xref: /linux/drivers/hv/vmbus_drv.c (revision 8ab2e96d8ff188006f1e3346a56443cd07fe1858)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <asm/mshyperv.h>
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/kernel.h>
35 #include <linux/syscore_ops.h>
36 #include <clocksource/hyperv_timer.h>
37 #include "hyperv_vmbus.h"
38 
39 struct vmbus_dynid {
40 	struct list_head node;
41 	struct hv_vmbus_device_id id;
42 };
43 
44 static struct acpi_device  *hv_acpi_dev;
45 
46 static struct completion probe_event;
47 
48 static int hyperv_cpuhp_online;
49 
50 static void *hv_panic_page;
51 
52 /*
53  * Boolean to control whether to report panic messages over Hyper-V.
54  *
55  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
56  */
57 static int sysctl_record_panic_msg = 1;
58 
59 static int hyperv_report_reg(void)
60 {
61 	return !sysctl_record_panic_msg || !hv_panic_page;
62 }
63 
64 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
65 			      void *args)
66 {
67 	struct pt_regs *regs;
68 
69 	vmbus_initiate_unload(true);
70 
71 	/*
72 	 * Hyper-V should be notified only once about a panic.  If we will be
73 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
74 	 * the notification here.
75 	 */
76 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77 	    && hyperv_report_reg()) {
78 		regs = current_pt_regs();
79 		hyperv_report_panic(regs, val, false);
80 	}
81 	return NOTIFY_DONE;
82 }
83 
84 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
85 			    void *args)
86 {
87 	struct die_args *die = (struct die_args *)args;
88 	struct pt_regs *regs = die->regs;
89 
90 	/*
91 	 * Hyper-V should be notified only once about a panic.  If we will be
92 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
93 	 * the notification here.
94 	 */
95 	if (hyperv_report_reg())
96 		hyperv_report_panic(regs, val, true);
97 	return NOTIFY_DONE;
98 }
99 
100 static struct notifier_block hyperv_die_block = {
101 	.notifier_call = hyperv_die_event,
102 };
103 static struct notifier_block hyperv_panic_block = {
104 	.notifier_call = hyperv_panic_event,
105 };
106 
107 static const char *fb_mmio_name = "fb_range";
108 static struct resource *fb_mmio;
109 static struct resource *hyperv_mmio;
110 static DEFINE_MUTEX(hyperv_mmio_lock);
111 
112 static int vmbus_exists(void)
113 {
114 	if (hv_acpi_dev == NULL)
115 		return -ENODEV;
116 
117 	return 0;
118 }
119 
120 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
121 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
122 {
123 	int i;
124 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
125 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
126 }
127 
128 static u8 channel_monitor_group(const struct vmbus_channel *channel)
129 {
130 	return (u8)channel->offermsg.monitorid / 32;
131 }
132 
133 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
134 {
135 	return (u8)channel->offermsg.monitorid % 32;
136 }
137 
138 static u32 channel_pending(const struct vmbus_channel *channel,
139 			   const struct hv_monitor_page *monitor_page)
140 {
141 	u8 monitor_group = channel_monitor_group(channel);
142 
143 	return monitor_page->trigger_group[monitor_group].pending;
144 }
145 
146 static u32 channel_latency(const struct vmbus_channel *channel,
147 			   const struct hv_monitor_page *monitor_page)
148 {
149 	u8 monitor_group = channel_monitor_group(channel);
150 	u8 monitor_offset = channel_monitor_offset(channel);
151 
152 	return monitor_page->latency[monitor_group][monitor_offset];
153 }
154 
155 static u32 channel_conn_id(struct vmbus_channel *channel,
156 			   struct hv_monitor_page *monitor_page)
157 {
158 	u8 monitor_group = channel_monitor_group(channel);
159 	u8 monitor_offset = channel_monitor_offset(channel);
160 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
161 }
162 
163 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
164 		       char *buf)
165 {
166 	struct hv_device *hv_dev = device_to_hv_device(dev);
167 
168 	if (!hv_dev->channel)
169 		return -ENODEV;
170 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
171 }
172 static DEVICE_ATTR_RO(id);
173 
174 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
175 			  char *buf)
176 {
177 	struct hv_device *hv_dev = device_to_hv_device(dev);
178 
179 	if (!hv_dev->channel)
180 		return -ENODEV;
181 	return sprintf(buf, "%d\n", hv_dev->channel->state);
182 }
183 static DEVICE_ATTR_RO(state);
184 
185 static ssize_t monitor_id_show(struct device *dev,
186 			       struct device_attribute *dev_attr, char *buf)
187 {
188 	struct hv_device *hv_dev = device_to_hv_device(dev);
189 
190 	if (!hv_dev->channel)
191 		return -ENODEV;
192 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
193 }
194 static DEVICE_ATTR_RO(monitor_id);
195 
196 static ssize_t class_id_show(struct device *dev,
197 			       struct device_attribute *dev_attr, char *buf)
198 {
199 	struct hv_device *hv_dev = device_to_hv_device(dev);
200 
201 	if (!hv_dev->channel)
202 		return -ENODEV;
203 	return sprintf(buf, "{%pUl}\n",
204 		       hv_dev->channel->offermsg.offer.if_type.b);
205 }
206 static DEVICE_ATTR_RO(class_id);
207 
208 static ssize_t device_id_show(struct device *dev,
209 			      struct device_attribute *dev_attr, char *buf)
210 {
211 	struct hv_device *hv_dev = device_to_hv_device(dev);
212 
213 	if (!hv_dev->channel)
214 		return -ENODEV;
215 	return sprintf(buf, "{%pUl}\n",
216 		       hv_dev->channel->offermsg.offer.if_instance.b);
217 }
218 static DEVICE_ATTR_RO(device_id);
219 
220 static ssize_t modalias_show(struct device *dev,
221 			     struct device_attribute *dev_attr, char *buf)
222 {
223 	struct hv_device *hv_dev = device_to_hv_device(dev);
224 	char alias_name[VMBUS_ALIAS_LEN + 1];
225 
226 	print_alias_name(hv_dev, alias_name);
227 	return sprintf(buf, "vmbus:%s\n", alias_name);
228 }
229 static DEVICE_ATTR_RO(modalias);
230 
231 #ifdef CONFIG_NUMA
232 static ssize_t numa_node_show(struct device *dev,
233 			      struct device_attribute *attr, char *buf)
234 {
235 	struct hv_device *hv_dev = device_to_hv_device(dev);
236 
237 	if (!hv_dev->channel)
238 		return -ENODEV;
239 
240 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
241 }
242 static DEVICE_ATTR_RO(numa_node);
243 #endif
244 
245 static ssize_t server_monitor_pending_show(struct device *dev,
246 					   struct device_attribute *dev_attr,
247 					   char *buf)
248 {
249 	struct hv_device *hv_dev = device_to_hv_device(dev);
250 
251 	if (!hv_dev->channel)
252 		return -ENODEV;
253 	return sprintf(buf, "%d\n",
254 		       channel_pending(hv_dev->channel,
255 				       vmbus_connection.monitor_pages[0]));
256 }
257 static DEVICE_ATTR_RO(server_monitor_pending);
258 
259 static ssize_t client_monitor_pending_show(struct device *dev,
260 					   struct device_attribute *dev_attr,
261 					   char *buf)
262 {
263 	struct hv_device *hv_dev = device_to_hv_device(dev);
264 
265 	if (!hv_dev->channel)
266 		return -ENODEV;
267 	return sprintf(buf, "%d\n",
268 		       channel_pending(hv_dev->channel,
269 				       vmbus_connection.monitor_pages[1]));
270 }
271 static DEVICE_ATTR_RO(client_monitor_pending);
272 
273 static ssize_t server_monitor_latency_show(struct device *dev,
274 					   struct device_attribute *dev_attr,
275 					   char *buf)
276 {
277 	struct hv_device *hv_dev = device_to_hv_device(dev);
278 
279 	if (!hv_dev->channel)
280 		return -ENODEV;
281 	return sprintf(buf, "%d\n",
282 		       channel_latency(hv_dev->channel,
283 				       vmbus_connection.monitor_pages[0]));
284 }
285 static DEVICE_ATTR_RO(server_monitor_latency);
286 
287 static ssize_t client_monitor_latency_show(struct device *dev,
288 					   struct device_attribute *dev_attr,
289 					   char *buf)
290 {
291 	struct hv_device *hv_dev = device_to_hv_device(dev);
292 
293 	if (!hv_dev->channel)
294 		return -ENODEV;
295 	return sprintf(buf, "%d\n",
296 		       channel_latency(hv_dev->channel,
297 				       vmbus_connection.monitor_pages[1]));
298 }
299 static DEVICE_ATTR_RO(client_monitor_latency);
300 
301 static ssize_t server_monitor_conn_id_show(struct device *dev,
302 					   struct device_attribute *dev_attr,
303 					   char *buf)
304 {
305 	struct hv_device *hv_dev = device_to_hv_device(dev);
306 
307 	if (!hv_dev->channel)
308 		return -ENODEV;
309 	return sprintf(buf, "%d\n",
310 		       channel_conn_id(hv_dev->channel,
311 				       vmbus_connection.monitor_pages[0]));
312 }
313 static DEVICE_ATTR_RO(server_monitor_conn_id);
314 
315 static ssize_t client_monitor_conn_id_show(struct device *dev,
316 					   struct device_attribute *dev_attr,
317 					   char *buf)
318 {
319 	struct hv_device *hv_dev = device_to_hv_device(dev);
320 
321 	if (!hv_dev->channel)
322 		return -ENODEV;
323 	return sprintf(buf, "%d\n",
324 		       channel_conn_id(hv_dev->channel,
325 				       vmbus_connection.monitor_pages[1]));
326 }
327 static DEVICE_ATTR_RO(client_monitor_conn_id);
328 
329 static ssize_t out_intr_mask_show(struct device *dev,
330 				  struct device_attribute *dev_attr, char *buf)
331 {
332 	struct hv_device *hv_dev = device_to_hv_device(dev);
333 	struct hv_ring_buffer_debug_info outbound;
334 	int ret;
335 
336 	if (!hv_dev->channel)
337 		return -ENODEV;
