1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/platform_device.h> 16 #include <linux/interrupt.h> 17 #include <linux/sysctl.h> 18 #include <linux/slab.h> 19 #include <linux/acpi.h> 20 #include <linux/completion.h> 21 #include <linux/hyperv.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/of_address.h> 24 #include <linux/clockchips.h> 25 #include <linux/cpu.h> 26 #include <linux/sched/isolation.h> 27 #include <linux/sched/task_stack.h> 28 29 #include <linux/delay.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/ptrace.h> 32 #include <linux/screen_info.h> 33 #include <linux/efi.h> 34 #include <linux/random.h> 35 #include <linux/kernel.h> 36 #include <linux/syscore_ops.h> 37 #include <linux/dma-map-ops.h> 38 #include <linux/pci.h> 39 #include <clocksource/hyperv_timer.h> 40 #include <asm/mshyperv.h> 41 #include "hyperv_vmbus.h" 42 43 struct vmbus_dynid { 44 struct list_head node; 45 struct hv_vmbus_device_id id; 46 }; 47 48 static struct device *hv_dev; 49 50 static int hyperv_cpuhp_online; 51 52 static long __percpu *vmbus_evt; 53 54 /* Values parsed from ACPI DSDT */ 55 int vmbus_irq; 56 int vmbus_interrupt; 57 58 /* 59 * The panic notifier below is responsible solely for unloading the 60 * vmbus connection, which is necessary in a panic event. 61 * 62 * Notice an intrincate relation of this notifier with Hyper-V 63 * framebuffer panic notifier exists - we need vmbus connection alive 64 * there in order to succeed, so we need to order both with each other 65 * [see hvfb_on_panic()] - this is done using notifiers' priorities. 66 */ 67 static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val, 68 void *args) 69 { 70 vmbus_initiate_unload(true); 71 return NOTIFY_DONE; 72 } 73 static struct notifier_block hyperv_panic_vmbus_unload_block = { 74 .notifier_call = hv_panic_vmbus_unload, 75 .priority = INT_MIN + 1, /* almost the latest one to execute */ 76 }; 77 78 static const char *fb_mmio_name = "fb_range"; 79 static struct resource *fb_mmio; 80 static struct resource *hyperv_mmio; 81 static DEFINE_MUTEX(hyperv_mmio_lock); 82 83 static int vmbus_exists(void) 84 { 85 if (hv_dev == NULL) 86 return -ENODEV; 87 88 return 0; 89 } 90 91 static u8 channel_monitor_group(const struct vmbus_channel *channel) 92 { 93 return (u8)channel->offermsg.monitorid / 32; 94 } 95 96 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 97 { 98 return (u8)channel->offermsg.monitorid % 32; 99 } 100 101 static u32 channel_pending(const struct vmbus_channel *channel, 102 const struct hv_monitor_page *monitor_page) 103 { 104 u8 monitor_group = channel_monitor_group(channel); 105 106 return monitor_page->trigger_group[monitor_group].pending; 107 } 108 109 static u32 channel_latency(const struct vmbus_channel *channel, 110 const struct hv_monitor_page *monitor_page) 111 { 112 u8 monitor_group = channel_monitor_group(channel); 113 u8 monitor_offset = channel_monitor_offset(channel); 114 115 return monitor_page->latency[monitor_group][monitor_offset]; 116 } 117 118 static u32 channel_conn_id(struct vmbus_channel *channel, 119 struct hv_monitor_page *monitor_page) 120 { 121 u8 monitor_group = channel_monitor_group(channel); 122 u8 monitor_offset = channel_monitor_offset(channel); 123 124 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 125 } 126 127 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 128 char *buf) 129 { 130 struct hv_device *hv_dev = device_to_hv_device(dev); 131 132 if (!hv_dev->channel) 133 return -ENODEV; 134 return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 135 } 136 static DEVICE_ATTR_RO(id); 137 138 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 139 char *buf) 140 { 141 struct hv_device *hv_dev = device_to_hv_device(dev); 142 143 if (!hv_dev->channel) 144 return -ENODEV; 145 return sysfs_emit(buf, "%d\n", hv_dev->channel->state); 146 } 147 static DEVICE_ATTR_RO(state); 148 149 static ssize_t monitor_id_show(struct device *dev, 150 struct device_attribute *dev_attr, char *buf) 151 { 152 struct hv_device *hv_dev = device_to_hv_device(dev); 153 154 if (!hv_dev->channel) 155 return -ENODEV; 156 return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 157 } 158 static DEVICE_ATTR_RO(monitor_id); 159 160 static ssize_t class_id_show(struct device *dev, 161 struct device_attribute *dev_attr, char *buf) 162 { 163 struct hv_device *hv_dev = device_to_hv_device(dev); 164 165 if (!hv_dev->channel) 166 return -ENODEV; 167 return sysfs_emit(buf, "{%pUl}\n", 168 &hv_dev->channel->offermsg.offer.if_type); 169 } 170 static DEVICE_ATTR_RO(class_id); 171 172 static ssize_t device_id_show(struct device *dev, 173 struct device_attribute *dev_attr, char *buf) 174 { 175 struct hv_device *hv_dev = device_to_hv_device(dev); 176 177 if (!hv_dev->channel) 178 return -ENODEV; 179 return sysfs_emit(buf, "{%pUl}\n", 180 &hv_dev->channel->offermsg.offer.if_instance); 181 } 182 static DEVICE_ATTR_RO(device_id); 183 184 static ssize_t modalias_show(struct device *dev, 185 struct device_attribute *dev_attr, char *buf) 186 { 187 struct hv_device *hv_dev = device_to_hv_device(dev); 188 189 return sysfs_emit(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 190 } 191 static DEVICE_ATTR_RO(modalias); 192 193 #ifdef CONFIG_NUMA 194 static ssize_t numa_node_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct hv_device *hv_dev = device_to_hv_device(dev); 198 199 if (!hv_dev->channel) 200 return -ENODEV; 201 202 return sysfs_emit(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 203 } 204 static DEVICE_ATTR_RO(numa_node); 205 #endif 206 207 static ssize_t server_monitor_pending_show(struct device *dev, 208 struct device_attribute *dev_attr, 209 char *buf) 210 { 211 struct hv_device *hv_dev = device_to_hv_device(dev); 212 213 if (!hv_dev->channel) 214 return -ENODEV; 215 return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel, 216 vmbus_connection.monitor_pages[0])); 217 } 218 static DEVICE_ATTR_RO(server_monitor_pending); 219 220 static ssize_t client_monitor_pending_show(struct device *dev, 221 struct device_attribute *dev_attr, 222 char *buf) 223 { 224 struct hv_device *hv_dev = device_to_hv_device(dev); 225 226 if (!hv_dev->channel) 227 return -ENODEV; 228 return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel, 229 vmbus_connection.monitor_pages[1])); 230 } 231 static DEVICE_ATTR_RO(client_monitor_pending); 232 233 static ssize_t server_monitor_latency_show(struct device *dev, 234 struct device_attribute *dev_attr, 235 char *buf) 236 { 237 struct hv_device *hv_dev = device_to_hv_device(dev); 238 239 if (!hv_dev->channel) 240 return -ENODEV; 241 return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel, 242 vmbus_connection.monitor_pages[0])); 243 } 244 static DEVICE_ATTR_RO(server_monitor_latency); 245 246 static ssize_t client_monitor_latency_show(struct device *dev, 247 struct device_attribute *dev_attr, 248 char *buf) 249 { 250 struct hv_device *hv_dev = device_to_hv_device(dev); 251 252 if (!hv_dev->channel) 253 return -ENODEV; 254 return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel, 255 vmbus_connection.monitor_pages[1])); 256 } 257 static DEVICE_ATTR_RO(client_monitor_latency); 258 259 static ssize_t server_monitor_conn_id_show(struct device *dev, 260 struct device_attribute *dev_attr, 261 char *buf) 262 { 263 struct hv_device *hv_dev = device_to_hv_device(dev); 264 265 if (!hv_dev->channel) 266 return -ENODEV; 267 return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel, 268 vmbus_connection.monitor_pages[0])); 269 } 270 static DEVICE_ATTR_RO(server_monitor_conn_id); 271 272 static ssize_t client_monitor_conn_id_show(struct device *dev, 273 struct device_attribute *dev_attr, 274 char *buf) 275 { 276 struct hv_device *hv_dev = device_to_hv_device(dev); 277 278 if (!hv_dev->channel) 279 return -ENODEV; 280 return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel, 281 vmbus_connection.monitor_pages[1])); 282 } 283 static DEVICE_ATTR_RO(client_monitor_conn_id); 284 285 static ssize_t out_intr_mask_show(struct device *dev, 286 struct device_attribute *dev_attr, char *buf) 287 { 288 struct hv_device *hv_dev = device_to_hv_device(dev); 289 struct hv_ring_buffer_debug_info outbound; 290 int ret; 291 292 if (!hv_dev->channel) 293 return -ENODEV; 294 295 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 296 &outbound); 297 if (ret < 0) 298 return ret; 299 300 return