xref: /linux/drivers/hv/vmbus_drv.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/isolation.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/ptrace.h>
31 #include <linux/screen_info.h>
32 #include <linux/kdebug.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <linux/pci.h>
39 #include <clocksource/hyperv_timer.h>
40 #include "hyperv_vmbus.h"
41 
42 struct vmbus_dynid {
43 	struct list_head node;
44 	struct hv_vmbus_device_id id;
45 };
46 
47 static struct acpi_device  *hv_acpi_dev;
48 
49 static struct completion probe_event;
50 
51 static int hyperv_cpuhp_online;
52 
53 static void *hv_panic_page;
54 
55 static long __percpu *vmbus_evt;
56 
57 /* Values parsed from ACPI DSDT */
58 int vmbus_irq;
59 int vmbus_interrupt;
60 
61 /*
62  * Boolean to control whether to report panic messages over Hyper-V.
63  *
64  * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
65  */
66 static int sysctl_record_panic_msg = 1;
67 
68 static int hyperv_report_reg(void)
69 {
70 	return !sysctl_record_panic_msg || !hv_panic_page;
71 }
72 
73 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
74 			      void *args)
75 {
76 	struct pt_regs *regs;
77 
78 	vmbus_initiate_unload(true);
79 
80 	/*
81 	 * Hyper-V should be notified only once about a panic.  If we will be
82 	 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
83 	 * here.
84 	 */
85 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
86 	    && hyperv_report_reg()) {
87 		regs = current_pt_regs();
88 		hyperv_report_panic(regs, val, false);
89 	}
90 	return NOTIFY_DONE;
91 }
92 
93 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
94 			    void *args)
95 {
96 	struct die_args *die = args;
97 	struct pt_regs *regs = die->regs;
98 
99 	/* Don't notify Hyper-V if the die event is other than oops */
100 	if (val != DIE_OOPS)
101 		return NOTIFY_DONE;
102 
103 	/*
104 	 * Hyper-V should be notified only once about a panic.  If we will be
105 	 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
106 	 * here.
107 	 */
108 	if (hyperv_report_reg())
109 		hyperv_report_panic(regs, val, true);
110 	return NOTIFY_DONE;
111 }
112 
113 static struct notifier_block hyperv_die_block = {
114 	.notifier_call = hyperv_die_event,
115 };
116 static struct notifier_block hyperv_panic_block = {
117 	.notifier_call = hyperv_panic_event,
118 };
119 
120 static const char *fb_mmio_name = "fb_range";
121 static struct resource *fb_mmio;
122 static struct resource *hyperv_mmio;
123 static DEFINE_MUTEX(hyperv_mmio_lock);
124 
125 static int vmbus_exists(void)
126 {
127 	if (hv_acpi_dev == NULL)
128 		return -ENODEV;
129 
130 	return 0;
131 }
132 
133 static u8 channel_monitor_group(const struct vmbus_channel *channel)
134 {
135 	return (u8)channel->offermsg.monitorid / 32;
136 }
137 
138 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
139 {
140 	return (u8)channel->offermsg.monitorid % 32;
141 }
142 
143 static u32 channel_pending(const struct vmbus_channel *channel,
144 			   const struct hv_monitor_page *monitor_page)
145 {
146 	u8 monitor_group = channel_monitor_group(channel);
147 
148 	return monitor_page->trigger_group[monitor_group].pending;
149 }
150 
151 static u32 channel_latency(const struct vmbus_channel *channel,
152 			   const struct hv_monitor_page *monitor_page)
153 {
154 	u8 monitor_group = channel_monitor_group(channel);
155 	u8 monitor_offset = channel_monitor_offset(channel);
156 
157 	return monitor_page->latency[monitor_group][monitor_offset];
158 }
159 
160 static u32 channel_conn_id(struct vmbus_channel *channel,
161 			   struct hv_monitor_page *monitor_page)
162 {
163 	u8 monitor_group = channel_monitor_group(channel);
164 	u8 monitor_offset = channel_monitor_offset(channel);
165 
166 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
167 }
168 
169 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
170 		       char *buf)
171 {
172 	struct hv_device *hv_dev = device_to_hv_device(dev);
173 
174 	if (!hv_dev->channel)
175 		return -ENODEV;
176 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
177 }
178 static DEVICE_ATTR_RO(id);
179 
180 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
181 			  char *buf)
182 {
183 	struct hv_device *hv_dev = device_to_hv_device(dev);
184 
185 	if (!hv_dev->channel)
186 		return -ENODEV;
187 	return sprintf(buf, "%d\n", hv_dev->channel->state);
188 }
189 static DEVICE_ATTR_RO(state);
190 
191 static ssize_t monitor_id_show(struct device *dev,
192 			       struct device_attribute *dev_attr, char *buf)
193 {
194 	struct hv_device *hv_dev = device_to_hv_device(dev);
195 
196 	if (!hv_dev->channel)
197 		return -ENODEV;
198 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
199 }
200 static DEVICE_ATTR_RO(monitor_id);
201 
202 static ssize_t class_id_show(struct device *dev,
203 			       struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 
207 	if (!hv_dev->channel)
208 		return -ENODEV;
209 	return sprintf(buf, "{%pUl}\n",
210 		       &hv_dev->channel->offermsg.offer.if_type);
211 }
212 static DEVICE_ATTR_RO(class_id);
213 
214 static ssize_t device_id_show(struct device *dev,
215 			      struct device_attribute *dev_attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 	return sprintf(buf, "{%pUl}\n",
222 		       &hv_dev->channel->offermsg.offer.if_instance);
223 }
224 static DEVICE_ATTR_RO(device_id);
225 
226 static ssize_t modalias_show(struct device *dev,
227 			     struct device_attribute *dev_attr, char *buf)
228 {
229 	struct hv_device *hv_dev = device_to_hv_device(dev);
230 
231 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
232 }
233 static DEVICE_ATTR_RO(modalias);
234 
235 #ifdef CONFIG_NUMA
236 static ssize_t numa_node_show(struct device *dev,
237 			      struct device_attribute *attr, char *buf)
238 {
239 	struct hv_device *hv_dev = device_to_hv_device(dev);
240 
241 	if (!hv_dev->channel)
242 		return -ENODEV;
243 
244 	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
245 }
246 static DEVICE_ATTR_RO(numa_node);
247 #endif
248 
249 static ssize_t server_monitor_pending_show(struct device *dev,
250 					   struct device_attribute *dev_attr,
251 					   char *buf)
252 {
253 	struct hv_device *hv_dev = device_to_hv_device(dev);
254 
255 	if (!hv_dev->channel)
256 		return -ENODEV;
257 	return sprintf(buf, "%d\n",
258 		       channel_pending(hv_dev->channel,
259 				       vmbus_connection.monitor_pages[0]));
260 }
261 static DEVICE_ATTR_RO(server_monitor_pending);
262 
263 static ssize_t client_monitor_pending_show(struct device *dev,
264 					   struct device_attribute *dev_attr,
265 					   char *buf)
266 {
267 	struct hv_device *hv_dev = device_to_hv_device(dev);
268 
269 	if (!hv_dev->channel)
270 		return -ENODEV;
271 	return sprintf(buf, "%d\n",
272 		       channel_pending(hv_dev->channel,
273 				       vmbus_connection.monitor_pages[1]));
274 }
275 static DEVICE_ATTR_RO(client_monitor_pending);
276 
277 static ssize_t server_monitor_latency_show(struct device *dev,
278 					   struct device_attribute *dev_attr,
279 					   char *buf)
280 {
281 	struct hv_device *hv_dev = device_to_hv_device(dev);
282 
283 	if (!hv_dev->channel)
284 		return -ENODEV;
285 	return sprintf(buf, "%d\n",
286 		       channel_latency(hv_dev->channel,
287 				       vmbus_connection.monitor_pages[0]));
288 }
289 static DEVICE_ATTR_RO(server_monitor_latency);
290 
291 static ssize_t client_monitor_latency_show(struct device *dev,
292 					   struct device_attribute *dev_attr,
293 					   char *buf)
294 {
295 	struct hv_device *hv_dev = device_to_hv_device(dev);
296 
297 	if (!hv_dev->channel)
298 		return -ENODEV;
299 	return sprintf(buf, "%d\n",
300 		       channel_latency(hv_dev->channel,
301 				       vmbus_connection.monitor_pages[1]));
302 }
303 static DEVICE_ATTR_RO(client_monitor_latency);
304 
305 static ssize_t server_monitor_conn_id_show(struct device *dev,
306 					   struct device_attribute *dev_attr,
307 					   char *buf)
308 {
309 	struct hv_device *hv_dev = device_to_hv_device(dev);
310 
311 	if (!hv_dev->channel)
312 		return -ENODEV;
313 	return sprintf(buf, "%d\n",
314 		       channel_conn_id(hv_dev->channel,
315 				       vmbus_connection.monitor_pages[0]));
316 }
317 static DEVICE_ATTR_RO(server_monitor_conn_id);
318 
319 static ssize_t client_monitor_conn_id_show(struct device *dev,
320 					   struct device_attribute *dev_attr,
321 					   char *buf)
322 {
323 	struct hv_device *hv_dev = device_to_hv_device(dev);
324 
325 	if (!hv_dev->channel)
326 		return -ENODEV;
327 	return sprintf(buf, "%d\n",
328 		       channel_conn_id(hv_dev->channel,
329 				       vmbus_connection.monitor_pages[1]));
330 }
331 static DEVICE_ATTR_RO(client_monitor_conn_id);
332 
333 static ssize_t out_intr_mask_show(struct device *dev,
334 				  struct device_attribute *dev_attr, char *buf)
335 {
336 	struct hv_device *hv_dev = device_to_hv_device(dev);
337 	struct hv_ring_buffer_debug_info outbound;
338 	int ret;
339 
340 	if (!hv_dev->channel)
341 		return -ENODEV;
342 
343 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
344 					  &outbound);
345 	if (ret < 0)
346 		return ret;
347 
348 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
349 }
350 static DEVICE_ATTR_RO(out_intr_mask);
351 
352 static ssize_t out_read_index_show(struct device *dev,
353 				   struct device_attribute *dev_attr, char *buf)
354 {
355 	struct hv_device *hv_dev = device_to_hv_device(dev);
356 	struct hv_ring_buffer_debug_info outbound;
357 	int ret;
358 
359 	if (!hv_dev->channel)
360 		return -ENODEV;
361 
362 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
363 					  &outbound);
364 	if (ret < 0)
365 		return ret;
366 	return sprintf(buf, "%d\n", outbound.current_read_index);
367 }
368 static DEVICE_ATTR_RO(out_read_index);
369 
370 static ssize_t out_write_index_show(struct device *dev,
371 				    struct device_attribute *dev_attr,
372 				    char *buf)
373 {
374 	struct hv_device *hv_dev = device_to_hv_device(dev);
375 	struct hv_ring_buffer_debug_info outbound;
376 	int ret;
377 
378 	if (!hv_dev->channel)
379 		return -ENODEV;
380 
381 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
382 					  &outbound);
383 	if (ret < 0)
384 		return ret;
385 	return sprintf(buf, "%d\n", outbound.current_write_index);
386 }
387 static DEVICE_ATTR_RO(out_write_index);
388 
389 static ssize_t out_read_bytes_avail_show(struct device *dev,
390 					 struct device_attribute *dev_attr,
391 					 char *buf)
