1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/isolation.h> 25 #include <linux/sched/task_stack.h> 26 27 #include <linux/delay.h> 28 #include <linux/panic_notifier.h> 29 #include <linux/ptrace.h> 30 #include <linux/screen_info.h> 31 #include <linux/kdebug.h> 32 #include <linux/efi.h> 33 #include <linux/random.h> 34 #include <linux/kernel.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/dma-map-ops.h> 37 #include <linux/pci.h> 38 #include <clocksource/hyperv_timer.h> 39 #include <asm/mshyperv.h> 40 #include "hyperv_vmbus.h" 41 42 struct vmbus_dynid { 43 struct list_head node; 44 struct hv_vmbus_device_id id; 45 }; 46 47 static struct acpi_device *hv_acpi_dev; 48 49 static int hyperv_cpuhp_online; 50 51 static void *hv_panic_page; 52 53 static long __percpu *vmbus_evt; 54 55 /* Values parsed from ACPI DSDT */ 56 int vmbus_irq; 57 int vmbus_interrupt; 58 59 /* 60 * Boolean to control whether to report panic messages over Hyper-V. 61 * 62 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg 63 */ 64 static int sysctl_record_panic_msg = 1; 65 66 static int hyperv_report_reg(void) 67 { 68 return !sysctl_record_panic_msg || !hv_panic_page; 69 } 70 71 /* 72 * The panic notifier below is responsible solely for unloading the 73 * vmbus connection, which is necessary in a panic event. 74 * 75 * Notice an intrincate relation of this notifier with Hyper-V 76 * framebuffer panic notifier exists - we need vmbus connection alive 77 * there in order to succeed, so we need to order both with each other 78 * [see hvfb_on_panic()] - this is done using notifiers' priorities. 79 */ 80 static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val, 81 void *args) 82 { 83 vmbus_initiate_unload(true); 84 return NOTIFY_DONE; 85 } 86 static struct notifier_block hyperv_panic_vmbus_unload_block = { 87 .notifier_call = hv_panic_vmbus_unload, 88 .priority = INT_MIN + 1, /* almost the latest one to execute */ 89 }; 90 91 static int hv_die_panic_notify_crash(struct notifier_block *self, 92 unsigned long val, void *args); 93 94 static struct notifier_block hyperv_die_report_block = { 95 .notifier_call = hv_die_panic_notify_crash, 96 }; 97 static struct notifier_block hyperv_panic_report_block = { 98 .notifier_call = hv_die_panic_notify_crash, 99 }; 100 101 /* 102 * The following callback works both as die and panic notifier; its 103 * goal is to provide panic information to the hypervisor unless the 104 * kmsg dumper is used [see hv_kmsg_dump()], which provides more 105 * information but isn't always available. 106 * 107 * Notice that both the panic/die report notifiers are registered only 108 * if we have the capability HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE set. 109 */ 110 static int hv_die_panic_notify_crash(struct notifier_block *self, 111 unsigned long val, void *args) 112 { 113 struct pt_regs *regs; 114 bool is_die; 115 116 /* Don't notify Hyper-V unless we have a die oops event or panic. */ 117 if (self == &hyperv_panic_report_block) { 118 is_die = false; 119 regs = current_pt_regs(); 120 } else { /* die event */ 121 if (val != DIE_OOPS) 122 return NOTIFY_DONE; 123 124 is_die = true; 125 regs = ((struct die_args *)args)->regs; 126 } 127 128 /* 129 * Hyper-V should be notified only once about a panic/die. If we will 130 * be calling hv_kmsg_dump() later with kmsg data, don't do the 131 * notification here. 132 */ 133 if (hyperv_report_reg()) 134 hyperv_report_panic(regs, val, is_die); 135 136 return NOTIFY_DONE; 137 } 138 139 static const char *fb_mmio_name = "fb_range"; 140 static struct resource *fb_mmio; 141 static struct resource *hyperv_mmio; 142 static DEFINE_MUTEX(hyperv_mmio_lock); 143 144 static int vmbus_exists(void) 145 { 146 if (hv_acpi_dev == NULL) 147 return -ENODEV; 148 149 return 0; 150 } 151 152 static u8 channel_monitor_group(const struct vmbus_channel *channel) 153 { 154 return (u8)channel->offermsg.monitorid / 32; 155 } 156 157 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 158 { 159 return (u8)channel->offermsg.monitorid % 32; 160 } 161 162 static u32 channel_pending(const struct vmbus_channel *channel, 163 const struct hv_monitor_page *monitor_page) 164 { 165 u8 monitor_group = channel_monitor_group(channel); 166 167 return monitor_page->trigger_group[monitor_group].pending; 168 } 169 170 static u32 channel_latency(const struct vmbus_channel *channel, 171 const struct hv_monitor_page *monitor_page) 172 { 173 u8 monitor_group = channel_monitor_group(channel); 174 u8 monitor_offset = channel_monitor_offset(channel); 175 176 return monitor_page->latency[monitor_group][monitor_offset]; 177 } 178 179 static u32 channel_conn_id(struct vmbus_channel *channel, 180 struct hv_monitor_page *monitor_page) 181 { 182 u8 monitor_group = channel_monitor_group(channel); 183 u8 monitor_offset = channel_monitor_offset(channel); 184 185 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 186 } 187 188 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 189 char *buf) 190 { 191 struct hv_device *hv_dev = device_to_hv_device(dev); 192 193 if (!hv_dev->channel) 194 return -ENODEV; 195 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 196 } 197 static DEVICE_ATTR_RO(id); 198 199 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 200 char *buf) 201 { 202 struct hv_device *hv_dev = device_to_hv_device(dev); 203 204 if (!hv_dev->channel) 205 return -ENODEV; 206 return sprintf(buf, "%d\n", hv_dev->channel->state); 207 } 208 static DEVICE_ATTR_RO(state); 209 210 static ssize_t monitor_id_show(struct device *dev, 211 struct device_attribute *dev_attr, char *buf) 212 { 213 struct hv_device *hv_dev = device_to_hv_device(dev); 214 215 if (!hv_dev->channel) 216 return -ENODEV; 217 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 218 } 219 static DEVICE_ATTR_RO(monitor_id); 220 221 static ssize_t class_id_show(struct device *dev, 222 struct device_attribute *dev_attr, char *buf) 223 { 224 struct hv_device *hv_dev = device_to_hv_device(dev); 225 226 if (!hv_dev->channel) 227 return -ENODEV; 228 return sprintf(buf, "{%pUl}\n", 229 &hv_dev->channel->offermsg.offer.if_type); 230 } 231 static DEVICE_ATTR_RO(class_id); 232 233 static ssize_t device_id_show(struct device *dev, 234 struct device_attribute *dev_attr, char *buf) 235 { 236 struct hv_device *hv_dev = device_to_hv_device(dev); 237 238 if (!hv_dev->channel) 239 return -ENODEV; 240 return sprintf(buf, "{%pUl}\n", 241 &hv_dev->channel->offermsg.offer.if_instance); 242 } 243 static DEVICE_ATTR_RO(device_id); 244 245 static ssize_t modalias_show(struct device *dev, 246 struct device_attribute *dev_attr, char *buf) 247 { 248 struct hv_device *hv_dev = device_to_hv_device(dev); 249 250 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 251 } 252 static DEVICE_ATTR_RO(modalias); 253 254 #ifdef CONFIG_NUMA 255 static ssize_t numa_node_show(struct device *dev, 256 struct device_attribute *attr, char *buf) 257 { 258 struct hv_device *hv_dev = device_to_hv_device(dev); 259 260 if (!hv_dev->channel) 261 return -ENODEV; 262 263 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 264 } 265 static DEVICE_ATTR_RO(numa_node); 266 #endif 267 268 static ssize_t server_monitor_pending_show(struct device *dev, 269 struct device_attribute *dev_attr, 270 char *buf) 271 { 272 struct hv_device *hv_dev = device_to_hv_device(dev); 273 274 if (!hv_dev->channel) 275 return -ENODEV; 276 return sprintf(buf, "%d\n", 277 channel_pending(hv_dev->channel, 278 vmbus_connection.monitor_pages[0])); 279 } 280 static DEVICE_ATTR_RO(server_monitor_pending); 281 282 static ssize_t client_monitor_pending_show(struct device *dev, 283 struct device_attribute *dev_attr, 284 char *buf) 285 { 286 struct hv_device *hv_dev = device_to_hv_device(dev); 287 288 if (!hv_dev->channel) 289 return -ENODEV; 290 return sprintf(buf, "%d\n", 291 channel_pending(hv_dev->channel, 292 vmbus_connection.monitor_pages[1])); 293 } 294 static DEVICE_ATTR_RO(client_monitor_pending); 295 296 static ssize_t server_monitor_latency_show(struct device *dev, 297 struct device_attribute *dev_attr, 298 char *buf) 299 { 300 struct hv_device *hv_dev = device_to_hv_device(dev); 301 302 if (!hv_dev->channel) 303 return -ENODEV; 304 return sprintf(buf, "%d\n", 305 channel_latency(hv_dev->channel, 306 vmbus_connection.monitor_pages[0])); 307 } 308 static DEVICE_ATTR_RO(server_monitor_latency); 309 310 static ssize_t client_monitor_latency_show(struct device *dev, 311 struct device_attribute *dev_attr, 312 char *buf) 313 { 314 struct hv_device *hv_dev = device_to_hv_device(dev); 315 316 if (!hv_dev->channel) 317 return -ENODEV; 318 return sprintf(buf, "%d\n", 319 channel_latency(hv_dev->channel, 320 vmbus_connection.monitor_pages[1])); 321 } 322 static DEVICE_ATTR_RO(client_monitor_latency); 323 324 static ssize_t server_monitor_conn_id_show(struct device *dev, 325 struct device_attribute *dev_attr, 326 char *buf) 327 { 328 struct hv_device *hv_dev = device_to_hv_device(dev); 329 330 if (!hv_dev->channel) 331 return -ENODEV; 332 return sprintf(buf, "%d\n", 333 channel_conn_id(hv_dev->channel, 334 vmbus_connection.monitor_pages[0])); 335 } 336 static DEVICE_ATTR_RO(server_monitor_conn_id); 337 338 static ssize_t client_monitor_conn_id_show(struct device *dev, 339 struct device_attribute *dev_attr, 340 char *buf) 341 { 342 struct hv_device *hv_dev = device_to_hv_device(dev); 343 344 if (!hv_dev->channel) 345 return -ENODEV; 346 return sprintf(buf, "%d\n", 347 channel_conn_id(hv_dev->channel, 348 vmbus_connection.monitor_pages[1])); 349 } 350 static DEVICE_ATTR_RO(client_monitor_conn_id); 351 352 static ssize_t out_intr_mask_show(struct device *dev, 353 struct device_attribute *dev_attr, char *buf) 354 { 355 struct hv_device *hv_dev = device_to_hv_device(dev); 356 struct hv_ring_buffer_debug_info outbound; 357 int ret; 358 359 if (!hv_dev->channel) 360 return -ENODEV; 361 362 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 363 &outbound); 364 if (ret < 0) 365 return ret; 366 367 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 368 } 369 static DEVICE_ATTR_RO(out_intr_mask); 370 371 static ssize_t out_read_index_show(struct device *dev, 372 struct device_attribute *dev_attr, char *buf) 373 { 374 struct hv_device *hv_dev = device_to_hv_device(dev); 375 struct hv_ring_buffer_debug_info outbound; 376 int ret; 377 378 if (!hv_dev->channel) 379 return -ENODEV; 380 381 