1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <linux/delay.h> 27 #include <linux/notifier.h> 28 #include <linux/panic_notifier.h> 29 #include <linux/ptrace.h> 30 #include <linux/screen_info.h> 31 #include <linux/kdebug.h> 32 #include <linux/efi.h> 33 #include <linux/random.h> 34 #include <linux/kernel.h> 35 #include <linux/syscore_ops.h> 36 #include <clocksource/hyperv_timer.h> 37 #include "hyperv_vmbus.h" 38 39 struct vmbus_dynid { 40 struct list_head node; 41 struct hv_vmbus_device_id id; 42 }; 43 44 static struct acpi_device *hv_acpi_dev; 45 46 static struct completion probe_event; 47 48 static int hyperv_cpuhp_online; 49 50 static void *hv_panic_page; 51 52 static long __percpu *vmbus_evt; 53 54 /* Values parsed from ACPI DSDT */ 55 int vmbus_irq; 56 int vmbus_interrupt; 57 58 /* 59 * Boolean to control whether to report panic messages over Hyper-V. 60 * 61 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg 62 */ 63 static int sysctl_record_panic_msg = 1; 64 65 static int hyperv_report_reg(void) 66 { 67 return !sysctl_record_panic_msg || !hv_panic_page; 68 } 69 70 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 71 void *args) 72 { 73 struct pt_regs *regs; 74 75 vmbus_initiate_unload(true); 76 77 /* 78 * Hyper-V should be notified only once about a panic. If we will be 79 * doing hyperv_report_panic_msg() later with kmsg data, don't do 80 * the notification here. 81 */ 82 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE 83 && hyperv_report_reg()) { 84 regs = current_pt_regs(); 85 hyperv_report_panic(regs, val, false); 86 } 87 return NOTIFY_DONE; 88 } 89 90 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 91 void *args) 92 { 93 struct die_args *die = args; 94 struct pt_regs *regs = die->regs; 95 96 /* Don't notify Hyper-V if the die event is other than oops */ 97 if (val != DIE_OOPS) 98 return NOTIFY_DONE; 99 100 /* 101 * Hyper-V should be notified only once about a panic. If we will be 102 * doing hyperv_report_panic_msg() later with kmsg data, don't do 103 * the notification here. 104 */ 105 if (hyperv_report_reg()) 106 hyperv_report_panic(regs, val, true); 107 return NOTIFY_DONE; 108 } 109 110 static struct notifier_block hyperv_die_block = { 111 .notifier_call = hyperv_die_event, 112 }; 113 static struct notifier_block hyperv_panic_block = { 114 .notifier_call = hyperv_panic_event, 115 }; 116 117 static const char *fb_mmio_name = "fb_range"; 118 static struct resource *fb_mmio; 119 static struct resource *hyperv_mmio; 120 static DEFINE_MUTEX(hyperv_mmio_lock); 121 122 static int vmbus_exists(void) 123 { 124 if (hv_acpi_dev == NULL) 125 return -ENODEV; 126 127 return 0; 128 } 129 130 static u8 channel_monitor_group(const struct vmbus_channel *channel) 131 { 132 return (u8)channel->offermsg.monitorid / 32; 133 } 134 135 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 136 { 137 return (u8)channel->offermsg.monitorid % 32; 138 } 139 140 static u32 channel_pending(const struct vmbus_channel *channel, 141 const struct hv_monitor_page *monitor_page) 142 { 143 u8 monitor_group = channel_monitor_group(channel); 144 145 return monitor_page->trigger_group[monitor_group].pending; 146 } 147 148 static u32 channel_latency(const struct vmbus_channel *channel, 149 const struct hv_monitor_page *monitor_page) 150 { 151 u8 monitor_group = channel_monitor_group(channel); 152 u8 monitor_offset = channel_monitor_offset(channel); 153 154 return monitor_page->latency[monitor_group][monitor_offset]; 155 } 156 157 static u32 channel_conn_id(struct vmbus_channel *channel, 158 struct hv_monitor_page *monitor_page) 159 { 160 u8 monitor_group = channel_monitor_group(channel); 161 u8 monitor_offset = channel_monitor_offset(channel); 162 163 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 164 } 165 166 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 167 char *buf) 168 { 169 struct hv_device *hv_dev = device_to_hv_device(dev); 170 171 if (!hv_dev->channel) 172 return -ENODEV; 173 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 174 } 175 static DEVICE_ATTR_RO(id); 176 177 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 178 char *buf) 179 { 180 struct hv_device *hv_dev = device_to_hv_device(dev); 181 182 if (!hv_dev->channel) 183 return -ENODEV; 184 return sprintf(buf, "%d\n", hv_dev->channel->state); 185 } 186 static DEVICE_ATTR_RO(state); 187 188 static ssize_t monitor_id_show(struct device *dev, 189 struct device_attribute *dev_attr, char *buf) 190 { 191 struct hv_device *hv_dev = device_to_hv_device(dev); 192 193 if (!hv_dev->channel) 194 return -ENODEV; 195 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 196 } 197 static DEVICE_ATTR_RO(monitor_id); 198 199 static ssize_t class_id_show(struct device *dev, 200 struct device_attribute *dev_attr, char *buf) 201 { 202 struct hv_device *hv_dev = device_to_hv_device(dev); 203 204 if (!hv_dev->channel) 205 return -ENODEV; 206 return sprintf(buf, "{%pUl}\n", 207 &hv_dev->channel->offermsg.offer.if_type); 208 } 209 static DEVICE_ATTR_RO(class_id); 210 211 static ssize_t device_id_show(struct device *dev, 212 struct device_attribute *dev_attr, char *buf) 213 { 214 struct hv_device *hv_dev = device_to_hv_device(dev); 215 216 if (!hv_dev->channel) 217 return -ENODEV; 218 return sprintf(buf, "{%pUl}\n", 219 &hv_dev->channel->offermsg.offer.if_instance); 220 } 221 static DEVICE_ATTR_RO(device_id); 222 223 static ssize_t modalias_show(struct device *dev, 224 struct device_attribute *dev_attr, char *buf) 225 { 226 struct hv_device *hv_dev = device_to_hv_device(dev); 227 228 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 229 } 230 static DEVICE_ATTR_RO(modalias); 231 232 #ifdef CONFIG_NUMA 233 static ssize_t numa_node_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct hv_device *hv_dev = device_to_hv_device(dev); 237 238 if (!hv_dev->channel) 239 return -ENODEV; 240 241 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 242 } 243 static DEVICE_ATTR_RO(numa_node); 244 #endif 245 246 static ssize_t server_monitor_pending_show(struct device *dev, 247 struct device_attribute *dev_attr, 248 char *buf) 249 { 250 struct hv_device *hv_dev = device_to_hv_device(dev); 251 252 if (!hv_dev->channel) 253 return -ENODEV; 254 return sprintf(buf, "%d\n", 255 channel_pending(hv_dev->channel, 256 vmbus_connection.monitor_pages[0])); 257 } 258 static DEVICE_ATTR_RO(server_monitor_pending); 259 260 static ssize_t client_monitor_pending_show(struct device *dev, 261 struct device_attribute *dev_attr, 262 char *buf) 263 { 264 struct hv_device *hv_dev = device_to_hv_device(dev); 265 266 if (!hv_dev->channel) 267 return -ENODEV; 268 return sprintf(buf, "%d\n", 269 channel_pending(hv_dev->channel, 270 vmbus_connection.monitor_pages[1])); 271 } 272 static DEVICE_ATTR_RO(client_monitor_pending); 273 274 static ssize_t server_monitor_latency_show(struct device *dev, 275 struct device_attribute *dev_attr, 276 char *buf) 277 { 278 struct hv_device *hv_dev = device_to_hv_device(dev); 279 280 if (!hv_dev->channel) 281 return -ENODEV; 282 return sprintf(buf, "%d\n", 283 channel_latency(hv_dev->channel, 284 vmbus_connection.monitor_pages[0])); 285 } 286 static DEVICE_ATTR_RO(server_monitor_latency); 287 288 static ssize_t client_monitor_latency_show(struct device *dev, 289 struct device_attribute *dev_attr, 290 char *buf) 291 { 292 struct hv_device *hv_dev = device_to_hv_device(dev); 293 294 if (!hv_dev->channel) 295 return -ENODEV; 296 return sprintf(buf, "%d\n", 297 channel_latency(hv_dev->channel, 298 vmbus_connection.monitor_pages[1])); 299 } 300 static DEVICE_ATTR_RO(client_monitor_latency); 301 302 static ssize_t server_monitor_conn_id_show(struct device *dev, 303 struct device_attribute *dev_attr, 304 char *buf) 305 { 306 struct hv_device *hv_dev = device_to_hv_device(dev); 307 308 if (!hv_dev->channel) 309 return -ENODEV; 310 return sprintf(buf, "%d\n", 311 channel_conn_id(hv_dev->channel, 312 vmbus_connection.monitor_pages[0])); 313 } 314 static DEVICE_ATTR_RO(server_monitor_conn_id); 315 316 static ssize_t client_monitor_conn_id_show(struct device *dev, 317 struct device_attribute *dev_attr, 318 char *buf) 319 { 320 struct hv_device *hv_dev = device_to_hv_device(dev); 321 322 if (!hv_dev->channel) 323 return -ENODEV; 324 return sprintf(buf, "%d\n", 325 channel_conn_id(hv_dev->channel, 326 vmbus_connection.monitor_pages[1])); 327 } 328 static DEVICE_ATTR_RO(client_monitor_conn_id); 329 330 static ssize_t out_intr_mask_show(struct device *dev, 331 struct device_attribute *dev_attr, char *buf) 332 { 333 struct hv_device *hv_dev = device_to_hv_device(dev); 334 struct hv_ring_buffer_debug_info outbound; 335 int ret; 336 337 if (!hv_dev->channel) 338 return -ENODEV; 339 340 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 341 &outbound); 342 if (ret < 0) 343 return ret; 344 345 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 346 } 347 static DEVICE_ATTR_RO(out_intr_mask); 348 349 static ssize_t out_read_index_show(struct device *dev, 350 struct device_attribute *dev_attr, char *buf) 351 { 352 struct hv_device *hv_dev = device_to_hv_device(dev); 353 struct hv_ring_buffer_debug_info outbound; 354 int ret; 355 356 if (!hv_dev->channel) 357 return -ENODEV; 358 359 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 360 &outbound); 361 if (ret < 0) 362 return ret; 363 return sprintf(buf, "%d\n", outbound.current_read_index); 364 } 365 static DEVICE_ATTR_RO(out_read_index); 366 367 static ssize_t out_write_index_show(struct device *dev, 368 struct device_attribute *dev_attr, 369 char *buf) 370 { 371 struct hv_device *hv_dev = device_to_hv_device(dev); 372 struct hv_ring_buffer_debug_info outbound; 373 int ret; 374 375 if (!hv_dev->channel) 376 return -ENODEV; 377 378 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 379 &outbound); 380 if (ret < 0) 381 return ret; 382 return sprintf(buf, "%d\n", outbound.current_write_index); 383 } 384 static DEVICE_ATTR_RO(out_write_index); 385 386 static ssize_t out_read_bytes_avail_show(struct