sysfs_emit(buf, "%d\n", outbound.current_interrupt_mask); 301 } 302 static DEVICE_ATTR_RO(out_intr_mask); 303 304 static ssize_t out_read_index_show(struct device *dev, 305 struct device_attribute *dev_attr, char *buf) 306 { 307 struct hv_device *hv_dev = device_to_hv_device(dev); 308 struct hv_ring_buffer_debug_info outbound; 309 int ret; 310 311 if (!hv_dev->channel) 312 return -ENODEV; 313 314 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 315 &outbound); 316 if (ret < 0) 317 return ret; 318 return sysfs_emit(buf, "%d\n", outbound.current_read_index); 319 } 320 static DEVICE_ATTR_RO(out_read_index); 321 322 static ssize_t out_write_index_show(struct device *dev, 323 struct device_attribute *dev_attr, 324 char *buf) 325 { 326 struct hv_device *hv_dev = device_to_hv_device(dev); 327 struct hv_ring_buffer_debug_info outbound; 328 int ret; 329 330 if (!hv_dev->channel) 331 return -ENODEV; 332 333 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 334 &outbound); 335 if (ret < 0) 336 return ret; 337 return sysfs_emit(buf, "%d\n", outbound.current_write_index); 338 } 339 static DEVICE_ATTR_RO(out_write_index); 340 341 static ssize_t out_read_bytes_avail_show(struct device *dev, 342 struct device_attribute *dev_attr, 343 char *buf) 344 { 345 struct hv_device *hv_dev = device_to_hv_device(dev); 346 struct hv_ring_buffer_debug_info outbound; 347 int ret; 348 349 if (!hv_dev->channel) 350 return -ENODEV; 351 352 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 353 &outbound); 354 if (ret < 0) 355 return ret; 356 return sysfs_emit(buf, "%d\n", outbound.bytes_avail_toread); 357 } 358 static DEVICE_ATTR_RO(out_read_bytes_avail); 359 360 static ssize_t out_write_bytes_avail_show(struct device *dev, 361 struct device_attribute *dev_attr, 362 char *buf) 363 { 364 struct hv_device *hv_dev = device_to_hv_device(dev); 365 struct hv_ring_buffer_debug_info outbound; 366 int ret; 367 368 if (!hv_dev->channel) 369 return -ENODEV; 370 371 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 372 &outbound); 373 if (ret < 0) 374 return ret; 375 return sysfs_emit(buf, "%d\n", outbound.bytes_avail_towrite); 376 } 377 static DEVICE_ATTR_RO(out_write_bytes_avail); 378 379 static ssize_t in_intr_mask_show(struct device *dev, 380 struct device_attribute *dev_attr, char *buf) 381 { 382 struct hv_device *hv_dev = device_to_hv_device(dev); 383 struct hv_ring_buffer_debug_info inbound; 384 int ret; 385 386 if (!hv_dev->channel) 387 return -ENODEV; 388 389 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 390 if (ret < 0) 391 return ret; 392 393 return sysfs_emit(buf, "%d\n", inbound.current_interrupt_mask); 394 } 395 static DEVICE_ATTR_RO(in_intr_mask); 396 397 static ssize_t in_read_index_show(struct device *dev, 398 struct device_attribute *dev_attr, char *buf) 399 { 400 struct hv_device *hv_dev = device_to_hv_device(dev); 401 struct hv_ring_buffer_debug_info inbound; 402 int ret; 403 404 if (!hv_dev->channel) 405 return -ENODEV; 406 407 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 408 if (ret < 0) 409 return ret; 410 411 return sysfs_emit(buf, "%d\n", inbound.current_read_index); 412 } 413 static DEVICE_ATTR_RO(in_read_index); 414 415 static ssize_t in_write_index_show(struct device *dev, 416 struct device_attribute *dev_attr, char *buf) 417 { 418 struct hv_device *hv_dev = device_to_hv_device(dev); 419 struct hv_ring_buffer_debug_info inbound; 420 int ret; 421 422 if (!hv_dev->channel) 423 return -ENODEV; 424 425 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 426 if (ret < 0) 427 return ret; 428 429 return sysfs_emit(buf, "%d\n", inbound.current_write_index); 430 } 431 static DEVICE_ATTR_RO(in_write_index); 432 433 static ssize_t in_read_bytes_avail_show(struct device *dev, 434 struct device_attribute *dev_attr, 435 char *buf) 436 { 437 struct hv_device *hv_dev = device_to_hv_device(dev); 438 struct hv_ring_buffer_debug_info inbound; 439 int ret; 440 441 if (!hv_dev->channel) 442 return -ENODEV; 443 444 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 445 if (ret < 0) 446 return ret; 447 448 return sysfs_emit(buf, "%d\n", inbound.bytes_avail_toread); 449 } 450 static DEVICE_ATTR_RO(in_read_bytes_avail); 451 452 static ssize_t in_write_bytes_avail_show(struct device *dev, 453 struct device_attribute *dev_attr, 454 char *buf) 455 { 456 struct hv_device *hv_dev = device_to_hv_device(dev); 457 struct hv_ring_buffer_debug_info inbound; 458 int ret; 459 460 if (!hv_dev->channel) 461 return -ENODEV; 462 463 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 464 if (ret < 0) 465 return ret; 466 467 return sysfs_emit(buf, "%d\n", inbound.bytes_avail_towrite); 468 } 469 static DEVICE_ATTR_RO(in_write_bytes_avail); 470 471 static ssize_t channel_vp_mapping_show(struct device *dev, 472 struct device_attribute *dev_attr, 473 char *buf) 474 { 475 struct hv_device *hv_dev = device_to_hv_device(dev); 476 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 477 int n_written; 478 struct list_head *cur; 479 480 if (!channel) 481 return -ENODEV; 482 483 mutex_lock(&vmbus_connection.channel_mutex); 484 485 n_written = sysfs_emit(buf, "%u:%u\n", 486 channel->offermsg.child_relid, 487 channel->target_cpu); 488 489 list_for_each(cur, &channel->sc_list) { 490 491 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 492 n_written += sysfs_emit_at(buf, n_written, "%u:%u\n", 493 cur_sc->offermsg.child_relid, 494 cur_sc->target_cpu); 495 } 496 497 mutex_unlock(&vmbus_connection.channel_mutex); 498 499 return n_written; 500 } 501 static DEVICE_ATTR_RO(channel_vp_mapping); 502 503 static ssize_t vendor_show(struct device *dev, 504 struct device_attribute *dev_attr, 505 char *buf) 506 { 507 struct hv_device *hv_dev = device_to_hv_device(dev); 508 509 return sysfs_emit(buf, "0x%x\n", hv_dev->vendor_id); 510 } 511 static DEVICE_ATTR_RO(vendor); 512 513 static ssize_t device_show(struct device *dev, 514 struct device_attribute *dev_attr, 515 char *buf) 516 { 517 struct hv_device *hv_dev = device_to_hv_device(dev); 518 519 return sysfs_emit(buf, "0x%x\n", hv_dev->device_id); 520 } 521 static DEVICE_ATTR_RO(device); 522 523 static ssize_t driver_override_store(struct device *dev, 524 struct device_attribute *attr, 525 const char *buf, size_t count) 526 { 527 struct hv_device *hv_dev = device_to_hv_device(dev); 528 int ret; 529 530 ret = driver_set_override(dev, &hv_dev->driver_override, buf, count); 531 if (ret) 532 return ret; 533 534 return count; 535 } 536 537 static ssize_t driver_override_show(struct device *dev, 538 struct device_attribute *attr, char *buf) 539 { 540 struct hv_device *hv_dev = device_to_hv_device(dev); 541 ssize_t len; 542 543 device_lock(dev); 544 len = sysfs_emit(buf, "%s\n", hv_dev->driver_override); 545 device_unlock(dev); 546 547 return len; 548 } 549 static DEVICE_ATTR_RW(driver_override); 550 551 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 552 static struct attribute *vmbus_dev_attrs[] = { 553 &dev_attr_id.attr, 554 &dev_attr_state.attr, 555 &dev_attr_monitor_id.attr, 556 &dev_attr_class_id.attr, 557 &dev_attr_device_id.attr, 558 &dev_attr_modalias.attr, 559 #ifdef CONFIG_NUMA 560 &dev_attr_numa_node.attr, 561 #endif 562 &dev_attr_server_monitor_pending.attr, 563 &dev_attr_client_monitor_pending.attr, 564 &dev_attr_server_monitor_latency.attr, 565 &dev_attr_client_monitor_latency.attr, 566 &dev_attr_server_monitor_conn_id.attr, 567 &dev_attr_client_monitor_conn_id.attr, 568 &dev_attr_out_intr_mask.attr, 569 &dev_attr_out_read_index.attr, 570 &dev_attr_out_write_index.attr, 571 &dev_attr_out_read_bytes_avail.attr, 572 &dev_attr_out_write_bytes_avail.attr, 573 &dev_attr_in_intr_mask.attr, 574 &dev_attr_in_read_index.attr, 575 &dev_attr_in_write_index.attr, 576 &dev_attr_in_read_bytes_avail.attr, 577 &dev_attr_in_write_bytes_avail.attr, 578 &dev_attr_channel_vp_mapping.attr, 579 &dev_attr_vendor.attr, 580 &dev_attr_device.attr, 581 &dev_attr_driver_override.attr, 582 NULL, 583 }; 584 585 /* 586 * Device-level attribute_group callback function. Returns the permission for 587 * each attribute, and returns 0 if an attribute is not visible. 