338 
339 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
340 					  &outbound);
341 	if (ret < 0)
342 		return ret;
343 
344 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
345 }
346 static DEVICE_ATTR_RO(out_intr_mask);
347 
348 static ssize_t out_read_index_show(struct device *dev,
349 				   struct device_attribute *dev_attr, char *buf)
350 {
351 	struct hv_device *hv_dev = device_to_hv_device(dev);
352 	struct hv_ring_buffer_debug_info outbound;
353 	int ret;
354 
355 	if (!hv_dev->channel)
356 		return -ENODEV;
357 
358 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
359 					  &outbound);
360 	if (ret < 0)
361 		return ret;
362 	return sprintf(buf, "%d\n", outbound.current_read_index);
363 }
364 static DEVICE_ATTR_RO(out_read_index);
365 
366 static ssize_t out_write_index_show(struct device *dev,
367 				    struct device_attribute *dev_attr,
368 				    char *buf)
369 {
370 	struct hv_device *hv_dev = device_to_hv_device(dev);
371 	struct hv_ring_buffer_debug_info outbound;
372 	int ret;
373 
374 	if (!hv_dev->channel)
375 		return -ENODEV;
376 
377 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
378 					  &outbound);
379 	if (ret < 0)
380 		return ret;
381 	return sprintf(buf, "%d\n", outbound.current_write_index);
382 }
383 static DEVICE_ATTR_RO(out_write_index);
384 
385 static ssize_t out_read_bytes_avail_show(struct device *dev,
386 					 struct device_attribute *dev_attr,
387 					 char *buf)
388 {
389 	struct hv_device *hv_dev = device_to_hv_device(dev);
390 	struct hv_ring_buffer_debug_info outbound;
391 	int ret;
392 
393 	if (!hv_dev->channel)
394 		return -ENODEV;
395 
396 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
397 					  &outbound);
398 	if (ret < 0)
399 		return ret;
400 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
401 }
402 static DEVICE_ATTR_RO(out_read_bytes_avail);
403 
404 static ssize_t out_write_bytes_avail_show(struct device *dev,
405 					  struct device_attribute *dev_attr,
406 					  char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info outbound;
410 	int ret;
411 
412 	if (!hv_dev->channel)
413 		return -ENODEV;
414 
415 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
416 					  &outbound);
417 	if (ret < 0)
418 		return ret;
419 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
420 }
421 static DEVICE_ATTR_RO(out_write_bytes_avail);
422 
423 static ssize_t in_intr_mask_show(struct device *dev,
424 				 struct device_attribute *dev_attr, char *buf)
425 {
426 	struct hv_device *hv_dev = device_to_hv_device(dev);
427 	struct hv_ring_buffer_debug_info inbound;
428 	int ret;
429 
430 	if (!hv_dev->channel)
431 		return -ENODEV;
432 
433 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 	if (ret < 0)
435 		return ret;
436 
437 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
438 }
439 static DEVICE_ATTR_RO(in_intr_mask);
440 
441 static ssize_t in_read_index_show(struct device *dev,
442 				  struct device_attribute *dev_attr, char *buf)
443 {
444 	struct hv_device *hv_dev = device_to_hv_device(dev);
445 	struct hv_ring_buffer_debug_info inbound;
446 	int ret;
447 
448 	if (!hv_dev->channel)
449 		return -ENODEV;
450 
451 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 	if (ret < 0)
453 		return ret;
454 
455 	return sprintf(buf, "%d\n", inbound.current_read_index);
456 }
457 static DEVICE_ATTR_RO(in_read_index);
458 
459 static ssize_t in_write_index_show(struct device *dev,
460 				   struct device_attribute *dev_attr, char *buf)
461 {
462 	struct hv_device *hv_dev = device_to_hv_device(dev);
463 	struct hv_ring_buffer_debug_info inbound;
464 	int ret;
465 
466 	if (!hv_dev->channel)
467 		return -ENODEV;
468 
469 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
470 	if (ret < 0)
471 		return ret;
472 
473 	return sprintf(buf, "%d\n", inbound.current_write_index);
474 }
475 static DEVICE_ATTR_RO(in_write_index);
476 
477 static ssize_t in_read_bytes_avail_show(struct device *dev,
478 					struct device_attribute *dev_attr,
479 					char *buf)
480 {
481 	struct hv_device *hv_dev = device_to_hv_device(dev);
482 	struct hv_ring_buffer_debug_info inbound;
483 	int ret;
484 
485 	if (!hv_dev->channel)
486 		return -ENODEV;
487 
488 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
489 	if (ret < 0)
490 		return ret;
491 
492 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
493 }
494 static DEVICE_ATTR_RO(in_read_bytes_avail);
495 
496 static ssize_t in_write_bytes_avail_show(struct device *dev,
497 					 struct device_attribute *dev_attr,
498 					 char *buf)
499 {
500 	struct hv_device *hv_dev = device_to_hv_device(dev);
501 	struct hv_ring_buffer_debug_info inbound;
502 	int ret;
503 
504 	if (!hv_dev->channel)
505 		return -ENODEV;
506 
507 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
508 	if (ret < 0)
509 		return ret;
510 
511 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
512 }
513 static DEVICE_ATTR_RO(in_write_bytes_avail);
514 
515 static ssize_t channel_vp_mapping_show(struct device *dev,
516 				       struct device_attribute *dev_attr,
517 				       char *buf)
518 {
519 	struct hv_device *hv_dev = device_to_hv_device(dev);
520 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
521 	unsigned long flags;
522 	int buf_size = PAGE_SIZE, n_written, tot_written;
523 	struct list_head *cur;
524 
525 	if (!channel)
526 		return -ENODEV;
527 
528 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
529 		channel->offermsg.child_relid, channel->target_cpu);
530 
531 	spin_lock_irqsave(&channel->lock, flags);
532 
533 	list_for_each(cur, &channel->sc_list) {
534 		if (tot_written >= buf_size - 1)
535 			break;
536 
537 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
538 		n_written = scnprintf(buf + tot_written,
539 				     buf_size - tot_written,
540 				     "%u:%u\n",
541 				     cur_sc->offermsg.child_relid,
542 				     cur_sc->target_cpu);
543 		tot_written += n_written;
544 	}
545 
546 	spin_unlock_irqrestore(&channel->lock, flags);
547 
548 	return tot_written;
549 }
550 static DEVICE_ATTR_RO(channel_vp_mapping);
551 
552 static ssize_t vendor_show(struct device *dev,
553 			   struct device_attribute *dev_attr,
554 			   char *buf)
555 {
556 	struct hv_device *hv_dev = device_to_hv_device(dev);
557 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
558 }
559 static DEVICE_ATTR_RO(vendor);
560 
561 static ssize_t device_show(struct device *dev,
562 			   struct device_attribute *dev_attr,
563 			   char *buf)
564 {
565 	struct hv_device *hv_dev = device_to_hv_device(dev);
566 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
567 }
568 static DEVICE_ATTR_RO(device);
569 
570 static ssize_t driver_override_store(struct device *dev,
571 				     struct device_attribute *attr,
572 				     const char *buf, size_t count)
573 {
574 	struct hv_device *hv_dev = device_to_hv_device(dev);
575 	char *driver_override, *old, *cp;
576 
577 	/* We need to keep extra room for a newline */
578 	if (count >= (PAGE_SIZE - 1))
579 		return -EINVAL;
580 
581 	driver_override = kstrndup(buf, count, GFP_KERNEL);
582 	if (!driver_override)
583 		return -ENOMEM;
584 
585 	cp = strchr(driver_override, '\n');
586 	if (cp)
587 		*cp = '\0';
588 
589 	device_lock(dev);
590 	old = hv_dev->driver_override;
591 	if (strlen(driver_override)) {
592 		hv_dev->driver_override = driver_override;
593 	} else {
594 		kfree(driver_override);
595 		hv_dev->driver_override = NULL;
596 	}
597 	device_unlock(dev);
598 
599 	kfree(old);
600 
601 	return count;
602 }
603 
604 static ssize_t driver_override_show(struct device *dev,
605 				    struct device_attribute *attr, char *buf)
606 {
607 	struct hv_device *hv_dev = device_to_hv_device(dev);
608 	ssize_t len;
609 
610 	device_lock(dev);
611 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
612 	device_unlock(dev);
613 
614 	return len;
615 }
616 static DEVICE_ATTR_RW(driver_override);
617 
618 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
619 static struct attribute *vmbus_dev_attrs[] = {
620 	&dev_attr_id.attr,
621 	&dev_attr_state.attr,
622 	&dev_attr_monitor_id.attr,
623 	&dev_attr_class_id.attr,
624 	&dev_attr_device_id.attr,
625 	&dev_attr_modalias.attr,
626 #ifdef CONFIG_NUMA
627 	&dev_attr_numa_node.attr,
628 #endif
629 	&dev_attr_server_monitor_pending.attr,
630 	&dev_attr_client_monitor_pending.attr,
631 	&dev_attr_server_monitor_latency.attr,
632 	&dev_attr_client_monitor_latency.attr,
633 	&dev_attr_server_monitor_conn_id.attr,
634 	&dev_attr_client_monitor_conn_id.attr,
635 	&dev_attr_out_intr_mask.attr,
636 	&dev_attr_out_read_index.attr,
637 	&dev_attr_out_write_index.attr,
638 	&dev_attr_out_read_bytes_avail.attr,
639 	&dev_attr_out_write_bytes_avail.attr,
640 	&dev_attr_in_intr_mask.attr,
641 	&dev_attr_in_read_index.attr,
642 	&dev_attr_in_write_index.attr,
643 	&dev_attr_in_read_bytes_avail.attr,
644 	&dev_attr_in_write_bytes_avail.attr,
645 	&dev_attr_channel_vp_mapping.attr,
646 	&dev_attr_vendor.attr,
647 	&dev_attr_device.attr,
648 	&dev_attr_driver_override.attr,
649 	NULL,
650 };
651 
652 /*
653  * Device-level attribute_group callback function. Returns the permission for
654  * each attribute, and returns 0 if an attribute is not visible.
