue_work_on(vmbus_connection.connect_cpu, 871 vmbus_connection.work_queue, 872 &ctx->work); 873 break; 874 875 default: 876 queue_work(vmbus_connection.work_queue, &ctx->work); 877 } 878 } else 879 entry->message_handler(hdr); 880 881 msg_handled: 882 vmbus_signal_eom(msg, message_type); 883 } 884 885 886 /* 887 * Direct callback for channels using other deferred processing 888 */ 889 static void vmbus_channel_isr(struct vmbus_channel *channel) 890 { 891 void (*callback_fn)(void *); 892 893 callback_fn = READ_ONCE(channel->onchannel_callback); 894 if (likely(callback_fn != NULL)) 895 (*callback_fn)(channel->channel_callback_context); 896 } 897 898 /* 899 * Schedule all channels with events pending 900 */ 901 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 902 { 903 unsigned long *recv_int_page; 904 u32 maxbits, relid; 905 906 if (vmbus_proto_version < VERSION_WIN8) { 907 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 908 recv_int_page = vmbus_connection.recv_int_page; 909 } else { 910 /* 911 * When the host is win8 and beyond, the event page 912 * can be directly checked to get the id of the channel 913 * that has the interrupt pending. 914 */ 915 void *page_addr = hv_cpu->synic_event_page; 916 union hv_synic_event_flags *event 917 = (union hv_synic_event_flags *)page_addr + 918 VMBUS_MESSAGE_SINT; 919 920 maxbits = HV_EVENT_FLAGS_COUNT; 921 recv_int_page = event->flags; 922 } 923 924 if (unlikely(!recv_int_page)) 925 return; 926 927 for_each_set_bit(relid, recv_int_page, maxbits) { 928 struct vmbus_channel *channel; 929 930 if (!sync_test_and_clear_bit(relid, recv_int_page)) 931 continue; 932 933 /* Special case - vmbus channel protocol msg */ 934 if (relid == 0) 935 continue; 936 937 rcu_read_lock(); 938 939 /* Find channel based on relid */ 940 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 941 if (channel->offermsg.child_relid != relid) 942 continue; 943 944 if (channel->rescind) 945 continue; 946 947 trace_vmbus_chan_sched(channel); 948 949 ++channel->interrupts; 950 951 switch (channel->callback_mode) { 952 case HV_CALL_ISR: 953 vmbus_channel_isr(channel); 954 break; 955 956 case HV_CALL_BATCHED: 957 hv_begin_read(&channel->inbound); 958 /* fallthrough */ 959 case HV_CALL_DIRECT: 960 tasklet_schedule(&channel->callback_event); 961 } 962 } 963 964 rcu_read_unlock(); 965 } 966 } 967 968 static void vmbus_isr(void) 969 { 970 struct hv_per_cpu_context *hv_cpu 971 = this_cpu_ptr(hv_context.cpu_context); 972 void *page_addr = hv_cpu->synic_event_page; 973 struct hv_message *msg; 974 union hv_synic_event_flags *event; 975 bool handled = false; 976 977 if (unlikely(page_addr == NULL)) 978 return; 979 980 event = (union hv_synic_event_flags *)page_addr + 981 VMBUS_MESSAGE_SINT; 982 /* 983 * Check for events before checking for messages. This is the order 984 * in which events and messages are checked in Windows guests on 985 * Hyper-V, and the Windows team suggested we do the same. 986 */ 987 988 if ((vmbus_proto_version == VERSION_WS2008) || 989 (vmbus_proto_version == VERSION_WIN7)) { 990 991 /* Since we are a child, we only need to check bit 0 */ 992 if (sync_test_and_clear_bit(0, event->flags)) 993 handled = true; 994 } else { 995 /* 996 * Our host is win8 or above. The signaling mechanism 997 * has changed and we can directly look at the event page. 998 * If bit n is set then we have an interrup on the channel 999 * whose id is n. 1000 */ 1001 handled = true; 1002 } 1003 1004 if (handled) 1005 vmbus_chan_sched(hv_cpu); 1006 1007 page_addr = hv_cpu->synic_message_page; 1008 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1009 1010 /* Check if there are actual msgs to be processed */ 1011 if (msg->header.message_type != HVMSG_NONE) { 1012 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1013 hv_process_timer_expiration(msg, hv_cpu); 1014 else 1015 tasklet_schedule(&hv_cpu->msg_dpc); 1016 } 1017 1018 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1019 } 1020 1021 1022 /* 1023 * vmbus_bus_init -Main vmbus driver initialization routine. 