392 {
393 	struct hv_device *hv_dev = device_to_hv_device(dev);
394 	struct hv_ring_buffer_debug_info outbound;
395 	int ret;
396 
397 	if (!hv_dev->channel)
398 		return -ENODEV;
399 
400 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
401 					  &outbound);
402 	if (ret < 0)
403 		return ret;
404 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
405 }
406 static DEVICE_ATTR_RO(out_read_bytes_avail);
407 
408 static ssize_t out_write_bytes_avail_show(struct device *dev,
409 					  struct device_attribute *dev_attr,
410 					  char *buf)
411 {
412 	struct hv_device *hv_dev = device_to_hv_device(dev);
413 	struct hv_ring_buffer_debug_info outbound;
414 	int ret;
415 
416 	if (!hv_dev->channel)
417 		return -ENODEV;
418 
419 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
420 					  &outbound);
421 	if (ret < 0)
422 		return ret;
423 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
424 }
425 static DEVICE_ATTR_RO(out_write_bytes_avail);
426 
427 static ssize_t in_intr_mask_show(struct device *dev,
428 				 struct device_attribute *dev_attr, char *buf)
429 {
430 	struct hv_device *hv_dev = device_to_hv_device(dev);
431 	struct hv_ring_buffer_debug_info inbound;
432 	int ret;
433 
434 	if (!hv_dev->channel)
435 		return -ENODEV;
436 
437 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
438 	if (ret < 0)
439 		return ret;
440 
441 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
442 }
443 static DEVICE_ATTR_RO(in_intr_mask);
444 
445 static ssize_t in_read_index_show(struct device *dev,
446 				  struct device_attribute *dev_attr, char *buf)
447 {
448 	struct hv_device *hv_dev = device_to_hv_device(dev);
449 	struct hv_ring_buffer_debug_info inbound;
450 	int ret;
451 
452 	if (!hv_dev->channel)
453 		return -ENODEV;
454 
455 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
456 	if (ret < 0)
457 		return ret;
458 
459 	return sprintf(buf, "%d\n", inbound.current_read_index);
460 }
461 static DEVICE_ATTR_RO(in_read_index);
462 
463 static ssize_t in_write_index_show(struct device *dev,
464 				   struct device_attribute *dev_attr, char *buf)
465 {
466 	struct hv_device *hv_dev = device_to_hv_device(dev);
467 	struct hv_ring_buffer_debug_info inbound;
468 	int ret;
469 
470 	if (!hv_dev->channel)
471 		return -ENODEV;
472 
473 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
474 	if (ret < 0)
475 		return ret;
476 
477 	return sprintf(buf, "%d\n", inbound.current_write_index);
478 }
479 static DEVICE_ATTR_RO(in_write_index);
480 
481 static ssize_t in_read_bytes_avail_show(struct device *dev,
482 					struct device_attribute *dev_attr,
483 					char *buf)
484 {
485 	struct hv_device *hv_dev = device_to_hv_device(dev);
486 	struct hv_ring_buffer_debug_info inbound;
487 	int ret;
488 
489 	if (!hv_dev->channel)
490 		return -ENODEV;
491 
492 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
493 	if (ret < 0)
494 		return ret;
495 
496 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
497 }
498 static DEVICE_ATTR_RO(in_read_bytes_avail);
499 
500 static ssize_t in_write_bytes_avail_show(struct device *dev,
501 					 struct device_attribute *dev_attr,
502 					 char *buf)
503 {
504 	struct hv_device *hv_dev = device_to_hv_device(dev);
505 	struct hv_ring_buffer_debug_info inbound;
506 	int ret;
507 
508 	if (!hv_dev->channel)
509 		return -ENODEV;
510 
511 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
512 	if (ret < 0)
513 		return ret;
514 
515 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
516 }
517 static DEVICE_ATTR_RO(in_write_bytes_avail);
518 
519 static ssize_t channel_vp_mapping_show(struct device *dev,
520 				       struct device_attribute *dev_attr,
521 				       char *buf)
522 {
523 	struct hv_device *hv_dev = device_to_hv_device(dev);
524 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
525 	int buf_size = PAGE_SIZE, n_written, tot_written;
526 	struct list_head *cur;
527 
528 	if (!channel)
529 		return -ENODEV;
530 
531 	mutex_lock(&vmbus_connection.channel_mutex);
532 
533 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
534 		channel->offermsg.child_relid, channel->target_cpu);
535 
536 	list_for_each(cur, &channel->sc_list) {
537 		if (tot_written >= buf_size - 1)
538 			break;
539 
540 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
541 		n_written = scnprintf(buf + tot_written,
542 				     buf_size - tot_written,
543 				     "%u:%u\n",
544 				     cur_sc->offermsg.child_relid,
545 				     cur_sc->target_cpu);
546 		tot_written += n_written;
547 	}
548 
549 	mutex_unlock(&vmbus_connection.channel_mutex);
550 
551 	return tot_written;
552 }
553 static DEVICE_ATTR_RO(channel_vp_mapping);
554 
555 static ssize_t vendor_show(struct device *dev,
556 			   struct device_attribute *dev_attr,
557 			   char *buf)
558 {
559 	struct hv_device *hv_dev = device_to_hv_device(dev);
560 
561 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
562 }
563 static DEVICE_ATTR_RO(vendor);
564 
565 static ssize_t device_show(struct device *dev,
566 			   struct device_attribute *dev_attr,
567 			   char *buf)
568 {
569 	struct hv_device *hv_dev = device_to_hv_device(dev);
570 
571 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
572 }
573 static DEVICE_ATTR_RO(device);
574 
575 static ssize_t driver_override_store(struct device *dev,
576 				     struct device_attribute *attr,
577 				     const char *buf, size_t count)
578 {
579 	struct hv_device *hv_dev = device_to_hv_device(dev);
580 	int ret;
581 
582 	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
583 	if (ret)
584 		return ret;
585 
586 	return count;
587 }
588 
589 static ssize_t driver_override_show(struct device *dev,
590 				    struct device_attribute *attr, char *buf)
591 {
592 	struct hv_device *hv_dev = device_to_hv_device(dev);
593 	ssize_t len;
594 
595 	device_lock(dev);
596 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
597 	device_unlock(dev);
598 
599 	return len;
600 }
601 static DEVICE_ATTR_RW(driver_override);
602 
603 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
604 static struct attribute *vmbus_dev_attrs[] = {
605 	&dev_attr_id.attr,
606 	&dev_attr_state.attr,
607 	&dev_attr_monitor_id.attr,
608 	&dev_attr_class_id.attr,
609 	&dev_attr_device_id.attr,
610 	&dev_attr_modalias.attr,
611 #ifdef CONFIG_NUMA
612 	&dev_attr_numa_node.attr,
613 #endif
614 	&dev_attr_server_monitor_pending.attr,
615 	&dev_attr_client_monitor_pending.attr,
616 	&dev_attr_server_monitor_latency.attr,
617 	&dev_attr_client_monitor_latency.attr,
618 	&dev_attr_server_monitor_conn_id.attr,
619 	&dev_attr_client_monitor_conn_id.attr,
620 	&dev_attr_out_intr_mask.attr,
621 	&dev_attr_out_read_index.attr,
622 	&dev_attr_out_write_index.attr,
623 	&dev_attr_out_read_bytes_avail.attr,
624 	&dev_attr_out_write_bytes_avail.attr,
625 	&dev_attr_in_intr_mask.attr,
626 	&dev_attr_in_read_index.attr,
627 	&dev_attr_in_write_index.attr,
628 	&dev_attr_in_read_bytes_avail.attr,
629 	&dev_attr_in_write_bytes_avail.attr,
630 	&dev_attr_channel_vp_mapping.attr,
631 	&dev_attr_vendor.attr,
632 	&dev_attr_device.attr,
633 	&dev_attr_driver_override.attr,
634 	NULL,
635 };
636 
637 /*
638  * Device-level attribute_group callback function. Returns the permission for
639  * each attribute, and returns 0 if an attribute is not visible.
640  */
641 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
642 					 struct attribute *attr, int idx)
643 {
644 	struct device *dev = kobj_to_dev(kobj);
645 	const struct hv_device *hv_dev = device_to_hv_device(dev);
646 
647 	/* Hide the monitor attributes if the monitor mechanism is not used. */
648 	if (!hv_dev->channel->offermsg.monitor_allocated &&
649 	    (attr == &dev_attr_monitor_id.attr ||
650 	     attr == &dev_attr_server_monitor_pending.attr ||
651 	     attr == &dev_attr_client_monitor_pending.attr ||
652 	     attr == &dev_attr_server_monitor_latency.attr ||
653 	     attr == &dev_attr_client_monitor_latency.attr ||
654 	     attr == &dev_attr_server_monitor_conn_id.attr ||
655 	     attr == &dev_attr_client_monitor_conn_id.attr))
656 		return 0;
657 
658 	return attr->mode;
659 }
660 
661 static const struct attribute_group vmbus_dev_group = {
662 	.attrs = vmbus_dev_attrs,
663 	.is_visible = vmbus_dev_attr_is_visible
664 };
665 __ATTRIBUTE_GROUPS(vmbus_dev);
666 
667 /* Set up the attribute for /sys/bus/vmbus/hibernation */
668 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
669 {
670 	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
671 }
672 
673 static BUS_ATTR_RO(hibernation);
674 
675 static struct attribute *vmbus_bus_attrs[] = {
676 	&bus_attr_hibernation.attr,
677 	NULL,
678 };
679 static const struct attribute_group vmbus_bus_group = {
680 	.attrs = vmbus_bus_attrs,
681 };
682 __ATTRIBUTE_GROUPS(vmbus_bus);
683 
684 /*
685  * vmbus_uevent - add uevent for our device
686  *
687  * This routine is invoked when a device is added or removed on the vmbus to
688  * generate a uevent to udev in the userspace. The udev will then look at its
689  * rule and the uevent generated here to load the appropriate driver
690  *
691  * The alias string will be of the form vmbus:guid where guid is the string
692  * representation of the device guid (each byte of the guid will be
693  * represented with two hex characters.
694  */
695 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
696 {
697 	struct hv_device *dev = device_to_hv_device(device);
698 	const char *format = "MODALIAS=vmbus:%*phN";
699 
700 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
701 }
702 
703 static const struct hv_vmbus_device_id *
704 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
705 {
706 	if (id == NULL)
707 		return NULL; /* empty device table */
708 
709 	for (; !guid_is_null(&id->guid); id++)
710 		if (guid_equal(&id->guid, guid))
711 			return id;
712 
713 	return NULL;
714 }
715 
716 static const struct hv_vmbus_device_id *
717 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
718 {
719 	const struct hv_vmbus_device_id *id = NULL;
720 	struct vmbus_dynid *dynid;
721 
722 	spin_lock(&drv->dynids.lock);
723 	list_for_each_entry(dynid, &drv->dynids.list, node) {
724 		if (guid_equal(&dynid->id.guid, guid)) {
725 			id = &dynid->id;
726 			break;
727 		}
728 	}
729 	spin_unlock(&drv->dynids.lock);
730 
731 	return id;
732 }
733 
734 static const struct hv_vmbus_device_id vmbus_device_null;
735 
736 /*
737  * Return a matching hv_vmbus_device_id pointer.