588 */ 589 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 590 struct attribute *attr, int idx) 591 { 592 struct device *dev = kobj_to_dev(kobj); 593 const struct hv_device *hv_dev = device_to_hv_device(dev); 594 595 /* Hide the monitor attributes if the monitor mechanism is not used. */ 596 if (!hv_dev->channel->offermsg.monitor_allocated && 597 (attr == &dev_attr_monitor_id.attr || 598 attr == &dev_attr_server_monitor_pending.attr || 599 attr == &dev_attr_client_monitor_pending.attr || 600 attr == &dev_attr_server_monitor_latency.attr || 601 attr == &dev_attr_client_monitor_latency.attr || 602 attr == &dev_attr_server_monitor_conn_id.attr || 603 attr == &dev_attr_client_monitor_conn_id.attr)) 604 return 0; 605 606 return attr->mode; 607 } 608 609 static const struct attribute_group vmbus_dev_group = { 610 .attrs = vmbus_dev_attrs, 611 .is_visible = vmbus_dev_attr_is_visible 612 }; 613 __ATTRIBUTE_GROUPS(vmbus_dev); 614 615 /* Set up the attribute for /sys/bus/vmbus/hibernation */ 616 static ssize_t hibernation_show(const struct bus_type *bus, char *buf) 617 { 618 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); 619 } 620 621 static BUS_ATTR_RO(hibernation); 622 623 static struct attribute *vmbus_bus_attrs[] = { 624 &bus_attr_hibernation.attr, 625 NULL, 626 }; 627 static const struct attribute_group vmbus_bus_group = { 628 .attrs = vmbus_bus_attrs, 629 }; 630 __ATTRIBUTE_GROUPS(vmbus_bus); 631 632 /* 633 * vmbus_uevent - add uevent for our device 634 * 635 * This routine is invoked when a device is added or removed on the vmbus to 636 * generate a uevent to udev in the userspace. The udev will then look at its 637 * rule and the uevent generated here to load the appropriate driver 638 * 639 * The alias string will be of the form vmbus:guid where guid is the string 640 * representation of the device guid (each byte of the guid will be 641 * represented with two hex characters. 642 */ 643 static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env) 644 { 645 const struct hv_device *dev = device_to_hv_device(device); 646 const char *format = "MODALIAS=vmbus:%*phN"; 647 648 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 649 } 650 651 static const struct hv_vmbus_device_id * 652 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 653 { 654 if (id == NULL) 655 return NULL; /* empty device table */ 656 657 for (; !guid_is_null(&id->guid); id++) 658 if (guid_equal(&id->guid, guid)) 659 return id; 660 661 return NULL; 662 } 663 664 static const struct hv_vmbus_device_id * 665 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 666 { 667 const struct hv_vmbus_device_id *id = NULL; 668 struct vmbus_dynid *dynid; 669 670 spin_lock(&drv->dynids.lock); 671 list_for_each_entry(dynid, &drv->dynids.list, node) { 672 if (guid_equal(&dynid->id.guid, guid)) { 673 id = &dynid->id; 674 break; 675 } 676 } 677 spin_unlock(&drv->dynids.lock); 678 679 return id; 680 } 681 682 static const struct hv_vmbus_device_id vmbus_device_null; 683 684 /* 685 * Return a matching hv_vmbus_device_id pointer. 686 * If there is no match, return NULL. 687 */ 688 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 689 struct hv_device *dev) 690 { 691 const guid_t *guid = &dev->dev_type; 692 const struct hv_vmbus_device_id *id; 693 694 /* When driver_override is set, only bind to the matching driver */ 695 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 696 return NULL; 697 698 /* Look at the dynamic ids first, before the static ones */ 699 id = hv_vmbus_dynid_match(drv, guid); 700 if (!id) 701 id = hv_vmbus_dev_match(drv->id_table, guid); 702 703 /* driver_override will always match, send a dummy id */ 704 if (!id && dev->driver_override) 705 id = &vmbus_device_null; 706 707 return id; 708 } 709 710 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 711 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 712 { 713 struct vmbus_dynid *dynid; 714 715 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 716 if (!dynid) 717 return -ENOMEM; 718 719 dynid->id.guid = *guid; 720 721 spin_lock(&drv->dynids.lock); 722 list_add_tail(&dynid->node, &drv->dynids.list); 723 spin_unlock(&drv->dynids.lock); 724 725 return driver_attach(&drv->driver); 726 } 727 728 static void vmbus_free_dynids(struct hv_driver *drv) 729 { 730 struct vmbus_dynid *dynid, *n; 731 732 spin_lock(&drv->dynids.lock); 733 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 734 list_del(&dynid->node); 735 kfree(dynid); 736 } 737 spin_unlock(&drv->dynids.lock); 738 } 739 740 /* 741 * store_new_id - sysfs frontend to vmbus_add_dynid() 742 * 743 * Allow GUIDs to be added to an existing driver via sysfs. 744 */ 745 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 746 size_t count) 747 { 748 struct hv_driver *drv = drv_to_hv_drv(driver); 749 guid_t guid; 750 ssize_t retval; 751 752 retval = guid_parse(buf, &guid); 753 if (retval) 754 return retval; 755 756 if (hv_vmbus_dynid_match(drv, &guid)) 757 return -EEXIST; 758 759 retval = vmbus_add_dynid(drv, &guid); 760 if (retval) 761 return retval; 762 return count; 763 } 764 static DRIVER_ATTR_WO(new_id); 765 766 /* 767 * store_remove_id - remove a PCI device ID from this driver 768 * 769 * Removes a dynamic pci device ID to this driver. 770 */ 771 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 772 size_t count) 773 { 774 struct hv_driver *drv = drv_to_hv_drv(driver); 775 struct vmbus_dynid *dynid, *n; 776 guid_t guid; 777 ssize_t retval; 778 779 retval = guid_parse(buf, &guid); 780 if (retval) 781 return retval; 782 783 retval = -ENODEV; 784 spin_lock(&drv->dynids.lock); 785 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 786 struct hv_vmbus_device_id *id = &dynid->id; 787 788 if (guid_equal(&id->guid, &guid)) { 789 list_del(&dynid->node); 790 kfree(dynid); 791 retval = count; 792 break; 793 } 794 } 795 spin_unlock(&drv->dynids.lock); 796 797 return retval; 798 } 799 static DRIVER_ATTR_WO(remove_id); 800 801 static struct attribute *vmbus_drv_attrs[] = { 802 &driver_attr_new_id.attr, 803 &driver_attr_remove_id.attr, 804 NULL, 805 }; 806 ATTRIBUTE_GROUPS(vmbus_drv); 807 808 809 /* 810 * vmbus_match - Attempt to match the specified device to the specified driver 811 */ 812 static int vmbus_match(struct device *device, struct device_driver *driver) 813 { 814 struct hv_driver *drv = drv_to_hv_drv(driver); 815 struct hv_device *hv_dev = device_to_hv_device(device); 816 817 /* The hv_sock driver handles all hv_sock offers. */ 818 if (is_hvsock_channel(hv_dev->channel)) 819 return drv->hvsock; 820 821 if (hv_vmbus_get_id(drv, hv_dev)) 822 return 1; 823 824 return 0; 825 } 826 827 /* 828 * vmbus_probe - Add the new vmbus's child device 829 */ 830 static int vmbus_probe(struct device *child_device) 831 { 832 int ret = 0; 833 struct hv_driver *drv = 834 drv_to_hv_drv(child_device->driver); 835 struct hv_device *dev = device_to_hv_device(child_device); 836 const struct hv_vmbus_device_id *dev_id; 837 838 dev_id = hv_vmbus_get_id(drv, dev); 839 if (drv->probe) { 840 ret = drv->probe(dev, dev_id); 841 if (ret != 0) 842 pr_err("probe failed for device %s (%d)\n", 843 dev_name(child_device), ret); 844 845 } else { 846 pr_err("probe not set for driver %s\n", 847 dev_name(child_device)); 848 ret = -ENODEV; 849 } 850 return ret; 851 } 852 853 /* 854 * vmbus_dma_configure -- Configure DMA coherence for VMbus device 855 */ 856 static int vmbus_dma_configure(struct device *child_device) 857 { 858 /* 859 * On ARM64, propagate the DMA coherence setting from the top level 860 * VMbus ACPI device to the child VMbus device being added here. 861 * On x86/x64 coherence is assumed and these calls have no effect. 