xref: /linux/drivers/hv/vmbus_drv.c (revision 409c38d4f156740bf3165fd6ceae4fa6425eebf4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/platform_device.h>
16 #include <linux/interrupt.h>
17 #include <linux/sysctl.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/completion.h>
21 #include <linux/hyperv.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/of_address.h>
24 #include <linux/clockchips.h>
25 #include <linux/cpu.h>
26 #include <linux/sched/isolation.h>
27 #include <linux/sched/task_stack.h>
28 
29 #include <linux/delay.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/ptrace.h>
32 #include <linux/screen_info.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <linux/pci.h>
39 #include <clocksource/hyperv_timer.h>
40 #include <asm/mshyperv.h>
41 #include "hyperv_vmbus.h"
42 
43 struct vmbus_dynid {
44 	struct list_head node;
45 	struct hv_vmbus_device_id id;
46 };
47 
48 static struct device  *hv_dev;
49 
50 static int hyperv_cpuhp_online;
51 
52 static long __percpu *vmbus_evt;
53 
54 /* Values parsed from ACPI DSDT */
55 int vmbus_irq;
56 int vmbus_interrupt;
57 
58 /*
59  * The panic notifier below is responsible solely for unloading the
60  * vmbus connection, which is necessary in a panic event.
61  *
62  * Notice an intrincate relation of this notifier with Hyper-V
63  * framebuffer panic notifier exists - we need vmbus connection alive
64  * there in order to succeed, so we need to order both with each other
65  * [see hvfb_on_panic()] - this is done using notifiers' priorities.
66  */
67 static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
68 			      void *args)
69 {
70 	vmbus_initiate_unload(true);
71 	return NOTIFY_DONE;
72 }
73 static struct notifier_block hyperv_panic_vmbus_unload_block = {
74 	.notifier_call	= hv_panic_vmbus_unload,
75 	.priority	= INT_MIN + 1, /* almost the latest one to execute */
76 };
77 
78 static const char *fb_mmio_name = "fb_range";
79 static struct resource *fb_mmio;
80 static struct resource *hyperv_mmio;
81 static DEFINE_MUTEX(hyperv_mmio_lock);
82 
83 static int vmbus_exists(void)
84 {
85 	if (hv_dev == NULL)
86 		return -ENODEV;
87 
88 	return 0;
89 }
90 
91 static u8 channel_monitor_group(const struct vmbus_channel *channel)
92 {
93 	return (u8)channel->offermsg.monitorid / 32;
94 }
95 
96 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
97 {
98 	return (u8)channel->offermsg.monitorid % 32;
99 }
100 
101 static u32 channel_pending(const struct vmbus_channel *channel,
102 			   const struct hv_monitor_page *monitor_page)
103 {
104 	u8 monitor_group = channel_monitor_group(channel);
105 
106 	return monitor_page->trigger_group[monitor_group].pending;
107 }
108 
109 static u32 channel_latency(const struct vmbus_channel *channel,
110 			   const struct hv_monitor_page *monitor_page)
111 {
112 	u8 monitor_group = channel_monitor_group(channel);
113 	u8 monitor_offset = channel_monitor_offset(channel);
114 
115 	return monitor_page->latency[monitor_group][monitor_offset];
116 }
117 
118 static u32 channel_conn_id(struct vmbus_channel *channel,
119 			   struct hv_monitor_page *monitor_page)
120 {
121 	u8 monitor_group = channel_monitor_group(channel);
122 	u8 monitor_offset = channel_monitor_offset(channel);
123 
124 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
125 }
126 
127 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
128 		       char *buf)
129 {
130 	struct hv_device *hv_dev = device_to_hv_device(dev);
131 
132 	if (!hv_dev->channel)
133 		return -ENODEV;
134 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
135 }
136 static DEVICE_ATTR_RO(id);
137 
138 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
139 			  char *buf)
140 {
141 	struct hv_device *hv_dev = device_to_hv_device(dev);
142 
143 	if (!hv_dev->channel)
144 		return -ENODEV;
145 	return sprintf(buf, "%d\n", hv_dev->channel->state);
146 }
147 static DEVICE_ATTR_RO(state);
148 
149 static ssize_t monitor_id_show(struct device *dev,
150 			       struct device_attribute *dev_attr, char *buf)
151 {
152 	struct hv_device *hv_dev = device_to_hv_device(dev);
153 
154 	if (!hv_dev->channel)
155 		return -ENODEV;
156 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
157 }
158 static DEVICE_ATTR_RO(monitor_id);
159 
160 static ssize_t class_id_show(struct device *dev,
161 			       struct device_attribute *dev_attr, char *buf)
162 {
163 	struct hv_device *hv_dev = device_to_hv_device(dev);
164 
165 	if (!hv_dev->channel)
166 		return -ENODEV;
167 	return sprintf(buf, "{%pUl}\n",
168 		       &hv_dev->channel->offermsg.offer.if_type);
169 }
170 static DEVICE_ATTR_RO(class_id);
171 
172 static ssize_t device_id_show(struct device *dev,
173 			      struct device_attribute *dev_attr, char *buf)
174 {
175 	struct hv_device *hv_dev = device_to_hv_device(dev);
176 
177 	if (!hv_dev->channel)
178 		return -ENODEV;
179 	return sprintf(buf, "{%pUl}\n",
180 		       &hv_dev->channel->offermsg.offer.if_instance);
181 }
182 static DEVICE_ATTR_RO(device_id);
183 
184 static ssize_t modalias_show(struct device *dev,
185 			     struct device_attribute *dev_attr, char *buf)
186 {
187 	struct hv_device *hv_dev = device_to_hv_device(dev);
188 
189 	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
190 }
191 static DEVICE_ATTR_RO(modalias);
192 
193 #ifdef CONFIG_NUMA
194 static ssize_t numa_node_show(struct device *dev,
195 			      struct device_attribute *attr, char *buf)
196 {
197 	struct hv_device *hv_dev = device_to_hv_device(dev);
198 
199 	if (!hv_dev->channel)
200 		return -ENODEV;
201 
202 	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
203 }
204 static DEVICE_ATTR_RO(numa_node);
205 #endif
206 
207 static ssize_t server_monitor_pending_show(struct device *dev,
208 					   struct device_attribute *dev_attr,
209 					   char *buf)
210 {
211 	struct hv_device *hv_dev = device_to_hv_device(dev);
212 
213 	if (!hv_dev->channel)
214 		return -ENODEV;
215 	return sprintf(buf, "%d\n",
216 		       channel_pending(hv_dev->channel,
217 				       vmbus_connection.monitor_pages[0]));
218 }
219 static DEVICE_ATTR_RO(server_monitor_pending);
220 
221 static ssize_t client_monitor_pending_show(struct device *dev,
222 					   struct device_attribute *dev_attr,
223 					   char *buf)
224 {
225 	struct hv_device *hv_dev = device_to_hv_device(dev);
226 
227 	if (!hv_dev->channel)
228 		return -ENODEV;
229 	return sprintf(buf, "%d\n",
230 		       channel_pending(hv_dev->channel,
231 				       vmbus_connection.monitor_pages[1]));
232 }
233 static DEVICE_ATTR_RO(client_monitor_pending);
234 
235 static ssize_t server_monitor_latency_show(struct device *dev,
236 					   struct device_attribute *dev_attr,
237 					   char *buf)
238 {
239 	struct hv_device *hv_dev = device_to_hv_device(dev);
240 
241 	if (!hv_dev->channel)
242 		return -ENODEV;
243 	return sprintf(buf, "%d\n",
244 		       channel_latency(hv_dev->channel,
245 				       vmbus_connection.monitor_pages[0]));
246 }
247 static DEVICE_ATTR_RO(server_monitor_latency);
248 
249 static ssize_t client_monitor_latency_show(struct device *dev,
250 					   struct device_attribute *dev_attr,
251 					   char *buf)
252 {
253 	struct hv_device *hv_dev = device_to_hv_device(dev);
254 
255 	if (!hv_dev->channel)
256 		return -ENODEV;
257 	return sprintf(buf, "%d\n",
258 		       channel_latency(hv_dev->channel,
259 				       vmbus_connection.monitor_pages[1]));
260 }
261 static DEVICE_ATTR_RO(client_monitor_latency);
262 
263 static ssize_t server_monitor_conn_id_show(struct device *dev,
264 					   struct device_attribute *dev_attr,
265 					   char *buf)
266 {
267 	struct hv_device *hv_dev = device_to_hv_device(dev);
268 
269 	if (!hv_dev->channel)
270 		return -ENODEV;
271 	return sprintf(buf, "%d\n",
272 		       channel_conn_id(hv_dev->channel,
273 				       vmbus_connection.monitor_pages[0]));
274 }
275 static DEVICE_ATTR_RO(server_monitor_conn_id);
276 
277 static ssize_t client_monitor_conn_id_show(struct device *dev,
278 					   struct device_attribute *dev_attr,
279 					   char *buf)
280 {
281 	struct hv_device *hv_dev = device_to_hv_device(dev);
282 
283 	if (!hv_dev->channel)
284 		return -ENODEV;
285 	return sprintf(buf, "%d\n",
286 		       channel_conn_id(hv_dev->channel,
287 				       vmbus_connection.monitor_pages[1]));
288 }
289 static DEVICE_ATTR_RO(client_monitor_conn_id);
290 
291 static ssize_t out_intr_mask_show(struct device *dev,
292 				  struct device_attribute *dev_attr, char *buf)
293 {
294 	struct hv_device *hv_dev = device_to_hv_device(dev);
295 	struct hv_ring_buffer_debug_info outbound;
296 	int ret;
297 
298 	if (!hv_dev->channel)
299 		return -ENODEV;
300 
301 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
302 					  &outbound);
303 	if (ret < 0)
304 		return ret;
305 
306 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
307 }
308 static DEVICE_ATTR_RO(out_intr_mask);
309 
310 static ssize_t out_read_index_show(struct device *dev,
311 				   struct device_attribute *dev_attr, char *buf)
312 {
313 	struct hv_device *hv_dev = device_to_hv_device(dev);
314 	struct hv_ring_buffer_debug_info outbound;
315 	int ret;
316 
317 	if (!hv_dev->channel)
318 		return -ENODEV;
319 
320 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
321 					  &outbound);
322 	if (ret < 0)
323 		return ret;
324 	return sprintf(buf, "%d\n", outbound.current_read_index);
325 }
326 static DEVICE_ATTR_RO(out_read_index);
327 
328 static ssize_t out_write_index_show(struct device *dev,
329 				    struct device_attribute *dev_attr,
330 				    char *buf)
331 {
332 	struct hv_device *hv_dev = device_to_hv_device(dev);
333 	struct hv_ring_buffer_debug_info outbound;
334 	int ret;
335 