738  * If there is no match, return NULL.
739  */
740 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
741 							struct hv_device *dev)
742 {
743 	const guid_t *guid = &dev->dev_type;
744 	const struct hv_vmbus_device_id *id;
745 
746 	/* When driver_override is set, only bind to the matching driver */
747 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
748 		return NULL;
749 
750 	/* Look at the dynamic ids first, before the static ones */
751 	id = hv_vmbus_dynid_match(drv, guid);
752 	if (!id)
753 		id = hv_vmbus_dev_match(drv->id_table, guid);
754 
755 	/* driver_override will always match, send a dummy id */
756 	if (!id && dev->driver_override)
757 		id = &vmbus_device_null;
758 
759 	return id;
760 }
761 
762 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
763 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
764 {
765 	struct vmbus_dynid *dynid;
766 
767 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
768 	if (!dynid)
769 		return -ENOMEM;
770 
771 	dynid->id.guid = *guid;
772 
773 	spin_lock(&drv->dynids.lock);
774 	list_add_tail(&dynid->node, &drv->dynids.list);
775 	spin_unlock(&drv->dynids.lock);
776 
777 	return driver_attach(&drv->driver);
778 }
779 
780 static void vmbus_free_dynids(struct hv_driver *drv)
781 {
782 	struct vmbus_dynid *dynid, *n;
783 
784 	spin_lock(&drv->dynids.lock);
785 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
786 		list_del(&dynid->node);
787 		kfree(dynid);
788 	}
789 	spin_unlock(&drv->dynids.lock);
790 }
791 
792 /*
793  * store_new_id - sysfs frontend to vmbus_add_dynid()
794  *
795  * Allow GUIDs to be added to an existing driver via sysfs.
796  */
797 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
798 			    size_t count)
799 {
800 	struct hv_driver *drv = drv_to_hv_drv(driver);
801 	guid_t guid;
802 	ssize_t retval;
803 
804 	retval = guid_parse(buf, &guid);
805 	if (retval)
806 		return retval;
807 
808 	if (hv_vmbus_dynid_match(drv, &guid))
809 		return -EEXIST;
810 
811 	retval = vmbus_add_dynid(drv, &guid);
812 	if (retval)
813 		return retval;
814 	return count;
815 }
816 static DRIVER_ATTR_WO(new_id);
817 
818 /*
819  * store_remove_id - remove a PCI device ID from this driver
820  *
821  * Removes a dynamic pci device ID to this driver.
822  */
823 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
824 			       size_t count)
825 {
826 	struct hv_driver *drv = drv_to_hv_drv(driver);
827 	struct vmbus_dynid *dynid, *n;
828 	guid_t guid;
829 	ssize_t retval;
830 
831 	retval = guid_parse(buf, &guid);
832 	if (retval)
833 		return retval;
834 
835 	retval = -ENODEV;
836 	spin_lock(&drv->dynids.lock);
837 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
838 		struct hv_vmbus_device_id *id = &dynid->id;
839 
840 		if (guid_equal(&id->guid, &guid)) {
841 			list_del(&dynid->node);
842 			kfree(dynid);
843 			retval = count;
844 			break;
845 		}
846 	}
847 	spin_unlock(&drv->dynids.lock);
848 
849 	return retval;
850 }
851 static DRIVER_ATTR_WO(remove_id);
852 
853 static struct attribute *vmbus_drv_attrs[] = {
854 	&driver_attr_new_id.attr,
855 	&driver_attr_remove_id.attr,
856 	NULL,
857 };
858 ATTRIBUTE_GROUPS(vmbus_drv);
859 
860 
861 /*
862  * vmbus_match - Attempt to match the specified device to the specified driver
863  */
864 static int vmbus_match(struct device *device, struct device_driver *driver)
865 {
866 	struct hv_driver *drv = drv_to_hv_drv(driver);
867 	struct hv_device *hv_dev = device_to_hv_device(device);
868 
869 	/* The hv_sock driver handles all hv_sock offers. */
870 	if (is_hvsock_channel(hv_dev->channel))
871 		return drv->hvsock;
872 
873 	if (hv_vmbus_get_id(drv, hv_dev))
874 		return 1;
875 
876 	return 0;
877 }
878 
879 /*
880  * vmbus_probe - Add the new vmbus's child device
881  */
882 static int vmbus_probe(struct device *child_device)
883 {
884 	int ret = 0;
885 	struct hv_driver *drv =
886 			drv_to_hv_drv(child_device->driver);
887 	struct hv_device *dev = device_to_hv_device(child_device);
888 	const struct hv_vmbus_device_id *dev_id;
889 
890 	dev_id = hv_vmbus_get_id(drv, dev);
891 	if (drv->probe) {
892 		ret = drv->probe(dev, dev_id);
893 		if (ret != 0)
894 			pr_err("probe failed for device %s (%d)\n",
895 			       dev_name(child_device), ret);
896 
897 	} else {
898 		pr_err("probe not set for driver %s\n",
899 		       dev_name(child_device));
900 		ret = -ENODEV;
901 	}
902 	return ret;
903 }
904 
905 /*
906  * vmbus_dma_configure -- Configure DMA coherence for VMbus device
907  */
908 static int vmbus_dma_configure(struct device *child_device)
909 {
910 	/*
911 	 * On ARM64, propagate the DMA coherence setting from the top level
912 	 * VMbus ACPI device to the child VMbus device being added here.
913 	 * On x86/x64 coherence is assumed and these calls have no effect.
914 	 */
915 	hv_setup_dma_ops(child_device,
916 		device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
917 	return 0;
918 }
919 
920 /*
921  * vmbus_remove - Remove a vmbus device
922  */
923 static void vmbus_remove(struct device *child_device)
924 {
925 	struct hv_driver *drv;
926 	struct hv_device *dev = device_to_hv_device(child_device);
927 
928 	if (child_device->driver) {
929 		drv = drv_to_hv_drv(child_device->driver);
930 		if (drv->remove)
931 			drv->remove(dev);
932 	}
933 }
934 
935 /*
936  * vmbus_shutdown - Shutdown a vmbus device
937  */
938 static void vmbus_shutdown(struct device *child_device)
939 {
940 	struct hv_driver *drv;
941 	struct hv_device *dev = device_to_hv_device(child_device);
942 
943 
944 	/* The device may not be attached yet */
945 	if (!child_device->driver)
946 		return;
947 
948 	drv = drv_to_hv_drv(child_device->driver);
949 
950 	if (drv->shutdown)
951 		drv->shutdown(dev);
952 }
953 
954 #ifdef CONFIG_PM_SLEEP
955 /*
956  * vmbus_suspend - Suspend a vmbus device
957  */
958 static int vmbus_suspend(struct device *child_device)
959 {
960 	struct hv_driver *drv;
961 	struct hv_device *dev = device_to_hv_device(child_device);
962 
963 	/* The device may not be attached yet */
964 	if (!child_device->driver)
965 		return 0;
966 
967 	drv = drv_to_hv_drv(child_device->driver);
968 	if (!drv->suspend)
969 		return -EOPNOTSUPP;
970 
971 	return drv->suspend(dev);
972 }
973 
974 /*
975  * vmbus_resume - Resume a vmbus device
976  */
977 static int vmbus_resume(struct device *child_device)
978 {
979 	struct hv_driver *drv;
980 	struct hv_device *dev = device_to_hv_device(child_device);
981 
982 	/* The device may not be attached yet */
983 	if (!child_device->driver)
984 		return 0;
985 
986 	drv = drv_to_hv_drv(child_device->driver);
987 	if (!drv->resume)
988 		return -EOPNOTSUPP;
989 
990 	return drv->resume(dev);
991 }
992 #else
993 #define vmbus_suspend NULL
994 #define vmbus_resume NULL
995 #endif /* CONFIG_PM_SLEEP */
996 
997 /*
998  * vmbus_device_release - Final callback release of the vmbus child device
999  */
1000 static void vmbus_device_release(struct device *device)
1001 {
1002 	struct hv_device *hv_dev = device_to_hv_device(device);
1003 	struct vmbus_channel *channel = hv_dev->channel;
1004 
1005 	hv_debug_rm_dev_dir(hv_dev);
1006 
1007 	mutex_lock(&vmbus_connection.channel_mutex);
1008 	hv_process_channel_removal(channel);
1009 	mutex_unlock(&vmbus_connection.channel_mutex);
1010 	kfree(hv_dev);
1011 }
1012 
1013 /*
1014  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1015  *
1016  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1017  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1018  * is no way to wake up a Generation-2 VM.
1019  *
1020  * The other 4 ops are for hibernation.
1021  */
1022 
1023 static const struct dev_pm_ops vmbus_pm = {
1024 	.suspend_noirq	= NULL,
1025 	.resume_noirq	= NULL,
1026 	.freeze_noirq	= vmbus_suspend,
1027 	.thaw_noirq	= vmbus_resume,
1028 	.poweroff_noirq	= vmbus_suspend,
1029 	.restore_noirq	= vmbus_resume,
1030 };
1031 
1032 /* The one and only one */
1033 static struct bus_type  hv_bus = {
1034 	.name =		"vmbus",
1035 	.match =		vmbus_match,
1036 	.shutdown =		vmbus_shutdown,
1037 	.remove =		vmbus_remove,
1038 	.probe =		vmbus_probe,
1039 	.uevent =		vmbus_uevent,
1040 	.dma_configure =	vmbus_dma_configure,
1041 	.dev_groups =		vmbus_dev_groups,
1042 	.drv_groups =		vmbus_drv_groups,
1043 	.bus_groups =		vmbus_bus_groups,
1044 	.pm =			&vmbus_pm,
1045 };
1046 
1047 struct onmessage_work_context {
1048 	struct work_struct work;
1049 	struct {
1050 		struct hv_message_header header;
1051 		u8 payload[];
1052 	} msg;
1053 };
1054 
1055 static void vmbus_onmessage_work(struct work_struct *work)
1056 {
1057 	struct onmessage_work_context *ctx;
1058 
1059 	/* Do not process messages if we're in DISCONNECTED state */
1060 	if (vmbus_connection.conn_state == DISCONNECTED)
1061 		return;
1062 
1063 	ctx = container_of(work, struct onmessage_work_context,
1064 			   work);
1065 	vmbus_onmessage((struct vmbus_channel_message_header *)
1066 			&ctx->msg.payload);
1067 	kfree(ctx);
1068 }
1069 
1070 void vmbus_on_msg_dpc(unsigned long data)
1071 {
1072 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1073 	void *page_addr = hv_cpu->synic_message_page;
1074 	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1075 				  VMBUS_MESSAGE_SINT;
1076 	struct vmbus_channel_message_header *hdr;
1077 	enum vmbus_channel_message_type msgtype;
1078 	const struct vmbus_channel_message_table_entry *entry;
1079 	struct onmessage_work_context *ctx;
1080 	__u8 payload_size;
1081 	u32 message_type;
1082 
1083 	/*
1084 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1085 	 * it is being used in 'struct vmbus_channel_message_header' definition
1086 	 * which is supposed to match hypervisor ABI.