1024 * 1025 * Here, we 1026 * - initialize the vmbus driver context 1027 * - invoke the vmbus hv main init routine 1028 * - retrieve the channel offers 1029 */ 1030 static int vmbus_bus_init(void) 1031 { 1032 int ret; 1033 1034 /* Hypervisor initialization...setup hypercall page..etc */ 1035 ret = hv_init(); 1036 if (ret != 0) { 1037 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1038 return ret; 1039 } 1040 1041 ret = bus_register(&hv_bus); 1042 if (ret) 1043 return ret; 1044 1045 hv_setup_vmbus_irq(vmbus_isr); 1046 1047 ret = hv_synic_alloc(); 1048 if (ret) 1049 goto err_alloc; 1050 /* 1051 * Initialize the per-cpu interrupt state and 1052 * connect to the host. 1053 */ 1054 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1055 hv_synic_init, hv_synic_cleanup); 1056 if (ret < 0) 1057 goto err_alloc; 1058 hyperv_cpuhp_online = ret; 1059 1060 ret = vmbus_connect(); 1061 if (ret) 1062 goto err_connect; 1063 1064 /* 1065 * Only register if the crash MSRs are available 1066 */ 1067 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1068 register_die_notifier(&hyperv_die_block); 1069 atomic_notifier_chain_register(&panic_notifier_list, 1070 &hyperv_panic_block); 1071 } 1072 1073 vmbus_request_offers(); 1074 1075 return 0; 1076 1077 err_connect: 1078 cpuhp_remove_state(hyperv_cpuhp_online); 1079 err_alloc: 1080 hv_synic_free(); 1081 hv_remove_vmbus_irq(); 1082 1083 bus_unregister(&hv_bus); 1084 1085 return ret; 1086 } 1087 1088 /** 1089 * __vmbus_child_driver_register() - Register a vmbus's driver 1090 * @hv_driver: Pointer to driver structure you want to register 1091 * @owner: owner module of the drv 1092 * @mod_name: module name string 1093 * 1094 * Registers the given driver with Linux through the 'driver_register()' call 1095 * and sets up the hyper-v vmbus handling for this driver. 1096 * It will return the state of the 'driver_register()' call. 1097 * 1098 */ 1099 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1100 { 1101 int ret; 1102 1103 pr_info("registering driver %s\n", hv_driver->name); 1104 1105 ret = vmbus_exists(); 1106 if (ret < 0) 1107 return ret; 1108 1109 hv_driver->driver.name = hv_driver->name; 1110 hv_driver->driver.owner = owner; 1111 hv_driver->driver.mod_name = mod_name; 1112 hv_driver->driver.bus = &hv_bus; 1113 1114 spin_lock_init(&hv_driver->dynids.lock); 1115 INIT_LIST_HEAD(&hv_driver->dynids.list); 1116 1117 ret = driver_register(&hv_driver->driver); 1118 1119 return ret; 1120 } 1121 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1122 1123 /** 1124 * vmbus_driver_unregister() - Unregister a vmbus's driver 1125 * @hv_driver: Pointer to driver structure you want to 1126 * un-register 1127 * 1128 * Un-register the given driver that was previous registered with a call to 1129 * vmbus_driver_register() 1130 */ 1131 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1132 { 1133 pr_info("unregistering driver %s\n", hv_driver->name); 1134 1135 if (!vmbus_exists()) { 1136 driver_unregister(&hv_driver->driver); 1137 vmbus_free_dynids(hv_driver); 1138 } 1139 } 1140 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1141 1142 1143 /* 1144 * Called when last reference to channel is gone. 1145 */ 1146 static void vmbus_chan_release(struct kobject *kobj) 1147 { 1148 struct vmbus_channel *channel 1149 = container_of(kobj, struct vmbus_channel, kobj); 1150 1151 kfree_rcu(channel, rcu); 1152 } 1153 1154 struct vmbus_chan_attribute { 1155 struct attribute attr; 1156 ssize_t (*show)(const struct vmbus_channel *chan, char *buf); 1157 ssize_t (*store)(struct vmbus_channel *chan, 1158 const char *buf, size_t count); 1159 }; 1160 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1161 struct vmbus_chan_attribute chan_attr_##_name \ 1162 = __ATTR(_name, _mode, _show, _store) 1163 #define VMBUS_CHAN_ATTR_RW(_name) \ 1164 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1165 #define VMBUS_CHAN_ATTR_RO(_name) \ 1166 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1167 #define VMBUS_CHAN_ATTR_WO(_name) \ 1168 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1169 1170 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1171 struct attribute *attr, char *buf) 1172 { 1173 const struct vmbus_chan_attribute *attribute 1174 = container_of(attr, struct vmbus_chan_attribute, attr); 1175 const struct vmbus_channel *chan 1176 = container_of(kobj, struct vmbus_channel, kobj); 1177 1178 if (!attribute->show) 1179 return -EIO; 1180 1181 return attribute->show(chan, buf); 1182 } 1183 1184 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1185 .show = vmbus_chan_attr_show, 1186 }; 1187 1188 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf) 1189 { 1190 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1191 1192 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1193 } 1194 static VMBUS_CHAN_ATTR_RO(out_mask); 1195 1196 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf) 1197 { 1198 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1199 1200 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1201 } 1202 static VMBUS_CHAN_ATTR_RO(in_mask); 1203 1204 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf) 1205 { 1206 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1207 1208 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1209 } 1210 static VMBUS_CHAN_ATTR_RO(read_avail); 1211 1212 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf) 1213 { 1214 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1215 1216 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1217 } 1218 static VMBUS_CHAN_ATTR_RO(write_avail); 1219 1220 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf) 1221 { 1222 return sprintf(buf, "%u\n", channel->target_cpu); 1223 } 1224 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1225 1226 static ssize_t channel_pending_show(const struct vmbus_channel *channel, 1227 char *buf) 1228 { 1229 return sprintf(buf, "%d\n", 1230 channel_pending(channel, 1231 vmbus_connection.monitor_pages[1])); 1232 } 1233 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1234 1235 static ssize_t channel_latency_show(const struct vmbus_channel *channel, 1236 char *buf) 1237 { 1238 return sprintf(buf, "%d\n", 1239 channel_latency(channel, 1240 vmbus_connection.monitor_pages[1])); 1241 } 1242 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1243 1244 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf) 1245 { 1246 return sprintf(buf, "%llu\n", channel->interrupts); 1247 } 1248 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1249 1250 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf) 1251 { 1252 return sprintf(buf, "%llu\n", channel->sig_events); 1253 } 1254 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1255 1256 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel, 1257 char *buf) 1258 { 1259 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1260 } 1261 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1262 1263 static ssize_t subchannel_id_show(const struct