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 382 &outbound); 383 if (ret < 0) 384 return ret; 385 return sprintf(buf, "%d\n", outbound.current_read_index); 386 } 387 static DEVICE_ATTR_RO(out_read_index); 388 389 static ssize_t out_write_index_show(struct device *dev, 390 struct device_attribute *dev_attr, 391 char *buf) 392 { 393 struct hv_device *hv_dev = device_to_hv_device(dev); 394 struct hv_ring_buffer_debug_info outbound; 395 int ret; 396 397 if (!hv_dev->channel) 398 return -ENODEV; 399 400 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 401 &outbound); 402 if (ret < 0) 403 return ret; 404 return sprintf(buf, "%d\n", outbound.current_write_index); 405 } 406 static DEVICE_ATTR_RO(out_write_index); 407 408 static ssize_t out_read_bytes_avail_show(struct device *dev, 409 struct device_attribute *dev_attr, 410 char *buf) 411 { 412 struct hv_device *hv_dev = device_to_hv_device(dev); 413 struct hv_ring_buffer_debug_info outbound; 414 int ret; 415 416 if (!hv_dev->channel) 417 return -ENODEV; 418 419 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 420 &outbound); 421 if (ret < 0) 422 return ret; 423 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 424 } 425 static DEVICE_ATTR_RO(out_read_bytes_avail); 426 427 static ssize_t out_write_bytes_avail_show(struct device *dev, 428 struct device_attribute *dev_attr, 429 char *buf) 430 { 431 struct hv_device *hv_dev = device_to_hv_device(dev); 432 struct hv_ring_buffer_debug_info outbound; 433 int ret; 434 435 if (!hv_dev->channel) 436 return -ENODEV; 437 438 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 439 &outbound); 440 if (ret < 0) 441 return ret; 442 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 443 } 444 static DEVICE_ATTR_RO(out_write_bytes_avail); 445 446 static ssize_t in_intr_mask_show(struct device *dev, 447 struct device_attribute *dev_attr, char *buf) 448 { 449 struct hv_device *hv_dev = device_to_hv_device(dev); 450 struct hv_ring_buffer_debug_info inbound; 451 int ret; 452 453 if (!hv_dev->channel) 454 return -ENODEV; 455 456 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 457 if (ret < 0) 458 return ret; 459 460 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 461 } 462 static DEVICE_ATTR_RO(in_intr_mask); 463 464 static ssize_t in_read_index_show(struct device *dev, 465 struct device_attribute *dev_attr, char *buf) 466 { 467 struct hv_device *hv_dev = device_to_hv_device(dev); 468 struct hv_ring_buffer_debug_info inbound; 469 int ret; 470 471 if (!hv_dev->channel) 472 return -ENODEV; 473 474 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 475 if (ret < 0) 476 return ret; 477 478 return sprintf(buf, "%d\n", inbound.current_read_index); 479 } 480 static DEVICE_ATTR_RO(in_read_index); 481 482 static ssize_t in_write_index_show(struct device *dev, 483 struct device_attribute *dev_attr, char *buf) 484 { 485 struct hv_device *hv_dev = device_to_hv_device(dev); 486 struct hv_ring_buffer_debug_info inbound; 487 int ret; 488 489 if (!hv_dev->channel) 490 return -ENODEV; 491 492 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 493 if (ret < 0) 494 return ret; 495 496 return sprintf(buf, "%d\n", inbound.current_write_index); 497 } 498 static DEVICE_ATTR_RO(in_write_index); 499 500 static ssize_t in_read_bytes_avail_show(struct device *dev, 501 struct device_attribute *dev_attr, 502 char *buf) 503 { 504 struct hv_device *hv_dev = device_to_hv_device(dev); 505 struct hv_ring_buffer_debug_info inbound; 506 int ret; 507 508 if (!hv_dev->channel) 509 return -ENODEV; 510 511 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 512 if (ret < 0) 513 return ret; 514 515 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 516 } 517 static DEVICE_ATTR_RO(in_read_bytes_avail); 518 519 static ssize_t in_write_bytes_avail_show(struct device *dev, 520 struct device_attribute *dev_attr, 521 char *buf) 522 { 523 struct hv_device *hv_dev = device_to_hv_device(dev); 524 struct hv_ring_buffer_debug_info inbound; 525 int ret; 526 527 if (!hv_dev->channel) 528 return -ENODEV; 529 530 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 531 if (ret < 0) 532 return ret; 533 534 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 535 } 536 static DEVICE_ATTR_RO(in_write_bytes_avail); 537 538 static ssize_t channel_vp_mapping_show(struct device *dev, 539 struct device_attribute *dev_attr, 540 char *buf) 541 { 542 struct hv_device *hv_dev = device_to_hv_device(dev); 543 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 544 int buf_size = PAGE_SIZE, n_written, tot_written; 545 struct list_head *cur; 546 547 if (!channel) 548 return -ENODEV; 549 550 mutex_lock(&vmbus_connection.channel_mutex); 551 552 tot_written = snprintf(buf, buf_size, "%u:%u\n", 553 channel->offermsg.child_relid, channel->target_cpu); 554 555 list_for_each(cur, &channel->sc_list) { 556 if (tot_written >= buf_size - 1) 557 break; 558 559 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 560 n_written = scnprintf(buf + tot_written, 561 buf_size - tot_written, 562 "%u:%u\n", 563 cur_sc->offermsg.child_relid, 564 cur_sc->target_cpu); 565 tot_written += n_written; 566 } 567 568 mutex_unlock(&vmbus_connection.channel_mutex); 569 570 return tot_written; 571 } 572 static DEVICE_ATTR_RO(channel_vp_mapping); 573 574 static ssize_t vendor_show(struct device *dev, 575 struct device_attribute *dev_attr, 576 char *buf) 577 { 578 struct hv_device *hv_dev = device_to_hv_device(dev); 579 580 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 581 } 582 static DEVICE_ATTR_RO(vendor); 583 584 static ssize_t device_show(struct device *dev, 585 struct device_attribute *dev_attr, 586 char *buf) 587 { 588 struct hv_device *hv_dev = device_to_hv_device(dev); 589 590 return sprintf(buf, "0x%x\n", hv_dev->device_id); 591 } 592 static DEVICE_ATTR_RO(device); 593 594 static ssize_t driver_override_store(struct device *dev, 595 struct device_attribute *attr, 596 const char *buf, size_t count) 597 { 598 struct hv_device *hv_dev = device_to_hv_device(dev); 599 int ret; 600 601 ret = driver_set_override(dev, &hv_dev->driver_override, buf, count); 602 if (ret) 603 return ret; 604 605 return count; 606 } 607 608 static ssize_t driver_override_show(struct device *dev, 609 struct device_attribute *attr, char *buf) 610 { 611 struct hv_device *hv_dev = device_to_hv_device(dev); 612 ssize_t len; 613 614 device_lock(dev); 615 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 616 device_unlock(dev); 617 618 return len; 619 } 620 static DEVICE_ATTR_RW(driver_override); 621 622 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 623 static struct attribute *vmbus_dev_attrs[] = { 624 &dev_attr_id.attr, 625 &dev_attr_state.attr, 626 &dev_attr_monitor_id.attr, 627 &dev_attr_class_id.attr, 628 &dev_attr_device_id.attr, 629 &dev_attr_modalias.attr, 630 #ifdef CONFIG_NUMA 631 &dev_attr_numa_node.attr, 632 #endif 633 &dev_attr_server_monitor_pending.attr, 634 &dev_attr_client_monitor_pending.attr, 635 &dev_attr_server_monitor_latency.attr, 636 &dev_attr_client_monitor_latency.attr, 637 &dev_attr_server_monitor_conn_id.attr, 638 &dev_attr_client_monitor_conn_id.attr, 639 &dev_attr_out_intr_mask.attr, 640 &dev_attr_out_read_index.attr, 641 &dev_attr_out_write_index.attr, 642 &dev_attr_out_read_bytes_avail.attr, 643 &dev_attr_out_write_bytes_avail.attr, 644 &dev_attr_in_intr_mask.attr, 645 &dev_attr_in_read_index.attr, 646 &dev_attr_in_write_index.attr, 647 &dev_attr_in_read_bytes_avail.attr, 648 &dev_attr_in_write_bytes_avail.attr, 649 &dev_attr_channel_vp_mapping.attr, 650 &dev_attr_vendor.attr, 651 &dev_attr_device.attr, 652 &dev_attr_driver_override.attr, 653 NULL, 654 }; 655 656 /* 657 * Device-level attribute_group callback function. Returns the permission for 658 * each attribute, and returns 0 if an attribute is not visible. 659 */ 660 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 661 struct attribute *attr, int idx) 662 { 663 struct device *dev = kobj_to_dev(kobj); 664 const struct hv_device *hv_dev = device_to_hv_device(dev); 665 666 /* Hide the monitor attributes if the monitor mechanism is not used. */ 667 if (!hv_dev->channel->offermsg.monitor_allocated && 668 (attr == &dev_attr_monitor_id.attr || 669 attr == &dev_attr_server_monitor_pending.attr || 670 attr == &dev_attr_client_monitor_pending.attr || 671 attr == &dev_attr_server_monitor_latency.attr || 672 attr == &dev_attr_client_monitor_latency.attr || 673 attr == &dev_attr_server_monitor_conn_id.attr || 674 attr == &dev_attr_client_monitor_conn_id.attr)) 675 return 0; 676 677 return attr->mode; 678 } 679 680 static const struct attribute_group vmbus_dev_group = { 681 .attrs = vmbus_dev_attrs, 682 .is_visible = vmbus_dev_attr_is_visible 683 }; 684 __ATTRIBUTE_GROUPS(vmbus_dev); 685 686 /* Set up the attribute for /sys/bus/vmbus/hibernation */ 687 static ssize_t hibernation_show(struct bus_type *bus, char *buf) 688 { 689 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); 690 } 691 692 static BUS_ATTR_RO(hibernation); 693 694 static struct attribute *vmbus_bus_attrs[] = { 695 &bus_attr_hibernation.attr, 696 NULL, 697 }; 698 static const struct attribute_group vmbus_bus_group = { 699 .attrs = vmbus_bus_attrs, 700 }; 701 __ATTRIBUTE_GROUPS(vmbus_bus); 702 703 /* 704 * vmbus_uevent - add uevent for our device 705 * 706 * This routine is invoked when a device is added or removed on the vmbus to 707 * generate a uevent to udev in the userspace. The udev will then look at its 708 * rule and the uevent generated here to load the appropriate driver 709 * 710 * The alias string will be of the form vmbus:guid where guid is the string 711 * representation of the device guid (each byte of the guid will be 712 * represented with two hex characters. 713 */ 714 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 715 { 716 struct hv_device *dev = device_to_hv_device(device); 717 const char *format = "MODALIAS=vmbus:%*phN"; 718 719 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 720 } 721 722 static const struct hv_vmbus_device_id * 723 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 724 { 725 if (id == NULL) 726 return NULL; /* empty device table */ 727 728 for (; !guid_is_null(&id->guid); id++) 729 if (guid_equal(&id->guid, guid)) 730 return id; 731 732 return NULL; 733 } 734 735 static const struct hv_vmbus_device_id * 736 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 737 { 738 const struct hv_vmbus_device_id *id = NULL; 739 struct vmbus_dynid *dynid; 740 741 spin_lock(&drv->dynids.lock); 742 list_for_each_entry(dynid, &drv->dynids.list, node) { 743 if (guid_equal(&dynid->id.guid, guid)) { 744 id = &dynid->id; 745 break; 746 } 747 } 748 spin_unlock(&drv->dynids.lock); 749 750 return id; 751 } 752 753 static const struct hv_vmbus_device_id vmbus_device_null; 754 755 /* 756 * Return a matching hv_vmbus_device_id pointer. 