device *dev, 387 struct device_attribute *dev_attr, 388 char *buf) 389 { 390 struct hv_device *hv_dev = device_to_hv_device(dev); 391 struct hv_ring_buffer_debug_info outbound; 392 int ret; 393 394 if (!hv_dev->channel) 395 return -ENODEV; 396 397 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 398 &outbound); 399 if (ret < 0) 400 return ret; 401 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 402 } 403 static DEVICE_ATTR_RO(out_read_bytes_avail); 404 405 static ssize_t out_write_bytes_avail_show(struct device *dev, 406 struct device_attribute *dev_attr, 407 char *buf) 408 { 409 struct hv_device *hv_dev = device_to_hv_device(dev); 410 struct hv_ring_buffer_debug_info outbound; 411 int ret; 412 413 if (!hv_dev->channel) 414 return -ENODEV; 415 416 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 417 &outbound); 418 if (ret < 0) 419 return ret; 420 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 421 } 422 static DEVICE_ATTR_RO(out_write_bytes_avail); 423 424 static ssize_t in_intr_mask_show(struct device *dev, 425 struct device_attribute *dev_attr, char *buf) 426 { 427 struct hv_device *hv_dev = device_to_hv_device(dev); 428 struct hv_ring_buffer_debug_info inbound; 429 int ret; 430 431 if (!hv_dev->channel) 432 return -ENODEV; 433 434 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 435 if (ret < 0) 436 return ret; 437 438 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 439 } 440 static DEVICE_ATTR_RO(in_intr_mask); 441 442 static ssize_t in_read_index_show(struct device *dev, 443 struct device_attribute *dev_attr, char *buf) 444 { 445 struct hv_device *hv_dev = device_to_hv_device(dev); 446 struct hv_ring_buffer_debug_info inbound; 447 int ret; 448 449 if (!hv_dev->channel) 450 return -ENODEV; 451 452 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 453 if (ret < 0) 454 return ret; 455 456 return sprintf(buf, "%d\n", inbound.current_read_index); 457 } 458 static DEVICE_ATTR_RO(in_read_index); 459 460 static ssize_t in_write_index_show(struct device *dev, 461 struct device_attribute *dev_attr, char *buf) 462 { 463 struct hv_device *hv_dev = device_to_hv_device(dev); 464 struct hv_ring_buffer_debug_info inbound; 465 int ret; 466 467 if (!hv_dev->channel) 468 return -ENODEV; 469 470 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 471 if (ret < 0) 472 return ret; 473 474 return sprintf(buf, "%d\n", inbound.current_write_index); 475 } 476 static DEVICE_ATTR_RO(in_write_index); 477 478 static ssize_t in_read_bytes_avail_show(struct device *dev, 479 struct device_attribute *dev_attr, 480 char *buf) 481 { 482 struct hv_device *hv_dev = device_to_hv_device(dev); 483 struct hv_ring_buffer_debug_info inbound; 484 int ret; 485 486 if (!hv_dev->channel) 487 return -ENODEV; 488 489 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 490 if (ret < 0) 491 return ret; 492 493 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 494 } 495 static DEVICE_ATTR_RO(in_read_bytes_avail); 496 497 static ssize_t in_write_bytes_avail_show(struct device *dev, 498 struct device_attribute *dev_attr, 499 char *buf) 500 { 501 struct hv_device *hv_dev = device_to_hv_device(dev); 502 struct hv_ring_buffer_debug_info inbound; 503 int ret; 504 505 if (!hv_dev->channel) 506 return -ENODEV; 507 508 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 509 if (ret < 0) 510 return ret; 511 512 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 513 } 514 static DEVICE_ATTR_RO(in_write_bytes_avail); 515 516 static ssize_t channel_vp_mapping_show(struct device *dev, 517 struct device_attribute *dev_attr, 518 char *buf) 519 { 520 struct hv_device *hv_dev = device_to_hv_device(dev); 521 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 522 int buf_size = PAGE_SIZE, n_written, tot_written; 523 struct list_head *cur; 524 525 if (!channel) 526 return -ENODEV; 527 528 mutex_lock(&vmbus_connection.channel_mutex); 529 530 tot_written = snprintf(buf, buf_size, "%u:%u\n", 531 channel->offermsg.child_relid, channel->target_cpu); 532 533 list_for_each(cur, &channel->sc_list) { 534 if (tot_written >= buf_size - 1) 535 break; 536 537 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 538 n_written = scnprintf(buf + tot_written, 539 buf_size - tot_written, 540 "%u:%u\n", 541 cur_sc->offermsg.child_relid, 542 cur_sc->target_cpu); 543 tot_written += n_written; 544 } 545 546 mutex_unlock(&vmbus_connection.channel_mutex); 547 548 return tot_written; 549 } 550 static DEVICE_ATTR_RO(channel_vp_mapping); 551 552 static ssize_t vendor_show(struct device *dev, 553 struct device_attribute *dev_attr, 554 char *buf) 555 { 556 struct hv_device *hv_dev = device_to_hv_device(dev); 557 558 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 559 } 560 static DEVICE_ATTR_RO(vendor); 561 562 static ssize_t device_show(struct device *dev, 563 struct device_attribute *dev_attr, 564 char *buf) 565 { 566 struct hv_device *hv_dev = device_to_hv_device(dev); 567 568 return sprintf(buf, "0x%x\n", hv_dev->device_id); 569 } 570 static DEVICE_ATTR_RO(device); 571 572 static ssize_t driver_override_store(struct device *dev, 573 struct device_attribute *attr, 574 const char *buf, size_t count) 575 { 576 struct hv_device *hv_dev = device_to_hv_device(dev); 577 char *driver_override, *old, *cp; 578 579 /* We need to keep extra room for a newline */ 580 if (count >= (PAGE_SIZE - 1)) 581 return -EINVAL; 582 583 driver_override = kstrndup(buf, count, GFP_KERNEL); 584 if (!driver_override) 585 return -ENOMEM; 586 587 cp = strchr(driver_override, '\n'); 588 if (cp) 589 *cp = '\0'; 590 591 device_lock(dev); 592 old = hv_dev->driver_override; 593 if (strlen(driver_override)) { 594 hv_dev->driver_override = driver_override; 595 } else { 596 kfree(driver_override); 597 hv_dev->driver_override = NULL; 598 } 599 device_unlock(dev); 600 601 kfree(old); 602 603 return count; 604 } 605 606 static ssize_t driver_override_show(struct device *dev, 607 struct device_attribute *attr, char *buf) 608 { 609 struct hv_device *hv_dev = device_to_hv_device(dev); 610 ssize_t len; 611 612 device_lock(dev); 613 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 614 device_unlock(dev); 615 616 return len; 617 } 618 static DEVICE_ATTR_RW(driver_override); 619 620 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 621 static struct attribute *vmbus_dev_attrs[] = { 622 &dev_attr_id.attr, 623 &dev_attr_state.attr, 624 &dev_attr_monitor_id.attr, 625 &dev_attr_class_id.attr, 626 &dev_attr_device_id.attr, 627 &dev_attr_modalias.attr, 628 #ifdef CONFIG_NUMA 629 &dev_attr_numa_node.attr, 630 #endif 631 &dev_attr_server_monitor_pending.attr, 632 &dev_attr_client_monitor_pending.attr, 633 &dev_attr_server_monitor_latency.attr, 634 &dev_attr_client_monitor_latency.attr, 635 &dev_attr_server_monitor_conn_id.attr, 636 &dev_attr_client_monitor_conn_id.attr, 637 &dev_attr_out_intr_mask.attr, 638 &dev_attr_out_read_index.attr, 639 &dev_attr_out_write_index.attr, 640 &dev_attr_out_read_bytes_avail.attr, 641 &dev_attr_out_write_bytes_avail.attr, 642 &dev_attr_in_intr_mask.attr, 643 &dev_attr_in_read_index.attr, 644 &dev_attr_in_write_index.attr, 645 &dev_attr_in_read_bytes_avail.attr, 646 &dev_attr_in_write_bytes_avail.attr, 647 &dev_attr_channel_vp_mapping.attr, 648 &dev_attr_vendor.attr, 649 &dev_attr_device.attr, 650 &dev_attr_driver_override.attr, 651 NULL, 652 }; 653 654 /* 655 * Device-level attribute_group callback function. Returns the permission for 656 * each attribute, and returns 0 if an attribute is not visible. 657 */ 658 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 659 struct attribute *attr, int idx) 660 { 661 struct device *dev = kobj_to_dev(kobj); 662 const struct hv_device *hv_dev = device_to_hv_device(dev); 663 664 /* Hide the monitor attributes if the monitor mechanism is not used. */ 665 if (!hv_dev->channel->offermsg.monitor_allocated && 666 (attr == &dev_attr_monitor_id.attr || 667 attr == &dev_attr_server_monitor_pending.attr || 668 attr == &dev_attr_client_monitor_pending.attr || 669 attr == &dev_attr_server_monitor_latency.attr || 670 attr == &dev_attr_client_monitor_latency.attr || 671 attr == &dev_attr_server_monitor_conn_id.attr || 672 attr == &dev_attr_client_monitor_conn_id.attr)) 673 return 0; 674 675 return attr->mode; 676 } 677 678 static const struct attribute_group vmbus_dev_group = { 679 .attrs = vmbus_dev_attrs, 680 .is_visible = vmbus_dev_attr_is_visible 681 }; 682 __ATTRIBUTE_GROUPS(vmbus_dev); 683 684 /* Set up the attribute for /sys/bus/vmbus/hibernation */ 685 static ssize_t hibernation_show(struct bus_type *bus, char *buf) 686 { 687 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); 688 } 689 690 static BUS_ATTR_RO(hibernation); 691 692 static struct attribute *vmbus_bus_attrs[] = { 693 &bus_attr_hibernation.attr, 694 NULL, 695 }; 696 static const struct attribute_group vmbus_bus_group = { 697 .attrs = vmbus_bus_attrs, 698 }; 699 __ATTRIBUTE_GROUPS(vmbus_bus); 700 701 /* 702 * vmbus_uevent - add uevent for our device 703 * 704 * This routine is invoked when a device is added or removed on the vmbus to 705 * generate a uevent to udev in the userspace. The udev will then look at its 706 * rule and the uevent generated here to load the appropriate driver 707 * 708 * The alias string will be of the form vmbus:guid where guid is the string 709 * representation of the device guid (each byte of the guid will be 710 * represented with two hex characters. 711 */ 712 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 713 { 714 struct hv_device *dev = device_to_hv_device(device); 715 const char *format = "MODALIAS=vmbus:%*phN"; 716 717 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 718 } 719 720 static const struct hv_vmbus_device_id * 721 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 722 { 723 if (id == NULL) 724 return NULL; /* empty device table */ 725 726 for (; !guid_is_null(&id->guid); id++) 727 if (guid_equal(&id->guid, guid)) 728 return id; 729 730 return NULL; 731 } 732 733 static const struct hv_vmbus_device_id * 734 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 735 { 736 const struct hv_vmbus_device_id *id = NULL; 737 struct vmbus_dynid *dynid; 738 739 spin_lock(&drv->dynids.lock); 740 list_for_each_entry(dynid, &drv->dynids.list, node) { 741 if (guid_equal(&dynid->id.guid, guid)) { 742 id = &dynid->id; 743 break; 744 } 745 } 746 spin_unlock(&drv->dynids.lock); 747 748 return id; 749 } 750 751 static const struct hv_vmbus_device_id vmbus_device_null; 752 753 /* 754 * Return a matching hv_vmbus_device_id pointer. 