1087 	 */
1088 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1089 
1090 	/*
1091 	 * Since the message is in memory shared with the host, an erroneous or
1092 	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1093 	 * or individual message handlers are executing; to prevent this, copy
1094 	 * the message into private memory.
1095 	 */
1096 	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1097 
1098 	message_type = msg_copy.header.message_type;
1099 	if (message_type == HVMSG_NONE)
1100 		/* no msg */
1101 		return;
1102 
1103 	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1104 	msgtype = hdr->msgtype;
1105 
1106 	trace_vmbus_on_msg_dpc(hdr);
1107 
1108 	if (msgtype >= CHANNELMSG_COUNT) {
1109 		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1110 		goto msg_handled;
1111 	}
1112 
1113 	payload_size = msg_copy.header.payload_size;
1114 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1115 		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1116 		goto msg_handled;
1117 	}
1118 
1119 	entry = &channel_message_table[msgtype];
1120 
1121 	if (!entry->message_handler)
1122 		goto msg_handled;
1123 
1124 	if (payload_size < entry->min_payload_len) {
1125 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1126 		goto msg_handled;
1127 	}
1128 
1129 	if (entry->handler_type	== VMHT_BLOCKING) {
1130 		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1131 		if (ctx == NULL)
1132 			return;
1133 
1134 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1135 		memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
1136 
1137 		/*
1138 		 * The host can generate a rescind message while we
1139 		 * may still be handling the original offer. We deal with
1140 		 * this condition by relying on the synchronization provided
1141 		 * by offer_in_progress and by channel_mutex.  See also the
1142 		 * inline comments in vmbus_onoffer_rescind().
1143 		 */
1144 		switch (msgtype) {
1145 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1146 			/*
1147 			 * If we are handling the rescind message;
1148 			 * schedule the work on the global work queue.
1149 			 *
1150 			 * The OFFER message and the RESCIND message should
1151 			 * not be handled by the same serialized work queue,
1152 			 * because the OFFER handler may call vmbus_open(),
1153 			 * which tries to open the channel by sending an
1154 			 * OPEN_CHANNEL message to the host and waits for
1155 			 * the host's response; however, if the host has
1156 			 * rescinded the channel before it receives the
1157 			 * OPEN_CHANNEL message, the host just silently
1158 			 * ignores the OPEN_CHANNEL message; as a result,
1159 			 * the guest's OFFER handler hangs for ever, if we
1160 			 * handle the RESCIND message in the same serialized
1161 			 * work queue: the RESCIND handler can not start to
1162 			 * run before the OFFER handler finishes.
1163 			 */
1164 			if (vmbus_connection.ignore_any_offer_msg)
1165 				break;
1166 			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1167 			break;
1168 
1169 		case CHANNELMSG_OFFERCHANNEL:
1170 			/*
1171 			 * The host sends the offer message of a given channel
1172 			 * before sending the rescind message of the same
1173 			 * channel.  These messages are sent to the guest's
1174 			 * connect CPU; the guest then starts processing them
1175 			 * in the tasklet handler on this CPU:
1176 			 *
1177 			 * VMBUS_CONNECT_CPU
1178 			 *
1179 			 * [vmbus_on_msg_dpc()]
1180 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1181 			 * queue_work()
1182 			 * ...
1183 			 * [vmbus_on_msg_dpc()]
1184 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1185 			 *
1186 			 * We rely on the memory-ordering properties of the
1187 			 * queue_work() and schedule_work() primitives, which
1188 			 * guarantee that the atomic increment will be visible
1189 			 * to the CPUs which will execute the offer & rescind
1190 			 * works by the time these works will start execution.
1191 			 */
1192 			if (vmbus_connection.ignore_any_offer_msg)
1193 				break;
1194 			atomic_inc(&vmbus_connection.offer_in_progress);
1195 			fallthrough;
1196 
1197 		default:
1198 			queue_work(vmbus_connection.work_queue, &ctx->work);
1199 		}
1200 	} else
1201 		entry->message_handler(hdr);
1202 
1203 msg_handled:
1204 	vmbus_signal_eom(msg, message_type);
1205 }
1206 
1207 #ifdef CONFIG_PM_SLEEP
1208 /*
1209  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1210  * hibernation, because hv_sock connections can not persist across hibernation.
1211  */
1212 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1213 {
1214 	struct onmessage_work_context *ctx;
1215 	struct vmbus_channel_rescind_offer *rescind;
1216 
1217 	WARN_ON(!is_hvsock_channel(channel));
1218 
1219 	/*
1220 	 * Allocation size is small and the allocation should really not fail,
1221 	 * otherwise the state of the hv_sock connections ends up in limbo.
1222 	 */
1223 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1224 		      GFP_KERNEL | __GFP_NOFAIL);
1225 
1226 	/*
1227 	 * So far, these are not really used by Linux. Just set them to the
1228 	 * reasonable values conforming to the definitions of the fields.
1229 	 */
1230 	ctx->msg.header.message_type = 1;
1231 	ctx->msg.header.payload_size = sizeof(*rescind);
1232 
1233 	/* These values are actually used by Linux. */
1234 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1235 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1236 	rescind->child_relid = channel->offermsg.child_relid;
1237 
1238 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1239 
1240 	queue_work(vmbus_connection.work_queue, &ctx->work);
1241 }
1242 #endif /* CONFIG_PM_SLEEP */
1243 
1244 /*
1245  * Schedule all channels with events pending
1246  */
1247 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1248 {
1249 	unsigned long *recv_int_page;
1250 	u32 maxbits, relid;
1251 
1252 	/*
1253 	 * The event page can be directly checked to get the id of
1254 	 * the channel that has the interrupt pending.
1255 	 */
1256 	void *page_addr = hv_cpu->synic_event_page;
1257 	union hv_synic_event_flags *event
1258 		= (union hv_synic_event_flags *)page_addr +
1259 					 VMBUS_MESSAGE_SINT;
1260 
1261 	maxbits = HV_EVENT_FLAGS_COUNT;
1262 	recv_int_page = event->flags;
1263 
1264 	if (unlikely(!recv_int_page))
1265 		return;
1266 
1267 	for_each_set_bit(relid, recv_int_page, maxbits) {
1268 		void (*callback_fn)(void *context);
1269 		struct vmbus_channel *channel;
1270 
1271 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1272 			continue;
1273 
1274 		/* Special case - vmbus channel protocol msg */
1275 		if (relid == 0)
1276 			continue;
1277 
1278 		/*
1279 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1280 		 * Guarantees that the channel data structure doesn't
1281 		 * get freed while the channel pointer below is being
1282 		 * dereferenced.
1283 		 */
1284 		rcu_read_lock();
1285 
1286 		/* Find channel based on relid */
1287 		channel = relid2channel(relid);
1288 		if (channel == NULL)
1289 			goto sched_unlock_rcu;
1290 
1291 		if (channel->rescind)
1292 			goto sched_unlock_rcu;
1293 
1294 		/*
1295 		 * Make sure that the ring buffer data structure doesn't get
1296 		 * freed while we dereference the ring buffer pointer.  Test
1297 		 * for the channel's onchannel_callback being NULL within a
1298 		 * sched_lock critical section.  See also the inline comments
1299 		 * in vmbus_reset_channel_cb().
1300 		 */
1301 		spin_lock(&channel->sched_lock);
1302 
1303 		callback_fn = channel->onchannel_callback;
1304 		if (unlikely(callback_fn == NULL))
1305 			goto sched_unlock;
1306 
1307 		trace_vmbus_chan_sched(channel);
1308 
1309 		++channel->interrupts;
1310 
1311 		switch (channel->callback_mode) {
1312 		case HV_CALL_ISR:
1313 			(*callback_fn)(channel->channel_callback_context);
1314 			break;
1315 
1316 		case HV_CALL_BATCHED:
1317 			hv_begin_read(&channel->inbound);
1318 			fallthrough;
1319 		case HV_CALL_DIRECT:
1320 			tasklet_schedule(&channel->callback_event);
1321 		}
1322 
1323 sched_unlock:
1324 		spin_unlock(&channel->sched_lock);
1325 sched_unlock_rcu:
1326 		rcu_read_unlock();
1327 	}
1328 }
1329 
1330 static void vmbus_isr(void)
1331 {
1332 	struct hv_per_cpu_context *hv_cpu
1333 		= this_cpu_ptr(hv_context.cpu_context);
1334 	void *page_addr;
1335 	struct hv_message *msg;
1336 
1337 	vmbus_chan_sched(hv_cpu);
1338 
1339 	page_addr = hv_cpu->synic_message_page;
1340 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1341 
1342 	/* Check if there are actual msgs to be processed */
1343 	if (msg->header.message_type != HVMSG_NONE) {
1344 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1345 			hv_stimer0_isr();
1346 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1347 		} else
1348 			tasklet_schedule(&hv_cpu->msg_dpc);
1349 	}
1350 
1351 	add_interrupt_randomness(vmbus_interrupt);
1352 }
1353 
1354 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1355 {
1356 	vmbus_isr();
1357 	return IRQ_HANDLED;
1358 }
1359 
1360 /*
1361  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1362  * buffer and call into Hyper-V to transfer the data.
1363  */
1364 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1365 			 enum kmsg_dump_reason reason)
1366 {
1367 	struct kmsg_dump_iter iter;
1368 	size_t bytes_written;
1369 
1370 	/* We are only interested in panics. */
1371 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1372 		return;
1373 
1374 	/*
1375 	 * Write dump contents to the page. No need to synchronize; panic should
1376 	 * be single-threaded.
1377 	 */
1378 	kmsg_dump_rewind(&iter);
1379 	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1380 			     &bytes_written);
1381 	if (!bytes_written)
1382 		return;
1383 	/*
1384 	 * P3 to contain the physical address of the panic page & P4 to
1385 	 * contain the size of the panic data in that page. Rest of the
1386 	 * registers are no-op when the NOTIFY_MSG flag is set.
1387 	 */
1388 	hv_set_register(HV_REGISTER_CRASH_P0, 0);
1389 	hv_set_register(HV_REGISTER_CRASH_P1, 0);
1390 	hv_set_register(HV_REGISTER_CRASH_P2, 0);
1391 	hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1392 	hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1393 
1394 	/*
1395 	 * Let Hyper-V know there is crash data available along with
1396 	 * the panic message.