757 * If there is no match, return NULL. 758 */ 759 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 760 struct hv_device *dev) 761 { 762 const guid_t *guid = &dev->dev_type; 763 const struct hv_vmbus_device_id *id; 764 765 /* When driver_override is set, only bind to the matching driver */ 766 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 767 return NULL; 768 769 /* Look at the dynamic ids first, before the static ones */ 770 id = hv_vmbus_dynid_match(drv, guid); 771 if (!id) 772 id = hv_vmbus_dev_match(drv->id_table, guid); 773 774 /* driver_override will always match, send a dummy id */ 775 if (!id && dev->driver_override) 776 id = &vmbus_device_null; 777 778 return id; 779 } 780 781 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 782 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 783 { 784 struct vmbus_dynid *dynid; 785 786 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 787 if (!dynid) 788 return -ENOMEM; 789 790 dynid->id.guid = *guid; 791 792 spin_lock(&drv->dynids.lock); 793 list_add_tail(&dynid->node, &drv->dynids.list); 794 spin_unlock(&drv->dynids.lock); 795 796 return driver_attach(&drv->driver); 797 } 798 799 static void vmbus_free_dynids(struct hv_driver *drv) 800 { 801 struct vmbus_dynid *dynid, *n; 802 803 spin_lock(&drv->dynids.lock); 804 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 805 list_del(&dynid->node); 806 kfree(dynid); 807 } 808 spin_unlock(&drv->dynids.lock); 809 } 810 811 /* 812 * store_new_id - sysfs frontend to vmbus_add_dynid() 813 * 814 * Allow GUIDs to be added to an existing driver via sysfs. 815 */ 816 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 817 size_t count) 818 { 819 struct hv_driver *drv = drv_to_hv_drv(driver); 820 guid_t guid; 821 ssize_t retval; 822 823 retval = guid_parse(buf, &guid); 824 if (retval) 825 return retval; 826 827 if (hv_vmbus_dynid_match(drv, &guid)) 828 return -EEXIST; 829 830 retval = vmbus_add_dynid(drv, &guid); 831 if (retval) 832 return retval; 833 return count; 834 } 835 static DRIVER_ATTR_WO(new_id); 836 837 /* 838 * store_remove_id - remove a PCI device ID from this driver 839 * 840 * Removes a dynamic pci device ID to this driver. 841 */ 842 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 843 size_t count) 844 { 845 struct hv_driver *drv = drv_to_hv_drv(driver); 846 struct vmbus_dynid *dynid, *n; 847 guid_t guid; 848 ssize_t retval; 849 850 retval = guid_parse(buf, &guid); 851 if (retval) 852 return retval; 853 854 retval = -ENODEV; 855 spin_lock(&drv->dynids.lock); 856 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 857 struct hv_vmbus_device_id *id = &dynid->id; 858 859 if (guid_equal(&id->guid, &guid)) { 860 list_del(&dynid->node); 861 kfree(dynid); 862 retval = count; 863 break; 864 } 865 } 866 spin_unlock(&drv->dynids.lock); 867 868 return retval; 869 } 870 static DRIVER_ATTR_WO(remove_id); 871 872 static struct attribute *vmbus_drv_attrs[] = { 873 &driver_attr_new_id.attr, 874 &driver_attr_remove_id.attr, 875 NULL, 876 }; 877 ATTRIBUTE_GROUPS(vmbus_drv); 878 879 880 /* 881 * vmbus_match - Attempt to match the specified device to the specified driver 882 */ 883 static int vmbus_match(struct device *device, struct device_driver *driver) 884 { 885 struct hv_driver *drv = drv_to_hv_drv(driver); 886 struct hv_device *hv_dev = device_to_hv_device(device); 887 888 /* The hv_sock driver handles all hv_sock offers. */ 889 if (is_hvsock_channel(hv_dev->channel)) 890 return drv->hvsock; 891 892 if (hv_vmbus_get_id(drv, hv_dev)) 893 return 1; 894 895 return 0; 896 } 897 898 /* 899 * vmbus_probe - Add the new vmbus's child device 900 */ 901 static int vmbus_probe(struct device *child_device) 902 { 903 int ret = 0; 904 struct hv_driver *drv = 905 drv_to_hv_drv(child_device->driver); 906 struct hv_device *dev = device_to_hv_device(child_device); 907 const struct hv_vmbus_device_id *dev_id; 908 909 dev_id = hv_vmbus_get_id(drv, dev); 910 if (drv->probe) { 911 ret = drv->probe(dev, dev_id); 912 if (ret != 0) 913 pr_err("probe failed for device %s (%d)\n", 914 dev_name(child_device), ret); 915 916 } else { 917 pr_err("probe not set for driver %s\n", 918 dev_name(child_device)); 919 ret = -ENODEV; 920 } 921 return ret; 922 } 923 924 /* 925 * vmbus_dma_configure -- Configure DMA coherence for VMbus device 926 */ 927 static int vmbus_dma_configure(struct device *child_device) 928 { 929 /* 930 * On ARM64, propagate the DMA coherence setting from the top level 931 * VMbus ACPI device to the child VMbus device being added here. 932 * On x86/x64 coherence is assumed and these calls have no effect. 933 */ 934 hv_setup_dma_ops(child_device, 935 device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT); 936 return 0; 937 } 938 939 /* 940 * vmbus_remove - Remove a vmbus device 941 */ 942 static void vmbus_remove(struct device *child_device) 943 { 944 struct hv_driver *drv; 945 struct hv_device *dev = device_to_hv_device(child_device); 946 947 if (child_device->driver) { 948 drv = drv_to_hv_drv(child_device->driver); 949 if (drv->remove) 950 drv->remove(dev); 951 } 952 } 953 954 /* 955 * vmbus_shutdown - Shutdown a vmbus device 956 */ 957 static void vmbus_shutdown(struct device *child_device) 958 { 959 struct hv_driver *drv; 960 struct hv_device *dev = device_to_hv_device(child_device); 961 962 963 /* The device may not be attached yet */ 964 if (!child_device->driver) 965 return; 966 967 drv = drv_to_hv_drv(child_device->driver); 968 969 if (drv->shutdown) 970 drv->shutdown(dev); 971 } 972 973 #ifdef CONFIG_PM_SLEEP 974 /* 975 * vmbus_suspend - Suspend a vmbus device 976 */ 977 static int vmbus_suspend(struct device *child_device) 978 { 979 struct hv_driver *drv; 980 struct hv_device *dev = device_to_hv_device(child_device); 981 982 /* The device may not be attached yet */ 983 if (!child_device->driver) 984 return 0; 985 986 drv = drv_to_hv_drv(child_device->driver); 987 if (!drv->suspend) 988 return -EOPNOTSUPP; 989 990 return drv->suspend(dev); 991 } 992 993 /* 994 * vmbus_resume - Resume a vmbus device 995 */ 996 static int vmbus_resume(struct device *child_device) 997 { 998 struct hv_driver *drv; 999 struct hv_device *dev = device_to_hv_device(child_device); 1000 1001 /* The device may not be attached yet */ 1002 if (!child_device->driver) 1003 return 0; 1004 1005 drv = drv_to_hv_drv(child_device->driver); 1006 if (!drv->resume) 1007 return -EOPNOTSUPP; 1008 1009 return drv->resume(dev); 1010 } 1011 #else 1012 #define vmbus_suspend NULL 1013 #define vmbus_resume NULL 1014 #endif /* CONFIG_PM_SLEEP */ 1015 1016 /* 1017 * vmbus_device_release - Final callback release of the vmbus child device 1018 */ 1019 static void vmbus_device_release(struct device *device) 1020 { 1021 struct hv_device *hv_dev = device_to_hv_device(device); 1022 struct vmbus_channel *channel = hv_dev->channel; 1023 1024 hv_debug_rm_dev_dir(hv_dev); 1025 1026 mutex_lock(&vmbus_connection.channel_mutex); 1027 hv_process_channel_removal(channel); 1028 mutex_unlock(&vmbus_connection.channel_mutex); 1029 kfree(hv_dev); 1030 } 1031 1032 /* 1033 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1034 * 1035 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1036 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1037 * is no way to wake up a Generation-2 VM. 1038 * 1039 * The other 4 ops are for hibernation. 1040 */ 1041 1042 static const struct dev_pm_ops vmbus_pm = { 1043 .suspend_noirq = NULL, 1044 .resume_noirq = NULL, 1045 .freeze_noirq = vmbus_suspend, 1046 .thaw_noirq = vmbus_resume, 1047 .poweroff_noirq = vmbus_suspend, 1048 .restore_noirq = vmbus_resume, 1049 }; 1050 1051 /* The one and only one */ 1052 static struct bus_type hv_bus = { 1053 .name = "vmbus", 1054 .match = vmbus_match, 1055 .shutdown = vmbus_shutdown, 1056 .remove = vmbus_remove, 1057 .probe = vmbus_probe, 1058 .uevent = vmbus_uevent, 1059 .dma_configure = vmbus_dma_configure, 1060 .dev_groups = vmbus_dev_groups, 1061 .drv_groups = vmbus_drv_groups, 1062 .bus_groups = vmbus_bus_groups, 1063 .pm = &vmbus_pm, 1064 }; 1065 1066 struct onmessage_work_context { 1067 struct work_struct work; 1068 struct { 1069 struct hv_message_header header; 1070 u8 payload[]; 1071 } msg; 1072 }; 1073 1074 static void vmbus_onmessage_work(struct work_struct *work) 1075 { 1076 struct onmessage_work_context *ctx; 1077 1078 /* Do not process messages if we're in DISCONNECTED state */ 1079 if (vmbus_connection.conn_state == DISCONNECTED) 1080 return; 1081 1082 ctx = container_of(work, struct onmessage_work_context, 1083 work); 1084 vmbus_onmessage((struct vmbus_channel_message_header *) 1085 &ctx->msg.payload); 1086 kfree(ctx); 1087 } 1088 1089 void vmbus_on_msg_dpc(unsigned long data) 1090 { 1091 struct hv_per_cpu_context *hv_cpu = (void *)data; 1092 void *page_addr = hv_cpu->synic_message_page; 1093 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + 1094 VMBUS_MESSAGE_SINT; 1095 struct vmbus_channel_message_header *hdr; 1096 enum vmbus_channel_message_type msgtype; 1097 const struct vmbus_channel_message_table_entry *entry; 1098 struct onmessage_work_context *ctx; 1099 __u8 payload_size; 1100 u32 message_type; 1101 1102 /* 1103 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1104 * it is being used in 'struct vmbus_channel_message_header' definition 1105 * which is supposed to match hypervisor ABI. 1106 */ 1107 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1108 1109 /* 1110 * Since the message is in memory shared with the host, an erroneous or 1111 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() 1112 * or individual message handlers are executing; to prevent this, copy 1113 * the message into private memory. 