655  */
656 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
657 					 struct attribute *attr, int idx)
658 {
659 	struct device *dev = kobj_to_dev(kobj);
660 	const struct hv_device *hv_dev = device_to_hv_device(dev);
661 
662 	/* Hide the monitor attributes if the monitor mechanism is not used. */
663 	if (!hv_dev->channel->offermsg.monitor_allocated &&
664 	    (attr == &dev_attr_monitor_id.attr ||
665 	     attr == &dev_attr_server_monitor_pending.attr ||
666 	     attr == &dev_attr_client_monitor_pending.attr ||
667 	     attr == &dev_attr_server_monitor_latency.attr ||
668 	     attr == &dev_attr_client_monitor_latency.attr ||
669 	     attr == &dev_attr_server_monitor_conn_id.attr ||
670 	     attr == &dev_attr_client_monitor_conn_id.attr))
671 		return 0;
672 
673 	return attr->mode;
674 }
675 
676 static const struct attribute_group vmbus_dev_group = {
677 	.attrs = vmbus_dev_attrs,
678 	.is_visible = vmbus_dev_attr_is_visible
679 };
680 __ATTRIBUTE_GROUPS(vmbus_dev);
681 
682 /*
683  * vmbus_uevent - add uevent for our device
684  *
685  * This routine is invoked when a device is added or removed on the vmbus to
686  * generate a uevent to udev in the userspace. The udev will then look at its
687  * rule and the uevent generated here to load the appropriate driver
688  *
689  * The alias string will be of the form vmbus:guid where guid is the string
690  * representation of the device guid (each byte of the guid will be
691  * represented with two hex characters.
692  */
693 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
694 {
695 	struct hv_device *dev = device_to_hv_device(device);
696 	int ret;
697 	char alias_name[VMBUS_ALIAS_LEN + 1];
698 
699 	print_alias_name(dev, alias_name);
700 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
701 	return ret;
702 }
703 
704 static const struct hv_vmbus_device_id *
705 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
706 {
707 	if (id == NULL)
708 		return NULL; /* empty device table */
709 
710 	for (; !guid_is_null(&id->guid); id++)
711 		if (guid_equal(&id->guid, guid))
712 			return id;
713 
714 	return NULL;
715 }
716 
717 static const struct hv_vmbus_device_id *
718 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
719 {
720 	const struct hv_vmbus_device_id *id = NULL;
721 	struct vmbus_dynid *dynid;
722 
723 	spin_lock(&drv->dynids.lock);
724 	list_for_each_entry(dynid, &drv->dynids.list, node) {
725 		if (guid_equal(&dynid->id.guid, guid)) {
726 			id = &dynid->id;
727 			break;
728 		}
729 	}
730 	spin_unlock(&drv->dynids.lock);
731 
732 	return id;
733 }
734 
735 static const struct hv_vmbus_device_id vmbus_device_null;
736 
737 /*
738  * Return a matching hv_vmbus_device_id pointer.
739  * If there is no match, return NULL.
740  */
741 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
742 							struct hv_device *dev)
743 {
744 	const guid_t *guid = &dev->dev_type;
745 	const struct hv_vmbus_device_id *id;
746 
747 	/* When driver_override is set, only bind to the matching driver */
748 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
749 		return NULL;
750 
751 	/* Look at the dynamic ids first, before the static ones */
752 	id = hv_vmbus_dynid_match(drv, guid);
753 	if (!id)
754 		id = hv_vmbus_dev_match(drv->id_table, guid);
755 
756 	/* driver_override will always match, send a dummy id */
757 	if (!id && dev->driver_override)
758 		id = &vmbus_device_null;
759 
760 	return id;
761 }
762 
763 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
764 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
765 {
766 	struct vmbus_dynid *dynid;
767 
768 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
769 	if (!dynid)
770 		return -ENOMEM;
771 
772 	dynid->id.guid = *guid;
773 
774 	spin_lock(&drv->dynids.lock);
775 	list_add_tail(&dynid->node, &drv->dynids.list);
776 	spin_unlock(&drv->dynids.lock);
777 
778 	return driver_attach(&drv->driver);
779 }
780 
781 static void vmbus_free_dynids(struct hv_driver *drv)
782 {
783 	struct vmbus_dynid *dynid, *n;
784 
785 	spin_lock(&drv->dynids.lock);
786 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
787 		list_del(&dynid->node);
788 		kfree(dynid);
789 	}
790 	spin_unlock(&drv->dynids.lock);
791 }
792 
793 /*
794  * store_new_id - sysfs frontend to vmbus_add_dynid()
795  *
796  * Allow GUIDs to be added to an existing driver via sysfs.
797  */
798 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
799 			    size_t count)
800 {
801 	struct hv_driver *drv = drv_to_hv_drv(driver);
802 	guid_t guid;
803 	ssize_t retval;
804 
805 	retval = guid_parse(buf, &guid);
806 	if (retval)
807 		return retval;
808 
809 	if (hv_vmbus_dynid_match(drv, &guid))
810 		return -EEXIST;
811 
812 	retval = vmbus_add_dynid(drv, &guid);
813 	if (retval)
814 		return retval;
815 	return count;
816 }
817 static DRIVER_ATTR_WO(new_id);
818 
819 /*
820  * store_remove_id - remove a PCI device ID from this driver
821  *
822  * Removes a dynamic pci device ID to this driver.
823  */
824 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
825 			       size_t count)
826 {
827 	struct hv_driver *drv = drv_to_hv_drv(driver);
828 	struct vmbus_dynid *dynid, *n;
829 	guid_t guid;
830 	ssize_t retval;
831 
832 	retval = guid_parse(buf, &guid);
833 	if (retval)
834 		return retval;
835 
836 	retval = -ENODEV;
837 	spin_lock(&drv->dynids.lock);
838 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
839 		struct hv_vmbus_device_id *id = &dynid->id;
840 
841 		if (guid_equal(&id->guid, &guid)) {
842 			list_del(&dynid->node);
843 			kfree(dynid);
844 			retval = count;
845 			break;
846 		}
847 	}
848 	spin_unlock(&drv->dynids.lock);
849 
850 	return retval;
851 }
852 static DRIVER_ATTR_WO(remove_id);
853 
854 static struct attribute *vmbus_drv_attrs[] = {
855 	&driver_attr_new_id.attr,
856 	&driver_attr_remove_id.attr,
857 	NULL,
858 };
859 ATTRIBUTE_GROUPS(vmbus_drv);
860 
861 
862 /*
863  * vmbus_match - Attempt to match the specified device to the specified driver
864  */
865 static int vmbus_match(struct device *device, struct device_driver *driver)
866 {
867 	struct hv_driver *drv = drv_to_hv_drv(driver);
868 	struct hv_device *hv_dev = device_to_hv_device(device);
869 
870 	/* The hv_sock driver handles all hv_sock offers. */
871 	if (is_hvsock_channel(hv_dev->channel))
872 		return drv->hvsock;
873 
874 	if (hv_vmbus_get_id(drv, hv_dev))
875 		return 1;
876 
877 	return 0;
878 }
879 
880 /*
881  * vmbus_probe - Add the new vmbus's child device
882  */
883 static int vmbus_probe(struct device *child_device)
884 {
885 	int ret = 0;
886 	struct hv_driver *drv =
887 			drv_to_hv_drv(child_device->driver);
888 	struct hv_device *dev = device_to_hv_device(child_device);
889 	const struct hv_vmbus_device_id *dev_id;
890 
891 	dev_id = hv_vmbus_get_id(drv, dev);
892 	if (drv->probe) {
893 		ret = drv->probe(dev, dev_id);
894 		if (ret != 0)
895 			pr_err("probe failed for device %s (%d)\n",
896 			       dev_name(child_device), ret);
897 
898 	} else {
899 		pr_err("probe not set for driver %s\n",
900 		       dev_name(child_device));
901 		ret = -ENODEV;
902 	}
903 	return ret;
904 }
905 
906 /*
907  * vmbus_remove - Remove a vmbus device
908  */
909 static int vmbus_remove(struct device *child_device)
910 {
911 	struct hv_driver *drv;
912 	struct hv_device *dev = device_to_hv_device(child_device);
913 
914 	if (child_device->driver) {
915 		drv = drv_to_hv_drv(child_device->driver);
916 		if (drv->remove)
917 			drv->remove(dev);
918 	}
919 
920 	return 0;
921 }
922 
923 
924 /*
925  * vmbus_shutdown - Shutdown a vmbus device
926  */
927 static void vmbus_shutdown(struct device *child_device)
928 {
929 	struct hv_driver *drv;
930 	struct hv_device *dev = device_to_hv_device(child_device);
931 
932 
933 	/* The device may not be attached yet */
934 	if (!child_device->driver)
935 		return;
936 
937 	drv = drv_to_hv_drv(child_device->driver);
938 
939 	if (drv->shutdown)
940 		drv->shutdown(dev);
941 }
942 
943 #ifdef CONFIG_PM_SLEEP
944 /*
945  * vmbus_suspend - Suspend a vmbus device
946  */
947 static int vmbus_suspend(struct device *child_device)
948 {
949 	struct hv_driver *drv;
950 	struct hv_device *dev = device_to_hv_device(child_device);
951 
952 	/* The device may not be attached yet */
953 	if (!child_device->driver)
954 		return 0;
955 
956 	drv = drv_to_hv_drv(child_device->driver);
957 	if (!drv->suspend)
958 		return -EOPNOTSUPP;
959 
960 	return drv->suspend(dev);
961 }
962 
963 /*
964  * vmbus_resume - Resume a vmbus device
965  */