862 */ 863 hv_setup_dma_ops(child_device, 864 device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT); 865 return 0; 866 } 867 868 /* 869 * vmbus_remove - Remove a vmbus device 870 */ 871 static void vmbus_remove(struct device *child_device) 872 { 873 struct hv_driver *drv; 874 struct hv_device *dev = device_to_hv_device(child_device); 875 876 if (child_device->driver) { 877 drv = drv_to_hv_drv(child_device->driver); 878 if (drv->remove) 879 drv->remove(dev); 880 } 881 } 882 883 /* 884 * vmbus_shutdown - Shutdown a vmbus device 885 */ 886 static void vmbus_shutdown(struct device *child_device) 887 { 888 struct hv_driver *drv; 889 struct hv_device *dev = device_to_hv_device(child_device); 890 891 892 /* The device may not be attached yet */ 893 if (!child_device->driver) 894 return; 895 896 drv = drv_to_hv_drv(child_device->driver); 897 898 if (drv->shutdown) 899 drv->shutdown(dev); 900 } 901 902 #ifdef CONFIG_PM_SLEEP 903 /* 904 * vmbus_suspend - Suspend a vmbus device 905 */ 906 static int vmbus_suspend(struct device *child_device) 907 { 908 struct hv_driver *drv; 909 struct hv_device *dev = device_to_hv_device(child_device); 910 911 /* The device may not be attached yet */ 912 if (!child_device->driver) 913 return 0; 914 915 drv = drv_to_hv_drv(child_device->driver); 916 if (!drv->suspend) 917 return -EOPNOTSUPP; 918 919 return drv->suspend(dev); 920 } 921 922 /* 923 * vmbus_resume - Resume a vmbus device 924 */ 925 static int vmbus_resume(struct device *child_device) 926 { 927 struct hv_driver *drv; 928 struct hv_device *dev = device_to_hv_device(child_device); 929 930 /* The device may not be attached yet */ 931 if (!child_device->driver) 932 return 0; 933 934 drv = drv_to_hv_drv(child_device->driver); 935 if (!drv->resume) 936 return -EOPNOTSUPP; 937 938 return drv->resume(dev); 939 } 940 #else 941 #define vmbus_suspend NULL 942 #define vmbus_resume NULL 943 #endif /* CONFIG_PM_SLEEP */ 944 945 /* 946 * vmbus_device_release - Final callback release of the vmbus child device 947 */ 948 static void vmbus_device_release(struct device *device) 949 { 950 struct hv_device *hv_dev = device_to_hv_device(device); 951 struct vmbus_channel *channel = hv_dev->channel; 952 953 hv_debug_rm_dev_dir(hv_dev); 954 955 mutex_lock(&vmbus_connection.channel_mutex); 956 hv_process_channel_removal(channel); 957 mutex_unlock(&vmbus_connection.channel_mutex); 958 kfree(hv_dev); 959 } 960 961 /* 962 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 963 * 964 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 965 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 966 * is no way to wake up a Generation-2 VM. 967 * 968 * The other 4 ops are for hibernation. 969 */ 970 971 static const struct dev_pm_ops vmbus_pm = { 972 .suspend_noirq = NULL, 973 .resume_noirq = NULL, 974 .freeze_noirq = vmbus_suspend, 975 .thaw_noirq = vmbus_resume, 976 .poweroff_noirq = vmbus_suspend, 977 .restore_noirq = vmbus_resume, 978 }; 979 980 /* The one and only one */ 981 static const struct bus_type hv_bus = { 982 .name = "vmbus", 983 .match = vmbus_match, 984 .shutdown = vmbus_shutdown, 985 .remove = vmbus_remove, 986 .probe = vmbus_probe, 987 .uevent = vmbus_uevent, 988 .dma_configure = vmbus_dma_configure, 989 .dev_groups = vmbus_dev_groups, 990 .drv_groups = vmbus_drv_groups, 991 .bus_groups = vmbus_bus_groups, 992 .pm = &vmbus_pm, 993 }; 994 995 struct onmessage_work_context { 996 struct work_struct work; 997 struct { 998 struct hv_message_header header; 999 u8 payload[]; 1000 } msg; 1001 }; 1002 1003 static void vmbus_onmessage_work(struct work_struct *work) 1004 { 1005 struct onmessage_work_context *ctx; 1006 1007 /* Do not process messages if we're in DISCONNECTED state */ 1008 if (vmbus_connection.conn_state == DISCONNECTED) 1009 return; 1010 1011 ctx = container_of(work, struct onmessage_work_context, 1012 work); 1013 vmbus_onmessage((struct vmbus_channel_message_header *) 1014 &ctx->msg.payload); 1015 kfree(ctx); 1016 } 1017 1018 void vmbus_on_msg_dpc(unsigned long data) 1019 { 1020 struct hv_per_cpu_context *hv_cpu = (void *)data; 1021 void *page_addr = hv_cpu->synic_message_page; 1022 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + 1023 VMBUS_MESSAGE_SINT; 1024 struct vmbus_channel_message_header *hdr; 1025 enum vmbus_channel_message_type msgtype; 1026 const struct vmbus_channel_message_table_entry *entry; 1027 struct onmessage_work_context *ctx; 1028 __u8 payload_size; 1029 u32 message_type; 1030 1031 /* 1032 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1033 * it is being used in 'struct vmbus_channel_message_header' definition 1034 * which is supposed to match hypervisor ABI. 1035 */ 1036 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1037 1038 /* 1039 * Since the message is in memory shared with the host, an erroneous or 1040 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() 1041 * or individual message handlers are executing; to prevent this, copy 1042 * the message into private memory. 1043 */ 1044 memcpy(&msg_copy, msg, sizeof(struct hv_message)); 1045 1046 message_type = msg_copy.header.message_type; 1047 if (message_type == HVMSG_NONE) 1048 /* no msg */ 1049 return; 1050 1051 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; 1052 msgtype = hdr->msgtype; 1053 1054 trace_vmbus_on_msg_dpc(hdr); 1055 1056 if (msgtype >= CHANNELMSG_COUNT) { 1057 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); 1058 goto msg_handled; 1059 } 1060 1061 payload_size = msg_copy.header.payload_size; 1062 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1063 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); 1064 goto msg_handled; 1065 } 1066 1067 entry = &channel_message_table[msgtype]; 1068 1069 if (!entry->message_handler) 1070 goto msg_handled; 1071 1072 if (payload_size < entry->min_payload_len) { 1073 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); 1074 goto msg_handled; 1075 } 1076 1077 if (entry->handler_type == VMHT_BLOCKING) { 1078 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC); 1079 if (ctx == NULL) 1080 return; 1081 1082 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1083 ctx->msg.header = msg_copy.header; 1084 memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size); 1085 1086 /* 1087 * The host can generate a rescind message while we 1088 * may still be handling the original offer. We deal with 1089 * this condition by relying on the synchronization provided 1090 * by offer_in_progress and by channel_mutex. See also the 1091 * inline comments in vmbus_onoffer_rescind(). 1092 */ 1093 switch (msgtype) { 1094 case CHANNELMSG_RESCIND_CHANNELOFFER: 1095 /* 1096 * If we are handling the rescind message; 1097 * schedule the work on the global work queue. 1098 * 1099 * The OFFER message and the RESCIND message should 1100 * not be handled by the same serialized work queue, 1101 * because the OFFER handler may call vmbus_open(), 1102 * which tries to open the channel by sending an 1103 * OPEN_CHANNEL message to the host and waits for 1104 * the host's response; however, if the host has 1105 * rescinded the channel before it receives the 1106 * OPEN_CHANNEL message, the host just silently 1107 * ignores the OPEN_CHANNEL message; as a result, 1108 * the guest's OFFER handler hangs for ever, if we 1109 * handle the RESCIND message in the same serialized 1110 * work queue: the RESCIND handler can not start to 1111 * run before the OFFER handler finishes. 1112 */ 1113 if (vmbus_connection.ignore_any_offer_msg) 1114 break; 1115 queue_work(vmbus_connection.rescind_work_queue, &ctx->work); 1116 break; 1117 1118 case CHANNELMSG_OFFERCHANNEL: 1119 /* 1120 * The host sends the offer message of a given channel 1121 * before sending the rescind message of the same 1122 * channel. These messages are sent to the guest's 1123 * connect CPU; the guest then starts processing them 1124 * in the tasklet handler on this CPU: 1125 * 1126 * VMBUS_CONNECT_CPU 1127 * 1128 * [vmbus_on_msg_dpc()] 1129 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1130 * queue_work() 1131 * ... 1132 * [vmbus_on_msg_dpc()] 1133 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1134 * 1135 * We rely on the memory-ordering properties of the 1136 * queue_work() and schedule_work() primitives, which 1137 * guarantee that the atomic increment will be visible 1138 * to the CPUs which will execute the offer & rescind 1139 * works by the time these works will start execution. 1140 */ 1141 if (vmbus_connection.ignore_any_offer_msg) 1142 break; 1143 atomic_inc(&vmbus_connection.offer_in_progress); 1144 fallthrough; 1145 1146 default: 1147 queue_work(vmbus_connection.work_queue, &ctx->work); 1148 } 1149 } else 1150 entry->message_handler(hdr); 1151 1152 msg_handled: 1153 vmbus_signal_eom(msg, message_type); 1154 } 1155 1156 #ifdef CONFIG_PM_SLEEP 1157 /* 1158 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1159 * hibernation, because hv_sock connections can not persist across hibernation. 1160 */ 1161 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1162 { 1163 struct onmessage_work_context *ctx; 1164 struct vmbus_channel_rescind_offer *rescind; 1165 1166 WARN_ON(!is_hvsock_channel(channel)); 1167 1168 /* 1169 * Allocation size is small and the allocation should really not fail, 1170 * otherwise the state of the hv_sock connections ends up in limbo. 