755 * If there is no match, return NULL. 756 */ 757 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 758 struct hv_device *dev) 759 { 760 const guid_t *guid = &dev->dev_type; 761 const struct hv_vmbus_device_id *id; 762 763 /* When driver_override is set, only bind to the matching driver */ 764 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 765 return NULL; 766 767 /* Look at the dynamic ids first, before the static ones */ 768 id = hv_vmbus_dynid_match(drv, guid); 769 if (!id) 770 id = hv_vmbus_dev_match(drv->id_table, guid); 771 772 /* driver_override will always match, send a dummy id */ 773 if (!id && dev->driver_override) 774 id = &vmbus_device_null; 775 776 return id; 777 } 778 779 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 780 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 781 { 782 struct vmbus_dynid *dynid; 783 784 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 785 if (!dynid) 786 return -ENOMEM; 787 788 dynid->id.guid = *guid; 789 790 spin_lock(&drv->dynids.lock); 791 list_add_tail(&dynid->node, &drv->dynids.list); 792 spin_unlock(&drv->dynids.lock); 793 794 return driver_attach(&drv->driver); 795 } 796 797 static void vmbus_free_dynids(struct hv_driver *drv) 798 { 799 struct vmbus_dynid *dynid, *n; 800 801 spin_lock(&drv->dynids.lock); 802 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 803 list_del(&dynid->node); 804 kfree(dynid); 805 } 806 spin_unlock(&drv->dynids.lock); 807 } 808 809 /* 810 * store_new_id - sysfs frontend to vmbus_add_dynid() 811 * 812 * Allow GUIDs to be added to an existing driver via sysfs. 813 */ 814 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 815 size_t count) 816 { 817 struct hv_driver *drv = drv_to_hv_drv(driver); 818 guid_t guid; 819 ssize_t retval; 820 821 retval = guid_parse(buf, &guid); 822 if (retval) 823 return retval; 824 825 if (hv_vmbus_dynid_match(drv, &guid)) 826 return -EEXIST; 827 828 retval = vmbus_add_dynid(drv, &guid); 829 if (retval) 830 return retval; 831 return count; 832 } 833 static DRIVER_ATTR_WO(new_id); 834 835 /* 836 * store_remove_id - remove a PCI device ID from this driver 837 * 838 * Removes a dynamic pci device ID to this driver. 839 */ 840 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 841 size_t count) 842 { 843 struct hv_driver *drv = drv_to_hv_drv(driver); 844 struct vmbus_dynid *dynid, *n; 845 guid_t guid; 846 ssize_t retval; 847 848 retval = guid_parse(buf, &guid); 849 if (retval) 850 return retval; 851 852 retval = -ENODEV; 853 spin_lock(&drv->dynids.lock); 854 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 855 struct hv_vmbus_device_id *id = &dynid->id; 856 857 if (guid_equal(&id->guid, &guid)) { 858 list_del(&dynid->node); 859 kfree(dynid); 860 retval = count; 861 break; 862 } 863 } 864 spin_unlock(&drv->dynids.lock); 865 866 return retval; 867 } 868 static DRIVER_ATTR_WO(remove_id); 869 870 static struct attribute *vmbus_drv_attrs[] = { 871 &driver_attr_new_id.attr, 872 &driver_attr_remove_id.attr, 873 NULL, 874 }; 875 ATTRIBUTE_GROUPS(vmbus_drv); 876 877 878 /* 879 * vmbus_match - Attempt to match the specified device to the specified driver 880 */ 881 static int vmbus_match(struct device *device, struct device_driver *driver) 882 { 883 struct hv_driver *drv = drv_to_hv_drv(driver); 884 struct hv_device *hv_dev = device_to_hv_device(device); 885 886 /* The hv_sock driver handles all hv_sock offers. */ 887 if (is_hvsock_channel(hv_dev->channel)) 888 return drv->hvsock; 889 890 if (hv_vmbus_get_id(drv, hv_dev)) 891 return 1; 892 893 return 0; 894 } 895 896 /* 897 * vmbus_probe - Add the new vmbus's child device 898 */ 899 static int vmbus_probe(struct device *child_device) 900 { 901 int ret = 0; 902 struct hv_driver *drv = 903 drv_to_hv_drv(child_device->driver); 904 struct hv_device *dev = device_to_hv_device(child_device); 905 const struct hv_vmbus_device_id *dev_id; 906 907 dev_id = hv_vmbus_get_id(drv, dev); 908 if (drv->probe) { 909 ret = drv->probe(dev, dev_id); 910 if (ret != 0) 911 pr_err("probe failed for device %s (%d)\n", 912 dev_name(child_device), ret); 913 914 } else { 915 pr_err("probe not set for driver %s\n", 916 dev_name(child_device)); 917 ret = -ENODEV; 918 } 919 return ret; 920 } 921 922 /* 923 * vmbus_remove - Remove a vmbus device 924 */ 925 static void vmbus_remove(struct device *child_device) 926 { 927 struct hv_driver *drv; 928 struct hv_device *dev = device_to_hv_device(child_device); 929 930 if (child_device->driver) { 931 drv = drv_to_hv_drv(child_device->driver); 932 if (drv->remove) 933 drv->remove(dev); 934 } 935 } 936 937 /* 938 * vmbus_shutdown - Shutdown a vmbus device 939 */ 940 static void vmbus_shutdown(struct device *child_device) 941 { 942 struct hv_driver *drv; 943 struct hv_device *dev = device_to_hv_device(child_device); 944 945 946 /* The device may not be attached yet */ 947 if (!child_device->driver) 948 return; 949 950 drv = drv_to_hv_drv(child_device->driver); 951 952 if (drv->shutdown) 953 drv->shutdown(dev); 954 } 955 956 #ifdef CONFIG_PM_SLEEP 957 /* 958 * vmbus_suspend - Suspend a vmbus device 959 */ 960 static int vmbus_suspend(struct device *child_device) 961 { 962 struct hv_driver *drv; 963 struct hv_device *dev = device_to_hv_device(child_device); 964 965 /* The device may not be attached yet */ 966 if (!child_device->driver) 967 return 0; 968 969 drv = drv_to_hv_drv(child_device->driver); 970 if (!drv->suspend) 971 return -EOPNOTSUPP; 972 973 return drv->suspend(dev); 974 } 975 976 /* 977 * vmbus_resume - Resume a vmbus device 978 */ 979 static int vmbus_resume(struct device *child_device) 980 { 981 struct hv_driver *drv; 982 struct hv_device *dev = device_to_hv_device(child_device); 983 984 /* The device may not be attached yet */ 985 if (!child_device->driver) 986 return 0; 987 988 drv = drv_to_hv_drv(child_device->driver); 989 if (!drv->resume) 990 return -EOPNOTSUPP; 991 992 return drv->resume(dev); 993 } 994 #else 995 #define vmbus_suspend NULL 996 #define vmbus_resume NULL 997 #endif /* CONFIG_PM_SLEEP */ 998 999 /* 1000 * vmbus_device_release - Final callback release of the vmbus child device 1001 */ 1002 static void vmbus_device_release(struct device *device) 1003 { 1004 struct hv_device *hv_dev = device_to_hv_device(device); 1005 struct vmbus_channel *channel = hv_dev->channel; 1006 1007 hv_debug_rm_dev_dir(hv_dev); 1008 1009 mutex_lock(&vmbus_connection.channel_mutex); 1010 hv_process_channel_removal(channel); 1011 mutex_unlock(&vmbus_connection.channel_mutex); 1012 kfree(hv_dev); 1013 } 1014 1015 /* 1016 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1017 * 1018 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1019 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1020 * is no way to wake up a Generation-2 VM. 1021 * 1022 * The other 4 ops are for hibernation. 1023 */ 1024 1025 static const struct dev_pm_ops vmbus_pm = { 1026 .suspend_noirq = NULL, 1027 .resume_noirq = NULL, 1028 .freeze_noirq = vmbus_suspend, 1029 .thaw_noirq = vmbus_resume, 1030 .poweroff_noirq = vmbus_suspend, 1031 .restore_noirq = vmbus_resume, 1032 }; 1033 1034 /* The one and only one */ 1035 static struct bus_type hv_bus = { 1036 .name = "vmbus", 1037 .match = vmbus_match, 1038 .shutdown = vmbus_shutdown, 1039 .remove = vmbus_remove, 1040 .probe = vmbus_probe, 1041 .uevent = vmbus_uevent, 1042 .dev_groups = vmbus_dev_groups, 1043 .drv_groups = vmbus_drv_groups, 1044 .bus_groups = vmbus_bus_groups, 1045 .pm = &vmbus_pm, 1046 }; 1047 1048 struct onmessage_work_context { 1049 struct work_struct work; 1050 struct { 1051 struct hv_message_header header; 1052 u8 payload[]; 1053 } msg; 1054 }; 1055 1056 static void vmbus_onmessage_work(struct work_struct *work) 1057 { 1058 struct onmessage_work_context *ctx; 1059 1060 /* Do not process messages if we're in DISCONNECTED state */ 1061 if (vmbus_connection.conn_state == DISCONNECTED) 1062 return; 1063 1064 ctx = container_of(work, struct onmessage_work_context, 1065 work); 1066 vmbus_onmessage((struct vmbus_channel_message_header *) 1067 &ctx->msg.payload); 1068 kfree(ctx); 1069 } 1070 1071 void vmbus_on_msg_dpc(unsigned long data) 1072 { 1073 struct hv_per_cpu_context *hv_cpu = (void *)data; 1074 void *page_addr = hv_cpu->synic_message_page; 1075 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + 1076 VMBUS_MESSAGE_SINT; 1077 struct vmbus_channel_message_header *hdr; 1078 enum vmbus_channel_message_type msgtype; 1079 const struct vmbus_channel_message_table_entry *entry; 1080 struct onmessage_work_context *ctx; 1081 __u8 payload_size; 1082 u32 message_type; 1083 1084 /* 1085 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1086 * it is being used in 'struct vmbus_channel_message_header' definition 1087 * which is supposed to match hypervisor ABI. 1088 */ 1089 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1090 1091 /* 1092 * Since the message is in memory shared with the host, an erroneous or 1093 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() 1094 * or individual message handlers are executing; to prevent this, copy 1095 * the message into private memory. 