966 static int vmbus_resume(struct device *child_device)
967 {
968 	struct hv_driver *drv;
969 	struct hv_device *dev = device_to_hv_device(child_device);
970 
971 	/* The device may not be attached yet */
972 	if (!child_device->driver)
973 		return 0;
974 
975 	drv = drv_to_hv_drv(child_device->driver);
976 	if (!drv->resume)
977 		return -EOPNOTSUPP;
978 
979 	return drv->resume(dev);
980 }
981 #endif /* CONFIG_PM_SLEEP */
982 
983 /*
984  * vmbus_device_release - Final callback release of the vmbus child device
985  */
986 static void vmbus_device_release(struct device *device)
987 {
988 	struct hv_device *hv_dev = device_to_hv_device(device);
989 	struct vmbus_channel *channel = hv_dev->channel;
990 
991 	hv_debug_rm_dev_dir(hv_dev);
992 
993 	mutex_lock(&vmbus_connection.channel_mutex);
994 	hv_process_channel_removal(channel);
995 	mutex_unlock(&vmbus_connection.channel_mutex);
996 	kfree(hv_dev);
997 }
998 
999 /*
1000  * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
1001  * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
1002  */
1003 static const struct dev_pm_ops vmbus_pm = {
1004 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
1005 };
1006 
1007 /* The one and only one */
1008 static struct bus_type  hv_bus = {
1009 	.name =		"vmbus",
1010 	.match =		vmbus_match,
1011 	.shutdown =		vmbus_shutdown,
1012 	.remove =		vmbus_remove,
1013 	.probe =		vmbus_probe,
1014 	.uevent =		vmbus_uevent,
1015 	.dev_groups =		vmbus_dev_groups,
1016 	.drv_groups =		vmbus_drv_groups,
1017 	.pm =			&vmbus_pm,
1018 };
1019 
1020 struct onmessage_work_context {
1021 	struct work_struct work;
1022 	struct hv_message msg;
1023 };
1024 
1025 static void vmbus_onmessage_work(struct work_struct *work)
1026 {
1027 	struct onmessage_work_context *ctx;
1028 
1029 	/* Do not process messages if we're in DISCONNECTED state */
1030 	if (vmbus_connection.conn_state == DISCONNECTED)
1031 		return;
1032 
1033 	ctx = container_of(work, struct onmessage_work_context,
1034 			   work);
1035 	vmbus_onmessage(&ctx->msg);
1036 	kfree(ctx);
1037 }
1038 
1039 void vmbus_on_msg_dpc(unsigned long data)
1040 {
1041 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1042 	void *page_addr = hv_cpu->synic_message_page;
1043 	struct hv_message *msg = (struct hv_message *)page_addr +
1044 				  VMBUS_MESSAGE_SINT;
1045 	struct vmbus_channel_message_header *hdr;
1046 	const struct vmbus_channel_message_table_entry *entry;
1047 	struct onmessage_work_context *ctx;
1048 	u32 message_type = msg->header.message_type;
1049 
1050 	if (message_type == HVMSG_NONE)
1051 		/* no msg */
1052 		return;
1053 
1054 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1055 
1056 	trace_vmbus_on_msg_dpc(hdr);
1057 
1058 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1059 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1060 		goto msg_handled;
1061 	}
1062 
1063 	entry = &channel_message_table[hdr->msgtype];
1064 
1065 	if (!entry->message_handler)
1066 		goto msg_handled;
1067 
1068 	if (entry->handler_type	== VMHT_BLOCKING) {
1069 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
1070 		if (ctx == NULL)
1071 			return;
1072 
1073 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1074 		memcpy(&ctx->msg, msg, sizeof(*msg));
1075 
1076 		/*
1077 		 * The host can generate a rescind message while we
1078 		 * may still be handling the original offer. We deal with
1079 		 * this condition by ensuring the processing is done on the
1080 		 * same CPU.
1081 		 */
1082 		switch (hdr->msgtype) {
1083 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1084 			/*
1085 			 * If we are handling the rescind message;
1086 			 * schedule the work on the global work queue.
1087 			 */
1088 			schedule_work_on(vmbus_connection.connect_cpu,
1089 					 &ctx->work);
1090 			break;
1091 
1092 		case CHANNELMSG_OFFERCHANNEL:
1093 			atomic_inc(&vmbus_connection.offer_in_progress);
1094 			queue_work_on(vmbus_connection.connect_cpu,
1095 				      vmbus_connection.work_queue,
1096 				      &ctx->work);
1097 			break;
1098 
1099 		default:
1100 			queue_work(vmbus_connection.work_queue, &ctx->work);
1101 		}
1102 	} else
1103 		entry->message_handler(hdr);
1104 
1105 msg_handled:
1106 	vmbus_signal_eom(msg, message_type);
1107 }
1108 
1109 #ifdef CONFIG_PM_SLEEP
1110 /*
1111  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1112  * hibernation, because hv_sock connections can not persist across hibernation.
1113  */
1114 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1115 {
1116 	struct onmessage_work_context *ctx;
1117 	struct vmbus_channel_rescind_offer *rescind;
1118 
1119 	WARN_ON(!is_hvsock_channel(channel));
1120 
1121 	/*
1122 	 * sizeof(*ctx) is small and the allocation should really not fail,
1123 	 * otherwise the state of the hv_sock connections ends up in limbo.
1124 	 */
1125 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
1126 
1127 	/*
1128 	 * So far, these are not really used by Linux. Just set them to the
1129 	 * reasonable values conforming to the definitions of the fields.
1130 	 */
1131 	ctx->msg.header.message_type = 1;
1132 	ctx->msg.header.payload_size = sizeof(*rescind);
1133 
1134 	/* These values are actually used by Linux. */
1135 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
1136 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1137 	rescind->child_relid = channel->offermsg.child_relid;
1138 
1139 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1140 
1141 	queue_work_on(vmbus_connection.connect_cpu,
1142 		      vmbus_connection.work_queue,
1143 		      &ctx->work);
1144 }
1145 #endif /* CONFIG_PM_SLEEP */
1146 
1147 /*
1148  * Direct callback for channels using other deferred processing
1149  */
1150 static void vmbus_channel_isr(struct vmbus_channel *channel)
1151 {
1152 	void (*callback_fn)(void *);
1153 
1154 	callback_fn = READ_ONCE(channel->onchannel_callback);
1155 	if (likely(callback_fn != NULL))
1156 		(*callback_fn)(channel->channel_callback_context);
1157 }
1158 
1159 /*
1160  * Schedule all channels with events pending
1161  */
1162 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1163 {
1164 	unsigned long *recv_int_page;
1165 	u32 maxbits, relid;
1166 
1167 	if (vmbus_proto_version < VERSION_WIN8) {
1168 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1169 		recv_int_page = vmbus_connection.recv_int_page;
1170 	} else {
1171 		/*
1172 		 * When the host is win8 and beyond, the event page
1173 		 * can be directly checked to get the id of the channel
1174 		 * that has the interrupt pending.
1175 		 */
1176 		void *page_addr = hv_cpu->synic_event_page;
1177 		union hv_synic_event_flags *event
1178 			= (union hv_synic_event_flags *)page_addr +
1179 						 VMBUS_MESSAGE_SINT;
1180 
1181 		maxbits = HV_EVENT_FLAGS_COUNT;
1182 		recv_int_page = event->flags;
1183 	}
1184 
1185 	if (unlikely(!recv_int_page))
1186 		return;
1187 
1188 	for_each_set_bit(relid, recv_int_page, maxbits) {
1189 		struct vmbus_channel *channel;
1190 
1191 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1192 			continue;
1193 
1194 		/* Special case - vmbus channel protocol msg */
1195 		if (relid == 0)
1196 			continue;
1197 
1198 		rcu_read_lock();
1199 
1200 		/* Find channel based on relid */
1201 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1202 			if (channel->offermsg.child_relid != relid)
1203 				continue;
1204 
1205 			if (channel->rescind)
1206 				continue;
1207 
1208 			trace_vmbus_chan_sched(channel);
1209 
1210 			++channel->interrupts;
1211 
1212 			switch (channel->callback_mode) {
1213 			case HV_CALL_ISR:
1214 				vmbus_channel_isr(channel);
1215 				break;
1216 
1217 			case HV_CALL_BATCHED:
1218 				hv_begin_read(&channel->inbound);
1219 				/* fallthrough */
1220 			case HV_CALL_DIRECT:
1221 				tasklet_schedule(&channel->callback_event);
1222 			}
1223 		}
1224 
1225 		rcu_read_unlock();
1226 	}
1227 }
1228 
1229 static void vmbus_isr(void)
1230 {
1231 	struct hv_per_cpu_context *hv_cpu
1232 		= this_cpu_ptr(hv_context.cpu_context);
1233 	void *page_addr = hv_cpu->synic_event_page;
1234 	struct hv_message *msg;
1235 	union hv_synic_event_flags *event;
1236 	bool handled = false;
1237 
1238 	if (unlikely(page_addr == NULL))
1239 		return;
1240 
1241 	event = (union hv_synic_event_flags *)page_addr +
1242 					 VMBUS_MESSAGE_SINT;
1243 	/*
1244 	 * Check for events before checking for messages. This is the order
1245 	 * in which events and messages are checked in Windows guests on
1246 	 * Hyper-V, and the Windows team suggested we do the same.