1171 */ 1172 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1173 GFP_KERNEL | __GFP_NOFAIL); 1174 1175 /* 1176 * So far, these are not really used by Linux. Just set them to the 1177 * reasonable values conforming to the definitions of the fields. 1178 */ 1179 ctx->msg.header.message_type = 1; 1180 ctx->msg.header.payload_size = sizeof(*rescind); 1181 1182 /* These values are actually used by Linux. */ 1183 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1184 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1185 rescind->child_relid = channel->offermsg.child_relid; 1186 1187 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1188 1189 queue_work(vmbus_connection.work_queue, &ctx->work); 1190 } 1191 #endif /* CONFIG_PM_SLEEP */ 1192 1193 /* 1194 * Schedule all channels with events pending 1195 */ 1196 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1197 { 1198 unsigned long *recv_int_page; 1199 u32 maxbits, relid; 1200 1201 /* 1202 * The event page can be directly checked to get the id of 1203 * the channel that has the interrupt pending. 1204 */ 1205 void *page_addr = hv_cpu->synic_event_page; 1206 union hv_synic_event_flags *event 1207 = (union hv_synic_event_flags *)page_addr + 1208 VMBUS_MESSAGE_SINT; 1209 1210 maxbits = HV_EVENT_FLAGS_COUNT; 1211 recv_int_page = event->flags; 1212 1213 if (unlikely(!recv_int_page)) 1214 return; 1215 1216 for_each_set_bit(relid, recv_int_page, maxbits) { 1217 void (*callback_fn)(void *context); 1218 struct vmbus_channel *channel; 1219 1220 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1221 continue; 1222 1223 /* Special case - vmbus channel protocol msg */ 1224 if (relid == 0) 1225 continue; 1226 1227 /* 1228 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1229 * Guarantees that the channel data structure doesn't 1230 * get freed while the channel pointer below is being 1231 * dereferenced. 1232 */ 1233 rcu_read_lock(); 1234 1235 /* Find channel based on relid */ 1236 channel = relid2channel(relid); 1237 if (channel == NULL) 1238 goto sched_unlock_rcu; 1239 1240 if (channel->rescind) 1241 goto sched_unlock_rcu; 1242 1243 /* 1244 * Make sure that the ring buffer data structure doesn't get 1245 * freed while we dereference the ring buffer pointer. Test 1246 * for the channel's onchannel_callback being NULL within a 1247 * sched_lock critical section. See also the inline comments 1248 * in vmbus_reset_channel_cb(). 1249 */ 1250 spin_lock(&channel->sched_lock); 1251 1252 callback_fn = channel->onchannel_callback; 1253 if (unlikely(callback_fn == NULL)) 1254 goto sched_unlock; 1255 1256 trace_vmbus_chan_sched(channel); 1257 1258 ++channel->interrupts; 1259 1260 switch (channel->callback_mode) { 1261 case HV_CALL_ISR: 1262 (*callback_fn)(channel->channel_callback_context); 1263 break; 1264 1265 case HV_CALL_BATCHED: 1266 hv_begin_read(&channel->inbound); 1267 fallthrough; 1268 case HV_CALL_DIRECT: 1269 tasklet_schedule(&channel->callback_event); 1270 } 1271 1272 sched_unlock: 1273 spin_unlock(&channel->sched_lock); 1274 sched_unlock_rcu: 1275 rcu_read_unlock(); 1276 } 1277 } 1278 1279 static void vmbus_isr(void) 1280 { 1281 struct hv_per_cpu_context *hv_cpu 1282 = this_cpu_ptr(hv_context.cpu_context); 1283 void *page_addr; 1284 struct hv_message *msg; 1285 1286 vmbus_chan_sched(hv_cpu); 1287 1288 page_addr = hv_cpu->synic_message_page; 1289 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1290 1291 /* Check if there are actual msgs to be processed */ 1292 if (msg->header.message_type != HVMSG_NONE) { 1293 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1294 hv_stimer0_isr(); 1295 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1296 } else 1297 tasklet_schedule(&hv_cpu->msg_dpc); 1298 } 1299 1300 add_interrupt_randomness(vmbus_interrupt); 1301 } 1302 1303 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) 1304 { 1305 vmbus_isr(); 1306 return IRQ_HANDLED; 1307 } 1308 1309 /* 1310 * vmbus_bus_init -Main vmbus driver initialization routine. 1311 * 1312 * Here, we 1313 * - initialize the vmbus driver context 1314 * - invoke the vmbus hv main init routine 1315 * - retrieve the channel offers 1316 */ 1317 static int vmbus_bus_init(void) 1318 { 1319 int ret; 1320 1321 ret = hv_init(); 1322 if (ret != 0) { 1323 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1324 return ret; 1325 } 1326 1327 ret = bus_register(&hv_bus); 1328 if (ret) 1329 return ret; 1330 1331 /* 1332 * VMbus interrupts are best modeled as per-cpu interrupts. If 1333 * on an architecture with support for per-cpu IRQs (e.g. ARM64), 1334 * allocate a per-cpu IRQ using standard Linux kernel functionality. 1335 * If not on such an architecture (e.g., x86/x64), then rely on 1336 * code in the arch-specific portion of the code tree to connect 1337 * the VMbus interrupt handler. 1338 */ 1339 1340 if (vmbus_irq == -1) { 1341 hv_setup_vmbus_handler(vmbus_isr); 1342 } else { 1343 vmbus_evt = alloc_percpu(long); 1344 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, 1345 "Hyper-V VMbus", vmbus_evt); 1346 if (ret) { 1347 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", 1348 vmbus_irq, ret); 1349 free_percpu(vmbus_evt); 1350 goto err_setup; 1351 } 1352 } 1353 1354 ret = hv_synic_alloc(); 1355 if (ret) 1356 goto err_alloc; 1357 1358 /* 1359 * Initialize the per-cpu interrupt state and stimer state. 1360 * Then connect to the host. 1361 */ 1362 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1363 hv_synic_init, hv_synic_cleanup); 1364 if (ret < 0) 1365 goto err_alloc; 1366 hyperv_cpuhp_online = ret; 1367 1368 ret = vmbus_connect(); 1369 if (ret) 1370 goto err_connect; 1371 1372 /* 1373 * Always register the vmbus unload panic notifier because we 1374 * need to shut the VMbus channel connection on panic. 1375 */ 1376 atomic_notifier_chain_register(&panic_notifier_list, 1377 &hyperv_panic_vmbus_unload_block); 1378 1379 vmbus_request_offers(); 1380 1381 return 0; 1382 1383 err_connect: 1384 cpuhp_remove_state(hyperv_cpuhp_online); 1385 err_alloc: 1386 hv_synic_free(); 1387 if (vmbus_irq == -1) { 1388 hv_remove_vmbus_handler(); 1389 } else { 1390 free_percpu_irq(vmbus_irq, vmbus_evt); 1391 free_percpu(vmbus_evt); 1392 } 1393 err_setup: 1394 bus_unregister(&hv_bus); 1395 return ret; 1396 } 1397 1398 /** 1399 * __vmbus_driver_register() - Register a vmbus's driver 1400 * @hv_driver: Pointer to driver structure you want to register 1401 * @owner: owner module of the drv 1402 * @mod_name: module name string 1403 * 1404 * Registers the given driver with Linux through the 'driver_register()' call 1405 * and sets up the hyper-v vmbus handling for this driver. 1406 * It will return the state of the 'driver_register()' call. 1407 * 1408 */ 1409 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1410 { 1411 int ret; 1412 1413 pr_info("registering driver %s\n", hv_driver->name); 1414 1415 ret = vmbus_exists(); 1416 if (ret < 0) 1417 return ret; 1418 1419 hv_driver->driver.name = hv_driver->name; 1420 hv_driver->driver.owner = owner; 1421 hv_driver->driver.mod_name = mod_name; 1422 hv_driver->driver.bus = &hv_bus; 1423 1424 spin_lock_init(&hv_driver->dynids.lock); 1425 INIT_LIST_HEAD(&hv_driver->dynids.list); 1426 1427 ret = driver_register(&hv_driver->driver); 1428 1429 return ret; 1430 } 1431 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1432 1433 /** 1434 * vmbus_driver_unregister() - Unregister a vmbus's driver 1435 * @hv_driver: Pointer to driver structure you want to 1436 * un-register 1437 * 1438 * Un-register the given driver that was previous registered with a call to 1439 * vmbus_driver_register() 1440 */ 1441 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1442 { 1443 pr_info("unregistering driver %s\n", hv_driver->name); 1444 1445 if (!vmbus_exists()) { 1446 driver_unregister(&hv_driver->driver); 1447 vmbus_free_dynids(hv_driver); 1448 } 1449 } 1450 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1451 1452 1453 /* 1454 * Called when last reference to channel is gone. 1455 */ 1456 static void vmbus_chan_release(struct kobject *kobj) 1457 { 1458 struct vmbus_channel *channel 1459 = container_of(kobj, struct vmbus_channel, kobj); 1460 1461 kfree_rcu(channel, rcu); 1462 } 1463 1464 struct vmbus_chan_attribute { 1465 struct attribute attr; 1466 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1467 ssize_t (*store)(struct vmbus_channel *chan, 1468 const char *buf, size_t count); 1469 }; 1470 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1471 struct vmbus_chan_attribute