1114 */ 1115 memcpy(&msg_copy, msg, sizeof(struct hv_message)); 1116 1117 message_type = msg_copy.header.message_type; 1118 if (message_type == HVMSG_NONE) 1119 /* no msg */ 1120 return; 1121 1122 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; 1123 msgtype = hdr->msgtype; 1124 1125 trace_vmbus_on_msg_dpc(hdr); 1126 1127 if (msgtype >= CHANNELMSG_COUNT) { 1128 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); 1129 goto msg_handled; 1130 } 1131 1132 payload_size = msg_copy.header.payload_size; 1133 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1134 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); 1135 goto msg_handled; 1136 } 1137 1138 entry = &channel_message_table[msgtype]; 1139 1140 if (!entry->message_handler) 1141 goto msg_handled; 1142 1143 if (payload_size < entry->min_payload_len) { 1144 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); 1145 goto msg_handled; 1146 } 1147 1148 if (entry->handler_type == VMHT_BLOCKING) { 1149 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC); 1150 if (ctx == NULL) 1151 return; 1152 1153 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1154 ctx->msg.header = msg_copy.header; 1155 memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size); 1156 1157 /* 1158 * The host can generate a rescind message while we 1159 * may still be handling the original offer. We deal with 1160 * this condition by relying on the synchronization provided 1161 * by offer_in_progress and by channel_mutex. See also the 1162 * inline comments in vmbus_onoffer_rescind(). 1163 */ 1164 switch (msgtype) { 1165 case CHANNELMSG_RESCIND_CHANNELOFFER: 1166 /* 1167 * If we are handling the rescind message; 1168 * schedule the work on the global work queue. 1169 * 1170 * The OFFER message and the RESCIND message should 1171 * not be handled by the same serialized work queue, 1172 * because the OFFER handler may call vmbus_open(), 1173 * which tries to open the channel by sending an 1174 * OPEN_CHANNEL message to the host and waits for 1175 * the host's response; however, if the host has 1176 * rescinded the channel before it receives the 1177 * OPEN_CHANNEL message, the host just silently 1178 * ignores the OPEN_CHANNEL message; as a result, 1179 * the guest's OFFER handler hangs for ever, if we 1180 * handle the RESCIND message in the same serialized 1181 * work queue: the RESCIND handler can not start to 1182 * run before the OFFER handler finishes. 1183 */ 1184 if (vmbus_connection.ignore_any_offer_msg) 1185 break; 1186 queue_work(vmbus_connection.rescind_work_queue, &ctx->work); 1187 break; 1188 1189 case CHANNELMSG_OFFERCHANNEL: 1190 /* 1191 * The host sends the offer message of a given channel 1192 * before sending the rescind message of the same 1193 * channel. These messages are sent to the guest's 1194 * connect CPU; the guest then starts processing them 1195 * in the tasklet handler on this CPU: 1196 * 1197 * VMBUS_CONNECT_CPU 1198 * 1199 * [vmbus_on_msg_dpc()] 1200 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1201 * queue_work() 1202 * ... 1203 * [vmbus_on_msg_dpc()] 1204 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1205 * 1206 * We rely on the memory-ordering properties of the 1207 * queue_work() and schedule_work() primitives, which 1208 * guarantee that the atomic increment will be visible 1209 * to the CPUs which will execute the offer & rescind 1210 * works by the time these works will start execution. 1211 */ 1212 if (vmbus_connection.ignore_any_offer_msg) 1213 break; 1214 atomic_inc(&vmbus_connection.offer_in_progress); 1215 fallthrough; 1216 1217 default: 1218 queue_work(vmbus_connection.work_queue, &ctx->work); 1219 } 1220 } else 1221 entry->message_handler(hdr); 1222 1223 msg_handled: 1224 vmbus_signal_eom(msg, message_type); 1225 } 1226 1227 #ifdef CONFIG_PM_SLEEP 1228 /* 1229 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1230 * hibernation, because hv_sock connections can not persist across hibernation. 1231 */ 1232 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1233 { 1234 struct onmessage_work_context *ctx; 1235 struct vmbus_channel_rescind_offer *rescind; 1236 1237 WARN_ON(!is_hvsock_channel(channel)); 1238 1239 /* 1240 * Allocation size is small and the allocation should really not fail, 1241 * otherwise the state of the hv_sock connections ends up in limbo. 1242 */ 1243 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1244 GFP_KERNEL | __GFP_NOFAIL); 1245 1246 /* 1247 * So far, these are not really used by Linux. Just set them to the 1248 * reasonable values conforming to the definitions of the fields. 1249 */ 1250 ctx->msg.header.message_type = 1; 1251 ctx->msg.header.payload_size = sizeof(*rescind); 1252 1253 /* These values are actually used by Linux. */ 1254 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1255 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1256 rescind->child_relid = channel->offermsg.child_relid; 1257 1258 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1259 1260 queue_work(vmbus_connection.work_queue, &ctx->work); 1261 } 1262 #endif /* CONFIG_PM_SLEEP */ 1263 1264 /* 1265 * Schedule all channels with events pending 1266 */ 1267 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1268 { 1269 unsigned long *recv_int_page; 1270 u32 maxbits, relid; 1271 1272 /* 1273 * The event page can be directly checked to get the id of 1274 * the channel that has the interrupt pending. 1275 */ 1276 void *page_addr = hv_cpu->synic_event_page; 1277 union hv_synic_event_flags *event 1278 = (union hv_synic_event_flags *)page_addr + 1279 VMBUS_MESSAGE_SINT; 1280 1281 maxbits = HV_EVENT_FLAGS_COUNT; 1282 recv_int_page = event->flags; 1283 1284 if (unlikely(!recv_int_page)) 1285 return; 1286 1287 for_each_set_bit(relid, recv_int_page, maxbits) { 1288 void (*callback_fn)(void *context); 1289 struct vmbus_channel *channel; 1290 1291 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1292 continue; 1293 1294 /* Special case - vmbus channel protocol msg */ 1295 if (relid == 0) 1296 continue; 1297 1298 /* 1299 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1300 * Guarantees that the channel data structure doesn't 1301 * get freed while the channel pointer below is being 1302 * dereferenced. 1303 */ 1304 rcu_read_lock(); 1305 1306 /* Find channel based on relid */ 1307 channel = relid2channel(relid); 1308 if (channel == NULL) 1309 goto sched_unlock_rcu; 1310 1311 if (channel->rescind) 1312 goto sched_unlock_rcu; 1313 1314 /* 1315 * Make sure that the ring buffer data structure doesn't get 1316 * freed while we dereference the ring buffer pointer. Test 1317 * for the channel's onchannel_callback being NULL within a 1318 * sched_lock critical section. See also the inline comments 1319 * in vmbus_reset_channel_cb(). 1320 */ 1321 spin_lock(&channel->sched_lock); 1322 1323 callback_fn = channel->onchannel_callback; 1324 if (unlikely(callback_fn == NULL)) 1325 goto sched_unlock; 1326 1327 trace_vmbus_chan_sched(channel); 1328 1329 ++channel->interrupts; 1330 1331 switch (channel->callback_mode) { 1332 case HV_CALL_ISR: 1333 (*callback_fn)(channel->channel_callback_context); 1334 break; 1335 1336 case HV_CALL_BATCHED: 1337 hv_begin_read(&channel->inbound); 1338 fallthrough; 1339 case HV_CALL_DIRECT: 1340 tasklet_schedule(&channel->callback_event); 1341 } 1342 1343 sched_unlock: 1344 spin_unlock(&channel->sched_lock); 1345 sched_unlock_rcu: 1346 rcu_read_unlock(); 1347 } 1348 } 1349 1350 static void vmbus_isr(void) 1351 { 1352 struct hv_per_cpu_context *hv_cpu 1353 = this_cpu_ptr(hv_context.cpu_context); 1354 void *page_addr; 1355 struct hv_message *msg; 1356 1357 vmbus_chan_sched(hv_cpu); 1358 1359 page_addr = hv_cpu->synic_message_page; 1360 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1361 1362 /* Check if there are actual msgs to be processed */ 1363 if (msg->header.message_type != HVMSG_NONE) { 1364 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1365 hv_stimer0_isr(); 1366 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1367 } else 1368 tasklet_schedule(&hv_cpu->msg_dpc); 1369 } 1370 1371 add_interrupt_randomness(vmbus_interrupt); 1372 } 1373 1374 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) 1375 { 1376 vmbus_isr(); 1377 return IRQ_HANDLED; 1378 } 1379 1380 /* 1381 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1382 * buffer and call into Hyper-V to transfer the data. 1383 */ 1384 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1385 enum kmsg_dump_reason reason) 1386 { 1387 struct kmsg_dump_iter iter; 1388 size_t bytes_written; 1389 1390 /* We are only interested in panics. */ 1391 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1392 return; 1393 1394 /* 1395 * Write dump contents to the page. No need to synchronize; panic should 1396 * be single-threaded. 1397 */ 1398 kmsg_dump_rewind(&iter); 1399 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, 1400 &bytes_written); 1401 if (!bytes_written) 1402 return; 1403 /* 1404 * P3 to contain the physical address of the panic page & P4 to 1405 * contain the size of the panic data in that page. Rest of the 1406 * registers are no-op when the NOTIFY_MSG flag is set. 1407 */ 1408 hv_set_register(HV_REGISTER_CRASH_P0, 0); 1409 hv_set_register(HV_REGISTER_CRASH_P1, 0); 1410 hv_set_register(HV_REGISTER_CRASH_P2, 0); 1411 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page)); 1412 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written); 1413 1414 /* 1415 * Let Hyper-V know there is crash data available along with 1416 * the panic message. 1417 */ 1418 hv_set_register(HV_REGISTER_CRASH_CTL, 1419 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 1420 } 1421 1422 static struct kmsg_dumper hv_kmsg_dumper = { 1423 .dump = hv_kmsg_dump, 1424 }; 1425 1426 static void hv_kmsg_dump_register(void) 1427 { 1428 int ret; 1429 1430 hv_panic_page = hv_alloc_hyperv_zeroed_page(); 1431 if (!hv_panic_page) { 1432 pr_err("Hyper-V: panic message page memory allocation failed\n"); 1433 return; 1434 } 1435 1436 ret = kmsg_dump_register(&hv_kmsg_dumper); 1437 if (ret) { 1438 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); 1439 hv_free_hyperv_page((unsigned long)hv_panic_page); 1440 hv_panic_page = NULL; 1441 } 1442 } 1443 1444 static struct ctl_table_header *hv_ctl_table_hdr; 1445 1446 /* 1447 * sysctl option to allow the user to control whether kmsg data should be 1448 * reported to Hyper-V on panic. 