1247 	 */
1248 
1249 	if ((vmbus_proto_version == VERSION_WS2008) ||
1250 		(vmbus_proto_version == VERSION_WIN7)) {
1251 
1252 		/* Since we are a child, we only need to check bit 0 */
1253 		if (sync_test_and_clear_bit(0, event->flags))
1254 			handled = true;
1255 	} else {
1256 		/*
1257 		 * Our host is win8 or above. The signaling mechanism
1258 		 * has changed and we can directly look at the event page.
1259 		 * If bit n is set then we have an interrup on the channel
1260 		 * whose id is n.
1261 		 */
1262 		handled = true;
1263 	}
1264 
1265 	if (handled)
1266 		vmbus_chan_sched(hv_cpu);
1267 
1268 	page_addr = hv_cpu->synic_message_page;
1269 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1270 
1271 	/* Check if there are actual msgs to be processed */
1272 	if (msg->header.message_type != HVMSG_NONE) {
1273 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1274 			hv_stimer0_isr();
1275 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1276 		} else
1277 			tasklet_schedule(&hv_cpu->msg_dpc);
1278 	}
1279 
1280 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1281 }
1282 
1283 /*
1284  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1285  * buffer and call into Hyper-V to transfer the data.
1286  */
1287 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1288 			 enum kmsg_dump_reason reason)
1289 {
1290 	size_t bytes_written;
1291 	phys_addr_t panic_pa;
1292 
1293 	/* We are only interested in panics. */
1294 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1295 		return;
1296 
1297 	panic_pa = virt_to_phys(hv_panic_page);
1298 
1299 	/*
1300 	 * Write dump contents to the page. No need to synchronize; panic should
1301 	 * be single-threaded.
1302 	 */
1303 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE,
1304 			     &bytes_written);
1305 	if (bytes_written)
1306 		hyperv_report_panic_msg(panic_pa, bytes_written);
1307 }
1308 
1309 static struct kmsg_dumper hv_kmsg_dumper = {
1310 	.dump = hv_kmsg_dump,
1311 };
1312 
1313 static struct ctl_table_header *hv_ctl_table_hdr;
1314 
1315 /*
1316  * sysctl option to allow the user to control whether kmsg data should be
1317  * reported to Hyper-V on panic.
1318  */
1319 static struct ctl_table hv_ctl_table[] = {
1320 	{
1321 		.procname       = "hyperv_record_panic_msg",
1322 		.data           = &sysctl_record_panic_msg,
1323 		.maxlen         = sizeof(int),
1324 		.mode           = 0644,
1325 		.proc_handler   = proc_dointvec_minmax,
1326 		.extra1		= SYSCTL_ZERO,
1327 		.extra2		= SYSCTL_ONE
1328 	},
1329 	{}
1330 };
1331 
1332 static struct ctl_table hv_root_table[] = {
1333 	{
1334 		.procname	= "kernel",
1335 		.mode		= 0555,
1336 		.child		= hv_ctl_table
1337 	},
1338 	{}
1339 };
1340 
1341 /*
1342  * vmbus_bus_init -Main vmbus driver initialization routine.
1343  *
1344  * Here, we
1345  *	- initialize the vmbus driver context
1346  *	- invoke the vmbus hv main init routine
1347  *	- retrieve the channel offers
1348  */
1349 static int vmbus_bus_init(void)
1350 {
1351 	int ret;
1352 
1353 	/* Hypervisor initialization...setup hypercall page..etc */
1354 	ret = hv_init();
1355 	if (ret != 0) {
1356 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1357 		return ret;
1358 	}
1359 
1360 	ret = bus_register(&hv_bus);
1361 	if (ret)
1362 		return ret;
1363 
1364 	hv_setup_vmbus_irq(vmbus_isr);
1365 
1366 	ret = hv_synic_alloc();
1367 	if (ret)
1368 		goto err_alloc;
1369 
1370 	/*
1371 	 * Initialize the per-cpu interrupt state and stimer state.
1372 	 * Then connect to the host.
1373 	 */
1374 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1375 				hv_synic_init, hv_synic_cleanup);
1376 	if (ret < 0)
1377 		goto err_cpuhp;
1378 	hyperv_cpuhp_online = ret;
1379 
1380 	ret = vmbus_connect();
1381 	if (ret)
1382 		goto err_connect;
1383 
1384 	/*
1385 	 * Only register if the crash MSRs are available
1386 	 */
1387 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1388 		u64 hyperv_crash_ctl;
1389 		/*
1390 		 * Sysctl registration is not fatal, since by default
1391 		 * reporting is enabled.
1392 		 */
1393 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1394 		if (!hv_ctl_table_hdr)
1395 			pr_err("Hyper-V: sysctl table register error");
1396 
1397 		/*
1398 		 * Register for panic kmsg callback only if the right
1399 		 * capability is supported by the hypervisor.
1400 		 */
1401 		hv_get_crash_ctl(hyperv_crash_ctl);
1402 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1403 			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1404 			if (hv_panic_page) {
1405 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1406 				if (ret) {
1407 					pr_err("Hyper-V: kmsg dump register "
1408 						"error 0x%x\n", ret);
1409 					hv_free_hyperv_page(
1410 					    (unsigned long)hv_panic_page);
1411 					hv_panic_page = NULL;
1412 				}
1413 			} else
1414 				pr_err("Hyper-V: panic message page memory "
1415 					"allocation failed");
1416 		}
1417 
1418 		register_die_notifier(&hyperv_die_block);
1419 	}
1420 
1421 	/*
1422 	 * Always register the panic notifier because we need to unload
1423 	 * the VMbus channel connection to prevent any VMbus
1424 	 * activity after the VM panics.
1425 	 */
1426 	atomic_notifier_chain_register(&panic_notifier_list,
1427 			       &hyperv_panic_block);
1428 
1429 	vmbus_request_offers();
1430 
1431 	return 0;
1432 
1433 err_connect:
1434 	cpuhp_remove_state(hyperv_cpuhp_online);
1435 err_cpuhp:
1436 	hv_synic_free();
1437 err_alloc:
1438 	hv_remove_vmbus_irq();
1439 
1440 	bus_unregister(&hv_bus);
1441 	unregister_sysctl_table(hv_ctl_table_hdr);
1442 	hv_ctl_table_hdr = NULL;
1443 	return ret;
1444 }
1445 
1446 /**
1447  * __vmbus_child_driver_register() - Register a vmbus's driver
1448  * @hv_driver: Pointer to driver structure you want to register
1449  * @owner: owner module of the drv
1450  * @mod_name: module name string
1451  *
1452  * Registers the given driver with Linux through the 'driver_register()' call
1453  * and sets up the hyper-v vmbus handling for this driver.
1454  * It will return the state of the 'driver_register()' call.
1455  *
1456  */
1457 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1458 {
1459 	int ret;
1460 
1461 	pr_info("registering driver %s\n", hv_driver->name);
1462 
1463 	ret = vmbus_exists();
1464 	if (ret < 0)
1465 		return ret;
1466 
1467 	hv_driver->driver.name = hv_driver->name;
1468 	hv_driver->driver.owner = owner;
1469 	hv_driver->driver.mod_name = mod_name;
1470 	hv_driver->driver.bus = &hv_bus;
1471 
1472 	spin_lock_init(&hv_driver->dynids.lock);
1473 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1474 
1475 	ret = driver_register(&hv_driver->driver);
1476 
1477 	return ret;
1478 }
1479 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1480 
1481 /**
1482  * vmbus_driver_unregister() - Unregister a vmbus's driver
1483  * @hv_driver: Pointer to driver structure you want to
1484  *             un-register
1485  *
1486  * Un-register the given driver that was previous registered with a call to
1487  * vmbus_driver_register()
1488  */
1489 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1490 {
1491 	pr_info("unregistering driver %s\n", hv_driver->name);
1492 
1493 	if (!vmbus_exists()) {
1494 		driver_unregister(&hv_driver->driver);
1495 		vmbus_free_dynids(hv_driver);
1496 	}
1497 }
1498 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1499 
1500 
1501 /*
1502  * Called when last reference to channel is gone.