vmbus_channel *channel, 1264 char *buf) 1265 { 1266 return sprintf(buf, "%u\n", 1267 channel->offermsg.offer.sub_channel_index); 1268 } 1269 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1270 1271 static struct attribute *vmbus_chan_attrs[] = { 1272 &chan_attr_out_mask.attr, 1273 &chan_attr_in_mask.attr, 1274 &chan_attr_read_avail.attr, 1275 &chan_attr_write_avail.attr, 1276 &chan_attr_cpu.attr, 1277 &chan_attr_pending.attr, 1278 &chan_attr_latency.attr, 1279 &chan_attr_interrupts.attr, 1280 &chan_attr_events.attr, 1281 &chan_attr_monitor_id.attr, 1282 &chan_attr_subchannel_id.attr, 1283 NULL 1284 }; 1285 1286 static struct kobj_type vmbus_chan_ktype = { 1287 .sysfs_ops = &vmbus_chan_sysfs_ops, 1288 .release = vmbus_chan_release, 1289 .default_attrs = vmbus_chan_attrs, 1290 }; 1291 1292 /* 1293 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1294 */ 1295 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1296 { 1297 struct kobject *kobj = &channel->kobj; 1298 u32 relid = channel->offermsg.child_relid; 1299 int ret; 1300 1301 kobj->kset = dev->channels_kset; 1302 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1303 "%u", relid); 1304 if (ret) 1305 return ret; 1306 1307 kobject_uevent(kobj, KOBJ_ADD); 1308 1309 return 0; 1310 } 1311 1312 /* 1313 * vmbus_device_create - Creates and registers a new child device 1314 * on the vmbus. 1315 */ 1316 struct hv_device *vmbus_device_create(const uuid_le *type, 1317 const uuid_le *instance, 1318 struct vmbus_channel *channel) 1319 { 1320 struct hv_device *child_device_obj; 1321 1322 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1323 if (!child_device_obj) { 1324 pr_err("Unable to allocate device object for child device\n"); 1325 return NULL; 1326 } 1327 1328 child_device_obj->channel = channel; 1329 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1330 memcpy(&child_device_obj->dev_instance, instance, 1331 sizeof(uuid_le)); 1332 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1333 1334 1335 return child_device_obj; 1336 } 1337 1338 /* 1339 * vmbus_device_register - Register the child device 1340 */ 1341 int vmbus_device_register(struct hv_device *child_device_obj) 1342 { 1343 struct kobject *kobj = &child_device_obj->device.kobj; 1344 int ret; 1345 1346 dev_set_name(&child_device_obj->device, "%pUl", 1347 child_device_obj->channel->offermsg.offer.if_instance.b); 1348 1349 child_device_obj->device.bus = &hv_bus; 1350 child_device_obj->device.parent = &hv_acpi_dev->dev; 1351 child_device_obj->device.release = vmbus_device_release; 1352 1353 /* 1354 * Register with the LDM. This will kick off the driver/device 1355 * binding...which will eventually call vmbus_match() and vmbus_probe() 1356 */ 1357 ret = device_register(&child_device_obj->device); 1358 if (ret) { 1359 pr_err("Unable to register child device\n"); 1360 return ret; 1361 } 1362 1363 child_device_obj->channels_kset = kset_create_and_add("channels", 1364 NULL, kobj); 1365 if (!child_device_obj->channels_kset) { 1366 ret = -ENOMEM; 1367 goto err_dev_unregister; 1368 } 1369 1370 ret = vmbus_add_channel_kobj(child_device_obj, 1371 child_device_obj->channel); 1372 if (ret) { 1373 pr_err("Unable to register primary channeln"); 1374 goto err_kset_unregister; 1375 } 1376 1377 return 0; 1378 1379 err_kset_unregister: 1380 kset_unregister(child_device_obj->channels_kset); 1381 1382 err_dev_unregister: 1383 device_unregister(&child_device_obj->device); 1384 return ret; 1385 } 1386 1387 /* 1388 * vmbus_device_unregister - Remove the specified child device 1389 * from the vmbus. 