1096 */ 1097 memcpy(&msg_copy, msg, sizeof(struct hv_message)); 1098 1099 message_type = msg_copy.header.message_type; 1100 if (message_type == HVMSG_NONE) 1101 /* no msg */ 1102 return; 1103 1104 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; 1105 msgtype = hdr->msgtype; 1106 1107 trace_vmbus_on_msg_dpc(hdr); 1108 1109 if (msgtype >= CHANNELMSG_COUNT) { 1110 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); 1111 goto msg_handled; 1112 } 1113 1114 payload_size = msg_copy.header.payload_size; 1115 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1116 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); 1117 goto msg_handled; 1118 } 1119 1120 entry = &channel_message_table[msgtype]; 1121 1122 if (!entry->message_handler) 1123 goto msg_handled; 1124 1125 if (payload_size < entry->min_payload_len) { 1126 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); 1127 goto msg_handled; 1128 } 1129 1130 if (entry->handler_type == VMHT_BLOCKING) { 1131 ctx = kmalloc(sizeof(*ctx) + payload_size, GFP_ATOMIC); 1132 if (ctx == NULL) 1133 return; 1134 1135 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1136 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size); 1137 1138 /* 1139 * The host can generate a rescind message while we 1140 * may still be handling the original offer. We deal with 1141 * this condition by relying on the synchronization provided 1142 * by offer_in_progress and by channel_mutex. See also the 1143 * inline comments in vmbus_onoffer_rescind(). 1144 */ 1145 switch (msgtype) { 1146 case CHANNELMSG_RESCIND_CHANNELOFFER: 1147 /* 1148 * If we are handling the rescind message; 1149 * schedule the work on the global work queue. 1150 * 1151 * The OFFER message and the RESCIND message should 1152 * not be handled by the same serialized work queue, 1153 * because the OFFER handler may call vmbus_open(), 1154 * which tries to open the channel by sending an 1155 * OPEN_CHANNEL message to the host and waits for 1156 * the host's response; however, if the host has 1157 * rescinded the channel before it receives the 1158 * OPEN_CHANNEL message, the host just silently 1159 * ignores the OPEN_CHANNEL message; as a result, 1160 * the guest's OFFER handler hangs for ever, if we 1161 * handle the RESCIND message in the same serialized 1162 * work queue: the RESCIND handler can not start to 1163 * run before the OFFER handler finishes. 1164 */ 1165 schedule_work(&ctx->work); 1166 break; 1167 1168 case CHANNELMSG_OFFERCHANNEL: 1169 /* 1170 * The host sends the offer message of a given channel 1171 * before sending the rescind message of the same 1172 * channel. These messages are sent to the guest's 1173 * connect CPU; the guest then starts processing them 1174 * in the tasklet handler on this CPU: 1175 * 1176 * VMBUS_CONNECT_CPU 1177 * 1178 * [vmbus_on_msg_dpc()] 1179 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1180 * queue_work() 1181 * ... 1182 * [vmbus_on_msg_dpc()] 1183 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1184 * 1185 * We rely on the memory-ordering properties of the 1186 * queue_work() and schedule_work() primitives, which 1187 * guarantee that the atomic increment will be visible 1188 * to the CPUs which will execute the offer & rescind 1189 * works by the time these works will start execution. 1190 */ 1191 atomic_inc(&vmbus_connection.offer_in_progress); 1192 fallthrough; 1193 1194 default: 1195 queue_work(vmbus_connection.work_queue, &ctx->work); 1196 } 1197 } else 1198 entry->message_handler(hdr); 1199 1200 msg_handled: 1201 vmbus_signal_eom(msg, message_type); 1202 } 1203 1204 #ifdef CONFIG_PM_SLEEP 1205 /* 1206 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1207 * hibernation, because hv_sock connections can not persist across hibernation. 1208 */ 1209 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1210 { 1211 struct onmessage_work_context *ctx; 1212 struct vmbus_channel_rescind_offer *rescind; 1213 1214 WARN_ON(!is_hvsock_channel(channel)); 1215 1216 /* 1217 * Allocation size is small and the allocation should really not fail, 1218 * otherwise the state of the hv_sock connections ends up in limbo. 1219 */ 1220 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1221 GFP_KERNEL | __GFP_NOFAIL); 1222 1223 /* 1224 * So far, these are not really used by Linux. Just set them to the 1225 * reasonable values conforming to the definitions of the fields. 1226 */ 1227 ctx->msg.header.message_type = 1; 1228 ctx->msg.header.payload_size = sizeof(*rescind); 1229 1230 /* These values are actually used by Linux. */ 1231 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1232 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1233 rescind->child_relid = channel->offermsg.child_relid; 1234 1235 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1236 1237 queue_work(vmbus_connection.work_queue, &ctx->work); 1238 } 1239 #endif /* CONFIG_PM_SLEEP */ 1240 1241 /* 1242 * Schedule all channels with events pending 1243 */ 1244 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1245 { 1246 unsigned long *recv_int_page; 1247 u32 maxbits, relid; 1248 1249 if (vmbus_proto_version < VERSION_WIN8) { 1250 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1251 recv_int_page = vmbus_connection.recv_int_page; 1252 } else { 1253 /* 1254 * When the host is win8 and beyond, the event page 1255 * can be directly checked to get the id of the channel 1256 * that has the interrupt pending. 1257 */ 1258 void *page_addr = hv_cpu->synic_event_page; 1259 union hv_synic_event_flags *event 1260 = (union hv_synic_event_flags *)page_addr + 1261 VMBUS_MESSAGE_SINT; 1262 1263 maxbits = HV_EVENT_FLAGS_COUNT; 1264 recv_int_page = event->flags; 1265 } 1266 1267 if (unlikely(!recv_int_page)) 1268 return; 1269 1270 for_each_set_bit(relid, recv_int_page, maxbits) { 1271 void (*callback_fn)(void *context); 1272 struct vmbus_channel *channel; 1273 1274 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1275 continue; 1276 1277 /* Special case - vmbus channel protocol msg */ 1278 if (relid == 0) 1279 continue; 1280 1281 /* 1282 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1283 * Guarantees that the channel data structure doesn't 1284 * get freed while the channel pointer below is being 1285 * dereferenced. 1286 */ 1287 rcu_read_lock(); 1288 1289 /* Find channel based on relid */ 1290 channel = relid2channel(relid); 1291 if (channel == NULL) 1292 goto sched_unlock_rcu; 1293 1294 if (channel->rescind) 1295 goto sched_unlock_rcu; 1296 1297 /* 1298 * Make sure that the ring buffer data structure doesn't get 1299 * freed while we dereference the ring buffer pointer. Test 1300 * for the channel's onchannel_callback being NULL within a 1301 * sched_lock critical section. See also the inline comments 1302 * in vmbus_reset_channel_cb(). 1303 */ 1304 spin_lock(&channel->sched_lock); 1305 1306 callback_fn = channel->onchannel_callback; 1307 if (unlikely(callback_fn == NULL)) 1308 goto sched_unlock; 1309 1310 trace_vmbus_chan_sched(channel); 1311 1312 ++channel->interrupts; 1313 1314 switch (channel->callback_mode) { 1315 case HV_CALL_ISR: 1316 (*callback_fn)(channel->channel_callback_context); 1317 break; 1318 1319 case HV_CALL_BATCHED: 1320 hv_begin_read(&channel->inbound); 1321 fallthrough; 1322 case HV_CALL_DIRECT: 1323 tasklet_schedule(&channel->callback_event); 1324 } 1325 1326 sched_unlock: 1327 spin_unlock(&channel->sched_lock); 1328 sched_unlock_rcu: 1329 rcu_read_unlock(); 1330 } 1331 } 1332 1333 static void vmbus_isr(void) 1334 { 1335 struct hv_per_cpu_context *hv_cpu 1336 = this_cpu_ptr(hv_context.cpu_context); 1337 void *page_addr = hv_cpu->synic_event_page; 1338 struct hv_message *msg; 1339 union hv_synic_event_flags *event; 1340 bool handled = false; 1341 1342 if (unlikely(page_addr == NULL)) 1343 return; 1344 1345 event = (union hv_synic_event_flags *)page_addr + 1346 VMBUS_MESSAGE_SINT; 1347 /* 1348 * Check for events before checking for messages. This is the order 1349 * in which events and messages are checked in Windows guests on 1350 * Hyper-V, and the Windows team suggested we do the same. 1351 */ 1352 1353 if ((vmbus_proto_version == VERSION_WS2008) || 1354 (vmbus_proto_version == VERSION_WIN7)) { 1355 1356 /* Since we are a child, we only need to check bit 0 */ 1357 if (sync_test_and_clear_bit(0, event->flags)) 1358 handled = true; 1359 } else { 1360 /* 1361 * Our host is win8 or above. The signaling mechanism 1362 * has changed and we can directly look at the event page. 1363 * If bit n is set then we have an interrup on the channel 1364 * whose id is n. 1365 */ 1366 handled = true; 1367 } 1368 1369 if (handled) 1370 vmbus_chan_sched(hv_cpu); 1371 1372 page_addr = hv_cpu->synic_message_page; 1373 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1374 1375 /* Check if there are actual msgs to be processed */ 1376 if (msg->header.message_type != HVMSG_NONE) { 1377 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1378 hv_stimer0_isr(); 1379 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1380 } else 1381 tasklet_schedule(&hv_cpu->msg_dpc); 1382 } 1383 1384 add_interrupt_randomness(vmbus_interrupt, 0); 1385 } 1386 1387 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) 1388 { 1389 vmbus_isr(); 1390 return IRQ_HANDLED; 1391 } 1392 1393 /* 1394 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1395 * buffer and call into Hyper-V to transfer the data. 1396 */ 1397 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1398 enum kmsg_dump_reason reason) 1399 { 1400 struct kmsg_dump_iter iter; 1401 size_t bytes_written; 1402 1403 /* We are only interested in panics. */ 1404 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1405 return; 1406 1407 /* 1408 * Write dump contents to the page. No need to synchronize; panic should 1409 * be single-threaded. 1410 */ 1411 kmsg_dump_rewind(&iter); 1412 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, 1413 &bytes_written); 1414 if (!bytes_written) 1415 return; 1416 /* 1417 * P3 to contain the physical address of the panic page & P4 to 1418 * contain the size of the panic data in that page. Rest of the 1419 * registers are no-op when the NOTIFY_MSG flag is set. 1420 */ 1421 hv_set_register(HV_REGISTER_CRASH_P0, 0); 1422 hv_set_register(HV_REGISTER_CRASH_P1, 0); 1423 hv_set_register(HV_REGISTER_CRASH_P2, 0); 1424 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page)); 1425 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written); 1426 1427 /* 1428 * Let Hyper-V know there is crash data available along with 1429 * the panic message. 