1503  */
1504 static void vmbus_chan_release(struct kobject *kobj)
1505 {
1506 	struct vmbus_channel *channel
1507 		= container_of(kobj, struct vmbus_channel, kobj);
1508 
1509 	kfree_rcu(channel, rcu);
1510 }
1511 
1512 struct vmbus_chan_attribute {
1513 	struct attribute attr;
1514 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1515 	ssize_t (*store)(struct vmbus_channel *chan,
1516 			 const char *buf, size_t count);
1517 };
1518 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1519 	struct vmbus_chan_attribute chan_attr_##_name \
1520 		= __ATTR(_name, _mode, _show, _store)
1521 #define VMBUS_CHAN_ATTR_RW(_name) \
1522 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1523 #define VMBUS_CHAN_ATTR_RO(_name) \
1524 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1525 #define VMBUS_CHAN_ATTR_WO(_name) \
1526 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1527 
1528 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1529 				    struct attribute *attr, char *buf)
1530 {
1531 	const struct vmbus_chan_attribute *attribute
1532 		= container_of(attr, struct vmbus_chan_attribute, attr);
1533 	struct vmbus_channel *chan
1534 		= container_of(kobj, struct vmbus_channel, kobj);
1535 
1536 	if (!attribute->show)
1537 		return -EIO;
1538 
1539 	return attribute->show(chan, buf);
1540 }
1541 
1542 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1543 	.show = vmbus_chan_attr_show,
1544 };
1545 
1546 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1547 {
1548 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1549 	ssize_t ret;
1550 
1551 	mutex_lock(&rbi->ring_buffer_mutex);
1552 	if (!rbi->ring_buffer) {
1553 		mutex_unlock(&rbi->ring_buffer_mutex);
1554 		return -EINVAL;
1555 	}
1556 
1557 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1558 	mutex_unlock(&rbi->ring_buffer_mutex);
1559 	return ret;
1560 }
1561 static VMBUS_CHAN_ATTR_RO(out_mask);
1562 
1563 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1564 {
1565 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1566 	ssize_t ret;
1567 
1568 	mutex_lock(&rbi->ring_buffer_mutex);
1569 	if (!rbi->ring_buffer) {
1570 		mutex_unlock(&rbi->ring_buffer_mutex);
1571 		return -EINVAL;
1572 	}
1573 
1574 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1575 	mutex_unlock(&rbi->ring_buffer_mutex);
1576 	return ret;
1577 }
1578 static VMBUS_CHAN_ATTR_RO(in_mask);
1579 
1580 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1581 {
1582 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1583 	ssize_t ret;
1584 
1585 	mutex_lock(&rbi->ring_buffer_mutex);
1586 	if (!rbi->ring_buffer) {
1587 		mutex_unlock(&rbi->ring_buffer_mutex);
1588 		return -EINVAL;
1589 	}
1590 
1591 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1592 	mutex_unlock(&rbi->ring_buffer_mutex);
1593 	return ret;
1594 }
1595 static VMBUS_CHAN_ATTR_RO(read_avail);
1596 
1597 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1598 {
1599 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1600 	ssize_t ret;
1601 
1602 	mutex_lock(&rbi->ring_buffer_mutex);
1603 	if (!rbi->ring_buffer) {
1604 		mutex_unlock(&rbi->ring_buffer_mutex);
1605 		return -EINVAL;
1606 	}
1607 
1608 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1609 	mutex_unlock(&rbi->ring_buffer_mutex);
1610 	return ret;
1611 }
1612 static VMBUS_CHAN_ATTR_RO(write_avail);
1613 
1614 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1615 {
1616 	return sprintf(buf, "%u\n", channel->target_cpu);
1617 }
1618 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1619 
1620 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1621 				    char *buf)
1622 {
1623 	return sprintf(buf, "%d\n",
1624 		       channel_pending(channel,
1625 				       vmbus_connection.monitor_pages[1]));
1626 }
1627 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1628 
1629 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1630 				    char *buf)
1631 {
1632 	return sprintf(buf, "%d\n",
1633 		       channel_latency(channel,
1634 				       vmbus_connection.monitor_pages[1]));
1635 }
1636 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1637 
1638 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1639 {
1640 	return sprintf(buf, "%llu\n", channel->interrupts);
1641 }
1642 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1643 
1644 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1645 {
1646 	return sprintf(buf, "%llu\n", channel->sig_events);
1647 }
1648 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1649 
1650 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1651 					 char *buf)
1652 {
1653 	return sprintf(buf, "%llu\n",
1654 		       (unsigned long long)channel->intr_in_full);
1655 }
1656 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1657 
1658 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1659 					   char *buf)
1660 {
1661 	return sprintf(buf, "%llu\n",
1662 		       (unsigned long long)channel->intr_out_empty);
1663 }
1664 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1665 
1666 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1667 					   char *buf)
1668 {
1669 	return sprintf(buf, "%llu\n",
1670 		       (unsigned long long)channel->out_full_first);
1671 }
1672 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1673 
1674 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1675 					   char *buf)
1676 {
1677 	return sprintf(buf, "%llu\n",
1678 		       (unsigned long long)channel->out_full_total);
1679 }
1680 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1681 
1682 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1683 					  char *buf)
1684 {
1685 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1686 }
1687 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1688 
1689 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1690 				  char *buf)
1691 {
1692 	return sprintf(buf, "%u\n",
1693 		       channel->offermsg.offer.sub_channel_index);
1694 }
1695 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1696 
1697 static struct attribute *vmbus_chan_attrs[] = {
1698 	&chan_attr_out_mask.attr,
1699 	&chan_attr_in_mask.attr,
1700 	&chan_attr_read_avail.attr,
1701 	&chan_attr_write_avail.attr,
1702 	&chan_attr_cpu.attr,
1703 	&chan_attr_pending.attr,
1704 	&chan_attr_latency.attr,
1705 	&chan_attr_interrupts.attr,
1706 	&chan_attr_events.attr,
1707 	&chan_attr_intr_in_full.attr,
1708 	&chan_attr_intr_out_empty.attr,
1709 	&chan_attr_out_full_first.attr,
1710 	&chan_attr_out_full_total.attr,
1711 	&chan_attr_monitor_id.attr,
1712 	&chan_attr_subchannel_id.attr,
1713 	NULL
1714 };
1715 
1716 /*
1717  * Channel-level attribute_group callback function. Returns the permission for
1718  * each attribute, and returns 0 if an attribute is not visible.
1719  */
1720 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1721 					  struct attribute *attr, int idx)
1722 {
1723 	const struct vmbus_channel *channel =
1724 		container_of(kobj, struct vmbus_channel, kobj);
1725 
1726 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1727 	if (!channel->offermsg.monitor_allocated &&
1728 	    (attr == &chan_attr_pending.attr ||
1729 	     attr == &chan_attr_latency.attr ||
1730 	     attr == &chan_attr_monitor_id.attr))
1731 		return 0;
1732 
1733 	return attr->mode;
1734 }
1735 
1736 static struct attribute_group vmbus_chan_group = {
1737 	.attrs = vmbus_chan_attrs,
1738 	.is_visible = vmbus_chan_attr_is_visible
1739 };
1740 
1741 static struct kobj_type vmbus_chan_ktype = {
1742 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1743 	.release = vmbus_chan_release,
1744 };
1745 
1746 /*
1747  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1748  */
1749 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1750 {
1751 	const struct device *device = &dev->device;
1752 	struct kobject *kobj = &channel->kobj;
1753 	u32 relid = channel->offermsg.child_relid;
1754 	int ret;
1755 
1756 	kobj->kset = dev->channels_kset;
1757 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1758 				   "%u", relid);
1759 	if (ret)
1760 		return ret;
1761 
1762 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1763 
1764 	if (ret) {
1765 		/*
1766 		 * The calling functions' error handling paths will cleanup the
1767 		 * empty channel directory.
1768 		 */
1769 		dev_err(device, "Unable to set up channel sysfs files\n");
1770 		return ret;
1771 	}
1772 
1773 	kobject_uevent(kobj, KOBJ_ADD);
1774 
1775 	return 0;
1776 }
1777 
1778 /*
1779  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1780  */
1781 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1782 {
1783 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1784 }
1785 
1786 /*
1787  * vmbus_device_create - Creates and registers a new child device
1788  * on the vmbus.
1789  */
1790 struct hv_device *vmbus_device_create(const guid_t *type,
1791 				      const guid_t *instance,
1792 				      struct vmbus_channel *channel)
1793 {
1794 	struct hv_device *child_device_obj;
1795 
1796 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1797 	if (!child_device_obj) {
1798 		pr_err("Unable to allocate device object for child device\n");
1799 		return NULL;
1800 	}
1801 
1802 	child_device_obj->channel = channel;
1803 	guid_copy(&child_device_obj->dev_type, type);
1804 	guid_copy(&child_device_obj->dev_instance, instance);
1805 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1806 
1807 	return child_device_obj;
1808 }
1809 
1810 /*
1811  * vmbus_device_register - Register the child device
1812  */
1813 int vmbus_device_register(struct hv_device *child_device_obj)
1814 {
1815 	struct kobject *kobj = &child_device_obj->device.kobj;
1816 	int ret;
1817 
1818 	dev_set_name(&child_device_obj->device, "%pUl",
1819 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1820 
1821 	child_device_obj->device.bus = &hv_bus;
1822 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1823 	child_device_obj->device.release = vmbus_device_release;
1824 
1825 	/*
1826 	 * Register with the LDM. This will kick off the driver/device
1827 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1828 	 */
1829 	ret = device_register(&child_device_obj->device);
1830 	if (ret) {
1831 		pr_err("Unable to register child device\n");
1832 		return ret;
1833 	}
1834 
1835 	child_device_obj->channels_kset = kset_create_and_add("channels",
1836 							      NULL, kobj);
1837 	if (!child_device_obj->channels_kset) {
1838 		ret = -ENOMEM;
1839 		goto err_dev_unregister;
1840 	}
1841 
1842 	ret = vmbus_add_channel_kobj(child_device_obj,
1843 				     child_device_obj->channel);
1844 	if (ret) {
1845 		pr_err("Unable to register primary channeln");
1846 		goto err_kset_unregister;
1847 	}
1848 	hv_debug_add_dev_dir(child_device_obj);
1849 
1850 	return 0;
1851 
1852 err_kset_unregister:
1853 	kset_unregister(child_device_obj->channels_kset);
1854 
1855 err_dev_unregister:
1856 	device_unregister(&child_device_obj->device);
1857 	return ret;
1858 }
1859 
1860 /*
1861  * vmbus_device_unregister - Remove the specified child device
1862  * from the vmbus.