1449 */ 1450 static struct ctl_table hv_ctl_table[] = { 1451 { 1452 .procname = "hyperv_record_panic_msg", 1453 .data = &sysctl_record_panic_msg, 1454 .maxlen = sizeof(int), 1455 .mode = 0644, 1456 .proc_handler = proc_dointvec_minmax, 1457 .extra1 = SYSCTL_ZERO, 1458 .extra2 = SYSCTL_ONE 1459 }, 1460 {} 1461 }; 1462 1463 static struct ctl_table hv_root_table[] = { 1464 { 1465 .procname = "kernel", 1466 .mode = 0555, 1467 .child = hv_ctl_table 1468 }, 1469 {} 1470 }; 1471 1472 /* 1473 * vmbus_bus_init -Main vmbus driver initialization routine. 1474 * 1475 * Here, we 1476 * - initialize the vmbus driver context 1477 * - invoke the vmbus hv main init routine 1478 * - retrieve the channel offers 1479 */ 1480 static int vmbus_bus_init(void) 1481 { 1482 int ret; 1483 1484 ret = hv_init(); 1485 if (ret != 0) { 1486 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1487 return ret; 1488 } 1489 1490 ret = bus_register(&hv_bus); 1491 if (ret) 1492 return ret; 1493 1494 /* 1495 * VMbus interrupts are best modeled as per-cpu interrupts. If 1496 * on an architecture with support for per-cpu IRQs (e.g. ARM64), 1497 * allocate a per-cpu IRQ using standard Linux kernel functionality. 1498 * If not on such an architecture (e.g., x86/x64), then rely on 1499 * code in the arch-specific portion of the code tree to connect 1500 * the VMbus interrupt handler. 1501 */ 1502 1503 if (vmbus_irq == -1) { 1504 hv_setup_vmbus_handler(vmbus_isr); 1505 } else { 1506 vmbus_evt = alloc_percpu(long); 1507 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, 1508 "Hyper-V VMbus", vmbus_evt); 1509 if (ret) { 1510 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", 1511 vmbus_irq, ret); 1512 free_percpu(vmbus_evt); 1513 goto err_setup; 1514 } 1515 } 1516 1517 ret = hv_synic_alloc(); 1518 if (ret) 1519 goto err_alloc; 1520 1521 /* 1522 * Initialize the per-cpu interrupt state and stimer state. 1523 * Then connect to the host. 1524 */ 1525 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1526 hv_synic_init, hv_synic_cleanup); 1527 if (ret < 0) 1528 goto err_cpuhp; 1529 hyperv_cpuhp_online = ret; 1530 1531 ret = vmbus_connect(); 1532 if (ret) 1533 goto err_connect; 1534 1535 if (hv_is_isolation_supported()) 1536 sysctl_record_panic_msg = 0; 1537 1538 /* 1539 * Only register if the crash MSRs are available 1540 */ 1541 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1542 u64 hyperv_crash_ctl; 1543 /* 1544 * Panic message recording (sysctl_record_panic_msg) 1545 * is enabled by default in non-isolated guests and 1546 * disabled by default in isolated guests; the panic 1547 * message recording won't be available in isolated 1548 * guests should the following registration fail. 1549 */ 1550 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1551 if (!hv_ctl_table_hdr) 1552 pr_err("Hyper-V: sysctl table register error"); 1553 1554 /* 1555 * Register for panic kmsg callback only if the right 1556 * capability is supported by the hypervisor. 1557 */ 1558 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL); 1559 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) 1560 hv_kmsg_dump_register(); 1561 1562 register_die_notifier(&hyperv_die_report_block); 1563 atomic_notifier_chain_register(&panic_notifier_list, 1564 &hyperv_panic_report_block); 1565 } 1566 1567 /* 1568 * Always register the vmbus unload panic notifier because we 1569 * need to shut the VMbus channel connection on panic. 1570 */ 1571 atomic_notifier_chain_register(&panic_notifier_list, 1572 &hyperv_panic_vmbus_unload_block); 1573 1574 vmbus_request_offers(); 1575 1576 return 0; 1577 1578 err_connect: 1579 cpuhp_remove_state(hyperv_cpuhp_online); 1580 err_cpuhp: 1581 hv_synic_free(); 1582 err_alloc: 1583 if (vmbus_irq == -1) { 1584 hv_remove_vmbus_handler(); 1585 } else { 1586 free_percpu_irq(vmbus_irq, vmbus_evt); 1587 free_percpu(vmbus_evt); 1588 } 1589 err_setup: 1590 bus_unregister(&hv_bus); 1591 unregister_sysctl_table(hv_ctl_table_hdr); 1592 hv_ctl_table_hdr = NULL; 1593 return ret; 1594 } 1595 1596 /** 1597 * __vmbus_driver_register() - Register a vmbus's driver 1598 * @hv_driver: Pointer to driver structure you want to register 1599 * @owner: owner module of the drv 1600 * @mod_name: module name string 1601 * 1602 * Registers the given driver with Linux through the 'driver_register()' call 1603 * and sets up the hyper-v vmbus handling for this driver. 1604 * It will return the state of the 'driver_register()' call. 1605 * 1606 */ 1607 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1608 { 1609 int ret; 1610 1611 pr_info("registering driver %s\n", hv_driver->name); 1612 1613 ret = vmbus_exists(); 1614 if (ret < 0) 1615 return ret; 1616 1617 hv_driver->driver.name = hv_driver->name; 1618 hv_driver->driver.owner = owner; 1619 hv_driver->driver.mod_name = mod_name; 1620 hv_driver->driver.bus = &hv_bus; 1621 1622 spin_lock_init(&hv_driver->dynids.lock); 1623 INIT_LIST_HEAD(&hv_driver->dynids.list); 1624 1625 ret = driver_register(&hv_driver->driver); 1626 1627 return ret; 1628 } 1629 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1630 1631 /** 1632 * vmbus_driver_unregister() - Unregister a vmbus's driver 1633 * @hv_driver: Pointer to driver structure you want to 1634 * un-register 1635 * 1636 * Un-register the given driver that was previous registered with a call to 1637 * vmbus_driver_register() 1638 */ 1639 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1640 { 1641 pr_info("unregistering driver %s\n", hv_driver->name); 1642 1643 if (!vmbus_exists()) { 1644 driver_unregister(&hv_driver->driver); 1645 vmbus_free_dynids(hv_driver); 1646 } 1647 } 1648 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1649 1650 1651 /* 1652 * Called when last reference to channel is gone. 1653 */ 1654 static void vmbus_chan_release(struct kobject *kobj) 1655 { 1656 struct vmbus_channel *channel 1657 = container_of(kobj, struct vmbus_channel, kobj); 1658 1659 kfree_rcu(channel, rcu); 1660 } 1661 1662 struct vmbus_chan_attribute { 1663 struct attribute attr; 1664 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1665 ssize_t (*store)(struct vmbus_channel *chan, 1666 const char *buf, size_t count); 1667 }; 1668 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1669 struct vmbus_chan_attribute chan_attr_##_name \ 1670 = __ATTR(_name, _mode, _show, _store) 1671 #define VMBUS_CHAN_ATTR_RW(_name) \ 1672 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1673 #define VMBUS_CHAN_ATTR_RO(_name) \ 1674 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1675 #define VMBUS_CHAN_ATTR_WO(_name) \ 1676 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1677 1678 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1679 struct attribute *attr, char *buf) 1680 { 1681 const struct vmbus_chan_attribute *attribute 1682 = container_of(attr, struct vmbus_chan_attribute, attr); 1683 struct vmbus_channel *chan 1684 = container_of(kobj, struct vmbus_channel, kobj); 1685 1686 if (!attribute->show) 1687 return -EIO; 1688 1689 return attribute->show(chan, buf); 1690 } 1691 1692 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1693 struct attribute *attr, const char *buf, 1694 size_t count) 1695 { 1696 const struct vmbus_chan_attribute *attribute 1697 = container_of(attr, struct vmbus_chan_attribute, attr); 1698 struct vmbus_channel *chan 1699 = container_of(kobj, struct vmbus_channel, kobj); 1700 1701 if (!attribute->store) 1702 return -EIO; 1703 1704 return attribute->store(chan, buf, count); 1705 } 1706 1707 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1708 .show = vmbus_chan_attr_show, 1709 .store = vmbus_chan_attr_store, 1710 }; 1711 1712 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1713 { 1714 struct hv_ring_buffer_info *rbi = &channel->outbound; 1715 ssize_t ret; 1716 1717 mutex_lock(&rbi->ring_buffer_mutex); 1718 if (!rbi->ring_buffer) { 1719 mutex_unlock(&rbi->ring_buffer_mutex); 1720 return -EINVAL; 1721 } 1722 1723 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1724 mutex_unlock(&rbi->ring_buffer_mutex); 1725 return ret; 1726 } 1727 static VMBUS_CHAN_ATTR_RO(out_mask); 1728 1729 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1730 { 1731 struct hv_ring_buffer_info *rbi = &channel->inbound; 1732 ssize_t ret; 1733 1734 mutex_lock(&rbi->ring_buffer_mutex); 1735 if (!rbi->ring_buffer) { 1736 mutex_unlock(&rbi->ring_buffer_mutex); 1737 return -EINVAL; 1738 } 1739 1740 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1741 mutex_unlock(&rbi->ring_buffer_mutex); 1742 return ret; 1743 } 1744 static VMBUS_CHAN_ATTR_RO(in_mask); 1745 1746 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1747 { 1748 struct hv_ring_buffer_info *rbi = &channel->inbound; 1749 ssize_t ret; 1750 1751 mutex_lock(&rbi->ring_buffer_mutex); 1752 if (!rbi->ring_buffer) { 1753 mutex_unlock(&rbi->ring_buffer_mutex); 1754 return -EINVAL; 1755 } 1756 1757 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1758 mutex_unlock(&rbi->ring_buffer_mutex); 1759 return ret; 1760 } 1761 static VMBUS_CHAN_ATTR_RO(read_avail); 1762 1763 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1764 { 1765 struct hv_ring_buffer_info *rbi = &channel->outbound; 1766 ssize_t ret; 1767 1768 mutex_lock(&rbi->ring_buffer_mutex); 1769 if (!rbi->ring_buffer) { 1770 mutex_unlock(&rbi->ring_buffer_mutex); 1771 return -EINVAL; 1772 } 1773 1774 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1775 mutex_unlock(&rbi->ring_buffer_mutex); 1776 return ret; 1777 } 1778 static VMBUS_CHAN_ATTR_RO(write_avail); 1779 1780 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1781 { 1782 return sprintf(buf, "%u\n", channel->target_cpu); 1783 } 1784 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1785 const char *buf, size_t count) 1786 { 1787 u32 target_cpu, origin_cpu; 1788 ssize_t ret = count; 1789 1790 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1791 return -EIO; 1792 1793 if (sscanf(buf, "%uu", &target_cpu) != 1) 1794 return -EIO; 1795 1796 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1797 if (target_cpu >= nr_cpumask_bits) 1798 return -EINVAL; 1799 1800 if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ))) 1801 return -EINVAL; 1802 1803 /* No CPUs should come up or down during this. */ 1804 cpus_read_lock(); 1805 1806 if (!cpu_online(target_cpu)) { 1807 cpus_read_unlock(); 1808 return -EINVAL; 1809 } 1810 1811 /* 1812 * Synchronizes target_cpu_store() and channel closure: 1813 * 1814 * { Initially: state = CHANNEL_OPENED } 1815 * 1816 * CPU1 CPU2 1817 * 1818 * [target_cpu_store()] [vmbus_disconnect_ring()] 1819 * 1820 * LOCK channel_mutex LOCK channel_mutex 1821 * LOAD r1 = state LOAD r2 = state 1822 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1823 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1824 * [...] SEND CLOSECHANNEL 1825 * UNLOCK channel_mutex UNLOCK channel_mutex 1826 * 1827 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1828 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1829 * 1830 * Note. The host processes the channel messages "sequentially", in 1831 * the order in which they are received on a per-partition basis. 