336 	if (!hv_dev->channel)
337 		return -ENODEV;
338 
339 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
340 					  &outbound);
341 	if (ret < 0)
342 		return ret;
343 	return sprintf(buf, "%d\n", outbound.current_write_index);
344 }
345 static DEVICE_ATTR_RO(out_write_index);
346 
347 static ssize_t out_read_bytes_avail_show(struct device *dev,
348 					 struct device_attribute *dev_attr,
349 					 char *buf)
350 {
351 	struct hv_device *hv_dev = device_to_hv_device(dev);
352 	struct hv_ring_buffer_debug_info outbound;
353 	int ret;
354 
355 	if (!hv_dev->channel)
356 		return -ENODEV;
357 
358 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
359 					  &outbound);
360 	if (ret < 0)
361 		return ret;
362 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
363 }
364 static DEVICE_ATTR_RO(out_read_bytes_avail);
365 
366 static ssize_t out_write_bytes_avail_show(struct device *dev,
367 					  struct device_attribute *dev_attr,
368 					  char *buf)
369 {
370 	struct hv_device *hv_dev = device_to_hv_device(dev);
371 	struct hv_ring_buffer_debug_info outbound;
372 	int ret;
373 
374 	if (!hv_dev->channel)
375 		return -ENODEV;
376 
377 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
378 					  &outbound);
379 	if (ret < 0)
380 		return ret;
381 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
382 }
383 static DEVICE_ATTR_RO(out_write_bytes_avail);
384 
385 static ssize_t in_intr_mask_show(struct device *dev,
386 				 struct device_attribute *dev_attr, char *buf)
387 {
388 	struct hv_device *hv_dev = device_to_hv_device(dev);
389 	struct hv_ring_buffer_debug_info inbound;
390 	int ret;
391 
392 	if (!hv_dev->channel)
393 		return -ENODEV;
394 
395 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
396 	if (ret < 0)
397 		return ret;
398 
399 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
400 }
401 static DEVICE_ATTR_RO(in_intr_mask);
402 
403 static ssize_t in_read_index_show(struct device *dev,
404 				  struct device_attribute *dev_attr, char *buf)
405 {
406 	struct hv_device *hv_dev = device_to_hv_device(dev);
407 	struct hv_ring_buffer_debug_info inbound;
408 	int ret;
409 
410 	if (!hv_dev->channel)
411 		return -ENODEV;
412 
413 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 	if (ret < 0)
415 		return ret;
416 
417 	return sprintf(buf, "%d\n", inbound.current_read_index);
418 }
419 static DEVICE_ATTR_RO(in_read_index);
420 
421 static ssize_t in_write_index_show(struct device *dev,
422 				   struct device_attribute *dev_attr, char *buf)
423 {
424 	struct hv_device *hv_dev = device_to_hv_device(dev);
425 	struct hv_ring_buffer_debug_info inbound;
426 	int ret;
427 
428 	if (!hv_dev->channel)
429 		return -ENODEV;
430 
431 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
432 	if (ret < 0)
433 		return ret;
434 
435 	return sprintf(buf, "%d\n", inbound.current_write_index);
436 }
437 static DEVICE_ATTR_RO(in_write_index);
438 
439 static ssize_t in_read_bytes_avail_show(struct device *dev,
440 					struct device_attribute *dev_attr,
441 					char *buf)
442 {
443 	struct hv_device *hv_dev = device_to_hv_device(dev);
444 	struct hv_ring_buffer_debug_info inbound;
445 	int ret;
446 
447 	if (!hv_dev->channel)
448 		return -ENODEV;
449 
450 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
451 	if (ret < 0)
452 		return ret;
453 
454 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
455 }
456 static DEVICE_ATTR_RO(in_read_bytes_avail);
457 
458 static ssize_t in_write_bytes_avail_show(struct device *dev,
459 					 struct device_attribute *dev_attr,
460 					 char *buf)
461 {
462 	struct hv_device *hv_dev = device_to_hv_device(dev);
463 	struct hv_ring_buffer_debug_info inbound;
464 	int ret;
465 
466 	if (!hv_dev->channel)
467 		return -ENODEV;
468 
469 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
470 	if (ret < 0)
471 		return ret;
472 
473 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
474 }
475 static DEVICE_ATTR_RO(in_write_bytes_avail);
476 
477 static ssize_t channel_vp_mapping_show(struct device *dev,
478 				       struct device_attribute *dev_attr,
479 				       char *buf)
480 {
481 	struct hv_device *hv_dev = device_to_hv_device(dev);
482 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
483 	int buf_size = PAGE_SIZE, n_written, tot_written;
484 	struct list_head *cur;
485 
486 	if (!channel)
487 		return -ENODEV;
488 
489 	mutex_lock(&vmbus_connection.channel_mutex);
490 
491 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
492 		channel->offermsg.child_relid, channel->target_cpu);
493 
494 	list_for_each(cur, &channel->sc_list) {
495 		if (tot_written >= buf_size - 1)
496 			break;
497 
498 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
499 		n_written = scnprintf(buf + tot_written,
500 				     buf_size - tot_written,
501 				     "%u:%u\n",
502 				     cur_sc->offermsg.child_relid,
503 				     cur_sc->target_cpu);
504 		tot_written += n_written;
505 	}
506 
507 	mutex_unlock(&vmbus_connection.channel_mutex);
508 
509 	return tot_written;
510 }
511 static DEVICE_ATTR_RO(channel_vp_mapping);
512 
513 static ssize_t vendor_show(struct device *dev,
514 			   struct device_attribute *dev_attr,
515 			   char *buf)
516 {
517 	struct hv_device *hv_dev = device_to_hv_device(dev);
518 
519 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
520 }
521 static DEVICE_ATTR_RO(vendor);
522 
523 static ssize_t device_show(struct device *dev,
524 			   struct device_attribute *dev_attr,
525 			   char *buf)
526 {
527 	struct hv_device *hv_dev = device_to_hv_device(dev);
528 
529 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
530 }
531 static DEVICE_ATTR_RO(device);
532 
533 static ssize_t driver_override_store(struct device *dev,
534 				     struct device_attribute *attr,
535 				     const char *buf, size_t count)
536 {
537 	struct hv_device *hv_dev = device_to_hv_device(dev);
538 	int ret;
539 
540 	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
541 	if (ret)
542 		return ret;
543 
544 	return count;
545 }
546 
547 static ssize_t driver_override_show(struct device *dev,
548 				    struct device_attribute *attr, char *buf)
549 {
550 	struct hv_device *hv_dev = device_to_hv_device(dev);
551 	ssize_t len;
552 
553 	device_lock(dev);
554 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
555 	device_unlock(dev);
556 
557 	return len;
558 }
559 static DEVICE_ATTR_RW(driver_override);
560 
561 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
562 static struct attribute *vmbus_dev_attrs[] = {
563 	&dev_attr_id.attr,
564 	&dev_attr_state.attr,
565 	&dev_attr_monitor_id.attr,
566 	&dev_attr_class_id.attr,
567 	&dev_attr_device_id.attr,
568 	&dev_attr_modalias.attr,
569 #ifdef CONFIG_NUMA
570 	&dev_attr_numa_node.attr,
571 #endif
572 	&dev_attr_server_monitor_pending.attr,
573 	&dev_attr_client_monitor_pending.attr,
574 	&dev_attr_server_monitor_latency.attr,
575 	&dev_attr_client_monitor_latency.attr,
576 	&dev_attr_server_monitor_conn_id.attr,
577 	&dev_attr_client_monitor_conn_id.attr,
578 	&dev_attr_out_intr_mask.attr,
579 	&dev_attr_out_read_index.attr,
580 	&dev_attr_out_write_index.attr,
581 	&dev_attr_out_read_bytes_avail.attr,
582 	&dev_attr_out_write_bytes_avail.attr,
583 	&dev_attr_in_intr_mask.attr,
584 	&dev_attr_in_read_index.attr,
585 	&dev_attr_in_write_index.attr,
586 	&dev_attr_in_read_bytes_avail.attr,
587 	&dev_attr_in_write_bytes_avail.attr,
588 	&dev_attr_channel_vp_mapping.attr,
589 	&dev_attr_vendor.attr,
590 	&dev_attr_device.attr,
591 	&dev_attr_driver_override.attr,
592 	NULL,
593 };
594 
595 /*
596  * Device-level attribute_group callback function. Returns the permission for
597  * each attribute, and returns 0 if an attribute is not visible.
598  */
599 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
600 					 struct attribute *attr, int idx)
601 {
602 	struct device *dev = kobj_to_dev(kobj);
603 	const struct hv_device *hv_dev = device_to_hv_device(dev);
604 
605 	/* Hide the monitor attributes if the monitor mechanism is not used. */
606 	if (!hv_dev->channel->offermsg.monitor_allocated &&
607 	    (attr == &dev_attr_monitor_id.attr ||
608 	     attr == &dev_attr_server_monitor_pending.attr ||
609 	     attr == &dev_attr_client_monitor_pending.attr ||
610 	     attr == &dev_attr_server_monitor_latency.attr ||
611 	     attr == &dev_attr_client_monitor_latency.attr ||
612 	     attr == &dev_attr_server_monitor_conn_id.attr ||
613 	     attr == &dev_attr_client_monitor_conn_id.attr))
614 		return 0;
615 
616 	return attr->mode;
617 }
618 
619 static const struct attribute_group vmbus_dev_group = {
620 	.attrs = vmbus_dev_attrs,
621 	.is_visible = vmbus_dev_attr_is_visible
622 };
623 __ATTRIBUTE_GROUPS(vmbus_dev);
624 
625 /* Set up the attribute for /sys/bus/vmbus/hibernation */
626 static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
627 {
628 	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
629 }
630 
631 static BUS_ATTR_RO(hibernation);
632 
633 static struct attribute *vmbus_bus_attrs[] = {
634 	&bus_attr_hibernation.attr,
635 	NULL,
636 };
637 static const struct attribute_group vmbus_bus_group = {
638 	.attrs = vmbus_bus_attrs,
639 };
640 __ATTRIBUTE_GROUPS(vmbus_bus);
641 
642 /*
643  * vmbus_uevent - add uevent for our device
644  *
645  * This routine is invoked when a device is added or removed on the vmbus to
646  * generate a uevent to udev in the userspace. The udev will then look at its
647  * rule and the uevent generated here to load the appropriate driver
648  *
649  * The alias string will be of the form vmbus:guid where guid is the string
650  * representation of the device guid (each byte of the guid will be
651  * represented with two hex characters.