1863  */
1864 void vmbus_device_unregister(struct hv_device *device_obj)
1865 {
1866 	pr_debug("child device %s unregistered\n",
1867 		dev_name(&device_obj->device));
1868 
1869 	kset_unregister(device_obj->channels_kset);
1870 
1871 	/*
1872 	 * Kick off the process of unregistering the device.
1873 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1874 	 */
1875 	device_unregister(&device_obj->device);
1876 }
1877 
1878 
1879 /*
1880  * VMBUS is an acpi enumerated device. Get the information we
1881  * need from DSDT.
1882  */
1883 #define VTPM_BASE_ADDRESS 0xfed40000
1884 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1885 {
1886 	resource_size_t start = 0;
1887 	resource_size_t end = 0;
1888 	struct resource *new_res;
1889 	struct resource **old_res = &hyperv_mmio;
1890 	struct resource **prev_res = NULL;
1891 
1892 	switch (res->type) {
1893 
1894 	/*
1895 	 * "Address" descriptors are for bus windows. Ignore
1896 	 * "memory" descriptors, which are for registers on
1897 	 * devices.
1898 	 */
1899 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1900 		start = res->data.address32.address.minimum;
1901 		end = res->data.address32.address.maximum;
1902 		break;
1903 
1904 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1905 		start = res->data.address64.address.minimum;
1906 		end = res->data.address64.address.maximum;
1907 		break;
1908 
1909 	default:
1910 		/* Unused resource type */
1911 		return AE_OK;
1912 
1913 	}
1914 	/*
1915 	 * Ignore ranges that are below 1MB, as they're not
1916 	 * necessary or useful here.
1917 	 */
1918 	if (end < 0x100000)
1919 		return AE_OK;
1920 
1921 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1922 	if (!new_res)
1923 		return AE_NO_MEMORY;
1924 
1925 	/* If this range overlaps the virtual TPM, truncate it. */
1926 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1927 		end = VTPM_BASE_ADDRESS;
1928 
1929 	new_res->name = "hyperv mmio";
1930 	new_res->flags = IORESOURCE_MEM;
1931 	new_res->start = start;
1932 	new_res->end = end;
1933 
1934 	/*
1935 	 * If two ranges are adjacent, merge them.
1936 	 */
1937 	do {
1938 		if (!*old_res) {
1939 			*old_res = new_res;
1940 			break;
1941 		}
1942 
1943 		if (((*old_res)->end + 1) == new_res->start) {
1944 			(*old_res)->end = new_res->end;
1945 			kfree(new_res);
1946 			break;
1947 		}
1948 
1949 		if ((*old_res)->start == new_res->end + 1) {
1950 			(*old_res)->start = new_res->start;
1951 			kfree(new_res);
1952 			break;
1953 		}
1954 
1955 		if ((*old_res)->start > new_res->end) {
1956 			new_res->sibling = *old_res;
1957 			if (prev_res)
1958 				(*prev_res)->sibling = new_res;
1959 			*old_res = new_res;
1960 			break;
1961 		}
1962 
1963 		prev_res = old_res;
1964 		old_res = &(*old_res)->sibling;
1965 
1966 	} while (1);
1967 
1968 	return AE_OK;
1969 }
1970 
1971 static int vmbus_acpi_remove(struct acpi_device *device)
1972 {
1973 	struct resource *cur_res;
1974 	struct resource *next_res;
1975 
1976 	if (hyperv_mmio) {
1977 		if (fb_mmio) {
1978 			__release_region(hyperv_mmio, fb_mmio->start,
1979 					 resource_size(fb_mmio));
1980 			fb_mmio = NULL;
1981 		}
1982 
1983 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1984 			next_res = cur_res->sibling;
1985 			kfree(cur_res);
1986 		}
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void vmbus_reserve_fb(void)
1993 {
1994 	int size;
1995 	/*
1996 	 * Make a claim for the frame buffer in the resource tree under the
1997 	 * first node, which will be the one below 4GB.  The length seems to
1998 	 * be underreported, particularly in a Generation 1 VM.  So start out
1999 	 * reserving a larger area and make it smaller until it succeeds.
2000 	 */
2001 
2002 	if (screen_info.lfb_base) {
2003 		if (efi_enabled(EFI_BOOT))
2004 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2005 		else
2006 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2007 
2008 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2009 			fb_mmio = __request_region(hyperv_mmio,
2010 						   screen_info.lfb_base, size,
2011 						   fb_mmio_name, 0);
2012 		}
2013 	}
2014 }
2015 
2016 /**
2017  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2018  * @new:		If successful, supplied a pointer to the
2019  *			allocated MMIO space.
2020  * @device_obj:		Identifies the caller
2021  * @min:		Minimum guest physical address of the
2022  *			allocation
2023  * @max:		Maximum guest physical address
2024  * @size:		Size of the range to be allocated
2025  * @align:		Alignment of the range to be allocated
2026  * @fb_overlap_ok:	Whether this allocation can be allowed
2027  *			to overlap the video frame buffer.
2028  *
2029  * This function walks the resources granted to VMBus by the
2030  * _CRS object in the ACPI namespace underneath the parent
2031  * "bridge" whether that's a root PCI bus in the Generation 1
2032  * case or a Module Device in the Generation 2 case.  It then
2033  * attempts to allocate from the global MMIO pool in a way that
2034  * matches the constraints supplied in these parameters and by
2035  * that _CRS.
2036  *
2037  * Return: 0 on success, -errno on failure
2038  */
2039 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2040 			resource_size_t min, resource_size_t max,
2041 			resource_size_t size, resource_size_t align,
2042 			bool fb_overlap_ok)
2043 {
2044 	struct resource *iter, *shadow;
2045 	resource_size_t range_min, range_max, start;
2046 	const char *dev_n = dev_name(&device_obj->device);
2047 	int retval;
2048 
2049 	retval = -ENXIO;
2050 	mutex_lock(&hyperv_mmio_lock);
2051 
2052 	/*
2053 	 * If overlaps with frame buffers are allowed, then first attempt to
2054 	 * make the allocation from within the reserved region.  Because it
2055 	 * is already reserved, no shadow allocation is necessary.
2056 	 */
2057 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2058 	    !(max < fb_mmio->start)) {
2059 
2060 		range_min = fb_mmio->start;
2061 		range_max = fb_mmio->end;
2062 		start = (range_min + align - 1) & ~(align - 1);
2063 		for (; start + size - 1 <= range_max; start += align) {
2064 			*new = request_mem_region_exclusive(start, size, dev_n);
2065 			if (*new) {
2066 				retval = 0;
2067 				goto exit;
2068 			}
2069 		}
2070 	}
2071 
2072 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2073 		if ((iter->start >= max) || (iter->end <= min))
2074 			continue;
2075 
2076 		range_min = iter->start;
2077 		range_max = iter->end;
2078 		start = (range_min + align - 1) & ~(align - 1);
2079 		for (; start + size - 1 <= range_max; start += align) {
2080 			shadow = __request_region(iter, start, size, NULL,
2081 						  IORESOURCE_BUSY);
2082 			if (!shadow)
2083 				continue;
2084 
2085 			*new = request_mem_region_exclusive(start, size, dev_n);
2086 			if (*new) {
2087 				shadow->name = (char *)*new;
2088 				retval = 0;
2089 				goto exit;
2090 			}
2091 
2092 			__release_region(iter, start, size);
2093 		}
2094 	}
2095 
2096 exit:
2097 	mutex_unlock(&hyperv_mmio_lock);
2098 	return retval;
2099 }
2100 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2101 
2102 /**
2103  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2104  * @start:		Base address of region to release.
2105  * @size:		Size of the range to be allocated
2106  *
2107  * This function releases anything requested by
2108  * vmbus_mmio_allocate().
2109  */
2110 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2111 {
2112 	struct resource *iter;
2113 
2114 	mutex_lock(&hyperv_mmio_lock);
2115 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2116 		if ((iter->start >= start + size) || (iter->end <= start))
2117 			continue;
2118 
2119 		__release_region(iter, start, size);
2120 	}
2121 	release_mem_region(start, size);
2122 	mutex_unlock(&hyperv_mmio_lock);
2123 
2124 }
2125 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2126 
2127 static int vmbus_acpi_add(struct acpi_device *device)
2128 {
2129 	acpi_status result;
2130 	int ret_val = -ENODEV;
2131 	struct acpi_device *ancestor;
2132 
2133 	hv_acpi_dev = device;
2134 
2135 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2136 					vmbus_walk_resources, NULL);
2137 
2138 	if (ACPI_FAILURE(result))
2139 		goto acpi_walk_err;
2140 	/*
2141 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2142 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2143 	 */
2144 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2145 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2146 					     vmbus_walk_resources, NULL);
2147 
2148 		if (ACPI_FAILURE(result))
2149 			continue;
2150 		if (hyperv_mmio) {
2151 			vmbus_reserve_fb();
2152 			break;
2153 		}
2154 	}
2155 	ret_val = 0;
2156 
2157 acpi_walk_err:
2158 	complete(&probe_event);
2159 	if (ret_val)
2160 		vmbus_acpi_remove(device);
2161 	return ret_val;
2162 }
2163 
2164 #ifdef CONFIG_PM_SLEEP
2165 static int vmbus_bus_suspend(struct device *dev)
2166 {
2167 	struct vmbus_channel *channel, *sc;
2168 	unsigned long flags;
2169 
2170 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2171 		/*
2172 		 * We wait here until the completion of any channel
2173 		 * offers that are currently in progress.