1397 	 */
1398 	hv_set_register(HV_REGISTER_CRASH_CTL,
1399 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1400 }
1401 
1402 static struct kmsg_dumper hv_kmsg_dumper = {
1403 	.dump = hv_kmsg_dump,
1404 };
1405 
1406 static void hv_kmsg_dump_register(void)
1407 {
1408 	int ret;
1409 
1410 	hv_panic_page = hv_alloc_hyperv_zeroed_page();
1411 	if (!hv_panic_page) {
1412 		pr_err("Hyper-V: panic message page memory allocation failed\n");
1413 		return;
1414 	}
1415 
1416 	ret = kmsg_dump_register(&hv_kmsg_dumper);
1417 	if (ret) {
1418 		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1419 		hv_free_hyperv_page((unsigned long)hv_panic_page);
1420 		hv_panic_page = NULL;
1421 	}
1422 }
1423 
1424 static struct ctl_table_header *hv_ctl_table_hdr;
1425 
1426 /*
1427  * sysctl option to allow the user to control whether kmsg data should be
1428  * reported to Hyper-V on panic.
1429  */
1430 static struct ctl_table hv_ctl_table[] = {
1431 	{
1432 		.procname       = "hyperv_record_panic_msg",
1433 		.data           = &sysctl_record_panic_msg,
1434 		.maxlen         = sizeof(int),
1435 		.mode           = 0644,
1436 		.proc_handler   = proc_dointvec_minmax,
1437 		.extra1		= SYSCTL_ZERO,
1438 		.extra2		= SYSCTL_ONE
1439 	},
1440 	{}
1441 };
1442 
1443 static struct ctl_table hv_root_table[] = {
1444 	{
1445 		.procname	= "kernel",
1446 		.mode		= 0555,
1447 		.child		= hv_ctl_table
1448 	},
1449 	{}
1450 };
1451 
1452 /*
1453  * vmbus_bus_init -Main vmbus driver initialization routine.
1454  *
1455  * Here, we
1456  *	- initialize the vmbus driver context
1457  *	- invoke the vmbus hv main init routine
1458  *	- retrieve the channel offers
1459  */
1460 static int vmbus_bus_init(void)
1461 {
1462 	int ret;
1463 
1464 	ret = hv_init();
1465 	if (ret != 0) {
1466 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1467 		return ret;
1468 	}
1469 
1470 	ret = bus_register(&hv_bus);
1471 	if (ret)
1472 		return ret;
1473 
1474 	/*
1475 	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1476 	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1477 	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1478 	 * If not on such an architecture (e.g., x86/x64), then rely on
1479 	 * code in the arch-specific portion of the code tree to connect
1480 	 * the VMbus interrupt handler.
1481 	 */
1482 
1483 	if (vmbus_irq == -1) {
1484 		hv_setup_vmbus_handler(vmbus_isr);
1485 	} else {
1486 		vmbus_evt = alloc_percpu(long);
1487 		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1488 				"Hyper-V VMbus", vmbus_evt);
1489 		if (ret) {
1490 			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1491 					vmbus_irq, ret);
1492 			free_percpu(vmbus_evt);
1493 			goto err_setup;
1494 		}
1495 	}
1496 
1497 	ret = hv_synic_alloc();
1498 	if (ret)
1499 		goto err_alloc;
1500 
1501 	/*
1502 	 * Initialize the per-cpu interrupt state and stimer state.
1503 	 * Then connect to the host.
1504 	 */
1505 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1506 				hv_synic_init, hv_synic_cleanup);
1507 	if (ret < 0)
1508 		goto err_cpuhp;
1509 	hyperv_cpuhp_online = ret;
1510 
1511 	ret = vmbus_connect();
1512 	if (ret)
1513 		goto err_connect;
1514 
1515 	if (hv_is_isolation_supported())
1516 		sysctl_record_panic_msg = 0;
1517 
1518 	/*
1519 	 * Only register if the crash MSRs are available
1520 	 */
1521 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1522 		u64 hyperv_crash_ctl;
1523 		/*
1524 		 * Panic message recording (sysctl_record_panic_msg)
1525 		 * is enabled by default in non-isolated guests and
1526 		 * disabled by default in isolated guests; the panic
1527 		 * message recording won't be available in isolated
1528 		 * guests should the following registration fail.
1529 		 */
1530 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1531 		if (!hv_ctl_table_hdr)
1532 			pr_err("Hyper-V: sysctl table register error");
1533 
1534 		/*
1535 		 * Register for panic kmsg callback only if the right
1536 		 * capability is supported by the hypervisor.
1537 		 */
1538 		hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1539 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1540 			hv_kmsg_dump_register();
1541 
1542 		register_die_notifier(&hyperv_die_block);
1543 	}
1544 
1545 	/*
1546 	 * Always register the panic notifier because we need to unload
1547 	 * the VMbus channel connection to prevent any VMbus
1548 	 * activity after the VM panics.
1549 	 */
1550 	atomic_notifier_chain_register(&panic_notifier_list,
1551 			       &hyperv_panic_block);
1552 
1553 	vmbus_request_offers();
1554 
1555 	return 0;
1556 
1557 err_connect:
1558 	cpuhp_remove_state(hyperv_cpuhp_online);
1559 err_cpuhp:
1560 	hv_synic_free();
1561 err_alloc:
1562 	if (vmbus_irq == -1) {
1563 		hv_remove_vmbus_handler();
1564 	} else {
1565 		free_percpu_irq(vmbus_irq, vmbus_evt);
1566 		free_percpu(vmbus_evt);
1567 	}
1568 err_setup:
1569 	bus_unregister(&hv_bus);
1570 	unregister_sysctl_table(hv_ctl_table_hdr);
1571 	hv_ctl_table_hdr = NULL;
1572 	return ret;
1573 }
1574 
1575 /**
1576  * __vmbus_child_driver_register() - Register a vmbus's driver
1577  * @hv_driver: Pointer to driver structure you want to register
1578  * @owner: owner module of the drv
1579  * @mod_name: module name string
1580  *
1581  * Registers the given driver with Linux through the 'driver_register()' call
1582  * and sets up the hyper-v vmbus handling for this driver.
1583  * It will return the state of the 'driver_register()' call.
1584  *
1585  */
1586 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1587 {
1588 	int ret;
1589 
1590 	pr_info("registering driver %s\n", hv_driver->name);
1591 
1592 	ret = vmbus_exists();
1593 	if (ret < 0)
1594 		return ret;
1595 
1596 	hv_driver->driver.name = hv_driver->name;
1597 	hv_driver->driver.owner = owner;
1598 	hv_driver->driver.mod_name = mod_name;
1599 	hv_driver->driver.bus = &hv_bus;
1600 
1601 	spin_lock_init(&hv_driver->dynids.lock);
1602 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1603 
1604 	ret = driver_register(&hv_driver->driver);
1605 
1606 	return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1609 
1610 /**
1611  * vmbus_driver_unregister() - Unregister a vmbus's driver
1612  * @hv_driver: Pointer to driver structure you want to
1613  *             un-register
1614  *
1615  * Un-register the given driver that was previous registered with a call to
1616  * vmbus_driver_register()
1617  */
1618 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1619 {
1620 	pr_info("unregistering driver %s\n", hv_driver->name);
1621 
1622 	if (!vmbus_exists()) {
1623 		driver_unregister(&hv_driver->driver);
1624 		vmbus_free_dynids(hv_driver);
1625 	}
1626 }
1627 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1628 
1629 
1630 /*
1631  * Called when last reference to channel is gone.
1632  */
1633 static void vmbus_chan_release(struct kobject *kobj)
1634 {
1635 	struct vmbus_channel *channel
1636 		= container_of(kobj, struct vmbus_channel, kobj);
1637 
1638 	kfree_rcu(channel, rcu);
1639 }
1640 
1641 struct vmbus_chan_attribute {
1642 	struct attribute attr;
1643 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1644 	ssize_t (*store)(struct vmbus_channel *chan,
1645 			 const char *buf, size_t count);
1646 };
1647 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1648 	struct vmbus_chan_attribute chan_attr_##_name \
1649 		= __ATTR(_name, _mode, _show, _store)
1650 #define VMBUS_CHAN_ATTR_RW(_name) \
1651 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1652 #define VMBUS_CHAN_ATTR_RO(_name) \
1653 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1654 #define VMBUS_CHAN_ATTR_WO(_name) \
1655 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1656 
1657 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1658 				    struct attribute *attr, char *buf)
1659 {
1660 	const struct vmbus_chan_attribute *attribute
1661 		= container_of(attr, struct vmbus_chan_attribute, attr);
1662 	struct vmbus_channel *chan
1663 		= container_of(kobj, struct vmbus_channel, kobj);
1664 
1665 	if (!attribute->show)
1666 		return -EIO;
1667 
1668 	return attribute->show(chan, buf);
1669 }
1670 
1671 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1672 				     struct attribute *attr, const char *buf,
1673 				     size_t count)
1674 {
1675 	const struct vmbus_chan_attribute *attribute
1676 		= container_of(attr, struct vmbus_chan_attribute, attr);
1677 	struct vmbus_channel *chan
1678 		= container_of(kobj, struct vmbus_channel, kobj);
1679 
1680 	if (!attribute->store)
1681 		return -EIO;
1682 
1683 	return attribute->store(chan, buf, count);
1684 }
1685 
1686 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1687 	.show = vmbus_chan_attr_show,
1688 	.store = vmbus_chan_attr_store,
1689 };
1690 
1691 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1692 {
1693 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1694 	ssize_t ret;
1695 
1696 	mutex_lock(&rbi->ring_buffer_mutex);
1697 	if (!rbi->ring_buffer) {
1698 		mutex_unlock(&rbi->ring_buffer_mutex);
1699 		return -EINVAL;
1700 	}
1701 
1702 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1703 	mutex_unlock(&rbi->ring_buffer_mutex);
1704 	return ret;
1705 }
1706 static VMBUS_CHAN_ATTR_RO(out_mask);
1707 
1708 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1709 {
1710 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1711 	ssize_t ret;
1712 
1713 	mutex_lock(&rbi->ring_buffer_mutex);
1714 	if (!rbi->ring_buffer) {
1715 		mutex_unlock(&rbi->ring_buffer_mutex);
1716 		return -EINVAL;
1717 	}
1718 
1719 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1720 	mutex_unlock(&rbi->ring_buffer_mutex);
1721 	return ret;
1722 }
1723 static VMBUS_CHAN_ATTR_RO(in_mask);
1724 
1725 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1726 {
1727 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1728 	ssize_t ret;
1729 
1730 	mutex_lock(&rbi->ring_buffer_mutex);
1731 	if (!rbi->ring_buffer) {
1732 		mutex_unlock(&rbi->ring_buffer_mutex);
1733 		return -EINVAL;
1734 	}
1735 
1736 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1737 	mutex_unlock(&rbi->ring_buffer_mutex);
1738 	return ret;
1739 }
1740 static VMBUS_CHAN_ATTR_RO(read_avail);
1741 
1742 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1743 {
1744 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1745 	ssize_t ret;
1746 
1747 	mutex_lock(&rbi->ring_buffer_mutex);
1748 	if (!rbi->ring_buffer) {
1749 		mutex_unlock(&rbi->ring_buffer_mutex);
1750 		return -EINVAL;
1751 	}
1752 
1753 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1754 	mutex_unlock(&rbi->ring_buffer_mutex);
1755 	return ret;
1756 }
1757 static VMBUS_CHAN_ATTR_RO(write_avail);
1758 
1759 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1760 {
1761 	return sprintf(buf, "%u\n", channel->target_cpu);
1762 }
1763 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1764 				const char *buf, size_t count)
1765 {
1766 	u32 target_cpu, origin_cpu;
1767 	ssize_t ret = count;
1768 
1769 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1770 		return -EIO;
1771 
1772 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1773 		return -EIO;
1774 
1775 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1776 	if (target_cpu >= nr_cpumask_bits)
1777 		return -EINVAL;
1778 
1779 	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1780 		return -EINVAL;
1781 
1782 	/* No CPUs should come up or down during this. */
1783 	cpus_read_lock();
1784 
1785 	if (!cpu_online(target_cpu)) {
1786 		cpus_read_unlock();
1787 		return -EINVAL;
1788 	}
1789 
1790 	/*
1791 	 * Synchronizes target_cpu_store() and channel closure:
1792 	 *
1793 	 * { Initially: state = CHANNEL_OPENED }
1794 	 *
1795 	 * CPU1				CPU2
1796 	 *
1797 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1798 	 *
1799 	 * LOCK channel_mutex		LOCK channel_mutex
1800 	 * LOAD r1 = state		LOAD r2 = state
1801 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1802 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1803 	 *   [...]			  SEND CLOSECHANNEL
1804 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1805 	 *
1806 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1807 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1808 	 *
1809 	 * Note.  The host processes the channel messages "sequentially", in
1810 	 * the order in which they are received on a per-partition basis.