652  */
653 static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
654 {
655 	const struct hv_device *dev = device_to_hv_device(device);
656 	const char *format = "MODALIAS=vmbus:%*phN";
657 
658 	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
659 }
660 
661 static const struct hv_vmbus_device_id *
662 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
663 {
664 	if (id == NULL)
665 		return NULL; /* empty device table */
666 
667 	for (; !guid_is_null(&id->guid); id++)
668 		if (guid_equal(&id->guid, guid))
669 			return id;
670 
671 	return NULL;
672 }
673 
674 static const struct hv_vmbus_device_id *
675 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
676 {
677 	const struct hv_vmbus_device_id *id = NULL;
678 	struct vmbus_dynid *dynid;
679 
680 	spin_lock(&drv->dynids.lock);
681 	list_for_each_entry(dynid, &drv->dynids.list, node) {
682 		if (guid_equal(&dynid->id.guid, guid)) {
683 			id = &dynid->id;
684 			break;
685 		}
686 	}
687 	spin_unlock(&drv->dynids.lock);
688 
689 	return id;
690 }
691 
692 static const struct hv_vmbus_device_id vmbus_device_null;
693 
694 /*
695  * Return a matching hv_vmbus_device_id pointer.
696  * If there is no match, return NULL.
697  */
698 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
699 							struct hv_device *dev)
700 {
701 	const guid_t *guid = &dev->dev_type;
702 	const struct hv_vmbus_device_id *id;
703 
704 	/* When driver_override is set, only bind to the matching driver */
705 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
706 		return NULL;
707 
708 	/* Look at the dynamic ids first, before the static ones */
709 	id = hv_vmbus_dynid_match(drv, guid);
710 	if (!id)
711 		id = hv_vmbus_dev_match(drv->id_table, guid);
712 
713 	/* driver_override will always match, send a dummy id */
714 	if (!id && dev->driver_override)
715 		id = &vmbus_device_null;
716 
717 	return id;
718 }
719 
720 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
721 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
722 {
723 	struct vmbus_dynid *dynid;
724 
725 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
726 	if (!dynid)
727 		return -ENOMEM;
728 
729 	dynid->id.guid = *guid;
730 
731 	spin_lock(&drv->dynids.lock);
732 	list_add_tail(&dynid->node, &drv->dynids.list);
733 	spin_unlock(&drv->dynids.lock);
734 
735 	return driver_attach(&drv->driver);
736 }
737 
738 static void vmbus_free_dynids(struct hv_driver *drv)
739 {
740 	struct vmbus_dynid *dynid, *n;
741 
742 	spin_lock(&drv->dynids.lock);
743 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
744 		list_del(&dynid->node);
745 		kfree(dynid);
746 	}
747 	spin_unlock(&drv->dynids.lock);
748 }
749 
750 /*
751  * store_new_id - sysfs frontend to vmbus_add_dynid()
752  *
753  * Allow GUIDs to be added to an existing driver via sysfs.
754  */
755 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
756 			    size_t count)
757 {
758 	struct hv_driver *drv = drv_to_hv_drv(driver);
759 	guid_t guid;
760 	ssize_t retval;
761 
762 	retval = guid_parse(buf, &guid);
763 	if (retval)
764 		return retval;
765 
766 	if (hv_vmbus_dynid_match(drv, &guid))
767 		return -EEXIST;
768 
769 	retval = vmbus_add_dynid(drv, &guid);
770 	if (retval)
771 		return retval;
772 	return count;
773 }
774 static DRIVER_ATTR_WO(new_id);
775 
776 /*
777  * store_remove_id - remove a PCI device ID from this driver
778  *
779  * Removes a dynamic pci device ID to this driver.
780  */
781 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
782 			       size_t count)
783 {
784 	struct hv_driver *drv = drv_to_hv_drv(driver);
785 	struct vmbus_dynid *dynid, *n;
786 	guid_t guid;
787 	ssize_t retval;
788 
789 	retval = guid_parse(buf, &guid);
790 	if (retval)
791 		return retval;
792 
793 	retval = -ENODEV;
794 	spin_lock(&drv->dynids.lock);
795 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
796 		struct hv_vmbus_device_id *id = &dynid->id;
797 
798 		if (guid_equal(&id->guid, &guid)) {
799 			list_del(&dynid->node);
800 			kfree(dynid);
801 			retval = count;
802 			break;
803 		}
804 	}
805 	spin_unlock(&drv->dynids.lock);
806 
807 	return retval;
808 }
809 static DRIVER_ATTR_WO(remove_id);
810 
811 static struct attribute *vmbus_drv_attrs[] = {
812 	&driver_attr_new_id.attr,
813 	&driver_attr_remove_id.attr,
814 	NULL,
815 };
816 ATTRIBUTE_GROUPS(vmbus_drv);
817 
818 
819 /*
820  * vmbus_match - Attempt to match the specified device to the specified driver
821  */
822 static int vmbus_match(struct device *device, struct device_driver *driver)
823 {
824 	struct hv_driver *drv = drv_to_hv_drv(driver);
825 	struct hv_device *hv_dev = device_to_hv_device(device);
826 
827 	/* The hv_sock driver handles all hv_sock offers. */
828 	if (is_hvsock_channel(hv_dev->channel))
829 		return drv->hvsock;
830 
831 	if (hv_vmbus_get_id(drv, hv_dev))
832 		return 1;
833 
834 	return 0;
835 }
836 
837 /*
838  * vmbus_probe - Add the new vmbus's child device
839  */
840 static int vmbus_probe(struct device *child_device)
841 {
842 	int ret = 0;
843 	struct hv_driver *drv =
844 			drv_to_hv_drv(child_device->driver);
845 	struct hv_device *dev = device_to_hv_device(child_device);
846 	const struct hv_vmbus_device_id *dev_id;
847 
848 	dev_id = hv_vmbus_get_id(drv, dev);
849 	if (drv->probe) {
850 		ret = drv->probe(dev, dev_id);
851 		if (ret != 0)
852 			pr_err("probe failed for device %s (%d)\n",
853 			       dev_name(child_device), ret);
854 
855 	} else {
856 		pr_err("probe not set for driver %s\n",
857 		       dev_name(child_device));
858 		ret = -ENODEV;
859 	}
860 	return ret;
861 }
862 
863 /*
864  * vmbus_dma_configure -- Configure DMA coherence for VMbus device
865  */
866 static int vmbus_dma_configure(struct device *child_device)
867 {
868 	/*
869 	 * On ARM64, propagate the DMA coherence setting from the top level
870 	 * VMbus ACPI device to the child VMbus device being added here.
871 	 * On x86/x64 coherence is assumed and these calls have no effect.
872 	 */
873 	hv_setup_dma_ops(child_device,
874 		device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT);
875 	return 0;
876 }
877 
878 /*
879  * vmbus_remove - Remove a vmbus device
880  */
881 static void vmbus_remove(struct device *child_device)
882 {
883 	struct hv_driver *drv;
884 	struct hv_device *dev = device_to_hv_device(child_device);
885 
886 	if (child_device->driver) {
887 		drv = drv_to_hv_drv(child_device->driver);
888 		if (drv->remove)
889 			drv->remove(dev);
890 	}
891 }
892 
893 /*
894  * vmbus_shutdown - Shutdown a vmbus device
895  */
896 static void vmbus_shutdown(struct device *child_device)
897 {
898 	struct hv_driver *drv;
899 	struct hv_device *dev = device_to_hv_device(child_device);
900 
901 
902 	/* The device may not be attached yet */
903 	if (!child_device->driver)
904 		return;
905 
906 	drv = drv_to_hv_drv(child_device->driver);
907 
908 	if (drv->shutdown)
909 		drv->shutdown(dev);
910 }
911 
912 #ifdef CONFIG_PM_SLEEP
913 /*
914  * vmbus_suspend - Suspend a vmbus device
915  */
916 static int vmbus_suspend(struct device *child_device)
917 {
918 	struct hv_driver *drv;
919 	struct hv_device *dev = device_to_hv_device(child_device);
920 
921 	/* The device may not be attached yet */
922 	if (!child_device->driver)
923 		return 0;
924 
925 	drv = drv_to_hv_drv(child_device->driver);
926 	if (!drv->suspend)
927 		return -EOPNOTSUPP;
928 
929 	return drv->suspend(dev);
930 }
931 
932 /*
933  * vmbus_resume - Resume a vmbus device
934  */
935 static int vmbus_resume(struct device *child_device)
936 {
937 	struct hv_driver *drv;
938 	struct hv_device *dev = device_to_hv_device(child_device);
939 
940 	/* The device may not be attached yet */
941 	if (!child_device->driver)
942 		return 0;
943 
944 	drv = drv_to_hv_drv(child_device->driver);
945 	if (!drv->resume)
946 		return -EOPNOTSUPP;
947 
948 	return drv->resume(dev);
949 }
950 #else
951 #define vmbus_suspend NULL
952 #define vmbus_resume NULL
953 #endif /* CONFIG_PM_SLEEP */
954 
955 /*
956  * vmbus_device_release - Final callback release of the vmbus child device
957  */
958 static void vmbus_device_release(struct device *device)
959 {
960 	struct hv_device *hv_dev = device_to_hv_device(device);
961 	struct vmbus_channel *channel = hv_dev->channel;
962 
963 	hv_debug_rm_dev_dir(hv_dev);
964 
965 	mutex_lock(&vmbus_connection.channel_mutex);
966 	hv_process_channel_removal(channel);
967 	mutex_unlock(&vmbus_connection.channel_mutex);
968 	kfree(hv_dev);
969 }
970 
971 /*
972  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
973  *
974  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
975  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
976  * is no way to wake up a Generation-2 VM.
977  *
978  * The other 4 ops are for hibernation.
979  */
980 
981 static const struct dev_pm_ops vmbus_pm = {
982 	.suspend_noirq	= NULL,
983 	.resume_noirq	= NULL,
984 	.freeze_noirq	= vmbus_suspend,
985 	.thaw_noirq	= vmbus_resume,
986 	.poweroff_noirq	= vmbus_suspend,
987 	.restore_noirq	= vmbus_resume,
988 };
989 
990 /* The one and only one */
991 static struct bus_type  hv_bus = {
992 	.name =		"vmbus",
993 	.match =		vmbus_match,
994 	.shutdown =		vmbus_shutdown,
995 	.remove =		vmbus_remove,
996 	.probe =		vmbus_probe,
997 	.uevent =		vmbus_uevent,
998 	.dma_configure =	vmbus_dma_configure,
999 	.dev_groups =		vmbus_dev_groups,
1000 	.drv_groups =		vmbus_drv_groups,
1001 	.bus_groups =		vmbus_bus_groups,
1002 	.pm =			&vmbus_pm,
1003 };
1004 
1005 struct onmessage_work_context {
1006 	struct work_struct work;
1007 	struct {
1008 		struct hv_message_header header;
1009 		u8 payload[];
1010 	} msg;
1011 };
1012 
1013 static void vmbus_onmessage_work(struct work_struct *work)
1014 {
1015 	struct onmessage_work_context *ctx;
1016 
1017 	/* Do not process messages if we're in DISCONNECTED state */
1018 	if (vmbus_connection.conn_state == DISCONNECTED)
1019 		return;
1020 
1021 	ctx = container_of(work, struct onmessage_work_context,
1022 			   work);
1023 	vmbus_onmessage((struct vmbus_channel_message_header *)
1024 			&ctx->msg.payload);
1025 	kfree(ctx);
1026 }
1027 
1028 void vmbus_on_msg_dpc(unsigned long data)
1029 {
1030 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1031 	void *page_addr = hv_cpu->synic_message_page;
1032 	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1033 				  VMBUS_MESSAGE_SINT;
1034 	struct vmbus_channel_message_header *hdr;
1035 	enum vmbus_channel_message_type msgtype;
1036 	const struct vmbus_channel_message_table_entry *entry;
1037 	struct onmessage_work_context *ctx;
1038 	__u8 payload_size;
1039 	u32 message_type;
1040 
1041 	/*
1042 	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1043 	 * it is being used in 'struct vmbus_channel_message_header' definition
1044 	 * which is supposed to match hypervisor ABI.