chan_attr_##_name \ 1472 = __ATTR(_name, _mode, _show, _store) 1473 #define VMBUS_CHAN_ATTR_RW(_name) \ 1474 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1475 #define VMBUS_CHAN_ATTR_RO(_name) \ 1476 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1477 #define VMBUS_CHAN_ATTR_WO(_name) \ 1478 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1479 1480 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1481 struct attribute *attr, char *buf) 1482 { 1483 const struct vmbus_chan_attribute *attribute 1484 = container_of(attr, struct vmbus_chan_attribute, attr); 1485 struct vmbus_channel *chan 1486 = container_of(kobj, struct vmbus_channel, kobj); 1487 1488 if (!attribute->show) 1489 return -EIO; 1490 1491 return attribute->show(chan, buf); 1492 } 1493 1494 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1495 struct attribute *attr, const char *buf, 1496 size_t count) 1497 { 1498 const struct vmbus_chan_attribute *attribute 1499 = container_of(attr, struct vmbus_chan_attribute, attr); 1500 struct vmbus_channel *chan 1501 = container_of(kobj, struct vmbus_channel, kobj); 1502 1503 if (!attribute->store) 1504 return -EIO; 1505 1506 return attribute->store(chan, buf, count); 1507 } 1508 1509 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1510 .show = vmbus_chan_attr_show, 1511 .store = vmbus_chan_attr_store, 1512 }; 1513 1514 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1515 { 1516 struct hv_ring_buffer_info *rbi = &channel->outbound; 1517 ssize_t ret; 1518 1519 mutex_lock(&rbi->ring_buffer_mutex); 1520 if (!rbi->ring_buffer) { 1521 mutex_unlock(&rbi->ring_buffer_mutex); 1522 return -EINVAL; 1523 } 1524 1525 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1526 mutex_unlock(&rbi->ring_buffer_mutex); 1527 return ret; 1528 } 1529 static VMBUS_CHAN_ATTR_RO(out_mask); 1530 1531 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1532 { 1533 struct hv_ring_buffer_info *rbi = &channel->inbound; 1534 ssize_t ret; 1535 1536 mutex_lock(&rbi->ring_buffer_mutex); 1537 if (!rbi->ring_buffer) { 1538 mutex_unlock(&rbi->ring_buffer_mutex); 1539 return -EINVAL; 1540 } 1541 1542 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1543 mutex_unlock(&rbi->ring_buffer_mutex); 1544 return ret; 1545 } 1546 static VMBUS_CHAN_ATTR_RO(in_mask); 1547 1548 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1549 { 1550 struct hv_ring_buffer_info *rbi = &channel->inbound; 1551 ssize_t ret; 1552 1553 mutex_lock(&rbi->ring_buffer_mutex); 1554 if (!rbi->ring_buffer) { 1555 mutex_unlock(&rbi->ring_buffer_mutex); 1556 return -EINVAL; 1557 } 1558 1559 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1560 mutex_unlock(&rbi->ring_buffer_mutex); 1561 return ret; 1562 } 1563 static VMBUS_CHAN_ATTR_RO(read_avail); 1564 1565 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1566 { 1567 struct hv_ring_buffer_info *rbi = &channel->outbound; 1568 ssize_t ret; 1569 1570 mutex_lock(&rbi->ring_buffer_mutex); 1571 if (!rbi->ring_buffer) { 1572 mutex_unlock(&rbi->ring_buffer_mutex); 1573 return -EINVAL; 1574 } 1575 1576 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1577 mutex_unlock(&rbi->ring_buffer_mutex); 1578 return ret; 1579 } 1580 static VMBUS_CHAN_ATTR_RO(write_avail); 1581 1582 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1583 { 1584 return sprintf(buf, "%u\n", channel->target_cpu); 1585 } 1586 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1587 const char *buf, size_t count) 1588 { 1589 u32 target_cpu, origin_cpu; 1590 ssize_t ret = count; 1591 1592 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1593 return -EIO; 1594 1595 if (sscanf(buf, "%uu", &target_cpu) != 1) 1596 return -EIO; 1597 1598 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1599 if (target_cpu >= nr_cpumask_bits) 1600 return -EINVAL; 1601 1602 if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ))) 1603 return -EINVAL; 1604 1605 /* No CPUs should come up or down during this. */ 1606 cpus_read_lock(); 1607 1608 if (!cpu_online(target_cpu)) { 1609 cpus_read_unlock(); 1610 return -EINVAL; 1611 } 1612 1613 /* 1614 * Synchronizes target_cpu_store() and channel closure: 1615 * 1616 * { Initially: state = CHANNEL_OPENED } 1617 * 1618 * CPU1 CPU2 1619 * 1620 * [target_cpu_store()] [vmbus_disconnect_ring()] 1621 * 1622 * LOCK channel_mutex LOCK channel_mutex 1623 * LOAD r1 = state LOAD r2 = state 1624 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1625 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1626 * [...] SEND CLOSECHANNEL 1627 * UNLOCK channel_mutex UNLOCK channel_mutex 1628 * 1629 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1630 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1631 * 1632 * Note. The host processes the channel messages "sequentially", in 1633 * the order in which they are received on a per-partition basis. 1634 */ 1635 mutex_lock(&vmbus_connection.channel_mutex); 1636 1637 /* 1638 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1639 * avoid sending the message and fail here for such channels. 1640 */ 1641 if (channel->state != CHANNEL_OPENED_STATE) { 1642 ret = -EIO; 1643 goto cpu_store_unlock; 1644 } 1645 1646 origin_cpu = channel->target_cpu; 1647 if (target_cpu == origin_cpu) 1648 goto cpu_store_unlock; 1649 1650 if (vmbus_send_modifychannel(channel, 1651 hv_cpu_number_to_vp_number(target_cpu))) { 1652 ret = -EIO; 1653 goto cpu_store_unlock; 1654 } 1655 1656 /* 1657 * For version before VERSION_WIN10_V5_3, the following warning holds: 1658 * 1659 * Warning. At this point, there is *no* guarantee that the host will 1660 * have successfully processed the vmbus_send_modifychannel() request. 1661 * See the header comment of vmbus_send_modifychannel() for more info. 1662 * 1663 * Lags in the processing of the above vmbus_send_modifychannel() can 1664 * result in missed interrupts if the "old" target CPU is taken offline 1665 * before Hyper-V starts sending interrupts to the "new" target CPU. 1666 * But apart from this offlining scenario, the code tolerates such 1667 * lags. It will function correctly even if a channel interrupt comes 1668 * in on a CPU that is different from the channel target_cpu value. 1669 */ 1670 1671 channel->target_cpu = target_cpu; 1672 1673 /* See init_vp_index(). */ 1674 if (hv_is_perf_channel(channel)) 1675 hv_update_allocated_cpus(origin_cpu, target_cpu); 1676 1677 /* Currently set only for storvsc channels. */ 1678 if (channel->change_target_cpu_callback) { 1679 (*channel->change_target_cpu_callback)(channel, 1680 origin_cpu, target_cpu); 1681 } 1682 1683 cpu_store_unlock: 1684 mutex_unlock(&vmbus_connection.channel_mutex); 1685 cpus_read_unlock(); 1686 return ret; 1687 } 1688 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1689 1690 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1691 char *buf) 1692 { 1693 return sprintf(buf, "%d\n", 1694 channel_pending(channel, 1695 vmbus_connection.monitor_pages[1])); 1696 } 1697 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1698 1699 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1700 char *buf) 1701 { 1702 return sprintf(buf, "%d\n", 1703 channel_latency(channel, 1704 vmbus_connection.monitor_pages[1])); 1705 } 1706 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1707 1708 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1709 { 1710 return sprintf(buf, "%llu\n", channel->interrupts); 1711 } 1712 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1713 1714 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1715 { 1716 return sprintf(buf, "%llu\n", channel->sig_events); 1717 } 1718 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1719 1720 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1721 char *buf) 1722 { 1723 return sprintf(buf, "%llu\n", 1724 (unsigned long long)channel->intr_in_full); 1725 } 1726 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1727 1728 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1729 char *buf) 1730 { 1731 return sprintf(buf, "%llu\n", 1732 (unsigned long long)channel->intr_out_empty); 1733 } 1734 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1735 1736 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1737 char *buf) 1738 { 1739 return sprintf(buf, "%llu\n", 1740 (unsigned long long)channel->out_full_first); 1741 } 1742 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1743 1744 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1745 