2174 		 */
2175 		msleep(1);
2176 	}
2177 
2178 	mutex_lock(&vmbus_connection.channel_mutex);
2179 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2180 		if (!is_hvsock_channel(channel))
2181 			continue;
2182 
2183 		vmbus_force_channel_rescinded(channel);
2184 	}
2185 	mutex_unlock(&vmbus_connection.channel_mutex);
2186 
2187 	/*
2188 	 * Wait until all the sub-channels and hv_sock channels have been
2189 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2190 	 * they would conflict with the new sub-channels that will be created
2191 	 * in the resume path. hv_sock channels should also be destroyed, but
2192 	 * a hv_sock channel of an established hv_sock connection can not be
2193 	 * really destroyed since it may still be referenced by the userspace
2194 	 * application, so we just force the hv_sock channel to be rescinded
2195 	 * by vmbus_force_channel_rescinded(), and the userspace application
2196 	 * will thoroughly destroy the channel after hibernation.
2197 	 *
2198 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2199 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2200 	 */
2201 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2202 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2203 
2204 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);
2205 
2206 	mutex_lock(&vmbus_connection.channel_mutex);
2207 
2208 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2209 		/*
2210 		 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
2211 		 * up the field, and the other fields (if necessary).
2212 		 */
2213 		channel->offermsg.child_relid = INVALID_RELID;
2214 
2215 		if (is_hvsock_channel(channel)) {
2216 			if (!channel->rescind) {
2217 				pr_err("hv_sock channel not rescinded!\n");
2218 				WARN_ON_ONCE(1);
2219 			}
2220 			continue;
2221 		}
2222 
2223 		spin_lock_irqsave(&channel->lock, flags);
2224 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2225 			pr_err("Sub-channel not deleted!\n");
2226 			WARN_ON_ONCE(1);
2227 		}
2228 		spin_unlock_irqrestore(&channel->lock, flags);
2229 
2230 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2231 	}
2232 
2233 	mutex_unlock(&vmbus_connection.channel_mutex);
2234 
2235 	vmbus_initiate_unload(false);
2236 
2237 	/* Reset the event for the next resume. */
2238 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2239 
2240 	return 0;
2241 }
2242 
2243 static int vmbus_bus_resume(struct device *dev)
2244 {
2245 	struct vmbus_channel_msginfo *msginfo;
2246 	size_t msgsize;
2247 	int ret;
2248 
2249 	/*
2250 	 * We only use the 'vmbus_proto_version', which was in use before
2251 	 * hibernation, to re-negotiate with the host.
2252 	 */
2253 	if (!vmbus_proto_version) {
2254 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2255 		return -EINVAL;
2256 	}
2257 
2258 	msgsize = sizeof(*msginfo) +
2259 		  sizeof(struct vmbus_channel_initiate_contact);
2260 
2261 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2262 
2263 	if (msginfo == NULL)
2264 		return -ENOMEM;
2265 
2266 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2267 
2268 	kfree(msginfo);
2269 
2270 	if (ret != 0)
2271 		return ret;
2272 
2273 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2274 
2275 	vmbus_request_offers();
2276 
2277 	wait_for_completion(&vmbus_connection.ready_for_resume_event);
2278 
2279 	/* Reset the event for the next suspend. */
2280 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2281 
2282 	return 0;
2283 }
2284 #endif /* CONFIG_PM_SLEEP */
2285 
2286 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2287 	{"VMBUS", 0},
2288 	{"VMBus", 0},
2289 	{"", 0},
2290 };
2291 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2292 
2293 /*
2294  * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
2295  * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
2296  * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
2297  * pci "noirq" restore callback runs before "non-noirq" callbacks (see
2298  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2299  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2300  * resume callback must also run via the "noirq" callbacks.
2301  */
2302 static const struct dev_pm_ops vmbus_bus_pm = {
2303 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
2304 };
2305 
2306 static struct acpi_driver vmbus_acpi_driver = {
2307 	.name = "vmbus",
2308 	.ids = vmbus_acpi_device_ids,
2309 	.ops = {
2310 		.add = vmbus_acpi_add,
2311 		.remove = vmbus_acpi_remove,
2312 	},
2313 	.drv.pm = &vmbus_bus_pm,
2314 };
2315 
2316 static void hv_kexec_handler(void)
2317 {
2318 	hv_stimer_global_cleanup();
2319 	vmbus_initiate_unload(false);
2320 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2321 	mb();
2322 	cpuhp_remove_state(hyperv_cpuhp_online);
2323 	hyperv_cleanup();
2324 };
2325 
2326 static void hv_crash_handler(struct pt_regs *regs)
2327 {
2328 	int cpu;
2329 
2330 	vmbus_initiate_unload(true);
2331 	/*
2332 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2333 	 * doing the cleanup for current CPU only. This should be sufficient
2334 	 * for kdump.
2335 	 */
2336 	cpu = smp_processor_id();
2337 	hv_stimer_cleanup(cpu);
2338 	hv_synic_disable_regs(cpu);
2339 	hyperv_cleanup();
2340 };
2341 
2342 static int hv_synic_suspend(void)
2343 {
2344 	/*
2345 	 * When we reach here, all the non-boot CPUs have been offlined.
2346 	 * If we're in a legacy configuration where stimer Direct Mode is
2347 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2348 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2349 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2350 	 *
2351 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2352 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2353 	 * 1) it's unnecessary as interrupts remain disabled between
2354 	 * syscore_suspend() and syscore_resume(): see create_image() and
2355 	 * resume_target_kernel()
2356 	 * 2) the stimer on CPU0 is automatically disabled later by
2357 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2358 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2359 	 * 3) a warning would be triggered if we call
2360 	 * clockevents_unbind_device(), which may sleep, in an
2361 	 * interrupts-disabled context.
2362 	 */
2363 
2364 	hv_synic_disable_regs(0);
2365 
2366 	return 0;
2367 }
2368 
2369 static void hv_synic_resume(void)
2370 {
2371 	hv_synic_enable_regs(0);
2372 
2373 	/*
2374 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2375 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2376 	 * automatically re-enabled in timekeeping_resume().
2377 	 */
2378 }
2379 
2380 /* The callbacks run only on CPU0, with irqs_disabled. */
2381 static struct syscore_ops hv_synic_syscore_ops = {
2382 	.suspend = hv_synic_suspend,
2383 	.resume = hv_synic_resume,
2384 };
2385 
2386 static int __init hv_acpi_init(void)
2387 {
2388 	int ret, t;
2389 
2390 	if (!hv_is_hyperv_initialized())
2391 		return -ENODEV;
2392 
2393 	init_completion(&probe_event);
2394 
2395 	/*
2396 	 * Get ACPI resources first.
2397 	 */
2398 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2399 
2400 	if (ret)
2401 		return ret;
2402 
2403 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2404 	if (t == 0) {
2405 		ret = -ETIMEDOUT;
2406 		goto cleanup;
2407 	}
2408 	hv_debug_init();
2409 
2410 	ret = vmbus_bus_init();
2411 	if (ret)
2412 		goto cleanup;
2413 
2414 	hv_setup_kexec_handler(hv_kexec_handler);
2415 	hv_setup_crash_handler(hv_crash_handler);
2416 
2417 	register_syscore_ops(&hv_synic_syscore_ops);
2418 
2419 	return 0;
2420 
2421 cleanup:
2422 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2423 	hv_acpi_dev = NULL;
2424 	return ret;
2425 }
2426 
2427 static void __exit vmbus_exit(void)
2428 {
2429 	int cpu;
2430 
2431 	unregister_syscore_ops(&hv_synic_syscore_ops);
2432 
2433 	hv_remove_kexec_handler();
2434 	hv_remove_crash_handler();
2435 	vmbus_connection.conn_state = DISCONNECTED;
2436 	hv_stimer_global_cleanup();
2437 	vmbus_disconnect();
2438 	hv_remove_vmbus_irq();
2439 	for_each_online_cpu(cpu) {
2440 		struct hv_per_cpu_context *hv_cpu
2441 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2442 
2443 		tasklet_kill(&hv_cpu->msg_dpc);
2444 	}
2445 	hv_debug_rm_all_dir();
2446 
2447 	vmbus_free_channels();
2448 
2449 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2450 		kmsg_dump_unregister(&hv_kmsg_dumper);
2451 		unregister_die_notifier(&hyperv_die_block);
2452 		atomic_notifier_chain_unregister(&panic_notifier_list,
2453 						 &hyperv_panic_block);
2454 	}
2455 
2456 	free_page((unsigned long)hv_panic_page);
2457 	unregister_sysctl_table(hv_ctl_table_hdr);
2458 	hv_ctl_table_hdr = NULL;
2459 	bus_unregister(&hv_bus);
2460 
2461 	cpuhp_remove_state(hyperv_cpuhp_online);
2462 	hv_synic_free();
2463 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2464 }
2465 
2466 
2467 MODULE_LICENSE("GPL");
2468 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2469 
2470 subsys_initcall(hv_acpi_init);
2471 module_exit(vmbus_exit);
2472