1832 */ 1833 mutex_lock(&vmbus_connection.channel_mutex); 1834 1835 /* 1836 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1837 * avoid sending the message and fail here for such channels. 1838 */ 1839 if (channel->state != CHANNEL_OPENED_STATE) { 1840 ret = -EIO; 1841 goto cpu_store_unlock; 1842 } 1843 1844 origin_cpu = channel->target_cpu; 1845 if (target_cpu == origin_cpu) 1846 goto cpu_store_unlock; 1847 1848 if (vmbus_send_modifychannel(channel, 1849 hv_cpu_number_to_vp_number(target_cpu))) { 1850 ret = -EIO; 1851 goto cpu_store_unlock; 1852 } 1853 1854 /* 1855 * For version before VERSION_WIN10_V5_3, the following warning holds: 1856 * 1857 * Warning. At this point, there is *no* guarantee that the host will 1858 * have successfully processed the vmbus_send_modifychannel() request. 1859 * See the header comment of vmbus_send_modifychannel() for more info. 1860 * 1861 * Lags in the processing of the above vmbus_send_modifychannel() can 1862 * result in missed interrupts if the "old" target CPU is taken offline 1863 * before Hyper-V starts sending interrupts to the "new" target CPU. 1864 * But apart from this offlining scenario, the code tolerates such 1865 * lags. It will function correctly even if a channel interrupt comes 1866 * in on a CPU that is different from the channel target_cpu value. 1867 */ 1868 1869 channel->target_cpu = target_cpu; 1870 1871 /* See init_vp_index(). */ 1872 if (hv_is_perf_channel(channel)) 1873 hv_update_allocated_cpus(origin_cpu, target_cpu); 1874 1875 /* Currently set only for storvsc channels. */ 1876 if (channel->change_target_cpu_callback) { 1877 (*channel->change_target_cpu_callback)(channel, 1878 origin_cpu, target_cpu); 1879 } 1880 1881 cpu_store_unlock: 1882 mutex_unlock(&vmbus_connection.channel_mutex); 1883 cpus_read_unlock(); 1884 return ret; 1885 } 1886 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1887 1888 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1889 char *buf) 1890 { 1891 return sprintf(buf, "%d\n", 1892 channel_pending(channel, 1893 vmbus_connection.monitor_pages[1])); 1894 } 1895 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1896 1897 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1898 char *buf) 1899 { 1900 return sprintf(buf, "%d\n", 1901 channel_latency(channel, 1902 vmbus_connection.monitor_pages[1])); 1903 } 1904 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1905 1906 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1907 { 1908 return sprintf(buf, "%llu\n", channel->interrupts); 1909 } 1910 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1911 1912 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1913 { 1914 return sprintf(buf, "%llu\n", channel->sig_events); 1915 } 1916 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1917 1918 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1919 char *buf) 1920 { 1921 return sprintf(buf, "%llu\n", 1922 (unsigned long long)channel->intr_in_full); 1923 } 1924 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1925 1926 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1927 char *buf) 1928 { 1929 return sprintf(buf, "%llu\n", 1930 (unsigned long long)channel->intr_out_empty); 1931 } 1932 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1933 1934 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1935 char *buf) 1936 { 1937 return sprintf(buf, "%llu\n", 1938 (unsigned long long)channel->out_full_first); 1939 } 1940 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1941 1942 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1943 char *buf) 1944 { 1945 return sprintf(buf, "%llu\n", 1946 (unsigned long long)channel->out_full_total); 1947 } 1948 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1949 1950 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1951 char *buf) 1952 { 1953 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1954 } 1955 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1956 1957 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1958 char *buf) 1959 { 1960 return sprintf(buf, "%u\n", 1961 channel->offermsg.offer.sub_channel_index); 1962 } 1963 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1964 1965 static struct attribute *vmbus_chan_attrs[] = { 1966 &chan_attr_out_mask.attr, 1967 &chan_attr_in_mask.attr, 1968 &chan_attr_read_avail.attr, 1969 &chan_attr_write_avail.attr, 1970 &chan_attr_cpu.attr, 1971 &chan_attr_pending.attr, 1972 &chan_attr_latency.attr, 1973 &chan_attr_interrupts.attr, 1974 &chan_attr_events.attr, 1975 &chan_attr_intr_in_full.attr, 1976 &chan_attr_intr_out_empty.attr, 1977 &chan_attr_out_full_first.attr, 1978 &chan_attr_out_full_total.attr, 1979 &chan_attr_monitor_id.attr, 1980 &chan_attr_subchannel_id.attr, 1981 NULL 1982 }; 1983 1984 /* 1985 * Channel-level attribute_group callback function. Returns the permission for 1986 * each attribute, and returns 0 if an attribute is not visible. 1987 */ 1988 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1989 struct attribute *attr, int idx) 1990 { 1991 const struct vmbus_channel *channel = 1992 container_of(kobj, struct vmbus_channel, kobj); 1993 1994 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1995 if (!channel->offermsg.monitor_allocated && 1996 (attr == &chan_attr_pending.attr || 1997 attr == &chan_attr_latency.attr || 1998 attr == &chan_attr_monitor_id.attr)) 1999 return 0; 2000 2001 return attr->mode; 2002 } 2003 2004 static struct attribute_group vmbus_chan_group = { 2005 .attrs = vmbus_chan_attrs, 2006 .is_visible = vmbus_chan_attr_is_visible 2007 }; 2008 2009 static struct kobj_type vmbus_chan_ktype = { 2010 .sysfs_ops = &vmbus_chan_sysfs_ops, 2011 .release = vmbus_chan_release, 2012 }; 2013 2014 /* 2015 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 2016 */ 2017 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 2018 { 2019 const struct device *device = &dev->device; 2020 struct kobject *kobj = &channel->kobj; 2021 u32 relid = channel->offermsg.child_relid; 2022 int ret; 2023 2024 kobj->kset = dev->channels_kset; 2025 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 2026 "%u", relid); 2027 if (ret) { 2028 kobject_put(kobj); 2029 return ret; 2030 } 2031 2032 ret = sysfs_create_group(kobj, &vmbus_chan_group); 2033 2034 if (ret) { 2035 /* 2036 * The calling functions' error handling paths will cleanup the 2037 * empty channel directory. 2038 */ 2039 kobject_put(kobj); 2040 dev_err(device, "Unable to set up channel sysfs files\n"); 2041 return ret; 2042 } 2043 2044 kobject_uevent(kobj, KOBJ_ADD); 2045 2046 return 0; 2047 } 2048 2049 /* 2050 * vmbus_remove_channel_attr_group - remove the channel's attribute group 2051 */ 2052 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 2053 { 2054 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 2055 } 2056 2057 /* 2058 * vmbus_device_create - Creates and registers a new child device 2059 * on the vmbus. 2060 */ 2061 struct hv_device *vmbus_device_create(const guid_t *type, 2062 const guid_t *instance, 2063 struct vmbus_channel *channel) 2064 { 2065 struct hv_device *child_device_obj; 2066 2067 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 2068 if (!child_device_obj) { 2069 pr_err("Unable to allocate device object for child device\n"); 2070 return NULL; 2071 } 2072 2073 child_device_obj->channel = channel; 2074 guid_copy(&child_device_obj->dev_type, type); 2075 guid_copy(&child_device_obj->dev_instance, instance); 2076 child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT; 2077 2078 return child_device_obj; 2079 } 2080 2081 /* 2082 * vmbus_device_register - Register the child device 2083 */ 2084 int vmbus_device_register(struct hv_device *child_device_obj) 2085 { 2086 struct kobject *kobj = &child_device_obj->device.kobj; 2087 int ret; 2088 2089 dev_set_name(&child_device_obj->device, "%pUl", 2090 &child_device_obj->channel->offermsg.offer.if_instance); 2091 2092 child_device_obj->device.bus = &hv_bus; 2093 child_device_obj->device.parent = &hv_acpi_dev->dev; 2094 child_device_obj->device.release = vmbus_device_release; 2095 2096 child_device_obj->device.dma_parms = &child_device_obj->dma_parms; 2097 child_device_obj->device.dma_mask = &child_device_obj->dma_mask; 2098 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64)); 2099 2100 /* 2101 * Register with the LDM. This will kick off the driver/device 2102 * binding...which will eventually call vmbus_match() and vmbus_probe() 2103 */ 2104 ret = device_register(&child_device_obj->device); 2105 if (ret) { 2106 pr_err("Unable to register child device\n"); 2107 put_device(&child_device_obj->device); 2108 return ret; 2109 } 2110 2111 child_device_obj->channels_kset = kset_create_and_add("channels", 2112 NULL, kobj); 2113 if (!child_device_obj->channels_kset) { 2114 ret = -ENOMEM; 2115 goto err_dev_unregister; 2116 } 2117 2118 ret = vmbus_add_channel_kobj(child_device_obj, 2119 child_device_obj->channel); 2120 if (ret) { 2121 pr_err("Unable to register primary channeln"); 2122 goto err_kset_unregister; 2123 } 2124 hv_debug_add_dev_dir(child_device_obj); 2125 2126 return 0; 2127 2128 err_kset_unregister: 2129 kset_unregister(child_device_obj->channels_kset); 2130 2131 err_dev_unregister: 2132 device_unregister(&child_device_obj->device); 2133 return ret; 2134 } 2135 2136 /* 2137 * vmbus_device_unregister - Remove the specified child device 2138 * from the vmbus. 2139 */ 2140 void vmbus_device_unregister(struct hv_device *device_obj) 2141 { 2142 pr_debug("child device %s unregistered\n", 2143 dev_name(&device_obj->device)); 2144 2145 kset_unregister(device_obj->channels_kset); 2146 2147 /* 2148 * Kick off the process of unregistering the device. 