1390 */ 1391 void vmbus_device_unregister(struct hv_device *device_obj) 1392 { 1393 pr_debug("child device %s unregistered\n", 1394 dev_name(&device_obj->device)); 1395 1396 kset_unregister(device_obj->channels_kset); 1397 1398 /* 1399 * Kick off the process of unregistering the device. 1400 * This will call vmbus_remove() and eventually vmbus_device_release() 1401 */ 1402 device_unregister(&device_obj->device); 1403 } 1404 1405 1406 /* 1407 * VMBUS is an acpi enumerated device. Get the information we 1408 * need from DSDT. 1409 */ 1410 #define VTPM_BASE_ADDRESS 0xfed40000 1411 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1412 { 1413 resource_size_t start = 0; 1414 resource_size_t end = 0; 1415 struct resource *new_res; 1416 struct resource **old_res = &hyperv_mmio; 1417 struct resource **prev_res = NULL; 1418 1419 switch (res->type) { 1420 1421 /* 1422 * "Address" descriptors are for bus windows. Ignore 1423 * "memory" descriptors, which are for registers on 1424 * devices. 1425 */ 1426 case ACPI_RESOURCE_TYPE_ADDRESS32: 1427 start = res->data.address32.address.minimum; 1428 end = res->data.address32.address.maximum; 1429 break; 1430 1431 case ACPI_RESOURCE_TYPE_ADDRESS64: 1432 start = res->data.address64.address.minimum; 1433 end = res->data.address64.address.maximum; 1434 break; 1435 1436 default: 1437 /* Unused resource type */ 1438 return AE_OK; 1439 1440 } 1441 /* 1442 * Ignore ranges that are below 1MB, as they're not 1443 * necessary or useful here. 1444 */ 1445 if (end < 0x100000) 1446 return AE_OK; 1447 1448 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1449 if (!new_res) 1450 return AE_NO_MEMORY; 1451 1452 /* If this range overlaps the virtual TPM, truncate it. */ 1453 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1454 end = VTPM_BASE_ADDRESS; 1455 1456 new_res->name = "hyperv mmio"; 1457 new_res->flags = IORESOURCE_MEM; 1458 new_res->start = start; 1459 new_res->end = end; 1460 1461 /* 1462 * If two ranges are adjacent, merge them. 1463 */ 1464 do { 1465 if (!*old_res) { 1466 *old_res = new_res; 1467 break; 1468 } 1469 1470 if (((*old_res)->end + 1) == new_res->start) { 1471 (*old_res)->end = new_res->end; 1472 kfree(new_res); 1473 break; 1474 } 1475 1476 if ((*old_res)->start == new_res->end + 1) { 1477 (*old_res)->start = new_res->start; 1478 kfree(new_res); 1479 break; 1480 } 1481 1482 if ((*old_res)->start > new_res->end) { 1483 new_res->sibling = *old_res; 1484 if (prev_res) 1485 (*prev_res)->sibling = new_res; 1486 *old_res = new_res; 1487 break; 1488 } 1489 1490 prev_res = old_res; 1491 old_res = &(*old_res)->sibling; 1492 1493 } while (1); 1494 1495 return AE_OK; 1496 } 1497 1498 static int vmbus_acpi_remove(struct acpi_device *device) 1499 { 1500 struct resource *cur_res; 1501 struct resource *next_res; 1502 1503 if (hyperv_mmio) { 1504 if (fb_mmio) { 1505 __release_region(hyperv_mmio, fb_mmio->start, 1506 resource_size(fb_mmio)); 1507 fb_mmio = NULL; 1508 } 1509 1510 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1511 next_res = cur_res->sibling; 1512 kfree(cur_res); 1513 } 1514 } 1515 1516 return 0; 1517 } 1518 1519 static void vmbus_reserve_fb(void) 1520 { 1521 int size; 1522 /* 1523 * Make a claim for the frame buffer in the resource tree under the 1524 * first node, which will be the one below 4GB. The length seems to 1525 * be underreported, particularly in a Generation 1 VM. So start out 1526 * reserving a larger area and make it smaller until it succeeds. 1527 */ 1528 1529 if (screen_info.lfb_base) { 1530 if (efi_enabled(EFI_BOOT)) 1531 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1532 else 1533 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1534 1535 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1536 fb_mmio = __request_region(hyperv_mmio, 1537 screen_info.lfb_base, size, 1538 fb_mmio_name, 0); 1539 } 1540 } 1541 } 1542 1543 /** 1544 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1545 * @new: If successful, supplied a pointer to the 1546 * allocated MMIO space. 