1045 	 */
1046 	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1047 
1048 	/*
1049 	 * Since the message is in memory shared with the host, an erroneous or
1050 	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1051 	 * or individual message handlers are executing; to prevent this, copy
1052 	 * the message into private memory.
1053 	 */
1054 	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1055 
1056 	message_type = msg_copy.header.message_type;
1057 	if (message_type == HVMSG_NONE)
1058 		/* no msg */
1059 		return;
1060 
1061 	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1062 	msgtype = hdr->msgtype;
1063 
1064 	trace_vmbus_on_msg_dpc(hdr);
1065 
1066 	if (msgtype >= CHANNELMSG_COUNT) {
1067 		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1068 		goto msg_handled;
1069 	}
1070 
1071 	payload_size = msg_copy.header.payload_size;
1072 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1073 		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1074 		goto msg_handled;
1075 	}
1076 
1077 	entry = &channel_message_table[msgtype];
1078 
1079 	if (!entry->message_handler)
1080 		goto msg_handled;
1081 
1082 	if (payload_size < entry->min_payload_len) {
1083 		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1084 		goto msg_handled;
1085 	}
1086 
1087 	if (entry->handler_type	== VMHT_BLOCKING) {
1088 		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1089 		if (ctx == NULL)
1090 			return;
1091 
1092 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1093 		ctx->msg.header = msg_copy.header;
1094 		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1095 
1096 		/*
1097 		 * The host can generate a rescind message while we
1098 		 * may still be handling the original offer. We deal with
1099 		 * this condition by relying on the synchronization provided
1100 		 * by offer_in_progress and by channel_mutex.  See also the
1101 		 * inline comments in vmbus_onoffer_rescind().
1102 		 */
1103 		switch (msgtype) {
1104 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1105 			/*
1106 			 * If we are handling the rescind message;
1107 			 * schedule the work on the global work queue.
1108 			 *
1109 			 * The OFFER message and the RESCIND message should
1110 			 * not be handled by the same serialized work queue,
1111 			 * because the OFFER handler may call vmbus_open(),
1112 			 * which tries to open the channel by sending an
1113 			 * OPEN_CHANNEL message to the host and waits for
1114 			 * the host's response; however, if the host has
1115 			 * rescinded the channel before it receives the
1116 			 * OPEN_CHANNEL message, the host just silently
1117 			 * ignores the OPEN_CHANNEL message; as a result,
1118 			 * the guest's OFFER handler hangs for ever, if we
1119 			 * handle the RESCIND message in the same serialized
1120 			 * work queue: the RESCIND handler can not start to
1121 			 * run before the OFFER handler finishes.
1122 			 */
1123 			if (vmbus_connection.ignore_any_offer_msg)
1124 				break;
1125 			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1126 			break;
1127 
1128 		case CHANNELMSG_OFFERCHANNEL:
1129 			/*
1130 			 * The host sends the offer message of a given channel
1131 			 * before sending the rescind message of the same
1132 			 * channel.  These messages are sent to the guest's
1133 			 * connect CPU; the guest then starts processing them
1134 			 * in the tasklet handler on this CPU:
1135 			 *
1136 			 * VMBUS_CONNECT_CPU
1137 			 *
1138 			 * [vmbus_on_msg_dpc()]
1139 			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1140 			 * queue_work()
1141 			 * ...
1142 			 * [vmbus_on_msg_dpc()]
1143 			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1144 			 *
1145 			 * We rely on the memory-ordering properties of the
1146 			 * queue_work() and schedule_work() primitives, which
1147 			 * guarantee that the atomic increment will be visible
1148 			 * to the CPUs which will execute the offer & rescind
1149 			 * works by the time these works will start execution.
1150 			 */
1151 			if (vmbus_connection.ignore_any_offer_msg)
1152 				break;
1153 			atomic_inc(&vmbus_connection.offer_in_progress);
1154 			fallthrough;
1155 
1156 		default:
1157 			queue_work(vmbus_connection.work_queue, &ctx->work);
1158 		}
1159 	} else
1160 		entry->message_handler(hdr);
1161 
1162 msg_handled:
1163 	vmbus_signal_eom(msg, message_type);
1164 }
1165 
1166 #ifdef CONFIG_PM_SLEEP
1167 /*
1168  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1169  * hibernation, because hv_sock connections can not persist across hibernation.
1170  */
1171 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1172 {
1173 	struct onmessage_work_context *ctx;
1174 	struct vmbus_channel_rescind_offer *rescind;
1175 
1176 	WARN_ON(!is_hvsock_channel(channel));
1177 
1178 	/*
1179 	 * Allocation size is small and the allocation should really not fail,
1180 	 * otherwise the state of the hv_sock connections ends up in limbo.
1181 	 */
1182 	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1183 		      GFP_KERNEL | __GFP_NOFAIL);
1184 
1185 	/*
1186 	 * So far, these are not really used by Linux. Just set them to the
1187 	 * reasonable values conforming to the definitions of the fields.
1188 	 */
1189 	ctx->msg.header.message_type = 1;
1190 	ctx->msg.header.payload_size = sizeof(*rescind);
1191 
1192 	/* These values are actually used by Linux. */
1193 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1194 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1195 	rescind->child_relid = channel->offermsg.child_relid;
1196 
1197 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1198 
1199 	queue_work(vmbus_connection.work_queue, &ctx->work);
1200 }
1201 #endif /* CONFIG_PM_SLEEP */
1202 
1203 /*
1204  * Schedule all channels with events pending
1205  */
1206 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1207 {
1208 	unsigned long *recv_int_page;
1209 	u32 maxbits, relid;
1210 
1211 	/*
1212 	 * The event page can be directly checked to get the id of
1213 	 * the channel that has the interrupt pending.
1214 	 */
1215 	void *page_addr = hv_cpu->synic_event_page;
1216 	union hv_synic_event_flags *event
1217 		= (union hv_synic_event_flags *)page_addr +
1218 					 VMBUS_MESSAGE_SINT;
1219 
1220 	maxbits = HV_EVENT_FLAGS_COUNT;
1221 	recv_int_page = event->flags;
1222 
1223 	if (unlikely(!recv_int_page))
1224 		return;
1225 
1226 	for_each_set_bit(relid, recv_int_page, maxbits) {
1227 		void (*callback_fn)(void *context);
1228 		struct vmbus_channel *channel;
1229 
1230 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1231 			continue;
1232 
1233 		/* Special case - vmbus channel protocol msg */
1234 		if (relid == 0)
1235 			continue;
1236 
1237 		/*
1238 		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1239 		 * Guarantees that the channel data structure doesn't
1240 		 * get freed while the channel pointer below is being
1241 		 * dereferenced.
1242 		 */
1243 		rcu_read_lock();
1244 
1245 		/* Find channel based on relid */
1246 		channel = relid2channel(relid);
1247 		if (channel == NULL)
1248 			goto sched_unlock_rcu;
1249 
1250 		if (channel->rescind)
1251 			goto sched_unlock_rcu;
1252 
1253 		/*
1254 		 * Make sure that the ring buffer data structure doesn't get
1255 		 * freed while we dereference the ring buffer pointer.  Test
1256 		 * for the channel's onchannel_callback being NULL within a
1257 		 * sched_lock critical section.  See also the inline comments
1258 		 * in vmbus_reset_channel_cb().
1259 		 */
1260 		spin_lock(&channel->sched_lock);
1261 
1262 		callback_fn = channel->onchannel_callback;
1263 		if (unlikely(callback_fn == NULL))
1264 			goto sched_unlock;
1265 
1266 		trace_vmbus_chan_sched(channel);
1267 
1268 		++channel->interrupts;
1269 
1270 		switch (channel->callback_mode) {
1271 		case HV_CALL_ISR:
1272 			(*callback_fn)(channel->channel_callback_context);
1273 			break;
1274 
1275 		case HV_CALL_BATCHED:
1276 			hv_begin_read(&channel->inbound);
1277 			fallthrough;
1278 		case HV_CALL_DIRECT:
1279 			tasklet_schedule(&channel->callback_event);
1280 		}
1281 
1282 sched_unlock:
1283 		spin_unlock(&channel->sched_lock);
1284 sched_unlock_rcu:
1285 		rcu_read_unlock();
1286 	}
1287 }
1288 
1289 static void vmbus_isr(void)
1290 {
1291 	struct hv_per_cpu_context *hv_cpu
1292 		= this_cpu_ptr(hv_context.cpu_context);
1293 	void *page_addr;
1294 	struct hv_message *msg;
1295 
1296 	vmbus_chan_sched(hv_cpu);
1297 
1298 	page_addr = hv_cpu->synic_message_page;
1299 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1300 
1301 	/* Check if there are actual msgs to be processed */
1302 	if (msg->header.message_type != HVMSG_NONE) {
1303 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1304 			hv_stimer0_isr();
1305 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1306 		} else
1307 			tasklet_schedule(&hv_cpu->msg_dpc);
1308 	}
1309 
1310 	add_interrupt_randomness(vmbus_interrupt);
1311 }
1312 
1313 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1314 {
1315 	vmbus_isr();
1316 	return IRQ_HANDLED;
1317 }
1318 
1319 /*
1320  * vmbus_bus_init -Main vmbus driver initialization routine.
1321  *
1322  * Here, we
1323  *	- initialize the vmbus driver context
1324  *	- invoke the vmbus hv main init routine
1325  *	- retrieve the channel offers
1326  */
1327 static int vmbus_bus_init(void)
1328 {
1329 	int ret;
1330 
1331 	ret = hv_init();
1332 	if (ret != 0) {
1333 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1334 		return ret;
1335 	}
1336 
1337 	ret = bus_register(&hv_bus);
1338 	if (ret)
1339 		return ret;
1340 
1341 	/*
1342 	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1343 	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1344 	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1345 	 * If not on such an architecture (e.g., x86/x64), then rely on
1346 	 * code in the arch-specific portion of the code tree to connect
1347 	 * the VMbus interrupt handler.