2149 * This will call vmbus_remove() and eventually vmbus_device_release() 2150 */ 2151 device_unregister(&device_obj->device); 2152 } 2153 2154 2155 /* 2156 * VMBUS is an acpi enumerated device. Get the information we 2157 * need from DSDT. 2158 */ 2159 #define VTPM_BASE_ADDRESS 0xfed40000 2160 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 2161 { 2162 resource_size_t start = 0; 2163 resource_size_t end = 0; 2164 struct resource *new_res; 2165 struct resource **old_res = &hyperv_mmio; 2166 struct resource **prev_res = NULL; 2167 struct resource r; 2168 2169 switch (res->type) { 2170 2171 /* 2172 * "Address" descriptors are for bus windows. Ignore 2173 * "memory" descriptors, which are for registers on 2174 * devices. 2175 */ 2176 case ACPI_RESOURCE_TYPE_ADDRESS32: 2177 start = res->data.address32.address.minimum; 2178 end = res->data.address32.address.maximum; 2179 break; 2180 2181 case ACPI_RESOURCE_TYPE_ADDRESS64: 2182 start = res->data.address64.address.minimum; 2183 end = res->data.address64.address.maximum; 2184 break; 2185 2186 /* 2187 * The IRQ information is needed only on ARM64, which Hyper-V 2188 * sets up in the extended format. IRQ information is present 2189 * on x86/x64 in the non-extended format but it is not used by 2190 * Linux. So don't bother checking for the non-extended format. 2191 */ 2192 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 2193 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 2194 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 2195 return AE_ERROR; 2196 } 2197 /* ARM64 INTID for VMbus */ 2198 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2199 /* Linux IRQ number */ 2200 vmbus_irq = r.start; 2201 return AE_OK; 2202 2203 default: 2204 /* Unused resource type */ 2205 return AE_OK; 2206 2207 } 2208 /* 2209 * Ignore ranges that are below 1MB, as they're not 2210 * necessary or useful here. 2211 */ 2212 if (end < 0x100000) 2213 return AE_OK; 2214 2215 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2216 if (!new_res) 2217 return AE_NO_MEMORY; 2218 2219 /* If this range overlaps the virtual TPM, truncate it. */ 2220 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2221 end = VTPM_BASE_ADDRESS; 2222 2223 new_res->name = "hyperv mmio"; 2224 new_res->flags = IORESOURCE_MEM; 2225 new_res->start = start; 2226 new_res->end = end; 2227 2228 /* 2229 * If two ranges are adjacent, merge them. 2230 */ 2231 do { 2232 if (!*old_res) { 2233 *old_res = new_res; 2234 break; 2235 } 2236 2237 if (((*old_res)->end + 1) == new_res->start) { 2238 (*old_res)->end = new_res->end; 2239 kfree(new_res); 2240 break; 2241 } 2242 2243 if ((*old_res)->start == new_res->end + 1) { 2244 (*old_res)->start = new_res->start; 2245 kfree(new_res); 2246 break; 2247 } 2248 2249 if ((*old_res)->start > new_res->end) { 2250 new_res->sibling = *old_res; 2251 if (prev_res) 2252 (*prev_res)->sibling = new_res; 2253 *old_res = new_res; 2254 break; 2255 } 2256 2257 prev_res = old_res; 2258 old_res = &(*old_res)->sibling; 2259 2260 } while (1); 2261 2262 return AE_OK; 2263 } 2264 2265 static void vmbus_acpi_remove(struct acpi_device *device) 2266 { 2267 struct resource *cur_res; 2268 struct resource *next_res; 2269 2270 if (hyperv_mmio) { 2271 if (fb_mmio) { 2272 __release_region(hyperv_mmio, fb_mmio->start, 2273 resource_size(fb_mmio)); 2274 fb_mmio = NULL; 2275 } 2276 2277 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2278 next_res = cur_res->sibling; 2279 kfree(cur_res); 2280 } 2281 } 2282 } 2283 2284 static void vmbus_reserve_fb(void) 2285 { 2286 resource_size_t start = 0, size; 2287 struct pci_dev *pdev; 2288 2289 if (efi_enabled(EFI_BOOT)) { 2290 /* Gen2 VM: get FB base from EFI framebuffer */ 2291 start = screen_info.lfb_base; 2292 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2293 } else { 2294 /* Gen1 VM: get FB base from PCI */ 2295 pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT, 2296 PCI_DEVICE_ID_HYPERV_VIDEO, NULL); 2297 if (!pdev) 2298 return; 2299 2300 if (pdev->resource[0].flags & IORESOURCE_MEM) { 2301 start = pci_resource_start(pdev, 0); 2302 size = pci_resource_len(pdev, 0); 2303 } 2304 2305 /* 2306 * Release the PCI device so hyperv_drm or hyperv_fb driver can 2307 * grab it later. 2308 */ 2309 pci_dev_put(pdev); 2310 } 2311 2312 if (!start) 2313 return; 2314 2315 /* 2316 * Make a claim for the frame buffer in the resource tree under the 2317 * first node, which will be the one below 4GB. The length seems to 2318 * be underreported, particularly in a Generation 1 VM. So start out 2319 * reserving a larger area and make it smaller until it succeeds. 2320 */ 2321 for (; !fb_mmio && (size >= 0x100000); size >>= 1) 2322 fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0); 2323 } 2324 2325 /** 2326 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2327 * @new: If successful, supplied a pointer to the 2328 * allocated MMIO space. 2329 * @device_obj: Identifies the caller 2330 * @min: Minimum guest physical address of the 2331 * allocation 2332 * @max: Maximum guest physical address 2333 * @size: Size of the range to be allocated 2334 * @align: Alignment of the range to be allocated 2335 * @fb_overlap_ok: Whether this allocation can be allowed 2336 * to overlap the video frame buffer. 2337 * 2338 * This function walks the resources granted to VMBus by the 2339 * _CRS object in the ACPI namespace underneath the parent 2340 * "bridge" whether that's a root PCI bus in the Generation 1 2341 * case or a Module Device in the Generation 2 case. It then 2342 * attempts to allocate from the global MMIO pool in a way that 2343 * matches the constraints supplied in these parameters and by 2344 * that _CRS. 2345 * 2346 * Return: 0 on success, -errno on failure 2347 */ 2348 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2349 resource_size_t min, resource_size_t max, 2350 resource_size_t size, resource_size_t align, 2351 bool fb_overlap_ok) 2352 { 2353 struct resource *iter, *shadow; 2354 resource_size_t range_min, range_max, start, end; 2355 const char *dev_n = dev_name(&device_obj->device); 2356 int retval; 2357 2358 retval = -ENXIO; 2359 mutex_lock(&hyperv_mmio_lock); 2360 2361 /* 2362 * If overlaps with frame buffers are allowed, then first attempt to 2363 * make the allocation from within the reserved region. Because it 2364 * is already reserved, no shadow allocation is necessary. 2365 */ 2366 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2367 !(max < fb_mmio->start)) { 2368 2369 range_min = fb_mmio->start; 2370 range_max = fb_mmio->end; 2371 start = (range_min + align - 1) & ~(align - 1); 2372 for (; start + size - 1 <= range_max; start += align) { 2373 *new = request_mem_region_exclusive(start, size, dev_n); 2374 if (*new) { 2375 retval = 0; 2376 goto exit; 2377 } 2378 } 2379 } 2380 2381 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2382 if ((iter->start >= max) || (iter->end <= min)) 2383 continue; 2384 2385 range_min = iter->start; 2386 range_max = iter->end; 2387 start = (range_min + align - 1) & ~(align - 1); 2388 for (; start + size - 1 <= range_max; start += align) { 2389 end = start + size - 1; 2390 2391 /* Skip the whole fb_mmio region if not fb_overlap_ok */ 2392 if (!fb_overlap_ok && fb_mmio && 2393 (((start >= fb_mmio->start) && (start <= fb_mmio->end)) || 2394 ((end >= fb_mmio->start) && (end <= fb_mmio->end)))) 2395 continue; 2396 2397 shadow = __request_region(iter, start, size, NULL, 2398 IORESOURCE_BUSY); 2399 if (!shadow) 2400 continue; 2401 2402 *new = request_mem_region_exclusive(start, size, dev_n); 2403 if (*new) { 2404 shadow->name = (char *)*new; 2405 retval = 0; 2406 goto exit; 2407 } 2408 2409 __release_region(iter, start, size); 2410 } 2411 } 2412 2413 exit: 2414 mutex_unlock(&hyperv_mmio_lock); 2415 return retval; 2416 } 2417 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2418 2419 /** 2420 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2421 * @start: Base address of region to release. 2422 * @size: Size of the range to be allocated 2423 * 2424 * This function releases anything requested by 2425 * vmbus_mmio_allocate(). 2426 */ 2427 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2428 { 2429 struct resource *iter; 2430 2431 mutex_lock(&hyperv_mmio_lock); 2432 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2433 if ((iter->start >= start + size) || (iter->end <= start)) 2434 continue; 2435 2436 __release_region(iter, start, size); 2437 } 2438 release_mem_region(start, size); 2439 mutex_unlock(&hyperv_mmio_lock); 2440 2441 } 2442 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2443 2444 static int vmbus_acpi_add(struct acpi_device *device) 2445 { 2446 acpi_status result; 2447 int ret_val = -ENODEV; 2448 struct acpi_device *ancestor; 2449 2450 hv_acpi_dev = device; 2451 2452 /* 2453 * Older versions of Hyper-V for ARM64 fail to include the _CCA 2454 * method on the top level VMbus device in the DSDT. But devices 2455 * are hardware coherent in all current Hyper-V use cases, so fix 2456 * up the ACPI device to behave as if _CCA is present and indicates 2457 * hardware coherence. 2458 */ 2459 ACPI_COMPANION_SET(&device->dev, device); 2460 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) && 2461 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) { 2462 pr_info("No ACPI _CCA found; assuming coherent device I/O\n"); 2463 device->flags.cca_seen = true; 2464 device->flags.coherent_dma = true; 2465 } 2466 2467 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2468 vmbus_walk_resources, NULL); 2469 2470 if (ACPI_FAILURE(result)) 2471 goto acpi_walk_err; 2472 /* 2473 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2474 * firmware) is the VMOD that has the mmio ranges. Get that. 2475 */ 2476 for (ancestor = acpi_dev_parent(device); ancestor; 2477 ancestor = acpi_dev_parent(ancestor)) { 2478 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2479 vmbus_walk_resources, NULL); 2480 2481 if (ACPI_FAILURE(result)) 2482 continue; 2483 if (hyperv_mmio) { 2484 vmbus_reserve_fb(); 2485 break; 2486 } 2487 } 2488 ret_val = 0; 2489 2490 acpi_walk_err: 2491 if (ret_val) 2492 vmbus_acpi_remove(device); 2493 return ret_val; 2494 } 2495 2496 #ifdef CONFIG_PM_SLEEP 2497 static int vmbus_bus_suspend(struct device *dev) 2498 { 2499 struct hv_per_cpu_context *hv_cpu = per_cpu_ptr( 2500 hv_context.cpu_context, VMBUS_CONNECT_CPU); 2501 struct vmbus_channel *channel, *sc; 2502 2503 tasklet_disable(&hv_cpu->msg_dpc); 2504 vmbus_connection.ignore_any_offer_msg = true; 2505 /* The tasklet_enable() takes care of providing a memory barrier */ 2506 tasklet_enable(&hv_cpu->msg_dpc); 2507 2508 /* Drain all the workqueues as we are in suspend */ 2509 drain_workqueue(vmbus_connection.rescind_work_queue); 2510 drain_workqueue(vmbus_connection.work_queue); 2511 drain_workqueue(vmbus_connection.handle_primary_chan_wq); 2512 drain_workqueue(vmbus_connection.handle_sub_chan_wq); 2513 2514 mutex_lock(&vmbus_connection.channel_mutex); 2515 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2516 if (!is_hvsock_channel(channel)) 2517 continue; 2518 2519 vmbus_force_channel_rescinded(channel); 2520 } 2521 mutex_unlock(&vmbus_connection.channel_mutex); 2522 2523 /* 2524 * Wait until all the sub-channels and hv_sock channels have been 2525 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2526 * they would conflict with the new sub-channels that will be created 2527 * in the resume path. hv_sock channels should also be destroyed, but 2528 * a hv_sock channel of an established hv_sock connection can not be 2529 * really destroyed since it may still be referenced by the userspace 2530 * application, so we just force the hv_sock channel to be rescinded 2531 * by vmbus_force_channel_rescinded(), and the userspace application 2532 * will thoroughly destroy the channel after hibernation. 