1547 * @device_obj: Identifies the caller 1548 * @min: Minimum guest physical address of the 1549 * allocation 1550 * @max: Maximum guest physical address 1551 * @size: Size of the range to be allocated 1552 * @align: Alignment of the range to be allocated 1553 * @fb_overlap_ok: Whether this allocation can be allowed 1554 * to overlap the video frame buffer. 1555 * 1556 * This function walks the resources granted to VMBus by the 1557 * _CRS object in the ACPI namespace underneath the parent 1558 * "bridge" whether that's a root PCI bus in the Generation 1 1559 * case or a Module Device in the Generation 2 case. It then 1560 * attempts to allocate from the global MMIO pool in a way that 1561 * matches the constraints supplied in these parameters and by 1562 * that _CRS. 1563 * 1564 * Return: 0 on success, -errno on failure 1565 */ 1566 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1567 resource_size_t min, resource_size_t max, 1568 resource_size_t size, resource_size_t align, 1569 bool fb_overlap_ok) 1570 { 1571 struct resource *iter, *shadow; 1572 resource_size_t range_min, range_max, start; 1573 const char *dev_n = dev_name(&device_obj->device); 1574 int retval; 1575 1576 retval = -ENXIO; 1577 down(&hyperv_mmio_lock); 1578 1579 /* 1580 * If overlaps with frame buffers are allowed, then first attempt to 1581 * make the allocation from within the reserved region. Because it 1582 * is already reserved, no shadow allocation is necessary. 1583 */ 1584 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1585 !(max < fb_mmio->start)) { 1586 1587 range_min = fb_mmio->start; 1588 range_max = fb_mmio->end; 1589 start = (range_min + align - 1) & ~(align - 1); 1590 for (; start + size - 1 <= range_max; start += align) { 1591 *new = request_mem_region_exclusive(start, size, dev_n); 1592 if (*new) { 1593 retval = 0; 1594 goto exit; 1595 } 1596 } 1597 } 1598 1599 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1600 if ((iter->start >= max) || (iter->end <= min)) 1601 continue; 1602 1603 range_min = iter->start; 1604 range_max = iter->end; 1605 start = (range_min + align - 1) & ~(align - 1); 1606 for (; start + size - 1 <= range_max; start += align) { 1607 shadow = __request_region(iter, start, size, NULL, 1608 IORESOURCE_BUSY); 1609 if (!shadow) 1610 continue; 1611 1612 *new = request_mem_region_exclusive(start, size, dev_n); 1613 if (*new) { 1614 shadow->name = (char *)*new; 1615 retval = 0; 1616 goto exit; 1617 } 1618 1619 __release_region(iter, start, size); 1620 } 1621 } 1622 1623 exit: 1624 up(&hyperv_mmio_lock); 1625 return retval; 1626 } 1627 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1628 1629 /** 1630 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1631 * @start: Base address of region to release. 1632 * @size: Size of the range to be allocated 1633 * 1634 * This function releases anything requested by 1635 * vmbus_mmio_allocate(). 