char *buf) 1746 { 1747 return sprintf(buf, "%llu\n", 1748 (unsigned long long)channel->out_full_total); 1749 } 1750 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1751 1752 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1753 char *buf) 1754 { 1755 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1756 } 1757 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1758 1759 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1760 char *buf) 1761 { 1762 return sprintf(buf, "%u\n", 1763 channel->offermsg.offer.sub_channel_index); 1764 } 1765 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1766 1767 static struct attribute *vmbus_chan_attrs[] = { 1768 &chan_attr_out_mask.attr, 1769 &chan_attr_in_mask.attr, 1770 &chan_attr_read_avail.attr, 1771 &chan_attr_write_avail.attr, 1772 &chan_attr_cpu.attr, 1773 &chan_attr_pending.attr, 1774 &chan_attr_latency.attr, 1775 &chan_attr_interrupts.attr, 1776 &chan_attr_events.attr, 1777 &chan_attr_intr_in_full.attr, 1778 &chan_attr_intr_out_empty.attr, 1779 &chan_attr_out_full_first.attr, 1780 &chan_attr_out_full_total.attr, 1781 &chan_attr_monitor_id.attr, 1782 &chan_attr_subchannel_id.attr, 1783 NULL 1784 }; 1785 1786 /* 1787 * Channel-level attribute_group callback function. Returns the permission for 1788 * each attribute, and returns 0 if an attribute is not visible. 1789 */ 1790 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1791 struct attribute *attr, int idx) 1792 { 1793 const struct vmbus_channel *channel = 1794 container_of(kobj, struct vmbus_channel, kobj); 1795 1796 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1797 if (!channel->offermsg.monitor_allocated && 1798 (attr == &chan_attr_pending.attr || 1799 attr == &chan_attr_latency.attr || 1800 attr == &chan_attr_monitor_id.attr)) 1801 return 0; 1802 1803 return attr->mode; 1804 } 1805 1806 static struct attribute_group vmbus_chan_group = { 1807 .attrs = vmbus_chan_attrs, 1808 .is_visible = vmbus_chan_attr_is_visible 1809 }; 1810 1811 static struct kobj_type vmbus_chan_ktype = { 1812 .sysfs_ops = &vmbus_chan_sysfs_ops, 1813 .release = vmbus_chan_release, 1814 }; 1815 1816 /* 1817 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1818 */ 1819 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1820 { 1821 const struct device *device = &dev->device; 1822 struct kobject *kobj = &channel->kobj; 1823 u32 relid = channel->offermsg.child_relid; 1824 int ret; 1825 1826 kobj->kset = dev->channels_kset; 1827 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1828 "%u", relid); 1829 if (ret) { 1830 kobject_put(kobj); 1831 return ret; 1832 } 1833 1834 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1835 1836 if (ret) { 1837 /* 1838 * The calling functions' error handling paths will cleanup the 1839 * empty channel directory. 1840 */ 1841 kobject_put(kobj); 1842 dev_err(device, "Unable to set up channel sysfs files\n"); 1843 return ret; 1844 } 1845 1846 kobject_uevent(kobj, KOBJ_ADD); 1847 1848 return 0; 1849 } 1850 1851 /* 1852 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1853 */ 1854 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1855 { 1856 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1857 } 1858 1859 /* 1860 * vmbus_device_create - Creates and registers a new child device 1861 * on the vmbus. 1862 */ 1863 struct hv_device *vmbus_device_create(const guid_t *type, 1864 const guid_t *instance, 1865 struct vmbus_channel *channel) 1866 { 1867 struct hv_device *child_device_obj; 1868 1869 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1870 if (!child_device_obj) { 1871 pr_err("Unable to allocate device object for child device\n"); 1872 return NULL; 1873 } 1874 1875 child_device_obj->channel = channel; 1876 guid_copy(&child_device_obj->dev_type, type); 1877 guid_copy(&child_device_obj->dev_instance, instance); 1878 child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT; 1879 1880 return child_device_obj; 1881 } 1882 1883 /* 1884 * vmbus_device_register - Register the child device 1885 */ 1886 int vmbus_device_register(struct hv_device *child_device_obj) 1887 { 1888 struct kobject *kobj = &child_device_obj->device.kobj; 1889 int ret; 1890 1891 dev_set_name(&child_device_obj->device, "%pUl", 1892 &child_device_obj->channel->offermsg.offer.if_instance); 1893 1894 child_device_obj->device.bus = &hv_bus; 1895 child_device_obj->device.parent = hv_dev; 1896 child_device_obj->device.release = vmbus_device_release; 1897 1898 child_device_obj->device.dma_parms = &child_device_obj->dma_parms; 1899 child_device_obj->device.dma_mask = &child_device_obj->dma_mask; 1900 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64)); 1901 1902 /* 1903 * Register with the LDM. This will kick off the driver/device 1904 * binding...which will eventually call vmbus_match() and vmbus_probe() 1905 */ 1906 ret = device_register(&child_device_obj->device); 1907 if (ret) { 1908 pr_err("Unable to register child device\n"); 1909 put_device(&child_device_obj->device); 1910 return ret; 1911 } 1912 1913 child_device_obj->channels_kset = kset_create_and_add("channels", 1914 NULL, kobj); 1915 if (!child_device_obj->channels_kset) { 1916 ret = -ENOMEM; 1917 goto err_dev_unregister; 1918 } 1919 1920 ret = vmbus_add_channel_kobj(child_device_obj, 1921 child_device_obj->channel); 1922 if (ret) { 1923 pr_err("Unable to register primary channeln"); 1924 goto err_kset_unregister; 1925 } 1926 hv_debug_add_dev_dir(child_device_obj); 1927 1928 return 0; 1929 1930 err_kset_unregister: 1931 kset_unregister(child_device_obj->channels_kset); 1932 1933 err_dev_unregister: 1934 device_unregister(&child_device_obj->device); 1935 return ret; 1936 } 1937 1938 /* 1939 * vmbus_device_unregister - Remove the specified child device 1940 * from the vmbus. 1941 */ 1942 void vmbus_device_unregister(struct hv_device *device_obj) 1943 { 1944 pr_debug("child device %s unregistered\n", 1945 dev_name(&device_obj->device)); 1946 1947 kset_unregister(device_obj->channels_kset); 1948 1949 /* 1950 * Kick off the process of unregistering the device. 1951 * This will call vmbus_remove() and eventually vmbus_device_release() 1952 */ 1953 device_unregister(&device_obj->device); 1954 } 1955 1956 #ifdef CONFIG_ACPI 1957 /* 1958 * VMBUS is an acpi enumerated device. Get the information we 1959 * need from DSDT. 1960 */ 1961 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1962 { 1963 resource_size_t start = 0; 1964 resource_size_t end = 0; 1965 struct resource *new_res; 1966 struct resource **old_res = &hyperv_mmio; 1967 struct resource **prev_res = NULL; 1968 struct resource r; 1969 1970 switch (res->type) { 1971 1972 /* 1973 * "Address" descriptors are for bus windows. Ignore 1974 * "memory" descriptors, which are for registers on 1975 * devices. 1976 */ 1977 case ACPI_RESOURCE_TYPE_ADDRESS32: 1978 start = res->data.address32.address.minimum; 1979 end = res->data.address32.address.maximum; 1980 break; 1981 1982 case ACPI_RESOURCE_TYPE_ADDRESS64: 1983 start = res->data.address64.address.minimum; 1984 end = res->data.address64.address.maximum; 1985 break; 1986 1987 /* 1988 * The IRQ information is needed only on ARM64, which Hyper-V 1989 * sets up in the extended format. IRQ information is present 1990 * on x86/x64 in the non-extended format but it is not used by 1991 * Linux. So don't bother checking for the non-extended format. 1992 */ 1993 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 1994 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 1995 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 1996 return AE_ERROR; 1997 } 1998 /* ARM64 INTID for VMbus */ 1999 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2000 /* Linux IRQ number */ 2001 vmbus_irq = r.start; 2002 return AE_OK; 2003 2004 default: 2005 /* Unused resource type */ 2006 return AE_OK; 2007 2008 } 2009 /* 2010 * Ignore ranges that are below 1MB, as they're not 2011 * necessary or useful here. 2012 */ 2013 if (end < 0x100000) 2014 return AE_OK; 2015 2016 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2017 if (!new_res) 2018 return AE_NO_MEMORY; 2019 2020 /* If this range overlaps the virtual TPM, truncate it. */ 2021 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2022 end = VTPM_BASE_ADDRESS; 2023 2024 new_res->name = "hyperv mmio"; 2025 new_res->flags = IORESOURCE_MEM; 2026 new_res->start = start; 2027 new_res->end = end; 2028 2029 /* 2030 * If two ranges are adjacent, merge them. 2031 */ 2032 do { 2033 if (!