1348 	 */
1349 
1350 	if (vmbus_irq == -1) {
1351 		hv_setup_vmbus_handler(vmbus_isr);
1352 	} else {
1353 		vmbus_evt = alloc_percpu(long);
1354 		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1355 				"Hyper-V VMbus", vmbus_evt);
1356 		if (ret) {
1357 			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1358 					vmbus_irq, ret);
1359 			free_percpu(vmbus_evt);
1360 			goto err_setup;
1361 		}
1362 	}
1363 
1364 	ret = hv_synic_alloc();
1365 	if (ret)
1366 		goto err_alloc;
1367 
1368 	/*
1369 	 * Initialize the per-cpu interrupt state and stimer state.
1370 	 * Then connect to the host.
1371 	 */
1372 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1373 				hv_synic_init, hv_synic_cleanup);
1374 	if (ret < 0)
1375 		goto err_alloc;
1376 	hyperv_cpuhp_online = ret;
1377 
1378 	ret = vmbus_connect();
1379 	if (ret)
1380 		goto err_connect;
1381 
1382 	/*
1383 	 * Always register the vmbus unload panic notifier because we
1384 	 * need to shut the VMbus channel connection on panic.
1385 	 */
1386 	atomic_notifier_chain_register(&panic_notifier_list,
1387 			       &hyperv_panic_vmbus_unload_block);
1388 
1389 	vmbus_request_offers();
1390 
1391 	return 0;
1392 
1393 err_connect:
1394 	cpuhp_remove_state(hyperv_cpuhp_online);
1395 err_alloc:
1396 	hv_synic_free();
1397 	if (vmbus_irq == -1) {
1398 		hv_remove_vmbus_handler();
1399 	} else {
1400 		free_percpu_irq(vmbus_irq, vmbus_evt);
1401 		free_percpu(vmbus_evt);
1402 	}
1403 err_setup:
1404 	bus_unregister(&hv_bus);
1405 	return ret;
1406 }
1407 
1408 /**
1409  * __vmbus_driver_register() - Register a vmbus's driver
1410  * @hv_driver: Pointer to driver structure you want to register
1411  * @owner: owner module of the drv
1412  * @mod_name: module name string
1413  *
1414  * Registers the given driver with Linux through the 'driver_register()' call
1415  * and sets up the hyper-v vmbus handling for this driver.
1416  * It will return the state of the 'driver_register()' call.
1417  *
1418  */
1419 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1420 {
1421 	int ret;
1422 
1423 	pr_info("registering driver %s\n", hv_driver->name);
1424 
1425 	ret = vmbus_exists();
1426 	if (ret < 0)
1427 		return ret;
1428 
1429 	hv_driver->driver.name = hv_driver->name;
1430 	hv_driver->driver.owner = owner;
1431 	hv_driver->driver.mod_name = mod_name;
1432 	hv_driver->driver.bus = &hv_bus;
1433 
1434 	spin_lock_init(&hv_driver->dynids.lock);
1435 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1436 
1437 	ret = driver_register(&hv_driver->driver);
1438 
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1442 
1443 /**
1444  * vmbus_driver_unregister() - Unregister a vmbus's driver
1445  * @hv_driver: Pointer to driver structure you want to
1446  *             un-register
1447  *
1448  * Un-register the given driver that was previous registered with a call to
1449  * vmbus_driver_register()
1450  */
1451 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1452 {
1453 	pr_info("unregistering driver %s\n", hv_driver->name);
1454 
1455 	if (!vmbus_exists()) {
1456 		driver_unregister(&hv_driver->driver);
1457 		vmbus_free_dynids(hv_driver);
1458 	}
1459 }
1460 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1461 
1462 
1463 /*
1464  * Called when last reference to channel is gone.
1465  */
1466 static void vmbus_chan_release(struct kobject *kobj)
1467 {
1468 	struct vmbus_channel *channel
1469 		= container_of(kobj, struct vmbus_channel, kobj);
1470 
1471 	kfree_rcu(channel, rcu);
1472 }
1473 
1474 struct vmbus_chan_attribute {
1475 	struct attribute attr;
1476 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1477 	ssize_t (*store)(struct vmbus_channel *chan,
1478 			 const char *buf, size_t count);
1479 };
1480 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1481 	struct vmbus_chan_attribute chan_attr_##_name \
1482 		= __ATTR(_name, _mode, _show, _store)
1483 #define VMBUS_CHAN_ATTR_RW(_name) \
1484 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1485 #define VMBUS_CHAN_ATTR_RO(_name) \
1486 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1487 #define VMBUS_CHAN_ATTR_WO(_name) \
1488 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1489 
1490 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1491 				    struct attribute *attr, char *buf)
1492 {
1493 	const struct vmbus_chan_attribute *attribute
1494 		= container_of(attr, struct vmbus_chan_attribute, attr);
1495 	struct vmbus_channel *chan
1496 		= container_of(kobj, struct vmbus_channel, kobj);
1497 
1498 	if (!attribute->show)
1499 		return -EIO;
1500 
1501 	return attribute->show(chan, buf);
1502 }
1503 
1504 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1505 				     struct attribute *attr, const char *buf,
1506 				     size_t count)
1507 {
1508 	const struct vmbus_chan_attribute *attribute
1509 		= container_of(attr, struct vmbus_chan_attribute, attr);
1510 	struct vmbus_channel *chan
1511 		= container_of(kobj, struct vmbus_channel, kobj);
1512 
1513 	if (!attribute->store)
1514 		return -EIO;
1515 
1516 	return attribute->store(chan, buf, count);
1517 }
1518 
1519 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1520 	.show = vmbus_chan_attr_show,
1521 	.store = vmbus_chan_attr_store,
1522 };
1523 
1524 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1525 {
1526 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1527 	ssize_t ret;
1528 
1529 	mutex_lock(&rbi->ring_buffer_mutex);
1530 	if (!rbi->ring_buffer) {
1531 		mutex_unlock(&rbi->ring_buffer_mutex);
1532 		return -EINVAL;
1533 	}
1534 
1535 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1536 	mutex_unlock(&rbi->ring_buffer_mutex);
1537 	return ret;
1538 }
1539 static VMBUS_CHAN_ATTR_RO(out_mask);
1540 
1541 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1542 {
1543 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1544 	ssize_t ret;
1545 
1546 	mutex_lock(&rbi->ring_buffer_mutex);
1547 	if (!rbi->ring_buffer) {
1548 		mutex_unlock(&rbi->ring_buffer_mutex);
1549 		return -EINVAL;
1550 	}
1551 
1552 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1553 	mutex_unlock(&rbi->ring_buffer_mutex);
1554 	return ret;
1555 }
1556 static VMBUS_CHAN_ATTR_RO(in_mask);
1557 
1558 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1559 {
1560 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1561 	ssize_t ret;
1562 
1563 	mutex_lock(&rbi->ring_buffer_mutex);
1564 	if (!rbi->ring_buffer) {
1565 		mutex_unlock(&rbi->ring_buffer_mutex);
1566 		return -EINVAL;
1567 	}
1568 
1569 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1570 	mutex_unlock(&rbi->ring_buffer_mutex);
1571 	return ret;
1572 }
1573 static VMBUS_CHAN_ATTR_RO(read_avail);
1574 
1575 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1576 {
1577 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1578 	ssize_t ret;
1579 
1580 	mutex_lock(&rbi->ring_buffer_mutex);
1581 	if (!rbi->ring_buffer) {
1582 		mutex_unlock(&rbi->ring_buffer_mutex);
1583 		return -EINVAL;
1584 	}
1585 
1586 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1587 	mutex_unlock(&rbi->ring_buffer_mutex);
1588 	return ret;
1589 }
1590 static VMBUS_CHAN_ATTR_RO(write_avail);
1591 
1592 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1593 {
1594 	return sprintf(buf, "%u\n", channel->target_cpu);
1595 }
1596 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1597 				const char *buf, size_t count)
1598 {
1599 	u32 target_cpu, origin_cpu;
1600 	ssize_t ret = count;
1601 
1602 	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1603 		return -EIO;
1604 
1605 	if (sscanf(buf, "%uu", &target_cpu) != 1)
1606 		return -EIO;
1607 
1608 	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1609 	if (target_cpu >= nr_cpumask_bits)
1610 		return -EINVAL;
1611 
1612 	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1613 		return -EINVAL;
1614 
1615 	/* No CPUs should come up or down during this. */
1616 	cpus_read_lock();
1617 
1618 	if (!cpu_online(target_cpu)) {
1619 		cpus_read_unlock();
1620 		return -EINVAL;
1621 	}
1622 
1623 	/*
1624 	 * Synchronizes target_cpu_store() and channel closure:
1625 	 *
1626 	 * { Initially: state = CHANNEL_OPENED }
1627 	 *
1628 	 * CPU1				CPU2
1629 	 *
1630 	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1631 	 *
1632 	 * LOCK channel_mutex		LOCK channel_mutex
1633 	 * LOAD r1 = state		LOAD r2 = state
1634 	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1635 	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1636 	 *   [...]			  SEND CLOSECHANNEL
1637 	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1638 	 *
1639 	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1640 	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1641 	 *
1642 	 * Note.  The host processes the channel messages "sequentially", in
1643 	 * the order in which they are received on a per-partition basis.
1644 	 */
1645 	mutex_lock(&vmbus_connection.channel_mutex);
1646 
1647 	/*
1648 	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1649 	 * avoid sending the message and fail here for such channels.
1650 	 */
1651 	if (channel->state != CHANNEL_OPENED_STATE) {
1652 		ret = -EIO;
1653 		goto cpu_store_unlock;
1654 	}
1655 
1656 	origin_cpu = channel->target_cpu;
1657 	if (target_cpu == origin_cpu)
1658 		goto cpu_store_unlock;
1659 
1660 	if (vmbus_send_modifychannel(channel,
1661 				     hv_cpu_number_to_vp_number(target_cpu))) {
1662 		ret = -EIO;
1663 		goto cpu_store_unlock;
1664 	}
1665 
1666 	/*
1667 	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1668 	 *
1669 	 * Warning.  At this point, there is *no* guarantee that the host will
1670 	 * have successfully processed the vmbus_send_modifychannel() request.
1671 	 * See the header comment of vmbus_send_modifychannel() for more info.