1430 */ 1431 hv_set_register(HV_REGISTER_CRASH_CTL, 1432 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 1433 } 1434 1435 static struct kmsg_dumper hv_kmsg_dumper = { 1436 .dump = hv_kmsg_dump, 1437 }; 1438 1439 static void hv_kmsg_dump_register(void) 1440 { 1441 int ret; 1442 1443 hv_panic_page = hv_alloc_hyperv_zeroed_page(); 1444 if (!hv_panic_page) { 1445 pr_err("Hyper-V: panic message page memory allocation failed\n"); 1446 return; 1447 } 1448 1449 ret = kmsg_dump_register(&hv_kmsg_dumper); 1450 if (ret) { 1451 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); 1452 hv_free_hyperv_page((unsigned long)hv_panic_page); 1453 hv_panic_page = NULL; 1454 } 1455 } 1456 1457 static struct ctl_table_header *hv_ctl_table_hdr; 1458 1459 /* 1460 * sysctl option to allow the user to control whether kmsg data should be 1461 * reported to Hyper-V on panic. 1462 */ 1463 static struct ctl_table hv_ctl_table[] = { 1464 { 1465 .procname = "hyperv_record_panic_msg", 1466 .data = &sysctl_record_panic_msg, 1467 .maxlen = sizeof(int), 1468 .mode = 0644, 1469 .proc_handler = proc_dointvec_minmax, 1470 .extra1 = SYSCTL_ZERO, 1471 .extra2 = SYSCTL_ONE 1472 }, 1473 {} 1474 }; 1475 1476 static struct ctl_table hv_root_table[] = { 1477 { 1478 .procname = "kernel", 1479 .mode = 0555, 1480 .child = hv_ctl_table 1481 }, 1482 {} 1483 }; 1484 1485 /* 1486 * vmbus_bus_init -Main vmbus driver initialization routine. 1487 * 1488 * Here, we 1489 * - initialize the vmbus driver context 1490 * - invoke the vmbus hv main init routine 1491 * - retrieve the channel offers 1492 */ 1493 static int vmbus_bus_init(void) 1494 { 1495 int ret; 1496 1497 ret = hv_init(); 1498 if (ret != 0) { 1499 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1500 return ret; 1501 } 1502 1503 ret = bus_register(&hv_bus); 1504 if (ret) 1505 return ret; 1506 1507 /* 1508 * VMbus interrupts are best modeled as per-cpu interrupts. If 1509 * on an architecture with support for per-cpu IRQs (e.g. ARM64), 1510 * allocate a per-cpu IRQ using standard Linux kernel functionality. 1511 * If not on such an architecture (e.g., x86/x64), then rely on 1512 * code in the arch-specific portion of the code tree to connect 1513 * the VMbus interrupt handler. 1514 */ 1515 1516 if (vmbus_irq == -1) { 1517 hv_setup_vmbus_handler(vmbus_isr); 1518 } else { 1519 vmbus_evt = alloc_percpu(long); 1520 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, 1521 "Hyper-V VMbus", vmbus_evt); 1522 if (ret) { 1523 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", 1524 vmbus_irq, ret); 1525 free_percpu(vmbus_evt); 1526 goto err_setup; 1527 } 1528 } 1529 1530 ret = hv_synic_alloc(); 1531 if (ret) 1532 goto err_alloc; 1533 1534 /* 1535 * Initialize the per-cpu interrupt state and stimer state. 1536 * Then connect to the host. 1537 */ 1538 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1539 hv_synic_init, hv_synic_cleanup); 1540 if (ret < 0) 1541 goto err_cpuhp; 1542 hyperv_cpuhp_online = ret; 1543 1544 ret = vmbus_connect(); 1545 if (ret) 1546 goto err_connect; 1547 1548 /* 1549 * Only register if the crash MSRs are available 1550 */ 1551 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1552 u64 hyperv_crash_ctl; 1553 /* 1554 * Sysctl registration is not fatal, since by default 1555 * reporting is enabled. 1556 */ 1557 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1558 if (!hv_ctl_table_hdr) 1559 pr_err("Hyper-V: sysctl table register error"); 1560 1561 /* 1562 * Register for panic kmsg callback only if the right 1563 * capability is supported by the hypervisor. 1564 */ 1565 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL); 1566 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) 1567 hv_kmsg_dump_register(); 1568 1569 register_die_notifier(&hyperv_die_block); 1570 } 1571 1572 /* 1573 * Always register the panic notifier because we need to unload 1574 * the VMbus channel connection to prevent any VMbus 1575 * activity after the VM panics. 1576 */ 1577 atomic_notifier_chain_register(&panic_notifier_list, 1578 &hyperv_panic_block); 1579 1580 vmbus_request_offers(); 1581 1582 return 0; 1583 1584 err_connect: 1585 cpuhp_remove_state(hyperv_cpuhp_online); 1586 err_cpuhp: 1587 hv_synic_free(); 1588 err_alloc: 1589 if (vmbus_irq == -1) { 1590 hv_remove_vmbus_handler(); 1591 } else { 1592 free_percpu_irq(vmbus_irq, vmbus_evt); 1593 free_percpu(vmbus_evt); 1594 } 1595 err_setup: 1596 bus_unregister(&hv_bus); 1597 unregister_sysctl_table(hv_ctl_table_hdr); 1598 hv_ctl_table_hdr = NULL; 1599 return ret; 1600 } 1601 1602 /** 1603 * __vmbus_child_driver_register() - Register a vmbus's driver 1604 * @hv_driver: Pointer to driver structure you want to register 1605 * @owner: owner module of the drv 1606 * @mod_name: module name string 1607 * 1608 * Registers the given driver with Linux through the 'driver_register()' call 1609 * and sets up the hyper-v vmbus handling for this driver. 1610 * It will return the state of the 'driver_register()' call. 1611 * 1612 */ 1613 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1614 { 1615 int ret; 1616 1617 pr_info("registering driver %s\n", hv_driver->name); 1618 1619 ret = vmbus_exists(); 1620 if (ret < 0) 1621 return ret; 1622 1623 hv_driver->driver.name = hv_driver->name; 1624 hv_driver->driver.owner = owner; 1625 hv_driver->driver.mod_name = mod_name; 1626 hv_driver->driver.bus = &hv_bus; 1627 1628 spin_lock_init(&hv_driver->dynids.lock); 1629 INIT_LIST_HEAD(&hv_driver->dynids.list); 1630 1631 ret = driver_register(&hv_driver->driver); 1632 1633 return ret; 1634 } 1635 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1636 1637 /** 1638 * vmbus_driver_unregister() - Unregister a vmbus's driver 1639 * @hv_driver: Pointer to driver structure you want to 1640 * un-register 1641 * 1642 * Un-register the given driver that was previous registered with a call to 1643 * vmbus_driver_register() 1644 */ 1645 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1646 { 1647 pr_info("unregistering driver %s\n", hv_driver->name); 1648 1649 if (!vmbus_exists()) { 1650 driver_unregister(&hv_driver->driver); 1651 vmbus_free_dynids(hv_driver); 1652 } 1653 } 1654 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1655 1656 1657 /* 1658 * Called when last reference to channel is gone. 1659 */ 1660 static void vmbus_chan_release(struct kobject *kobj) 1661 { 1662 struct vmbus_channel *channel 1663 = container_of(kobj, struct vmbus_channel, kobj); 1664 1665 kfree_rcu(channel, rcu); 1666 } 1667 1668 struct vmbus_chan_attribute { 1669 struct attribute attr; 1670 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1671 ssize_t (*store)(struct vmbus_channel *chan, 1672 const char *buf, size_t count); 1673 }; 1674 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1675 struct vmbus_chan_attribute chan_attr_##_name \ 1676 = __ATTR(_name, _mode, _show, _store) 1677 #define VMBUS_CHAN_ATTR_RW(_name) \ 1678 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1679 #define VMBUS_CHAN_ATTR_RO(_name) \ 1680 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1681 #define VMBUS_CHAN_ATTR_WO(_name) \ 1682 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1683 1684 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1685 struct attribute *attr, char *buf) 1686 { 1687 const struct vmbus_chan_attribute *attribute 1688 = container_of(attr, struct vmbus_chan_attribute, attr); 1689 struct vmbus_channel *chan 1690 = container_of(kobj, struct vmbus_channel, kobj); 1691 1692 if (!attribute->show) 1693 return -EIO; 1694 1695 return attribute->show(chan, buf); 1696 } 1697 1698 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1699 struct attribute *attr, const char *buf, 1700 size_t count) 1701 { 1702 const struct vmbus_chan_attribute *attribute 1703 = container_of(attr, struct vmbus_chan_attribute, attr); 1704 struct vmbus_channel *chan 1705 = container_of(kobj, struct vmbus_channel, kobj); 1706 1707 if (!attribute->store) 1708 return -EIO; 1709 1710 return attribute->store(chan, buf, count); 1711 } 1712 1713 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1714 .show = vmbus_chan_attr_show, 1715 .store = vmbus_chan_attr_store, 1716 }; 1717 1718 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1719 { 1720 struct hv_ring_buffer_info *rbi = &channel->outbound; 1721 ssize_t ret; 1722 1723 mutex_lock(&rbi->ring_buffer_mutex); 1724 if (!rbi->ring_buffer) { 1725 mutex_unlock(&rbi->ring_buffer_mutex); 1726 return -EINVAL; 1727 } 1728 1729 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1730 mutex_unlock(&rbi->ring_buffer_mutex); 1731 return ret; 1732 } 1733 static VMBUS_CHAN_ATTR_RO(out_mask); 1734 1735 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1736 { 1737 struct hv_ring_buffer_info *rbi = &channel->inbound; 1738 ssize_t ret; 1739 1740 mutex_lock(&rbi->ring_buffer_mutex); 1741 if (!rbi->ring_buffer) { 1742 mutex_unlock(&rbi->ring_buffer_mutex); 1743 return -EINVAL; 1744 } 1745 1746 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1747 mutex_unlock(&rbi->ring_buffer_mutex); 1748 return ret; 1749 } 1750 static VMBUS_CHAN_ATTR_RO(in_mask); 1751 1752 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1753 { 1754 struct hv_ring_buffer_info *rbi = &channel->inbound; 1755 ssize_t ret; 1756 1757 mutex_lock(&rbi->ring_buffer_mutex); 1758 if (!rbi->ring_buffer) { 1759 mutex_unlock(&rbi->ring_buffer_mutex); 1760 return -EINVAL; 1761 } 1762 1763 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1764 mutex_unlock(&rbi->ring_buffer_mutex); 1765 return ret; 1766 } 1767 static VMBUS_CHAN_ATTR_RO(read_avail); 1768 1769 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1770 { 1771 struct hv_ring_buffer_info *rbi = &channel->outbound; 1772 ssize_t ret; 1773 1774 mutex_lock(&rbi->ring_buffer_mutex); 1775 if (!rbi->ring_buffer) { 