1811 	 */
1812 	mutex_lock(&vmbus_connection.channel_mutex);
1813 
1814 	/*
1815 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1816 	 * avoid sending the message and fail here for such channels.
1817 	 */
1818 	if (channel->state != CHANNEL_OPENED_STATE) {
1819 		ret = -EIO;
1820 		goto cpu_store_unlock;
1821 	}
1822 
1823 	origin_cpu = channel->target_cpu;
1824 	if (target_cpu == origin_cpu)
1825 		goto cpu_store_unlock;
1826 
1827 	if (vmbus_send_modifychannel(channel,
1828 				     hv_cpu_number_to_vp_number(target_cpu))) {
1829 		ret = -EIO;
1830 		goto cpu_store_unlock;
1831 	}
1832 
1833 	/*
1834 	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1835 	 *
1836 	 * Warning.  At this point, there is *no* guarantee that the host will
1837 	 * have successfully processed the vmbus_send_modifychannel() request.
1838 	 * See the header comment of vmbus_send_modifychannel() for more info.
1839 	 *
1840 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1841 	 * result in missed interrupts if the "old" target CPU is taken offline
1842 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1843 	 * But apart from this offlining scenario, the code tolerates such
1844 	 * lags.  It will function correctly even if a channel interrupt comes
1845 	 * in on a CPU that is different from the channel target_cpu value.
1846 	 */
1847 
1848 	channel->target_cpu = target_cpu;
1849 
1850 	/* See init_vp_index(). */
1851 	if (hv_is_perf_channel(channel))
1852 		hv_update_allocated_cpus(origin_cpu, target_cpu);
1853 
1854 	/* Currently set only for storvsc channels. */
1855 	if (channel->change_target_cpu_callback) {
1856 		(*channel->change_target_cpu_callback)(channel,
1857 				origin_cpu, target_cpu);
1858 	}
1859 
1860 cpu_store_unlock:
1861 	mutex_unlock(&vmbus_connection.channel_mutex);
1862 	cpus_read_unlock();
1863 	return ret;
1864 }
1865 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1866 
1867 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1868 				    char *buf)
1869 {
1870 	return sprintf(buf, "%d\n",
1871 		       channel_pending(channel,
1872 				       vmbus_connection.monitor_pages[1]));
1873 }
1874 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1875 
1876 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1877 				    char *buf)
1878 {
1879 	return sprintf(buf, "%d\n",
1880 		       channel_latency(channel,
1881 				       vmbus_connection.monitor_pages[1]));
1882 }
1883 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1884 
1885 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1886 {
1887 	return sprintf(buf, "%llu\n", channel->interrupts);
1888 }
1889 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1890 
1891 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1892 {
1893 	return sprintf(buf, "%llu\n", channel->sig_events);
1894 }
1895 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1896 
1897 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1898 					 char *buf)
1899 {
1900 	return sprintf(buf, "%llu\n",
1901 		       (unsigned long long)channel->intr_in_full);
1902 }
1903 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1904 
1905 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1906 					   char *buf)
1907 {
1908 	return sprintf(buf, "%llu\n",
1909 		       (unsigned long long)channel->intr_out_empty);
1910 }
1911 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1912 
1913 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1914 					   char *buf)
1915 {
1916 	return sprintf(buf, "%llu\n",
1917 		       (unsigned long long)channel->out_full_first);
1918 }
1919 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1920 
1921 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1922 					   char *buf)
1923 {
1924 	return sprintf(buf, "%llu\n",
1925 		       (unsigned long long)channel->out_full_total);
1926 }
1927 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1928 
1929 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1930 					  char *buf)
1931 {
1932 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1933 }
1934 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1935 
1936 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1937 				  char *buf)
1938 {
1939 	return sprintf(buf, "%u\n",
1940 		       channel->offermsg.offer.sub_channel_index);
1941 }
1942 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1943 
1944 static struct attribute *vmbus_chan_attrs[] = {
1945 	&chan_attr_out_mask.attr,
1946 	&chan_attr_in_mask.attr,
1947 	&chan_attr_read_avail.attr,
1948 	&chan_attr_write_avail.attr,
1949 	&chan_attr_cpu.attr,
1950 	&chan_attr_pending.attr,
1951 	&chan_attr_latency.attr,
1952 	&chan_attr_interrupts.attr,
1953 	&chan_attr_events.attr,
1954 	&chan_attr_intr_in_full.attr,
1955 	&chan_attr_intr_out_empty.attr,
1956 	&chan_attr_out_full_first.attr,
1957 	&chan_attr_out_full_total.attr,
1958 	&chan_attr_monitor_id.attr,
1959 	&chan_attr_subchannel_id.attr,
1960 	NULL
1961 };
1962 
1963 /*
1964  * Channel-level attribute_group callback function. Returns the permission for
1965  * each attribute, and returns 0 if an attribute is not visible.
1966  */
1967 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1968 					  struct attribute *attr, int idx)
1969 {
1970 	const struct vmbus_channel *channel =
1971 		container_of(kobj, struct vmbus_channel, kobj);
1972 
1973 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1974 	if (!channel->offermsg.monitor_allocated &&
1975 	    (attr == &chan_attr_pending.attr ||
1976 	     attr == &chan_attr_latency.attr ||
1977 	     attr == &chan_attr_monitor_id.attr))
1978 		return 0;
1979 
1980 	return attr->mode;
1981 }
1982 
1983 static struct attribute_group vmbus_chan_group = {
1984 	.attrs = vmbus_chan_attrs,
1985 	.is_visible = vmbus_chan_attr_is_visible
1986 };
1987 
1988 static struct kobj_type vmbus_chan_ktype = {
1989 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1990 	.release = vmbus_chan_release,
1991 };
1992 
1993 /*
1994  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1995  */
1996 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1997 {
1998 	const struct device *device = &dev->device;
1999 	struct kobject *kobj = &channel->kobj;
2000 	u32 relid = channel->offermsg.child_relid;
2001 	int ret;
2002 
2003 	kobj->kset = dev->channels_kset;
2004 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2005 				   "%u", relid);
2006 	if (ret) {
2007 		kobject_put(kobj);
2008 		return ret;
2009 	}
2010 
2011 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
2012 
2013 	if (ret) {
2014 		/*
2015 		 * The calling functions' error handling paths will cleanup the
2016 		 * empty channel directory.
2017 		 */
2018 		kobject_put(kobj);
2019 		dev_err(device, "Unable to set up channel sysfs files\n");
2020 		return ret;
2021 	}
2022 
2023 	kobject_uevent(kobj, KOBJ_ADD);
2024 
2025 	return 0;
2026 }
2027 
2028 /*
2029  * vmbus_remove_channel_attr_group - remove the channel's attribute group
2030  */
2031 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2032 {
2033 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2034 }
2035 
2036 /*
2037  * vmbus_device_create - Creates and registers a new child device
2038  * on the vmbus.
2039  */
2040 struct hv_device *vmbus_device_create(const guid_t *type,
2041 				      const guid_t *instance,
2042 				      struct vmbus_channel *channel)
2043 {
2044 	struct hv_device *child_device_obj;
2045 
2046 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2047 	if (!child_device_obj) {
2048 		pr_err("Unable to allocate device object for child device\n");
2049 		return NULL;
2050 	}
2051 
2052 	child_device_obj->channel = channel;
2053 	guid_copy(&child_device_obj->dev_type, type);
2054 	guid_copy(&child_device_obj->dev_instance, instance);
2055 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2056 
2057 	return child_device_obj;
2058 }
2059 
2060 /*
2061  * vmbus_device_register - Register the child device
2062  */
2063 int vmbus_device_register(struct hv_device *child_device_obj)
2064 {
2065 	struct kobject *kobj = &child_device_obj->device.kobj;
2066 	int ret;
2067 
2068 	dev_set_name(&child_device_obj->device, "%pUl",
2069 		     &child_device_obj->channel->offermsg.offer.if_instance);
2070 
2071 	child_device_obj->device.bus = &hv_bus;
2072 	child_device_obj->device.parent = &hv_acpi_dev->dev;
2073 	child_device_obj->device.release = vmbus_device_release;
2074 
2075 	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2076 	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2077 	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2078 
2079 	/*
2080 	 * Register with the LDM. This will kick off the driver/device
2081 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2082 	 */
2083 	ret = device_register(&child_device_obj->device);
2084 	if (ret) {
2085 		pr_err("Unable to register child device\n");
2086 		return ret;
2087 	}
2088 
2089 	child_device_obj->channels_kset = kset_create_and_add("channels",
2090 							      NULL, kobj);
2091 	if (!child_device_obj->channels_kset) {
2092 		ret = -ENOMEM;
2093 		goto err_dev_unregister;
2094 	}
2095 
2096 	ret = vmbus_add_channel_kobj(child_device_obj,
2097 				     child_device_obj->channel);
2098 	if (ret) {
2099 		pr_err("Unable to register primary channeln");
2100 		goto err_kset_unregister;
2101 	}
2102 	hv_debug_add_dev_dir(child_device_obj);
2103 
2104 	return 0;
2105 
2106 err_kset_unregister:
2107 	kset_unregister(child_device_obj->channels_kset);
2108 
2109 err_dev_unregister:
2110 	device_unregister(&child_device_obj->device);
2111 	return ret;
2112 }
2113 
2114 /*
2115  * vmbus_device_unregister - Remove the specified child device
2116  * from the vmbus.