1636 */ 1637 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1638 { 1639 struct resource *iter; 1640 1641 down(&hyperv_mmio_lock); 1642 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1643 if ((iter->start >= start + size) || (iter->end <= start)) 1644 continue; 1645 1646 __release_region(iter, start, size); 1647 } 1648 release_mem_region(start, size); 1649 up(&hyperv_mmio_lock); 1650 1651 } 1652 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1653 1654 static int vmbus_acpi_add(struct acpi_device *device) 1655 { 1656 acpi_status result; 1657 int ret_val = -ENODEV; 1658 struct acpi_device *ancestor; 1659 1660 hv_acpi_dev = device; 1661 1662 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1663 vmbus_walk_resources, NULL); 1664 1665 if (ACPI_FAILURE(result)) 1666 goto acpi_walk_err; 1667 /* 1668 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1669 * firmware) is the VMOD that has the mmio ranges. Get that. 1670 */ 1671 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1672 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1673 vmbus_walk_resources, NULL); 1674 1675 if (ACPI_FAILURE(result)) 1676 continue; 1677 if (hyperv_mmio) { 1678 vmbus_reserve_fb(); 1679 break; 1680 } 1681 } 1682 ret_val = 0; 1683 1684 acpi_walk_err: 1685 complete(&probe_event); 1686 if (ret_val) 1687 vmbus_acpi_remove(device); 1688 return ret_val; 1689 } 1690 1691 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1692 {"VMBUS", 0}, 1693 {"VMBus", 0}, 1694 {"", 0}, 1695 }; 1696 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1697 1698 static struct acpi_driver vmbus_acpi_driver = { 1699 .name = "vmbus", 1700 .ids = vmbus_acpi_device_ids, 1701 .ops = { 1702 .add = vmbus_acpi_add, 1703 .remove = vmbus_acpi_remove, 1704 }, 1705 }; 1706 1707 static void hv_kexec_handler(void) 1708 { 1709 hv_synic_clockevents_cleanup(); 1710 vmbus_initiate_unload(false); 1711 vmbus_connection.conn_state = DISCONNECTED; 1712 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1713 mb(); 1714 cpuhp_remove_state(hyperv_cpuhp_online); 1715 hyperv_cleanup(); 1716 }; 1717 1718 static void hv_crash_handler(struct pt_regs *regs) 1719 { 1720 vmbus_initiate_unload(true); 1721 /* 1722 * In crash handler we can't schedule synic cleanup for all CPUs, 1723 * doing the cleanup for current CPU only. This should be sufficient 1724 * for kdump. 1725 */ 1726 vmbus_connection.conn_state = DISCONNECTED; 1727 hv_synic_cleanup(smp_processor_id()); 1728 hyperv_cleanup(); 1729 }; 1730 1731 static int __init hv_acpi_init(void) 1732 { 1733 int ret, t; 1734 1735 if (!hv_is_hyperv_initialized()) 1736 return -ENODEV; 1737 1738 init_completion(&probe_event); 1739 1740 /* 1741 * Get ACPI resources first. 1742 */ 1743 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1744 1745 if (ret) 1746 return ret; 1747 1748 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1749 if (t == 0) { 1750 ret = -ETIMEDOUT; 1751 goto cleanup; 1752 } 1753 1754 ret = vmbus_bus_init(); 1755 if (ret) 1756 goto cleanup; 1757 1758 hv_setup_kexec_handler(hv_kexec_handler); 1759 hv_setup_crash_handler(hv_crash_handler); 1760 1761 return 0; 1762 1763 cleanup: 1764 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1765 hv_acpi_dev = NULL; 1766 return ret; 1767 } 1768 1769 static void __exit vmbus_exit(void) 1770 { 1771 int cpu; 1772 1773 hv_remove_kexec_handler(); 1774 hv_remove_crash_handler(); 1775 vmbus_connection.conn_state = DISCONNECTED; 1776 hv_synic_clockevents_cleanup(); 1777 vmbus_disconnect(); 1778 hv_remove_vmbus_irq(); 1779 for_each_online_cpu(cpu) { 1780 struct hv_per_cpu_context *hv_cpu 1781 = per_cpu_ptr(hv_context.cpu_context, cpu); 1782 1783 tasklet_kill(&hv_cpu->msg_dpc); 1784 } 1785 vmbus_free_channels(); 1786 1787 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1788 unregister_die_notifier(&hyperv_die_block); 1789 atomic_notifier_chain_unregister(&panic_notifier_list, 1790 &hyperv_panic_block); 1791 } 1792 bus_unregister(&hv_bus); 1793 1794 cpuhp_remove_state(hyperv_cpuhp_online); 1795 hv_synic_free(); 1796 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1797 } 1798 1799 1800 MODULE_LICENSE("GPL"); 1801 1802 subsys_initcall(hv_acpi_init); 1803 module_exit(vmbus_exit); 1804