1776 mutex_unlock(&rbi->ring_buffer_mutex); 1777 return -EINVAL; 1778 } 1779 1780 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1781 mutex_unlock(&rbi->ring_buffer_mutex); 1782 return ret; 1783 } 1784 static VMBUS_CHAN_ATTR_RO(write_avail); 1785 1786 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1787 { 1788 return sprintf(buf, "%u\n", channel->target_cpu); 1789 } 1790 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1791 const char *buf, size_t count) 1792 { 1793 u32 target_cpu, origin_cpu; 1794 ssize_t ret = count; 1795 1796 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1797 return -EIO; 1798 1799 if (sscanf(buf, "%uu", &target_cpu) != 1) 1800 return -EIO; 1801 1802 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1803 if (target_cpu >= nr_cpumask_bits) 1804 return -EINVAL; 1805 1806 /* No CPUs should come up or down during this. */ 1807 cpus_read_lock(); 1808 1809 if (!cpu_online(target_cpu)) { 1810 cpus_read_unlock(); 1811 return -EINVAL; 1812 } 1813 1814 /* 1815 * Synchronizes target_cpu_store() and channel closure: 1816 * 1817 * { Initially: state = CHANNEL_OPENED } 1818 * 1819 * CPU1 CPU2 1820 * 1821 * [target_cpu_store()] [vmbus_disconnect_ring()] 1822 * 1823 * LOCK channel_mutex LOCK channel_mutex 1824 * LOAD r1 = state LOAD r2 = state 1825 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1826 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1827 * [...] SEND CLOSECHANNEL 1828 * UNLOCK channel_mutex UNLOCK channel_mutex 1829 * 1830 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1831 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1832 * 1833 * Note. The host processes the channel messages "sequentially", in 1834 * the order in which they are received on a per-partition basis. 1835 */ 1836 mutex_lock(&vmbus_connection.channel_mutex); 1837 1838 /* 1839 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1840 * avoid sending the message and fail here for such channels. 1841 */ 1842 if (channel->state != CHANNEL_OPENED_STATE) { 1843 ret = -EIO; 1844 goto cpu_store_unlock; 1845 } 1846 1847 origin_cpu = channel->target_cpu; 1848 if (target_cpu == origin_cpu) 1849 goto cpu_store_unlock; 1850 1851 if (vmbus_send_modifychannel(channel, 1852 hv_cpu_number_to_vp_number(target_cpu))) { 1853 ret = -EIO; 1854 goto cpu_store_unlock; 1855 } 1856 1857 /* 1858 * For version before VERSION_WIN10_V5_3, the following warning holds: 1859 * 1860 * Warning. At this point, there is *no* guarantee that the host will 1861 * have successfully processed the vmbus_send_modifychannel() request. 1862 * See the header comment of vmbus_send_modifychannel() for more info. 1863 * 1864 * Lags in the processing of the above vmbus_send_modifychannel() can 1865 * result in missed interrupts if the "old" target CPU is taken offline 1866 * before Hyper-V starts sending interrupts to the "new" target CPU. 1867 * But apart from this offlining scenario, the code tolerates such 1868 * lags. It will function correctly even if a channel interrupt comes 1869 * in on a CPU that is different from the channel target_cpu value. 1870 */ 1871 1872 channel->target_cpu = target_cpu; 1873 1874 /* See init_vp_index(). */ 1875 if (hv_is_perf_channel(channel)) 1876 hv_update_alloced_cpus(origin_cpu, target_cpu); 1877 1878 /* Currently set only for storvsc channels. */ 1879 if (channel->change_target_cpu_callback) { 1880 (*channel->change_target_cpu_callback)(channel, 1881 origin_cpu, target_cpu); 1882 } 1883 1884 cpu_store_unlock: 1885 mutex_unlock(&vmbus_connection.channel_mutex); 1886 cpus_read_unlock(); 1887 return ret; 1888 } 1889 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1890 1891 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1892 char *buf) 1893 { 1894 return sprintf(buf, "%d\n", 1895 channel_pending(channel, 1896 vmbus_connection.monitor_pages[1])); 1897 } 1898 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1899 1900 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1901 char *buf) 1902 { 1903 return sprintf(buf, "%d\n", 1904 channel_latency(channel, 1905 vmbus_connection.monitor_pages[1])); 1906 } 1907 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1908 1909 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1910 { 1911 return sprintf(buf, "%llu\n", channel->interrupts); 1912 } 1913 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1914 1915 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1916 { 1917 return sprintf(buf, "%llu\n", channel->sig_events); 1918 } 1919 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1920 1921 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1922 char *buf) 1923 { 1924 return sprintf(buf, "%llu\n", 1925 (unsigned long long)channel->intr_in_full); 1926 } 1927 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1928 1929 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1930 char *buf) 1931 { 1932 return sprintf(buf, "%llu\n", 1933 (unsigned long long)channel->intr_out_empty); 1934 } 1935 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1936 1937 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1938 char *buf) 1939 { 1940 return sprintf(buf, "%llu\n", 1941 (unsigned long long)channel->out_full_first); 1942 } 1943 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1944 1945 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1946 char *buf) 1947 { 1948 return sprintf(buf, "%llu\n", 1949 (unsigned long long)channel->out_full_total); 1950 } 1951 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1952 1953 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1954 char *buf) 1955 { 1956 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1957 } 1958 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1959 1960 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1961 char *buf) 1962 { 1963 return sprintf(buf, "%u\n", 1964 channel->offermsg.offer.sub_channel_index); 1965 } 1966 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1967 1968 static struct attribute *vmbus_chan_attrs[] = { 1969 &chan_attr_out_mask.attr, 1970 &chan_attr_in_mask.attr, 1971 &chan_attr_read_avail.attr, 1972 &chan_attr_write_avail.attr, 1973 &chan_attr_cpu.attr, 1974 &chan_attr_pending.attr, 1975 &chan_attr_latency.attr, 1976 &chan_attr_interrupts.attr, 1977 &chan_attr_events.attr, 1978 &chan_attr_intr_in_full.attr, 1979 &chan_attr_intr_out_empty.attr, 1980 &chan_attr_out_full_first.attr, 1981 &chan_attr_out_full_total.attr, 1982 &chan_attr_monitor_id.attr, 1983 &chan_attr_subchannel_id.attr, 1984 NULL 1985 }; 1986 1987 /* 1988 * Channel-level attribute_group callback function. Returns the permission for 1989 * each attribute, and returns 0 if an attribute is not visible. 1990 */ 1991 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1992 struct attribute *attr, int idx) 1993 { 1994 const struct vmbus_channel *channel = 1995 container_of(kobj, struct vmbus_channel, kobj); 1996 1997 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1998 if (!channel->offermsg.monitor_allocated && 1999 (attr == &chan_attr_pending.attr || 2000 attr == &chan_attr_latency.attr || 2001 attr == &chan_attr_monitor_id.attr)) 2002 return 0; 2003 2004 return attr->mode; 2005 } 2006 2007 static struct attribute_group vmbus_chan_group = { 2008 .attrs = vmbus_chan_attrs, 2009 .is_visible = vmbus_chan_attr_is_visible 2010 }; 2011 2012 static struct kobj_type vmbus_chan_ktype = { 2013 .sysfs_ops = &vmbus_chan_sysfs_ops, 2014 .release = vmbus_chan_release, 2015 }; 2016 2017 /* 2018 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 2019 */ 2020 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 2021 { 2022 const struct device *device = &dev->device; 2023 struct kobject *kobj = &channel->kobj; 2024 u32 relid = channel->offermsg.child_relid; 2025 int ret; 2026 2027 kobj->kset = dev->channels_kset; 2028 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 2029 "%u", relid); 2030 if (ret) 2031 return ret; 2032 2033 ret = sysfs_create_group(kobj, &vmbus_chan_group); 2034 2035 if (ret) { 2036 /* 2037 * The calling functions' error handling paths will cleanup the 2038 * empty channel directory. 2039 */ 2040 dev_err(device, "Unable to set up channel sysfs files\n"); 2041 return ret; 2042 } 2043 2044 kobject_uevent(kobj, KOBJ_ADD); 2045 2046 return 0; 2047 } 2048 2049 /* 2050 * vmbus_remove_channel_attr_group - remove the channel's attribute group 2051 */ 2052 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 2053 { 2054 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 2055 } 2056 2057 /* 2058 * vmbus_device_create - Creates and registers a new child device 2059 * on the vmbus. 2060 */ 2061 struct hv_device *vmbus_device_create(const guid_t *type, 2062 const guid_t *instance, 2063 struct vmbus_channel *channel) 2064 { 2065 struct hv_device *child_device_obj; 2066 2067 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 2068 if (!child_device_obj) { 2069 pr_err("Unable to allocate device object for child device\n"); 2070 return NULL; 2071 } 2072 2073 child_device_obj->channel = channel; 2074 guid_copy(&child_device_obj->dev_type, type); 2075 guid_copy(&child_device_obj->dev_instance, instance); 2076 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 2077 2078 return child_device_obj; 2079 } 2080 2081 /* 2082 * vmbus_device_register - Register the child device 2083 */ 2084 int vmbus_device_register(struct hv_device *child_device_obj) 2085 { 2086 struct kobject *kobj = &child_device_obj->device.kobj; 2087 int ret; 2088 2089 dev_set_name(&child_device_obj->device, "%pUl", 2090 &child_device_obj->channel->offermsg.offer.if_instance); 2091 2092 child_device_obj->device.bus = &hv_bus; 2093 child_device_obj->device.parent = &hv_acpi_dev->dev; 2094 child_device_obj->device.release = vmbus_device_release; 2095 2096 /* 2097 * Register with the LDM. This will kick off the driver/device 2098 * binding...which will eventually call vmbus_match() and vmbus_probe() 2099 */ 2100 ret = device_register(&child_device_obj->device); 2101 if (ret) { 2102 pr_err("Unable to register child device\n"); 2103 return ret; 2104 } 2105 2106 child_device_obj->channels_kset = kset_create_and_add("channels", 2107 NULL, kobj); 2108 if (!child_device_obj->channels_kset) { 2109 ret = -ENOMEM; 2110 goto err_dev_unregister; 2111 } 2112 2113 ret = vmbus_add_channel_kobj(child_device_obj, 2114 child_device_obj->channel); 2115 if (ret) { 2116 pr_err("Unable to register primary channeln"); 2117 goto err_kset_unregister; 2118 } 2119 hv_debug_add_dev_dir(child_device_obj); 2120 2121 return 0; 2122 2123 err_kset_unregister: 2124 kset_unregister(child_device_obj->channels_kset); 2125 2126 err_dev_unregister: 2127 device_unregister(&child_device_obj->device); 2128 return ret; 2129 } 2130 2131 /* 2132 * vmbus_device_unregister - Remove the specified child device 2133 * from the vmbus. 