2117  */
2118 void vmbus_device_unregister(struct hv_device *device_obj)
2119 {
2120 	pr_debug("child device %s unregistered\n",
2121 		dev_name(&device_obj->device));
2122 
2123 	kset_unregister(device_obj->channels_kset);
2124 
2125 	/*
2126 	 * Kick off the process of unregistering the device.
2127 	 * This will call vmbus_remove() and eventually vmbus_device_release()
2128 	 */
2129 	device_unregister(&device_obj->device);
2130 }
2131 
2132 
2133 /*
2134  * VMBUS is an acpi enumerated device. Get the information we
2135  * need from DSDT.
2136  */
2137 #define VTPM_BASE_ADDRESS 0xfed40000
2138 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2139 {
2140 	resource_size_t start = 0;
2141 	resource_size_t end = 0;
2142 	struct resource *new_res;
2143 	struct resource **old_res = &hyperv_mmio;
2144 	struct resource **prev_res = NULL;
2145 	struct resource r;
2146 
2147 	switch (res->type) {
2148 
2149 	/*
2150 	 * "Address" descriptors are for bus windows. Ignore
2151 	 * "memory" descriptors, which are for registers on
2152 	 * devices.
2153 	 */
2154 	case ACPI_RESOURCE_TYPE_ADDRESS32:
2155 		start = res->data.address32.address.minimum;
2156 		end = res->data.address32.address.maximum;
2157 		break;
2158 
2159 	case ACPI_RESOURCE_TYPE_ADDRESS64:
2160 		start = res->data.address64.address.minimum;
2161 		end = res->data.address64.address.maximum;
2162 		break;
2163 
2164 	/*
2165 	 * The IRQ information is needed only on ARM64, which Hyper-V
2166 	 * sets up in the extended format. IRQ information is present
2167 	 * on x86/x64 in the non-extended format but it is not used by
2168 	 * Linux. So don't bother checking for the non-extended format.
2169 	 */
2170 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2171 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2172 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2173 			return AE_ERROR;
2174 		}
2175 		/* ARM64 INTID for VMbus */
2176 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2177 		/* Linux IRQ number */
2178 		vmbus_irq = r.start;
2179 		return AE_OK;
2180 
2181 	default:
2182 		/* Unused resource type */
2183 		return AE_OK;
2184 
2185 	}
2186 	/*
2187 	 * Ignore ranges that are below 1MB, as they're not
2188 	 * necessary or useful here.
2189 	 */
2190 	if (end < 0x100000)
2191 		return AE_OK;
2192 
2193 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2194 	if (!new_res)
2195 		return AE_NO_MEMORY;
2196 
2197 	/* If this range overlaps the virtual TPM, truncate it. */
2198 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2199 		end = VTPM_BASE_ADDRESS;
2200 
2201 	new_res->name = "hyperv mmio";
2202 	new_res->flags = IORESOURCE_MEM;
2203 	new_res->start = start;
2204 	new_res->end = end;
2205 
2206 	/*
2207 	 * If two ranges are adjacent, merge them.
2208 	 */
2209 	do {
2210 		if (!*old_res) {
2211 			*old_res = new_res;
2212 			break;
2213 		}
2214 
2215 		if (((*old_res)->end + 1) == new_res->start) {
2216 			(*old_res)->end = new_res->end;
2217 			kfree(new_res);
2218 			break;
2219 		}
2220 
2221 		if ((*old_res)->start == new_res->end + 1) {
2222 			(*old_res)->start = new_res->start;
2223 			kfree(new_res);
2224 			break;
2225 		}
2226 
2227 		if ((*old_res)->start > new_res->end) {
2228 			new_res->sibling = *old_res;
2229 			if (prev_res)
2230 				(*prev_res)->sibling = new_res;
2231 			*old_res = new_res;
2232 			break;
2233 		}
2234 
2235 		prev_res = old_res;
2236 		old_res = &(*old_res)->sibling;
2237 
2238 	} while (1);
2239 
2240 	return AE_OK;
2241 }
2242 
2243 static int vmbus_acpi_remove(struct acpi_device *device)
2244 {
2245 	struct resource *cur_res;
2246 	struct resource *next_res;
2247 
2248 	if (hyperv_mmio) {
2249 		if (fb_mmio) {
2250 			__release_region(hyperv_mmio, fb_mmio->start,
2251 					 resource_size(fb_mmio));
2252 			fb_mmio = NULL;
2253 		}
2254 
2255 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2256 			next_res = cur_res->sibling;
2257 			kfree(cur_res);
2258 		}
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static void vmbus_reserve_fb(void)
2265 {
2266 	resource_size_t start = 0, size;
2267 	struct pci_dev *pdev;
2268 
2269 	if (efi_enabled(EFI_BOOT)) {
2270 		/* Gen2 VM: get FB base from EFI framebuffer */
2271 		start = screen_info.lfb_base;
2272 		size = max_t(__u32, screen_info.lfb_size, 0x800000);
2273 	} else {
2274 		/* Gen1 VM: get FB base from PCI */
2275 		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2276 				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2277 		if (!pdev)
2278 			return;
2279 
2280 		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2281 			start = pci_resource_start(pdev, 0);
2282 			size = pci_resource_len(pdev, 0);
2283 		}
2284 
2285 		/*
2286 		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2287 		 * grab it later.
2288 		 */
2289 		pci_dev_put(pdev);
2290 	}
2291 
2292 	if (!start)
2293 		return;
2294 
2295 	/*
2296 	 * Make a claim for the frame buffer in the resource tree under the
2297 	 * first node, which will be the one below 4GB.  The length seems to
2298 	 * be underreported, particularly in a Generation 1 VM.  So start out
2299 	 * reserving a larger area and make it smaller until it succeeds.
2300 	 */
2301 	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2302 		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2303 }
2304 
2305 /**
2306  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2307  * @new:		If successful, supplied a pointer to the
2308  *			allocated MMIO space.
2309  * @device_obj:		Identifies the caller
2310  * @min:		Minimum guest physical address of the
2311  *			allocation
2312  * @max:		Maximum guest physical address
2313  * @size:		Size of the range to be allocated
2314  * @align:		Alignment of the range to be allocated
2315  * @fb_overlap_ok:	Whether this allocation can be allowed
2316  *			to overlap the video frame buffer.
2317  *
2318  * This function walks the resources granted to VMBus by the
2319  * _CRS object in the ACPI namespace underneath the parent
2320  * "bridge" whether that's a root PCI bus in the Generation 1
2321  * case or a Module Device in the Generation 2 case.  It then
2322  * attempts to allocate from the global MMIO pool in a way that
2323  * matches the constraints supplied in these parameters and by
2324  * that _CRS.
2325  *
2326  * Return: 0 on success, -errno on failure
2327  */
2328 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2329 			resource_size_t min, resource_size_t max,
2330 			resource_size_t size, resource_size_t align,
2331 			bool fb_overlap_ok)
2332 {
2333 	struct resource *iter, *shadow;
2334 	resource_size_t range_min, range_max, start, end;
2335 	const char *dev_n = dev_name(&device_obj->device);
2336 	int retval;
2337 
2338 	retval = -ENXIO;
2339 	mutex_lock(&hyperv_mmio_lock);
2340 
2341 	/*
2342 	 * If overlaps with frame buffers are allowed, then first attempt to
2343 	 * make the allocation from within the reserved region.  Because it
2344 	 * is already reserved, no shadow allocation is necessary.
2345 	 */
2346 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2347 	    !(max < fb_mmio->start)) {
2348 
2349 		range_min = fb_mmio->start;
2350 		range_max = fb_mmio->end;
2351 		start = (range_min + align - 1) & ~(align - 1);
2352 		for (; start + size - 1 <= range_max; start += align) {
2353 			*new = request_mem_region_exclusive(start, size, dev_n);
2354 			if (*new) {
2355 				retval = 0;
2356 				goto exit;
2357 			}
2358 		}
2359 	}
2360 
2361 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2362 		if ((iter->start >= max) || (iter->end <= min))
2363 			continue;
2364 
2365 		range_min = iter->start;
2366 		range_max = iter->end;
2367 		start = (range_min + align - 1) & ~(align - 1);
2368 		for (; start + size - 1 <= range_max; start += align) {
2369 			end = start + size - 1;
2370 
2371 			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2372 			if (!fb_overlap_ok && fb_mmio &&
2373 			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2374 			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2375 				continue;
2376 
2377 			shadow = __request_region(iter, start, size, NULL,
2378 						  IORESOURCE_BUSY);
2379 			if (!shadow)
2380 				continue;
2381 
2382 			*new = request_mem_region_exclusive(start, size, dev_n);
2383 			if (*new) {
2384 				shadow->name = (char *)*new;
2385 				retval = 0;
2386 				goto exit;
2387 			}
2388 
2389 			__release_region(iter, start, size);
2390 		}
2391 	}
2392 
2393 exit:
2394 	mutex_unlock(&hyperv_mmio_lock);
2395 	return retval;
2396 }
2397 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2398 
2399 /**
2400  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2401  * @start:		Base address of region to release.
2402  * @size:		Size of the range to be allocated
2403  *
2404  * This function releases anything requested by
2405  * vmbus_mmio_allocate().
2406  */
2407 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2408 {
2409 	struct resource *iter;
2410 
2411 	mutex_lock(&hyperv_mmio_lock);
2412 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2413 		if ((iter->start >= start + size) || (iter->end <= start))
2414 			continue;
2415 
2416 		__release_region(iter, start, size);
2417 	}
2418 	release_mem_region(start, size);
2419 	mutex_unlock(&hyperv_mmio_lock);
2420 
2421 }
2422 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2423 
2424 static int vmbus_acpi_add(struct acpi_device *device)
2425 {
2426 	acpi_status result;
2427 	int ret_val = -ENODEV;
2428 	struct acpi_device *ancestor;
2429 
2430 	hv_acpi_dev = device;
2431 
2432 	/*
2433 	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2434 	 * method on the top level VMbus device in the DSDT. But devices
2435 	 * are hardware coherent in all current Hyper-V use cases, so fix
2436 	 * up the ACPI device to behave as if _CCA is present and indicates
2437 	 * hardware coherence.