2533 * 2534 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2535 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2536 */ 2537 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2538 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2539 2540 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2541 pr_err("Can not suspend due to a previous failed resuming\n"); 2542 return -EBUSY; 2543 } 2544 2545 mutex_lock(&vmbus_connection.channel_mutex); 2546 2547 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2548 /* 2549 * Remove the channel from the array of channels and invalidate 2550 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2551 * up the relid (and other fields, if necessary) and add the 2552 * channel back to the array. 2553 */ 2554 vmbus_channel_unmap_relid(channel); 2555 channel->offermsg.child_relid = INVALID_RELID; 2556 2557 if (is_hvsock_channel(channel)) { 2558 if (!channel->rescind) { 2559 pr_err("hv_sock channel not rescinded!\n"); 2560 WARN_ON_ONCE(1); 2561 } 2562 continue; 2563 } 2564 2565 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2566 pr_err("Sub-channel not deleted!\n"); 2567 WARN_ON_ONCE(1); 2568 } 2569 2570 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2571 } 2572 2573 mutex_unlock(&vmbus_connection.channel_mutex); 2574 2575 vmbus_initiate_unload(false); 2576 2577 /* Reset the event for the next resume. */ 2578 reinit_completion(&vmbus_connection.ready_for_resume_event); 2579 2580 return 0; 2581 } 2582 2583 static int vmbus_bus_resume(struct device *dev) 2584 { 2585 struct vmbus_channel_msginfo *msginfo; 2586 size_t msgsize; 2587 int ret; 2588 2589 vmbus_connection.ignore_any_offer_msg = false; 2590 2591 /* 2592 * We only use the 'vmbus_proto_version', which was in use before 2593 * hibernation, to re-negotiate with the host. 2594 */ 2595 if (!vmbus_proto_version) { 2596 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2597 return -EINVAL; 2598 } 2599 2600 msgsize = sizeof(*msginfo) + 2601 sizeof(struct vmbus_channel_initiate_contact); 2602 2603 msginfo = kzalloc(msgsize, GFP_KERNEL); 2604 2605 if (msginfo == NULL) 2606 return -ENOMEM; 2607 2608 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2609 2610 kfree(msginfo); 2611 2612 if (ret != 0) 2613 return ret; 2614 2615 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2616 2617 vmbus_request_offers(); 2618 2619 if (wait_for_completion_timeout( 2620 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2621 pr_err("Some vmbus device is missing after suspending?\n"); 2622 2623 /* Reset the event for the next suspend. */ 2624 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2625 2626 return 0; 2627 } 2628 #else 2629 #define vmbus_bus_suspend NULL 2630 #define vmbus_bus_resume NULL 2631 #endif /* CONFIG_PM_SLEEP */ 2632 2633 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2634 {"VMBUS", 0}, 2635 {"VMBus", 0}, 2636 {"", 0}, 2637 }; 2638 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2639 2640 /* 2641 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2642 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2643 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2644 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2645 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2646 * resume callback must also run via the "noirq" ops. 2647 * 2648 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2649 * earlier in this file before vmbus_pm. 2650 */ 2651 2652 static const struct dev_pm_ops vmbus_bus_pm = { 2653 .suspend_noirq = NULL, 2654 .resume_noirq = NULL, 2655 .freeze_noirq = vmbus_bus_suspend, 2656 .thaw_noirq = vmbus_bus_resume, 2657 .poweroff_noirq = vmbus_bus_suspend, 2658 .restore_noirq = vmbus_bus_resume 2659 }; 2660 2661 static struct acpi_driver vmbus_acpi_driver = { 2662 .name = "vmbus", 2663 .ids = vmbus_acpi_device_ids, 2664 .ops = { 2665 .add = vmbus_acpi_add, 2666 .remove = vmbus_acpi_remove, 2667 }, 2668 .drv.pm = &vmbus_bus_pm, 2669 .drv.probe_type = PROBE_FORCE_SYNCHRONOUS, 2670 }; 2671 2672 static void hv_kexec_handler(void) 2673 { 2674 hv_stimer_global_cleanup(); 2675 vmbus_initiate_unload(false); 2676 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2677 mb(); 2678 cpuhp_remove_state(hyperv_cpuhp_online); 2679 }; 2680 2681 static void hv_crash_handler(struct pt_regs *regs) 2682 { 2683 int cpu; 2684 2685 vmbus_initiate_unload(true); 2686 /* 2687 * In crash handler we can't schedule synic cleanup for all CPUs, 2688 * doing the cleanup for current CPU only. This should be sufficient 2689 * for kdump. 2690 */ 2691 cpu = smp_processor_id(); 2692 hv_stimer_cleanup(cpu); 2693 hv_synic_disable_regs(cpu); 2694 }; 2695 2696 static int hv_synic_suspend(void) 2697 { 2698 /* 2699 * When we reach here, all the non-boot CPUs have been offlined. 2700 * If we're in a legacy configuration where stimer Direct Mode is 2701 * not enabled, the stimers on the non-boot CPUs have been unbound 2702 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2703 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2704 * 2705 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2706 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2707 * 1) it's unnecessary as interrupts remain disabled between 2708 * syscore_suspend() and syscore_resume(): see create_image() and 2709 * resume_target_kernel() 2710 * 2) the stimer on CPU0 is automatically disabled later by 2711 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2712 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2713 * 3) a warning would be triggered if we call 2714 * clockevents_unbind_device(), which may sleep, in an 2715 * interrupts-disabled context. 2716 */ 2717 2718 hv_synic_disable_regs(0); 2719 2720 return 0; 2721 } 2722 2723 static void hv_synic_resume(void) 2724 { 2725 hv_synic_enable_regs(0); 2726 2727 /* 2728 * Note: we don't need to call hv_stimer_init(0), because the timer 2729 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2730 * automatically re-enabled in timekeeping_resume(). 2731 */ 2732 } 2733 2734 /* The callbacks run only on CPU0, with irqs_disabled. */ 2735 static struct syscore_ops hv_synic_syscore_ops = { 2736 .suspend = hv_synic_suspend, 2737 .resume = hv_synic_resume, 2738 }; 2739 2740 static int __init hv_acpi_init(void) 2741 { 2742 int ret; 2743 2744 if (!hv_is_hyperv_initialized()) 2745 return -ENODEV; 2746 2747 if (hv_root_partition) 2748 return 0; 2749 2750 /* 2751 * Get ACPI resources first. 2752 */ 2753 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2754 2755 if (ret) 2756 return ret; 2757 2758 if (!hv_acpi_dev) { 2759 ret = -ENODEV; 2760 goto cleanup; 2761 } 2762 2763 /* 2764 * If we're on an architecture with a hardcoded hypervisor 2765 * vector (i.e. x86/x64), override the VMbus interrupt found 2766 * in the ACPI tables. Ensure vmbus_irq is not set since the 2767 * normal Linux IRQ mechanism is not used in this case. 2768 */ 2769 #ifdef HYPERVISOR_CALLBACK_VECTOR 2770 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; 2771 vmbus_irq = -1; 2772 #endif 2773 2774 hv_debug_init(); 2775 2776 ret = vmbus_bus_init(); 2777 if (ret) 2778 goto cleanup; 2779 2780 hv_setup_kexec_handler(hv_kexec_handler); 2781 hv_setup_crash_handler(hv_crash_handler); 2782 2783 register_syscore_ops(&hv_synic_syscore_ops); 2784 2785 return 0; 2786 2787 cleanup: 2788 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2789 hv_acpi_dev = NULL; 2790 return ret; 2791 } 2792 2793 static void __exit vmbus_exit(void) 2794 { 2795 int cpu; 2796 2797 unregister_syscore_ops(&hv_synic_syscore_ops); 2798 2799 hv_remove_kexec_handler(); 2800 hv_remove_crash_handler(); 2801 vmbus_connection.conn_state = DISCONNECTED; 2802 hv_stimer_global_cleanup(); 2803 vmbus_disconnect(); 2804 if (vmbus_irq == -1) { 2805 hv_remove_vmbus_handler(); 2806 } else { 2807 free_percpu_irq(vmbus_irq, vmbus_evt); 2808 free_percpu(vmbus_evt); 2809 } 2810 for_each_online_cpu(cpu) { 2811 struct hv_per_cpu_context *hv_cpu 2812 = per_cpu_ptr(hv_context.cpu_context, cpu); 2813 2814 tasklet_kill(&hv_cpu->msg_dpc); 2815 } 2816 hv_debug_rm_all_dir(); 2817 2818 vmbus_free_channels(); 2819 kfree(vmbus_connection.channels); 2820 2821 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2822 kmsg_dump_unregister(&hv_kmsg_dumper); 2823 unregister_die_notifier(&hyperv_die_report_block); 2824 atomic_notifier_chain_unregister(&panic_notifier_list, 2825 &hyperv_panic_report_block); 2826 } 2827 2828 /* 2829 * The vmbus panic notifier is always registered, hence we should 2830 * also unconditionally unregister it here as well. 2831 */ 2832 atomic_notifier_chain_unregister(&panic_notifier_list, 2833 &hyperv_panic_vmbus_unload_block); 2834 2835 free_page((unsigned long)hv_panic_page); 2836 unregister_sysctl_table(hv_ctl_table_hdr); 2837 hv_ctl_table_hdr = NULL; 2838 bus_unregister(&hv_bus); 2839 2840 cpuhp_remove_state(hyperv_cpuhp_online); 2841 hv_synic_free(); 2842 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2843 } 2844 2845 2846 MODULE_LICENSE("GPL"); 2847 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2848 2849 subsys_initcall(hv_acpi_init); 2850 module_exit(vmbus_exit); 2851