2134 */ 2135 void vmbus_device_unregister(struct hv_device *device_obj) 2136 { 2137 pr_debug("child device %s unregistered\n", 2138 dev_name(&device_obj->device)); 2139 2140 kset_unregister(device_obj->channels_kset); 2141 2142 /* 2143 * Kick off the process of unregistering the device. 2144 * This will call vmbus_remove() and eventually vmbus_device_release() 2145 */ 2146 device_unregister(&device_obj->device); 2147 } 2148 2149 2150 /* 2151 * VMBUS is an acpi enumerated device. Get the information we 2152 * need from DSDT. 2153 */ 2154 #define VTPM_BASE_ADDRESS 0xfed40000 2155 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 2156 { 2157 resource_size_t start = 0; 2158 resource_size_t end = 0; 2159 struct resource *new_res; 2160 struct resource **old_res = &hyperv_mmio; 2161 struct resource **prev_res = NULL; 2162 struct resource r; 2163 2164 switch (res->type) { 2165 2166 /* 2167 * "Address" descriptors are for bus windows. Ignore 2168 * "memory" descriptors, which are for registers on 2169 * devices. 2170 */ 2171 case ACPI_RESOURCE_TYPE_ADDRESS32: 2172 start = res->data.address32.address.minimum; 2173 end = res->data.address32.address.maximum; 2174 break; 2175 2176 case ACPI_RESOURCE_TYPE_ADDRESS64: 2177 start = res->data.address64.address.minimum; 2178 end = res->data.address64.address.maximum; 2179 break; 2180 2181 /* 2182 * The IRQ information is needed only on ARM64, which Hyper-V 2183 * sets up in the extended format. IRQ information is present 2184 * on x86/x64 in the non-extended format but it is not used by 2185 * Linux. So don't bother checking for the non-extended format. 2186 */ 2187 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 2188 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 2189 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 2190 return AE_ERROR; 2191 } 2192 /* ARM64 INTID for VMbus */ 2193 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2194 /* Linux IRQ number */ 2195 vmbus_irq = r.start; 2196 return AE_OK; 2197 2198 default: 2199 /* Unused resource type */ 2200 return AE_OK; 2201 2202 } 2203 /* 2204 * Ignore ranges that are below 1MB, as they're not 2205 * necessary or useful here. 2206 */ 2207 if (end < 0x100000) 2208 return AE_OK; 2209 2210 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2211 if (!new_res) 2212 return AE_NO_MEMORY; 2213 2214 /* If this range overlaps the virtual TPM, truncate it. */ 2215 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2216 end = VTPM_BASE_ADDRESS; 2217 2218 new_res->name = "hyperv mmio"; 2219 new_res->flags = IORESOURCE_MEM; 2220 new_res->start = start; 2221 new_res->end = end; 2222 2223 /* 2224 * If two ranges are adjacent, merge them. 2225 */ 2226 do { 2227 if (!*old_res) { 2228 *old_res = new_res; 2229 break; 2230 } 2231 2232 if (((*old_res)->end + 1) == new_res->start) { 2233 (*old_res)->end = new_res->end; 2234 kfree(new_res); 2235 break; 2236 } 2237 2238 if ((*old_res)->start == new_res->end + 1) { 2239 (*old_res)->start = new_res->start; 2240 kfree(new_res); 2241 break; 2242 } 2243 2244 if ((*old_res)->start > new_res->end) { 2245 new_res->sibling = *old_res; 2246 if (prev_res) 2247 (*prev_res)->sibling = new_res; 2248 *old_res = new_res; 2249 break; 2250 } 2251 2252 prev_res = old_res; 2253 old_res = &(*old_res)->sibling; 2254 2255 } while (1); 2256 2257 return AE_OK; 2258 } 2259 2260 static int vmbus_acpi_remove(struct acpi_device *device) 2261 { 2262 struct resource *cur_res; 2263 struct resource *next_res; 2264 2265 if (hyperv_mmio) { 2266 if (fb_mmio) { 2267 __release_region(hyperv_mmio, fb_mmio->start, 2268 resource_size(fb_mmio)); 2269 fb_mmio = NULL; 2270 } 2271 2272 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2273 next_res = cur_res->sibling; 2274 kfree(cur_res); 2275 } 2276 } 2277 2278 return 0; 2279 } 2280 2281 static void vmbus_reserve_fb(void) 2282 { 2283 int size; 2284 /* 2285 * Make a claim for the frame buffer in the resource tree under the 2286 * first node, which will be the one below 4GB. The length seems to 2287 * be underreported, particularly in a Generation 1 VM. So start out 2288 * reserving a larger area and make it smaller until it succeeds. 2289 */ 2290 2291 if (screen_info.lfb_base) { 2292 if (efi_enabled(EFI_BOOT)) 2293 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2294 else 2295 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 2296 2297 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 2298 fb_mmio = __request_region(hyperv_mmio, 2299 screen_info.lfb_base, size, 2300 fb_mmio_name, 0); 2301 } 2302 } 2303 } 2304 2305 /** 2306 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2307 * @new: If successful, supplied a pointer to the 2308 * allocated MMIO space. 2309 * @device_obj: Identifies the caller 2310 * @min: Minimum guest physical address of the 2311 * allocation 2312 * @max: Maximum guest physical address 2313 * @size: Size of the range to be allocated 2314 * @align: Alignment of the range to be allocated 2315 * @fb_overlap_ok: Whether this allocation can be allowed 2316 * to overlap the video frame buffer. 2317 * 2318 * This function walks the resources granted to VMBus by the 2319 * _CRS object in the ACPI namespace underneath the parent 2320 * "bridge" whether that's a root PCI bus in the Generation 1 2321 * case or a Module Device in the Generation 2 case. It then 2322 * attempts to allocate from the global MMIO pool in a way that 2323 * matches the constraints supplied in these parameters and by 2324 * that _CRS. 2325 * 2326 * Return: 0 on success, -errno on failure 2327 */ 2328 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2329 resource_size_t min, resource_size_t max, 2330 resource_size_t size, resource_size_t align, 2331 bool fb_overlap_ok) 2332 { 2333 struct resource *iter, *shadow; 2334 resource_size_t range_min, range_max, start; 2335 const char *dev_n = dev_name(&device_obj->device); 2336 int retval; 2337 2338 retval = -ENXIO; 2339 mutex_lock(&hyperv_mmio_lock); 2340 2341 /* 2342 * If overlaps with frame buffers are allowed, then first attempt to 2343 * make the allocation from within the reserved region. Because it 2344 * is already reserved, no shadow allocation is necessary. 2345 */ 2346 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2347 !(max < fb_mmio->start)) { 2348 2349 range_min = fb_mmio->start; 2350 range_max = fb_mmio->end; 2351 start = (range_min + align - 1) & ~(align - 1); 2352 for (; start + size - 1 <= range_max; start += align) { 2353 *new = request_mem_region_exclusive(start, size, dev_n); 2354 if (*new) { 2355 retval = 0; 2356 goto exit; 2357 } 2358 } 2359 } 2360 2361 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2362 if ((iter->start >= max) || (iter->end <= min)) 2363 continue; 2364 2365 range_min = iter->start; 2366 range_max = iter->end; 2367 start = (range_min + align - 1) & ~(align - 1); 2368 for (; start + size - 1 <= range_max; start += align) { 2369 shadow = __request_region(iter, start, size, NULL, 2370 IORESOURCE_BUSY); 2371 if (!shadow) 2372 continue; 2373 2374 *new = request_mem_region_exclusive(start, size, dev_n); 2375 if (*new) { 2376 shadow->name = (char *)*new; 2377 retval = 0; 2378 goto exit; 2379 } 2380 2381 __release_region(iter, start, size); 2382 } 2383 } 2384 2385 exit: 2386 mutex_unlock(&hyperv_mmio_lock); 2387 return retval; 2388 } 2389 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2390 2391 /** 2392 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2393 * @start: Base address of region to release. 2394 * @size: Size of the range to be allocated 2395 * 2396 * This function releases anything requested by 2397 * vmbus_mmio_allocate(). 2398 */ 2399 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2400 { 2401 struct resource *iter; 2402 2403 mutex_lock(&hyperv_mmio_lock); 2404 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2405 if ((iter->start >= start + size) || (iter->end <= start)) 2406 continue; 2407 2408 __release_region(iter, start, size); 2409 } 2410 release_mem_region(start, size); 2411 mutex_unlock(&hyperv_mmio_lock); 2412 2413 } 2414 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2415 2416 static int vmbus_acpi_add(struct acpi_device *device) 2417 { 2418 acpi_status result; 2419 int ret_val = -ENODEV; 2420 struct acpi_device *ancestor; 2421 2422 hv_acpi_dev = device; 2423 2424 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2425 vmbus_walk_resources, NULL); 2426 2427 if (ACPI_FAILURE(result)) 2428 goto acpi_walk_err; 2429 /* 2430 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2431 * firmware) is the VMOD that has the mmio ranges. Get that. 2432 */ 2433 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2434 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2435 vmbus_walk_resources, NULL); 2436 2437 if (ACPI_FAILURE(result)) 2438 continue; 2439 if (hyperv_mmio) { 2440 vmbus_reserve_fb(); 2441 break; 2442 } 2443 } 2444 ret_val = 0; 2445 2446 acpi_walk_err: 2447 complete(&probe_event); 2448 if (ret_val) 2449 vmbus_acpi_remove(device); 2450 return ret_val; 2451 } 2452 2453 #ifdef CONFIG_PM_SLEEP 2454 static int vmbus_bus_suspend(struct device *dev) 2455 { 2456 struct vmbus_channel *channel, *sc; 2457 2458 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2459 /* 2460 * We wait here until the completion of any channel 2461 * offers that are currently in progress. 