2438 	 */
2439 	ACPI_COMPANION_SET(&device->dev, device);
2440 	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2441 	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2442 		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2443 		device->flags.cca_seen = true;
2444 		device->flags.coherent_dma = true;
2445 	}
2446 
2447 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2448 					vmbus_walk_resources, NULL);
2449 
2450 	if (ACPI_FAILURE(result))
2451 		goto acpi_walk_err;
2452 	/*
2453 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2454 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2455 	 */
2456 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2457 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2458 					     vmbus_walk_resources, NULL);
2459 
2460 		if (ACPI_FAILURE(result))
2461 			continue;
2462 		if (hyperv_mmio) {
2463 			vmbus_reserve_fb();
2464 			break;
2465 		}
2466 	}
2467 	ret_val = 0;
2468 
2469 acpi_walk_err:
2470 	complete(&probe_event);
2471 	if (ret_val)
2472 		vmbus_acpi_remove(device);
2473 	return ret_val;
2474 }
2475 
2476 #ifdef CONFIG_PM_SLEEP
2477 static int vmbus_bus_suspend(struct device *dev)
2478 {
2479 	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2480 			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2481 	struct vmbus_channel *channel, *sc;
2482 
2483 	tasklet_disable(&hv_cpu->msg_dpc);
2484 	vmbus_connection.ignore_any_offer_msg = true;
2485 	/* The tasklet_enable() takes care of providing a memory barrier */
2486 	tasklet_enable(&hv_cpu->msg_dpc);
2487 
2488 	/* Drain all the workqueues as we are in suspend */
2489 	drain_workqueue(vmbus_connection.rescind_work_queue);
2490 	drain_workqueue(vmbus_connection.work_queue);
2491 	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2492 	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2493 
2494 	mutex_lock(&vmbus_connection.channel_mutex);
2495 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2496 		if (!is_hvsock_channel(channel))
2497 			continue;
2498 
2499 		vmbus_force_channel_rescinded(channel);
2500 	}
2501 	mutex_unlock(&vmbus_connection.channel_mutex);
2502 
2503 	/*
2504 	 * Wait until all the sub-channels and hv_sock channels have been
2505 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2506 	 * they would conflict with the new sub-channels that will be created
2507 	 * in the resume path. hv_sock channels should also be destroyed, but
2508 	 * a hv_sock channel of an established hv_sock connection can not be
2509 	 * really destroyed since it may still be referenced by the userspace
2510 	 * application, so we just force the hv_sock channel to be rescinded
2511 	 * by vmbus_force_channel_rescinded(), and the userspace application
2512 	 * will thoroughly destroy the channel after hibernation.
2513 	 *
2514 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2515 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2516 	 */
2517 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2518 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2519 
2520 	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2521 		pr_err("Can not suspend due to a previous failed resuming\n");
2522 		return -EBUSY;
2523 	}
2524 
2525 	mutex_lock(&vmbus_connection.channel_mutex);
2526 
2527 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2528 		/*
2529 		 * Remove the channel from the array of channels and invalidate
2530 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2531 		 * up the relid (and other fields, if necessary) and add the
2532 		 * channel back to the array.
2533 		 */
2534 		vmbus_channel_unmap_relid(channel);
2535 		channel->offermsg.child_relid = INVALID_RELID;
2536 
2537 		if (is_hvsock_channel(channel)) {
2538 			if (!channel->rescind) {
2539 				pr_err("hv_sock channel not rescinded!\n");
2540 				WARN_ON_ONCE(1);
2541 			}
2542 			continue;
2543 		}
2544 
2545 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2546 			pr_err("Sub-channel not deleted!\n");
2547 			WARN_ON_ONCE(1);
2548 		}
2549 
2550 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2551 	}
2552 
2553 	mutex_unlock(&vmbus_connection.channel_mutex);
2554 
2555 	vmbus_initiate_unload(false);
2556 
2557 	/* Reset the event for the next resume. */
2558 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2559 
2560 	return 0;
2561 }
2562 
2563 static int vmbus_bus_resume(struct device *dev)
2564 {
2565 	struct vmbus_channel_msginfo *msginfo;
2566 	size_t msgsize;
2567 	int ret;
2568 
2569 	vmbus_connection.ignore_any_offer_msg = false;
2570 
2571 	/*
2572 	 * We only use the 'vmbus_proto_version', which was in use before
2573 	 * hibernation, to re-negotiate with the host.
2574 	 */
2575 	if (!vmbus_proto_version) {
2576 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2577 		return -EINVAL;
2578 	}
2579 
2580 	msgsize = sizeof(*msginfo) +
2581 		  sizeof(struct vmbus_channel_initiate_contact);
2582 
2583 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2584 
2585 	if (msginfo == NULL)
2586 		return -ENOMEM;
2587 
2588 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2589 
2590 	kfree(msginfo);
2591 
2592 	if (ret != 0)
2593 		return ret;
2594 
2595 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2596 
2597 	vmbus_request_offers();
2598 
2599 	if (wait_for_completion_timeout(
2600 		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2601 		pr_err("Some vmbus device is missing after suspending?\n");
2602 
2603 	/* Reset the event for the next suspend. */
2604 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2605 
2606 	return 0;
2607 }
2608 #else
2609 #define vmbus_bus_suspend NULL
2610 #define vmbus_bus_resume NULL
2611 #endif /* CONFIG_PM_SLEEP */
2612 
2613 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2614 	{"VMBUS", 0},
2615 	{"VMBus", 0},
2616 	{"", 0},
2617 };
2618 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2619 
2620 /*
2621  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2622  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2623  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2624  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2625  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2626  * resume callback must also run via the "noirq" ops.
2627  *
2628  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2629  * earlier in this file before vmbus_pm.
2630  */
2631 
2632 static const struct dev_pm_ops vmbus_bus_pm = {
2633 	.suspend_noirq	= NULL,
2634 	.resume_noirq	= NULL,
2635 	.freeze_noirq	= vmbus_bus_suspend,
2636 	.thaw_noirq	= vmbus_bus_resume,
2637 	.poweroff_noirq	= vmbus_bus_suspend,
2638 	.restore_noirq	= vmbus_bus_resume
2639 };
2640 
2641 static struct acpi_driver vmbus_acpi_driver = {
2642 	.name = "vmbus",
2643 	.ids = vmbus_acpi_device_ids,
2644 	.ops = {
2645 		.add = vmbus_acpi_add,
2646 		.remove = vmbus_acpi_remove,
2647 	},
2648 	.drv.pm = &vmbus_bus_pm,
2649 };
2650 
2651 static void hv_kexec_handler(void)
2652 {
2653 	hv_stimer_global_cleanup();
2654 	vmbus_initiate_unload(false);
2655 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2656 	mb();
2657 	cpuhp_remove_state(hyperv_cpuhp_online);
2658 };
2659 
2660 static void hv_crash_handler(struct pt_regs *regs)
2661 {
2662 	int cpu;
2663 
2664 	vmbus_initiate_unload(true);
2665 	/*
2666 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2667 	 * doing the cleanup for current CPU only. This should be sufficient
2668 	 * for kdump.
2669 	 */
2670 	cpu = smp_processor_id();
2671 	hv_stimer_cleanup(cpu);
2672 	hv_synic_disable_regs(cpu);
2673 };
2674 
2675 static int hv_synic_suspend(void)
2676 {
2677 	/*
2678 	 * When we reach here, all the non-boot CPUs have been offlined.
2679 	 * If we're in a legacy configuration where stimer Direct Mode is
2680 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2681 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2682 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2683 	 *
2684 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2685 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2686 	 * 1) it's unnecessary as interrupts remain disabled between
2687 	 * syscore_suspend() and syscore_resume(): see create_image() and
2688 	 * resume_target_kernel()
2689 	 * 2) the stimer on CPU0 is automatically disabled later by
2690 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2691 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2692 	 * 3) a warning would be triggered if we call
2693 	 * clockevents_unbind_device(), which may sleep, in an
2694 	 * interrupts-disabled context.
2695 	 */
2696 
2697 	hv_synic_disable_regs(0);
2698 
2699 	return 0;
2700 }
2701 
2702 static void hv_synic_resume(void)
2703 {
2704 	hv_synic_enable_regs(0);
2705 
2706 	/*
2707 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2708 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2709 	 * automatically re-enabled in timekeeping_resume().
2710 	 */
2711 }
2712 
2713 /* The callbacks run only on CPU0, with irqs_disabled. */
2714 static struct syscore_ops hv_synic_syscore_ops = {
2715 	.suspend = hv_synic_suspend,
2716 	.resume = hv_synic_resume,
2717 };
2718 
2719 static int __init hv_acpi_init(void)
2720 {
2721 	int ret, t;
2722 
2723 	if (!hv_is_hyperv_initialized())
2724 		return -ENODEV;
2725 
2726 	if (hv_root_partition)
2727 		return 0;
2728 
2729 	init_completion(&probe_event);
2730 
2731 	/*
2732 	 * Get ACPI resources first.
2733 	 */
2734 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2735 
2736 	if (ret)
2737 		return ret;
2738 
2739 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2740 	if (t == 0) {
2741 		ret = -ETIMEDOUT;
2742 		goto cleanup;
2743 	}
2744 
2745 	/*
2746 	 * If we're on an architecture with a hardcoded hypervisor
2747 	 * vector (i.e. x86/x64), override the VMbus interrupt found
2748 	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2749 	 * normal Linux IRQ mechanism is not used in this case.
2750 	 */
2751 #ifdef HYPERVISOR_CALLBACK_VECTOR
2752 	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2753 	vmbus_irq = -1;
2754 #endif
2755 
2756 	hv_debug_init();
2757 
2758 	ret = vmbus_bus_init();
2759 	if (ret)
2760 		goto cleanup;
2761 
2762 	hv_setup_kexec_handler(hv_kexec_handler);
2763 	hv_setup_crash_handler(hv_crash_handler);
2764 
2765 	register_syscore_ops(&hv_synic_syscore_ops);
2766 
2767 	return 0;
2768 
2769 cleanup:
2770 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2771 	hv_acpi_dev = NULL;
2772 	return ret;
2773 }
2774 
2775 static void __exit vmbus_exit(void)
2776 {
2777 	int cpu;
2778 
2779 	unregister_syscore_ops(&hv_synic_syscore_ops);
2780 
2781 	hv_remove_kexec_handler();
2782 	hv_remove_crash_handler();
2783 	vmbus_connection.conn_state = DISCONNECTED;
2784 	hv_stimer_global_cleanup();
2785 	vmbus_disconnect();
2786 	if (vmbus_irq == -1) {
2787 		hv_remove_vmbus_handler();
2788 	} else {
2789 		free_percpu_irq(vmbus_irq, vmbus_evt);
2790 		free_percpu(vmbus_evt);
2791 	}
2792 	for_each_online_cpu(cpu) {
2793 		struct hv_per_cpu_context *hv_cpu
2794 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2795 
2796 		tasklet_kill(&hv_cpu->msg_dpc);
2797 	}
2798 	hv_debug_rm_all_dir();
2799 
2800 	vmbus_free_channels();
2801 	kfree(vmbus_connection.channels);
2802 
2803 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2804 		kmsg_dump_unregister(&hv_kmsg_dumper);
2805 		unregister_die_notifier(&hyperv_die_block);
2806 	}
2807 
2808 	/*
2809 	 * The panic notifier is always registered, hence we should
2810 	 * also unconditionally unregister it here as well.
2811 	 */
2812 	atomic_notifier_chain_unregister(&panic_notifier_list,
2813 					 &hyperv_panic_block);
2814 
2815 	free_page((unsigned long)hv_panic_page);
2816 	unregister_sysctl_table(hv_ctl_table_hdr);
2817 	hv_ctl_table_hdr = NULL;
2818 	bus_unregister(&hv_bus);
2819 
2820 	cpuhp_remove_state(hyperv_cpuhp_online);
2821 	hv_synic_free();
2822 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2823 }
2824 
2825 
2826 MODULE_LICENSE("GPL");
2827 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2828 
2829 subsys_initcall(hv_acpi_init);
2830 module_exit(vmbus_exit);
2831