1672 	 *
1673 	 * Lags in the processing of the above vmbus_send_modifychannel() can
1674 	 * result in missed interrupts if the "old" target CPU is taken offline
1675 	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1676 	 * But apart from this offlining scenario, the code tolerates such
1677 	 * lags.  It will function correctly even if a channel interrupt comes
1678 	 * in on a CPU that is different from the channel target_cpu value.
1679 	 */
1680 
1681 	channel->target_cpu = target_cpu;
1682 
1683 	/* See init_vp_index(). */
1684 	if (hv_is_perf_channel(channel))
1685 		hv_update_allocated_cpus(origin_cpu, target_cpu);
1686 
1687 	/* Currently set only for storvsc channels. */
1688 	if (channel->change_target_cpu_callback) {
1689 		(*channel->change_target_cpu_callback)(channel,
1690 				origin_cpu, target_cpu);
1691 	}
1692 
1693 cpu_store_unlock:
1694 	mutex_unlock(&vmbus_connection.channel_mutex);
1695 	cpus_read_unlock();
1696 	return ret;
1697 }
1698 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1699 
1700 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1701 				    char *buf)
1702 {
1703 	return sprintf(buf, "%d\n",
1704 		       channel_pending(channel,
1705 				       vmbus_connection.monitor_pages[1]));
1706 }
1707 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1708 
1709 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1710 				    char *buf)
1711 {
1712 	return sprintf(buf, "%d\n",
1713 		       channel_latency(channel,
1714 				       vmbus_connection.monitor_pages[1]));
1715 }
1716 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1717 
1718 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1719 {
1720 	return sprintf(buf, "%llu\n", channel->interrupts);
1721 }
1722 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1723 
1724 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1725 {
1726 	return sprintf(buf, "%llu\n", channel->sig_events);
1727 }
1728 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1729 
1730 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1731 					 char *buf)
1732 {
1733 	return sprintf(buf, "%llu\n",
1734 		       (unsigned long long)channel->intr_in_full);
1735 }
1736 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1737 
1738 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1739 					   char *buf)
1740 {
1741 	return sprintf(buf, "%llu\n",
1742 		       (unsigned long long)channel->intr_out_empty);
1743 }
1744 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1745 
1746 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1747 					   char *buf)
1748 {
1749 	return sprintf(buf, "%llu\n",
1750 		       (unsigned long long)channel->out_full_first);
1751 }
1752 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1753 
1754 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1755 					   char *buf)
1756 {
1757 	return sprintf(buf, "%llu\n",
1758 		       (unsigned long long)channel->out_full_total);
1759 }
1760 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1761 
1762 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1763 					  char *buf)
1764 {
1765 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1766 }
1767 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1768 
1769 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1770 				  char *buf)
1771 {
1772 	return sprintf(buf, "%u\n",
1773 		       channel->offermsg.offer.sub_channel_index);
1774 }
1775 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1776 
1777 static struct attribute *vmbus_chan_attrs[] = {
1778 	&chan_attr_out_mask.attr,
1779 	&chan_attr_in_mask.attr,
1780 	&chan_attr_read_avail.attr,
1781 	&chan_attr_write_avail.attr,
1782 	&chan_attr_cpu.attr,
1783 	&chan_attr_pending.attr,
1784 	&chan_attr_latency.attr,
1785 	&chan_attr_interrupts.attr,
1786 	&chan_attr_events.attr,
1787 	&chan_attr_intr_in_full.attr,
1788 	&chan_attr_intr_out_empty.attr,
1789 	&chan_attr_out_full_first.attr,
1790 	&chan_attr_out_full_total.attr,
1791 	&chan_attr_monitor_id.attr,
1792 	&chan_attr_subchannel_id.attr,
1793 	NULL
1794 };
1795 
1796 /*
1797  * Channel-level attribute_group callback function. Returns the permission for
1798  * each attribute, and returns 0 if an attribute is not visible.
1799  */
1800 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1801 					  struct attribute *attr, int idx)
1802 {
1803 	const struct vmbus_channel *channel =
1804 		container_of(kobj, struct vmbus_channel, kobj);
1805 
1806 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1807 	if (!channel->offermsg.monitor_allocated &&
1808 	    (attr == &chan_attr_pending.attr ||
1809 	     attr == &chan_attr_latency.attr ||
1810 	     attr == &chan_attr_monitor_id.attr))
1811 		return 0;
1812 
1813 	return attr->mode;
1814 }
1815 
1816 static struct attribute_group vmbus_chan_group = {
1817 	.attrs = vmbus_chan_attrs,
1818 	.is_visible = vmbus_chan_attr_is_visible
1819 };
1820 
1821 static struct kobj_type vmbus_chan_ktype = {
1822 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1823 	.release = vmbus_chan_release,
1824 };
1825 
1826 /*
1827  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1828  */
1829 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1830 {
1831 	const struct device *device = &dev->device;
1832 	struct kobject *kobj = &channel->kobj;
1833 	u32 relid = channel->offermsg.child_relid;
1834 	int ret;
1835 
1836 	kobj->kset = dev->channels_kset;
1837 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1838 				   "%u", relid);
1839 	if (ret) {
1840 		kobject_put(kobj);
1841 		return ret;
1842 	}
1843 
1844 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1845 
1846 	if (ret) {
1847 		/*
1848 		 * The calling functions' error handling paths will cleanup the
1849 		 * empty channel directory.
1850 		 */
1851 		kobject_put(kobj);
1852 		dev_err(device, "Unable to set up channel sysfs files\n");
1853 		return ret;
1854 	}
1855 
1856 	kobject_uevent(kobj, KOBJ_ADD);
1857 
1858 	return 0;
1859 }
1860 
1861 /*
1862  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1863  */
1864 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1865 {
1866 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1867 }
1868 
1869 /*
1870  * vmbus_device_create - Creates and registers a new child device
1871  * on the vmbus.
1872  */
1873 struct hv_device *vmbus_device_create(const guid_t *type,
1874 				      const guid_t *instance,
1875 				      struct vmbus_channel *channel)
1876 {
1877 	struct hv_device *child_device_obj;
1878 
1879 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1880 	if (!child_device_obj) {
1881 		pr_err("Unable to allocate device object for child device\n");
1882 		return NULL;
1883 	}
1884 
1885 	child_device_obj->channel = channel;
1886 	guid_copy(&child_device_obj->dev_type, type);
1887 	guid_copy(&child_device_obj->dev_instance, instance);
1888 	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
1889 
1890 	return child_device_obj;
1891 }
1892 
1893 /*
1894  * vmbus_device_register - Register the child device
1895  */
1896 int vmbus_device_register(struct hv_device *child_device_obj)
1897 {
1898 	struct kobject *kobj = &child_device_obj->device.kobj;
1899 	int ret;
1900 
1901 	dev_set_name(&child_device_obj->device, "%pUl",
1902 		     &child_device_obj->channel->offermsg.offer.if_instance);
1903 
1904 	child_device_obj->device.bus = &hv_bus;
1905 	child_device_obj->device.parent = hv_dev;
1906 	child_device_obj->device.release = vmbus_device_release;
1907 
1908 	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1909 	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1910 	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
1911 
1912 	/*
1913 	 * Register with the LDM. This will kick off the driver/device
1914 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1915 	 */
1916 	ret = device_register(&child_device_obj->device);
1917 	if (ret) {
1918 		pr_err("Unable to register child device\n");
1919 		put_device(&child_device_obj->device);
1920 		return ret;
1921 	}
1922 
1923 	child_device_obj->channels_kset = kset_create_and_add("channels",
1924 							      NULL, kobj);
1925 	if (!child_device_obj->channels_kset) {
1926 		ret = -ENOMEM;
1927 		goto err_dev_unregister;
1928 	}
1929 
1930 	ret = vmbus_add_channel_kobj(child_device_obj,
1931 				     child_device_obj->channel);
1932 	if (ret) {
1933 		pr_err("Unable to register primary channeln");
1934 		goto err_kset_unregister;
1935 	}
1936 	hv_debug_add_dev_dir(child_device_obj);
1937 
1938 	return 0;
1939 
1940 err_kset_unregister:
1941 	kset_unregister(child_device_obj->channels_kset);
1942 
1943 err_dev_unregister:
1944 	device_unregister(&child_device_obj->device);
1945 	return ret;
1946 }
1947 
1948 /*
1949  * vmbus_device_unregister - Remove the specified child device
1950  * from the vmbus.
1951  */
1952 void vmbus_device_unregister(struct hv_device *device_obj)
1953 {
1954 	pr_debug("child device %s unregistered\n",
1955 		dev_name(&device_obj->device));
1956 
1957 	kset_unregister(device_obj->channels_kset);
1958 
1959 	/*
1960 	 * Kick off the process of unregistering the device.
1961 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1962 	 */
1963 	device_unregister(&device_obj->device);
1964 }
1965 
1966 #ifdef CONFIG_ACPI
1967 /*
1968  * VMBUS is an acpi enumerated device. Get the information we
1969  * need from DSDT.
1970  */
1971 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1972 {
1973 	resource_size_t start = 0;
1974 	resource_size_t end = 0;
1975 	struct resource *new_res;
1976 	struct resource **old_res = &hyperv_mmio;
1977 	struct resource **prev_res = NULL;
1978 	struct resource r;
1979 
1980 	switch (res->type) {
1981 
1982 	/*
1983 	 * "Address" descriptors are for bus windows. Ignore
1984 	 * "memory" descriptors, which are for registers on
1985 	 * devices.
1986 	 */
1987 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1988 		start = res->data.address32.address.minimum;
1989 		end = res->data.address32.address.maximum;
1990 		break;
1991 
1992 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1993 		start = res->data.address64.address.minimum;
1994 		end = res->data.address64.address.maximum;
1995 		break;
1996 
1997 	/*
1998 	 * The IRQ information is needed only on ARM64, which Hyper-V
1999 	 * sets up in the extended format. IRQ information is present
2000 	 * on x86/x64 in the non-extended format but it is not used by
2001 	 * Linux. So don't bother checking for the non-extended format.
2002 	 */
2003 	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2004 		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2005 			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2006 			return AE_ERROR;
2007 		}
2008 		/* ARM64 INTID for VMbus */
2009 		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2010 		/* Linux IRQ number */
2011 		vmbus_irq = r.start;
2012 		return AE_OK;
2013 
2014 	default:
2015 		/* Unused resource type */
2016 		return AE_OK;
2017 
2018 	}
2019 	/*
2020 	 * Ignore ranges that are below 1MB, as they're not
2021 	 * necessary or useful here.
2022 	 */
2023 	if (end < 0x100000)
2024 		return AE_OK;
2025 
2026 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2027 	if (!new_res)
2028 		return AE_NO_MEMORY;
2029 
2030 	/* If this range overlaps the virtual TPM, truncate it. */
2031 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2032 		end = VTPM_BASE_ADDRESS;
2033 
2034 	new_res->name = "hyperv mmio";
2035 	new_res->flags = IORESOURCE_MEM;
2036 	new_res->start = start;
2037 	new_res->end = end;
2038 
2039 	/*
2040 	 * If two ranges are adjacent, merge them.