2462 */ 2463 usleep_range(1000, 2000); 2464 } 2465 2466 mutex_lock(&vmbus_connection.channel_mutex); 2467 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2468 if (!is_hvsock_channel(channel)) 2469 continue; 2470 2471 vmbus_force_channel_rescinded(channel); 2472 } 2473 mutex_unlock(&vmbus_connection.channel_mutex); 2474 2475 /* 2476 * Wait until all the sub-channels and hv_sock channels have been 2477 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2478 * they would conflict with the new sub-channels that will be created 2479 * in the resume path. hv_sock channels should also be destroyed, but 2480 * a hv_sock channel of an established hv_sock connection can not be 2481 * really destroyed since it may still be referenced by the userspace 2482 * application, so we just force the hv_sock channel to be rescinded 2483 * by vmbus_force_channel_rescinded(), and the userspace application 2484 * will thoroughly destroy the channel after hibernation. 2485 * 2486 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2487 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2488 */ 2489 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2490 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2491 2492 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2493 pr_err("Can not suspend due to a previous failed resuming\n"); 2494 return -EBUSY; 2495 } 2496 2497 mutex_lock(&vmbus_connection.channel_mutex); 2498 2499 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2500 /* 2501 * Remove the channel from the array of channels and invalidate 2502 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2503 * up the relid (and other fields, if necessary) and add the 2504 * channel back to the array. 2505 */ 2506 vmbus_channel_unmap_relid(channel); 2507 channel->offermsg.child_relid = INVALID_RELID; 2508 2509 if (is_hvsock_channel(channel)) { 2510 if (!channel->rescind) { 2511 pr_err("hv_sock channel not rescinded!\n"); 2512 WARN_ON_ONCE(1); 2513 } 2514 continue; 2515 } 2516 2517 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2518 pr_err("Sub-channel not deleted!\n"); 2519 WARN_ON_ONCE(1); 2520 } 2521 2522 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2523 } 2524 2525 mutex_unlock(&vmbus_connection.channel_mutex); 2526 2527 vmbus_initiate_unload(false); 2528 2529 /* Reset the event for the next resume. */ 2530 reinit_completion(&vmbus_connection.ready_for_resume_event); 2531 2532 return 0; 2533 } 2534 2535 static int vmbus_bus_resume(struct device *dev) 2536 { 2537 struct vmbus_channel_msginfo *msginfo; 2538 size_t msgsize; 2539 int ret; 2540 2541 /* 2542 * We only use the 'vmbus_proto_version', which was in use before 2543 * hibernation, to re-negotiate with the host. 2544 */ 2545 if (!vmbus_proto_version) { 2546 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2547 return -EINVAL; 2548 } 2549 2550 msgsize = sizeof(*msginfo) + 2551 sizeof(struct vmbus_channel_initiate_contact); 2552 2553 msginfo = kzalloc(msgsize, GFP_KERNEL); 2554 2555 if (msginfo == NULL) 2556 return -ENOMEM; 2557 2558 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2559 2560 kfree(msginfo); 2561 2562 if (ret != 0) 2563 return ret; 2564 2565 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2566 2567 vmbus_request_offers(); 2568 2569 if (wait_for_completion_timeout( 2570 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2571 pr_err("Some vmbus device is missing after suspending?\n"); 2572 2573 /* Reset the event for the next suspend. */ 2574 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2575 2576 return 0; 2577 } 2578 #else 2579 #define vmbus_bus_suspend NULL 2580 #define vmbus_bus_resume NULL 2581 #endif /* CONFIG_PM_SLEEP */ 2582 2583 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2584 {"VMBUS", 0}, 2585 {"VMBus", 0}, 2586 {"", 0}, 2587 }; 2588 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2589 2590 /* 2591 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2592 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2593 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2594 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2595 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2596 * resume callback must also run via the "noirq" ops. 2597 * 2598 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2599 * earlier in this file before vmbus_pm. 2600 */ 2601 2602 static const struct dev_pm_ops vmbus_bus_pm = { 2603 .suspend_noirq = NULL, 2604 .resume_noirq = NULL, 2605 .freeze_noirq = vmbus_bus_suspend, 2606 .thaw_noirq = vmbus_bus_resume, 2607 .poweroff_noirq = vmbus_bus_suspend, 2608 .restore_noirq = vmbus_bus_resume 2609 }; 2610 2611 static struct acpi_driver vmbus_acpi_driver = { 2612 .name = "vmbus", 2613 .ids = vmbus_acpi_device_ids, 2614 .ops = { 2615 .add = vmbus_acpi_add, 2616 .remove = vmbus_acpi_remove, 2617 }, 2618 .drv.pm = &vmbus_bus_pm, 2619 }; 2620 2621 static void hv_kexec_handler(void) 2622 { 2623 hv_stimer_global_cleanup(); 2624 vmbus_initiate_unload(false); 2625 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2626 mb(); 2627 cpuhp_remove_state(hyperv_cpuhp_online); 2628 }; 2629 2630 static void hv_crash_handler(struct pt_regs *regs) 2631 { 2632 int cpu; 2633 2634 vmbus_initiate_unload(true); 2635 /* 2636 * In crash handler we can't schedule synic cleanup for all CPUs, 2637 * doing the cleanup for current CPU only. This should be sufficient 2638 * for kdump. 2639 */ 2640 cpu = smp_processor_id(); 2641 hv_stimer_cleanup(cpu); 2642 hv_synic_disable_regs(cpu); 2643 }; 2644 2645 static int hv_synic_suspend(void) 2646 { 2647 /* 2648 * When we reach here, all the non-boot CPUs have been offlined. 2649 * If we're in a legacy configuration where stimer Direct Mode is 2650 * not enabled, the stimers on the non-boot CPUs have been unbound 2651 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2652 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2653 * 2654 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2655 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2656 * 1) it's unnecessary as interrupts remain disabled between 2657 * syscore_suspend() and syscore_resume(): see create_image() and 2658 * resume_target_kernel() 2659 * 2) the stimer on CPU0 is automatically disabled later by 2660 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2661 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2662 * 3) a warning would be triggered if we call 2663 * clockevents_unbind_device(), which may sleep, in an 2664 * interrupts-disabled context. 2665 */ 2666 2667 hv_synic_disable_regs(0); 2668 2669 return 0; 2670 } 2671 2672 static void hv_synic_resume(void) 2673 { 2674 hv_synic_enable_regs(0); 2675 2676 /* 2677 * Note: we don't need to call hv_stimer_init(0), because the timer 2678 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2679 * automatically re-enabled in timekeeping_resume(). 2680 */ 2681 } 2682 2683 /* The callbacks run only on CPU0, with irqs_disabled. */ 2684 static struct syscore_ops hv_synic_syscore_ops = { 2685 .suspend = hv_synic_suspend, 2686 .resume = hv_synic_resume, 2687 }; 2688 2689 static int __init hv_acpi_init(void) 2690 { 2691 int ret, t; 2692 2693 if (!hv_is_hyperv_initialized()) 2694 return -ENODEV; 2695 2696 if (hv_root_partition) 2697 return 0; 2698 2699 init_completion(&probe_event); 2700 2701 /* 2702 * Get ACPI resources first. 2703 */ 2704 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2705 2706 if (ret) 2707 return ret; 2708 2709 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2710 if (t == 0) { 2711 ret = -ETIMEDOUT; 2712 goto cleanup; 2713 } 2714 2715 /* 2716 * If we're on an architecture with a hardcoded hypervisor 2717 * vector (i.e. x86/x64), override the VMbus interrupt found 2718 * in the ACPI tables. Ensure vmbus_irq is not set since the 2719 * normal Linux IRQ mechanism is not used in this case. 2720 */ 2721 #ifdef HYPERVISOR_CALLBACK_VECTOR 2722 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; 2723 vmbus_irq = -1; 2724 #endif 2725 2726 hv_debug_init(); 2727 2728 ret = vmbus_bus_init(); 2729 if (ret) 2730 goto cleanup; 2731 2732 hv_setup_kexec_handler(hv_kexec_handler); 2733 hv_setup_crash_handler(hv_crash_handler); 2734 2735 register_syscore_ops(&hv_synic_syscore_ops); 2736 2737 return 0; 2738 2739 cleanup: 2740 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2741 hv_acpi_dev = NULL; 2742 return ret; 2743 } 2744 2745 static void __exit vmbus_exit(void) 2746 { 2747 int cpu; 2748 2749 unregister_syscore_ops(&hv_synic_syscore_ops); 2750 2751 hv_remove_kexec_handler(); 2752 hv_remove_crash_handler(); 2753 vmbus_connection.conn_state = DISCONNECTED; 2754 hv_stimer_global_cleanup(); 2755 vmbus_disconnect(); 2756 if (vmbus_irq == -1) { 2757 hv_remove_vmbus_handler(); 2758 } else { 2759 free_percpu_irq(vmbus_irq, vmbus_evt); 2760 free_percpu(vmbus_evt); 2761 } 2762 for_each_online_cpu(cpu) { 2763 struct hv_per_cpu_context *hv_cpu 2764 = per_cpu_ptr(hv_context.cpu_context, cpu); 2765 2766 tasklet_kill(&hv_cpu->msg_dpc); 2767 } 2768 hv_debug_rm_all_dir(); 2769 2770 vmbus_free_channels(); 2771 kfree(vmbus_connection.channels); 2772 2773 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2774 kmsg_dump_unregister(&hv_kmsg_dumper); 2775 unregister_die_notifier(&hyperv_die_block); 2776 atomic_notifier_chain_unregister(&panic_notifier_list, 2777 &hyperv_panic_block); 2778 } 2779 2780 free_page((unsigned long)hv_panic_page); 2781 unregister_sysctl_table(hv_ctl_table_hdr); 2782 hv_ctl_table_hdr = NULL; 2783 bus_unregister(&hv_bus); 2784 2785 cpuhp_remove_state(hyperv_cpuhp_online); 2786 hv_synic_free(); 2787 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2788 } 2789 2790 2791 MODULE_LICENSE("GPL"); 2792 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2793 2794 subsys_initcall(hv_acpi_init); 2795 module_exit(vmbus_exit); 2796