2041 	 */
2042 	do {
2043 		if (!*old_res) {
2044 			*old_res = new_res;
2045 			break;
2046 		}
2047 
2048 		if (((*old_res)->end + 1) == new_res->start) {
2049 			(*old_res)->end = new_res->end;
2050 			kfree(new_res);
2051 			break;
2052 		}
2053 
2054 		if ((*old_res)->start == new_res->end + 1) {
2055 			(*old_res)->start = new_res->start;
2056 			kfree(new_res);
2057 			break;
2058 		}
2059 
2060 		if ((*old_res)->start > new_res->end) {
2061 			new_res->sibling = *old_res;
2062 			if (prev_res)
2063 				(*prev_res)->sibling = new_res;
2064 			*old_res = new_res;
2065 			break;
2066 		}
2067 
2068 		prev_res = old_res;
2069 		old_res = &(*old_res)->sibling;
2070 
2071 	} while (1);
2072 
2073 	return AE_OK;
2074 }
2075 #endif
2076 
2077 static void vmbus_mmio_remove(void)
2078 {
2079 	struct resource *cur_res;
2080 	struct resource *next_res;
2081 
2082 	if (hyperv_mmio) {
2083 		if (fb_mmio) {
2084 			__release_region(hyperv_mmio, fb_mmio->start,
2085 					 resource_size(fb_mmio));
2086 			fb_mmio = NULL;
2087 		}
2088 
2089 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2090 			next_res = cur_res->sibling;
2091 			kfree(cur_res);
2092 		}
2093 	}
2094 }
2095 
2096 static void __maybe_unused vmbus_reserve_fb(void)
2097 {
2098 	resource_size_t start = 0, size;
2099 	struct pci_dev *pdev;
2100 
2101 	if (efi_enabled(EFI_BOOT)) {
2102 		/* Gen2 VM: get FB base from EFI framebuffer */
2103 		if (IS_ENABLED(CONFIG_SYSFB)) {
2104 			start = screen_info.lfb_base;
2105 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2106 		}
2107 	} else {
2108 		/* Gen1 VM: get FB base from PCI */
2109 		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2110 				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2111 		if (!pdev)
2112 			return;
2113 
2114 		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2115 			start = pci_resource_start(pdev, 0);
2116 			size = pci_resource_len(pdev, 0);
2117 		}
2118 
2119 		/*
2120 		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2121 		 * grab it later.
2122 		 */
2123 		pci_dev_put(pdev);
2124 	}
2125 
2126 	if (!start)
2127 		return;
2128 
2129 	/*
2130 	 * Make a claim for the frame buffer in the resource tree under the
2131 	 * first node, which will be the one below 4GB.  The length seems to
2132 	 * be underreported, particularly in a Generation 1 VM.  So start out
2133 	 * reserving a larger area and make it smaller until it succeeds.
2134 	 */
2135 	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2136 		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2137 }
2138 
2139 /**
2140  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2141  * @new:		If successful, supplied a pointer to the
2142  *			allocated MMIO space.
2143  * @device_obj:		Identifies the caller
2144  * @min:		Minimum guest physical address of the
2145  *			allocation
2146  * @max:		Maximum guest physical address
2147  * @size:		Size of the range to be allocated
2148  * @align:		Alignment of the range to be allocated
2149  * @fb_overlap_ok:	Whether this allocation can be allowed
2150  *			to overlap the video frame buffer.
2151  *
2152  * This function walks the resources granted to VMBus by the
2153  * _CRS object in the ACPI namespace underneath the parent
2154  * "bridge" whether that's a root PCI bus in the Generation 1
2155  * case or a Module Device in the Generation 2 case.  It then
2156  * attempts to allocate from the global MMIO pool in a way that
2157  * matches the constraints supplied in these parameters and by
2158  * that _CRS.
2159  *
2160  * Return: 0 on success, -errno on failure
2161  */
2162 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2163 			resource_size_t min, resource_size_t max,
2164 			resource_size_t size, resource_size_t align,
2165 			bool fb_overlap_ok)
2166 {
2167 	struct resource *iter, *shadow;
2168 	resource_size_t range_min, range_max, start, end;
2169 	const char *dev_n = dev_name(&device_obj->device);
2170 	int retval;
2171 
2172 	retval = -ENXIO;
2173 	mutex_lock(&hyperv_mmio_lock);
2174 
2175 	/*
2176 	 * If overlaps with frame buffers are allowed, then first attempt to
2177 	 * make the allocation from within the reserved region.  Because it
2178 	 * is already reserved, no shadow allocation is necessary.
2179 	 */
2180 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2181 	    !(max < fb_mmio->start)) {
2182 
2183 		range_min = fb_mmio->start;
2184 		range_max = fb_mmio->end;
2185 		start = (range_min + align - 1) & ~(align - 1);
2186 		for (; start + size - 1 <= range_max; start += align) {
2187 			*new = request_mem_region_exclusive(start, size, dev_n);
2188 			if (*new) {
2189 				retval = 0;
2190 				goto exit;
2191 			}
2192 		}
2193 	}
2194 
2195 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2196 		if ((iter->start >= max) || (iter->end <= min))
2197 			continue;
2198 
2199 		range_min = iter->start;
2200 		range_max = iter->end;
2201 		start = (range_min + align - 1) & ~(align - 1);
2202 		for (; start + size - 1 <= range_max; start += align) {
2203 			end = start + size - 1;
2204 
2205 			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2206 			if (!fb_overlap_ok && fb_mmio &&
2207 			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2208 			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2209 				continue;
2210 
2211 			shadow = __request_region(iter, start, size, NULL,
2212 						  IORESOURCE_BUSY);
2213 			if (!shadow)
2214 				continue;
2215 
2216 			*new = request_mem_region_exclusive(start, size, dev_n);
2217 			if (*new) {
2218 				shadow->name = (char *)*new;
2219 				retval = 0;
2220 				goto exit;
2221 			}
2222 
2223 			__release_region(iter, start, size);
2224 		}
2225 	}
2226 
2227 exit:
2228 	mutex_unlock(&hyperv_mmio_lock);
2229 	return retval;
2230 }
2231 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2232 
2233 /**
2234  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2235  * @start:		Base address of region to release.
2236  * @size:		Size of the range to be allocated
2237  *
2238  * This function releases anything requested by
2239  * vmbus_mmio_allocate().
2240  */
2241 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2242 {
2243 	struct resource *iter;
2244 
2245 	mutex_lock(&hyperv_mmio_lock);
2246 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2247 		if ((iter->start >= start + size) || (iter->end <= start))
2248 			continue;
2249 
2250 		__release_region(iter, start, size);
2251 	}
2252 	release_mem_region(start, size);
2253 	mutex_unlock(&hyperv_mmio_lock);
2254 
2255 }
2256 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2257 
2258 #ifdef CONFIG_ACPI
2259 static int vmbus_acpi_add(struct platform_device *pdev)
2260 {
2261 	acpi_status result;
2262 	int ret_val = -ENODEV;
2263 	struct acpi_device *ancestor;
2264 	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2265 
2266 	hv_dev = &device->dev;
2267 
2268 	/*
2269 	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2270 	 * method on the top level VMbus device in the DSDT. But devices
2271 	 * are hardware coherent in all current Hyper-V use cases, so fix
2272 	 * up the ACPI device to behave as if _CCA is present and indicates
2273 	 * hardware coherence.
2274 	 */
2275 	ACPI_COMPANION_SET(&device->dev, device);
2276 	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2277 	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2278 		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2279 		device->flags.cca_seen = true;
2280 		device->flags.coherent_dma = true;
2281 	}
2282 
2283 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2284 					vmbus_walk_resources, NULL);
2285 
2286 	if (ACPI_FAILURE(result))
2287 		goto acpi_walk_err;
2288 	/*
2289 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2290 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2291 	 */
2292 	for (ancestor = acpi_dev_parent(device);
2293 	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2294 	     ancestor = acpi_dev_parent(ancestor)) {
2295 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2296 					     vmbus_walk_resources, NULL);
2297 
2298 		if (ACPI_FAILURE(result))
2299 			continue;
2300 		if (hyperv_mmio) {
2301 			vmbus_reserve_fb();
2302 			break;
2303 		}
2304 	}
2305 	ret_val = 0;
2306 
2307 acpi_walk_err:
2308 	if (ret_val)
2309 		vmbus_mmio_remove();
2310 	return ret_val;
2311 }
2312 #else
2313 static int vmbus_acpi_add(struct platform_device *pdev)
2314 {
2315 	return 0;
2316 }
2317 #endif
2318 
2319 static int vmbus_device_add(struct platform_device *pdev)
2320 {
2321 	struct resource **cur_res = &hyperv_mmio;
2322 	struct of_range range;
2323 	struct of_range_parser parser;
2324 	struct device_node *np = pdev->dev.of_node;
2325 	int ret;
2326 
2327 	hv_dev = &pdev->dev;
2328 
2329 	ret = of_range_parser_init(&parser, np);
2330 	if (ret)
2331 		return ret;
2332 
2333 	for_each_of_range(&parser, &range) {
2334 		struct resource *res;
2335 
2336 		res = kzalloc(sizeof(*res), GFP_KERNEL);
2337 		if (!res) {
2338 			vmbus_mmio_remove();
2339 			return -ENOMEM;
2340 		}
2341 
2342 		res->name = "hyperv mmio";
2343 		res->flags = range.flags;
2344 		res->start = range.cpu_addr;
2345 		res->end = range.cpu_addr + range.size;
2346 
2347 		*cur_res = res;
2348 		cur_res = &res->sibling;
2349 	}
2350 
2351 	return ret;
2352 }
2353 
2354 static int vmbus_platform_driver_probe(struct platform_device *pdev)
2355 {
2356 	if (acpi_disabled)
2357 		return vmbus_device_add(pdev);
2358 	else
2359 		return vmbus_acpi_add(pdev);
2360 }
2361 
2362 static int vmbus_platform_driver_remove(struct platform_device *pdev)
2363 {
2364 	vmbus_mmio_remove();
2365 	return 0;
2366 }
2367 
2368 #ifdef CONFIG_PM_SLEEP
2369 static int vmbus_bus_suspend(struct device *dev)
2370 {
2371 	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2372 			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2373 	struct vmbus_channel *channel, *sc;
2374 
2375 	tasklet_disable(&hv_cpu->msg_dpc);
2376 	vmbus_connection.ignore_any_offer_msg = true;
2377 	/* The tasklet_enable() takes care of providing a memory barrier */
2378 	tasklet_enable(&hv_cpu->msg_dpc);
2379 
2380 	/* Drain all the workqueues as we are in suspend */
2381 	drain_workqueue(vmbus_connection.rescind_work_queue);
2382 	drain_workqueue(vmbus_connection.work_queue);
2383 	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2384 	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2385 
2386 	mutex_lock(&vmbus_connection.channel_mutex);
2387 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2388 		if (!is_hvsock_channel(channel))
2389 			continue;
2390 
2391 		vmbus_force_channel_rescinded(channel);
2392 	}
2393 	mutex_unlock(&vmbus_connection.channel_mutex);
2394 
2395 	/*
2396 	 * Wait until all the sub-channels and hv_sock channels have been
2397 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2398 	 * they would conflict with the new sub-channels that will be created
2399 	 * in the resume path. hv_sock channels should also be destroyed, but
2400 	 * a hv_sock channel of an established hv_sock connection can not be
2401 	 * really destroyed since it may still be referenced by the userspace
2402 	 * application, so we just force the hv_sock channel to be rescinded
2403 	 * by vmbus_force_channel_rescinded(), and the userspace application
2404 	 * will thoroughly destroy the channel after hibernation.
2405 	 *
2406 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2407 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2408 	 */
2409 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2410 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2411 
2412 	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2413 		pr_err("Can not suspend due to a previous failed resuming\n");
2414 		return -EBUSY;
2415 	}
2416 
2417 	mutex_lock(&vmbus_connection.channel_mutex);
2418 
2419 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2420 		/*
2421 		 * Remove the channel from the array of channels and invalidate
2422 		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2423 		 * up the relid (and other fields, if necessary) and add the
2424 		 * channel back to the array.
2425 		 */
2426 		vmbus_channel_unmap_relid(channel);
2427 		channel->offermsg.child_relid = INVALID_RELID;
2428 
2429 		if (is_hvsock_channel(channel)) {
2430 			if (!channel->rescind) {
2431 				pr_err("hv_sock channel not rescinded!\n");
2432 				WARN_ON_ONCE(1);
2433 			}
2434 			continue;
2435 		}
2436 
2437 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2438 			pr_err("Sub-channel not deleted!\n");
2439 			WARN_ON_ONCE(1);
2440 		}
2441 
2442 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2443 	}
2444 
2445 	mutex_unlock(&vmbus_connection.channel_mutex);
2446 
2447 	vmbus_initiate_unload(false);
2448 
2449 	/* Reset the event for the next resume. */
2450 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2451 
2452 	return 0;
2453 }
2454 
2455 static int vmbus_bus_resume(struct device *dev)
2456 {
2457 	struct vmbus_channel_msginfo *msginfo;
2458 	size_t msgsize;
2459 	int ret;
2460 
2461 	vmbus_connection.ignore_any_offer_msg = false;
2462 
2463 	/*
2464 	 * We only use the 'vmbus_proto_version', which was in use before
2465 	 * hibernation, to re-negotiate with the host.
2466 	 */
2467 	if (!vmbus_proto_version) {
2468 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2469 		return -EINVAL;
2470 	}
2471 
2472 	msgsize = sizeof(*msginfo) +
2473 		  sizeof(struct vmbus_channel_initiate_contact);
2474 
2475 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2476 
2477 	if (msginfo == NULL)
2478 		return -ENOMEM;
2479 
2480 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2481 
2482 	kfree(msginfo);
2483 
2484 	if (ret != 0)
2485 		return ret;
2486 
2487 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2488 
2489 	vmbus_request_offers();
2490 
2491 	if (wait_for_completion_timeout(
2492 		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2493 		pr_err("Some vmbus device is missing after suspending?\n");
2494 
2495 	/* Reset the event for the next suspend. */
2496 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2497 
2498 	return 0;
2499 }
2500 #else
2501 #define vmbus_bus_suspend NULL
2502 #define vmbus_bus_resume NULL
2503 #endif /* CONFIG_PM_SLEEP */
2504 
2505 static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2506 	{
2507 		.compatible = "microsoft,vmbus",
2508 	},
2509 	{
2510 		/* sentinel */
2511 	},
2512 };
2513 MODULE_DEVICE_TABLE(of, vmbus_of_match);
2514 
2515 static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2516 	{"VMBUS", 0},
2517 	{"VMBus", 0},
2518 	{"", 0},
2519 };
2520 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2521 
2522 /*
2523  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2524  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2525  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2526  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2527  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2528  * resume callback must also run via the "noirq" ops.
2529  *
2530  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2531  * earlier in this file before vmbus_pm.
2532  */
2533 
2534 static const struct dev_pm_ops vmbus_bus_pm = {
2535 	.suspend_noirq	= NULL,
2536 	.resume_noirq	= NULL,
2537 	.freeze_noirq	= vmbus_bus_suspend,
2538 	.thaw_noirq	= vmbus_bus_resume,
2539 	.poweroff_noirq	= vmbus_bus_suspend,
2540 	.restore_noirq	= vmbus_bus_resume
2541 };
2542 
2543 static struct platform_driver vmbus_platform_driver = {
2544 	.probe = vmbus_platform_driver_probe,
2545 	.remove = vmbus_platform_driver_remove,
2546 	.driver = {
2547 		.name = "vmbus",
2548 		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2549 		.of_match_table = of_match_ptr(vmbus_of_match),
2550 		.pm = &vmbus_bus_pm,
2551 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2552 	}
2553 };
2554 
2555 static void hv_kexec_handler(void)
2556 {
2557 	hv_stimer_global_cleanup();
2558 	vmbus_initiate_unload(false);
2559 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2560 	mb();
2561 	cpuhp_remove_state(hyperv_cpuhp_online);
2562 };
2563 
2564 static void hv_crash_handler(struct pt_regs *regs)
2565 {
2566 	int cpu;
2567 
2568 	vmbus_initiate_unload(true);
2569 	/*
2570 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2571 	 * doing the cleanup for current CPU only. This should be sufficient
2572 	 * for kdump.
2573 	 */
2574 	cpu = smp_processor_id();
2575 	hv_stimer_cleanup(cpu);
2576 	hv_synic_disable_regs(cpu);
2577 };
2578 
2579 static int hv_synic_suspend(void)
2580 {
2581 	/*
2582 	 * When we reach here, all the non-boot CPUs have been offlined.
2583 	 * If we're in a legacy configuration where stimer Direct Mode is
2584 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2585 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2586 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2587 	 *
2588 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2589 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2590 	 * 1) it's unnecessary as interrupts remain disabled between
2591 	 * syscore_suspend() and syscore_resume(): see create_image() and
2592 	 * resume_target_kernel()
2593 	 * 2) the stimer on CPU0 is automatically disabled later by
2594 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2595 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2596 	 * 3) a warning would be triggered if we call
2597 	 * clockevents_unbind_device(), which may sleep, in an
2598 	 * interrupts-disabled context.
2599 	 */
2600 
2601 	hv_synic_disable_regs(0);
2602 
2603 	return 0;
2604 }
2605 
2606 static void hv_synic_resume(void)
2607 {
2608 	hv_synic_enable_regs(0);
2609 
2610 	/*
2611 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2612 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2613 	 * automatically re-enabled in timekeeping_resume().
2614 	 */
2615 }
2616 
2617 /* The callbacks run only on CPU0, with irqs_disabled. */
2618 static struct syscore_ops hv_synic_syscore_ops = {
2619 	.suspend = hv_synic_suspend,
2620 	.resume = hv_synic_resume,
2621 };
2622 
2623 static int __init hv_acpi_init(void)
2624 {
2625 	int ret;
2626 
2627 	if (!hv_is_hyperv_initialized())
2628 		return -ENODEV;
2629 
2630 	if (hv_root_partition && !hv_nested)
2631 		return 0;
2632 
2633 	/*
2634 	 * Get ACPI resources first.
2635 	 */
2636 	ret = platform_driver_register(&vmbus_platform_driver);
2637 	if (ret)
2638 		return ret;
2639 
2640 	if (!hv_dev) {
2641 		ret = -ENODEV;
2642 		goto cleanup;
2643 	}
2644 
2645 	/*
2646 	 * If we're on an architecture with a hardcoded hypervisor
2647 	 * vector (i.e. x86/x64), override the VMbus interrupt found
2648 	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2649 	 * normal Linux IRQ mechanism is not used in this case.
2650 	 */
2651 #ifdef HYPERVISOR_CALLBACK_VECTOR
2652 	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2653 	vmbus_irq = -1;
2654 #endif
2655 
2656 	hv_debug_init();
2657 
2658 	ret = vmbus_bus_init();
2659 	if (ret)
2660 		goto cleanup;
2661 
2662 	hv_setup_kexec_handler(hv_kexec_handler);
2663 	hv_setup_crash_handler(hv_crash_handler);
2664 
2665 	register_syscore_ops(&hv_synic_syscore_ops);
2666 
2667 	return 0;
2668 
2669 cleanup:
2670 	platform_driver_unregister(&vmbus_platform_driver);
2671 	hv_dev = NULL;
2672 	return ret;
2673 }
2674 
2675 static void __exit vmbus_exit(void)
2676 {
2677 	int cpu;
2678 
2679 	unregister_syscore_ops(&hv_synic_syscore_ops);
2680 
2681 	hv_remove_kexec_handler();
2682 	hv_remove_crash_handler();
2683 	vmbus_connection.conn_state = DISCONNECTED;
2684 	hv_stimer_global_cleanup();
2685 	vmbus_disconnect();
2686 	if (vmbus_irq == -1) {
2687 		hv_remove_vmbus_handler();
2688 	} else {
2689 		free_percpu_irq(vmbus_irq, vmbus_evt);
2690 		free_percpu(vmbus_evt);
2691 	}
2692 	for_each_online_cpu(cpu) {
2693 		struct hv_per_cpu_context *hv_cpu
2694 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2695 
2696 		tasklet_kill(&hv_cpu->msg_dpc);
2697 	}
2698 	hv_debug_rm_all_dir();
2699 
2700 	vmbus_free_channels();
2701 	kfree(vmbus_connection.channels);
2702 
2703 	/*
2704 	 * The vmbus panic notifier is always registered, hence we should
2705 	 * also unconditionally unregister it here as well.
2706 	 */
2707 	atomic_notifier_chain_unregister(&panic_notifier_list,
2708 					&hyperv_panic_vmbus_unload_block);
2709 
2710 	bus_unregister(&hv_bus);
2711 
2712 	cpuhp_remove_state(hyperv_cpuhp_online);
2713 	hv_synic_free();
2714 	platform_driver_unregister(&vmbus_platform_driver);
2715 }
2716 
2717 
2718 MODULE_LICENSE("GPL");
2719 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2720 
2721 subsys_initcall(hv_acpi_init);
2722 module_exit(vmbus_exit);
2723