*old_res) { 2034 *old_res = new_res; 2035 break; 2036 } 2037 2038 if (((*old_res)->end + 1) == new_res->start) { 2039 (*old_res)->end = new_res->end; 2040 kfree(new_res); 2041 break; 2042 } 2043 2044 if ((*old_res)->start == new_res->end + 1) { 2045 (*old_res)->start = new_res->start; 2046 kfree(new_res); 2047 break; 2048 } 2049 2050 if ((*old_res)->start > new_res->end) { 2051 new_res->sibling = *old_res; 2052 if (prev_res) 2053 (*prev_res)->sibling = new_res; 2054 *old_res = new_res; 2055 break; 2056 } 2057 2058 prev_res = old_res; 2059 old_res = &(*old_res)->sibling; 2060 2061 } while (1); 2062 2063 return AE_OK; 2064 } 2065 #endif 2066 2067 static void vmbus_mmio_remove(void) 2068 { 2069 struct resource *cur_res; 2070 struct resource *next_res; 2071 2072 if (hyperv_mmio) { 2073 if (fb_mmio) { 2074 __release_region(hyperv_mmio, fb_mmio->start, 2075 resource_size(fb_mmio)); 2076 fb_mmio = NULL; 2077 } 2078 2079 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2080 next_res = cur_res->sibling; 2081 kfree(cur_res); 2082 } 2083 } 2084 } 2085 2086 static void __maybe_unused vmbus_reserve_fb(void) 2087 { 2088 resource_size_t start = 0, size; 2089 struct pci_dev *pdev; 2090 2091 if (efi_enabled(EFI_BOOT)) { 2092 /* Gen2 VM: get FB base from EFI framebuffer */ 2093 if (IS_ENABLED(CONFIG_SYSFB)) { 2094 start = screen_info.lfb_base; 2095 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2096 } 2097 } else { 2098 /* Gen1 VM: get FB base from PCI */ 2099 pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT, 2100 PCI_DEVICE_ID_HYPERV_VIDEO, NULL); 2101 if (!pdev) 2102 return; 2103 2104 if (pdev->resource[0].flags & IORESOURCE_MEM) { 2105 start = pci_resource_start(pdev, 0); 2106 size = pci_resource_len(pdev, 0); 2107 } 2108 2109 /* 2110 * Release the PCI device so hyperv_drm or hyperv_fb driver can 2111 * grab it later. 2112 */ 2113 pci_dev_put(pdev); 2114 } 2115 2116 if (!start) 2117 return; 2118 2119 /* 2120 * Make a claim for the frame buffer in the resource tree under the 2121 * first node, which will be the one below 4GB. The length seems to 2122 * be underreported, particularly in a Generation 1 VM. So start out 2123 * reserving a larger area and make it smaller until it succeeds. 2124 */ 2125 for (; !fb_mmio && (size >= 0x100000); size >>= 1) 2126 fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0); 2127 } 2128 2129 /** 2130 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2131 * @new: If successful, supplied a pointer to the 2132 * allocated MMIO space. 2133 * @device_obj: Identifies the caller 2134 * @min: Minimum guest physical address of the 2135 * allocation 2136 * @max: Maximum guest physical address 2137 * @size: Size of the range to be allocated 2138 * @align: Alignment of the range to be allocated 2139 * @fb_overlap_ok: Whether this allocation can be allowed 2140 * to overlap the video frame buffer. 2141 * 2142 * This function walks the resources granted to VMBus by the 2143 * _CRS object in the ACPI namespace underneath the parent 2144 * "bridge" whether that's a root PCI bus in the Generation 1 2145 * case or a Module Device in the Generation 2 case. It then 2146 * attempts to allocate from the global MMIO pool in a way that 2147 * matches the constraints supplied in these parameters and by 2148 * that _CRS. 2149 * 2150 * Return: 0 on success, -errno on failure 2151 */ 2152 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2153 resource_size_t min, resource_size_t max, 2154 resource_size_t size, resource_size_t align, 2155 bool fb_overlap_ok) 2156 { 2157 struct resource *iter, *shadow; 2158 resource_size_t range_min, range_max, start, end; 2159 const char *dev_n = dev_name(&device_obj->device); 2160 int retval; 2161 2162 retval = -ENXIO; 2163 mutex_lock(&hyperv_mmio_lock); 2164 2165 /* 2166 * If overlaps with frame buffers are allowed, then first attempt to 2167 * make the allocation from within the reserved region. Because it 2168 * is already reserved, no shadow allocation is necessary. 2169 */ 2170 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2171 !(max < fb_mmio->start)) { 2172 2173 range_min = fb_mmio->start; 2174 range_max = fb_mmio->end; 2175 start = (range_min + align - 1) & ~(align - 1); 2176 for (; start + size - 1 <= range_max; start += align) { 2177 *new = request_mem_region_exclusive(start, size, dev_n); 2178 if (*new) { 2179 retval = 0; 2180 goto exit; 2181 } 2182 } 2183 } 2184 2185 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2186 if ((iter->start >= max) || (iter->end <= min)) 2187 continue; 2188 2189 range_min = iter->start; 2190 range_max = iter->end; 2191 start = (range_min + align - 1) & ~(align - 1); 2192 for (; start + size - 1 <= range_max; start += align) { 2193 end = start + size - 1; 2194 2195 /* Skip the whole fb_mmio region if not fb_overlap_ok */ 2196 if (!fb_overlap_ok && fb_mmio && 2197 (((start >= fb_mmio->start) && (start <= fb_mmio->end)) || 2198 ((end >= fb_mmio->start) && (end <= fb_mmio->end)))) 2199 continue; 2200 2201 shadow = __request_region(iter, start, size, NULL, 2202 IORESOURCE_BUSY); 2203 if (!shadow) 2204 continue; 2205 2206 *new = request_mem_region_exclusive(start, size, dev_n); 2207 if (*new) { 2208 shadow->name = (char *)*new; 2209 retval = 0; 2210 goto exit; 2211 } 2212 2213 __release_region(iter, start, size); 2214 } 2215 } 2216 2217 exit: 2218 mutex_unlock(&hyperv_mmio_lock); 2219 return retval; 2220 } 2221 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2222 2223 /** 2224 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2225 * @start: Base address of region to release. 2226 * @size: Size of the range to be allocated 2227 * 2228 * This function releases anything requested by 2229 * vmbus_mmio_allocate(). 2230 */ 2231 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2232 { 2233 struct resource *iter; 2234 2235 mutex_lock(&hyperv_mmio_lock); 2236 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2237 if ((iter->start >= start + size) || (iter->end <= start)) 2238 continue; 2239 2240 __release_region(iter, start, size); 2241 } 2242 release_mem_region(start, size); 2243 mutex_unlock(&hyperv_mmio_lock); 2244 2245 } 2246 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2247 2248 #ifdef CONFIG_ACPI 2249 static int vmbus_acpi_add(struct platform_device *pdev) 2250 { 2251 acpi_status result; 2252 int ret_val = -ENODEV; 2253 struct acpi_device *ancestor; 2254 struct acpi_device *device = ACPI_COMPANION(&pdev->dev); 2255 2256 hv_dev = &device->dev; 2257 2258 /* 2259 * Older versions of Hyper-V for ARM64 fail to include the _CCA 2260 * method on the top level VMbus device in the DSDT. But devices 2261 * are hardware coherent in all current Hyper-V use cases, so fix 2262 * up the ACPI device to behave as if _CCA is present and indicates 2263 * hardware coherence. 2264 */ 2265 ACPI_COMPANION_SET(&device->dev, device); 2266 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) && 2267 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) { 2268 pr_info("No ACPI _CCA found; assuming coherent device I/O\n"); 2269 device->flags.cca_seen = true; 2270 device->flags.coherent_dma = true; 2271 } 2272 2273 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2274 vmbus_walk_resources, NULL); 2275 2276 if (ACPI_FAILURE(result)) 2277 goto acpi_walk_err; 2278 /* 2279 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2280 * firmware) is the VMOD that has the mmio ranges. Get that. 2281 */ 2282 for (ancestor = acpi_dev_parent(device); 2283 ancestor && ancestor->handle != ACPI_ROOT_OBJECT; 2284 ancestor = acpi_dev_parent(ancestor)) { 2285 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2286 vmbus_walk_resources, NULL); 2287 2288 if (ACPI_FAILURE(result)) 2289 continue; 2290 if (hyperv_mmio) { 2291 vmbus_reserve_fb(); 2292 break; 2293 } 2294 } 2295 ret_val = 0; 2296 2297 acpi_walk_err: 2298 if (ret_val) 2299 vmbus_mmio_remove(); 2300 return ret_val; 2301 } 2302 #else 2303 static int vmbus_acpi_add(struct platform_device *pdev) 2304 { 2305 return 0; 2306 } 2307 #endif 2308 2309 static int vmbus_device_add(struct platform_device *pdev) 2310 { 2311 struct resource **cur_res = &hyperv_mmio; 2312 struct of_range range; 2313 struct of_range_parser parser; 2314 struct device_node *np = pdev->dev.of_node; 2315 int ret; 2316 2317 hv_dev = &pdev->dev; 2318 2319 ret = of_range_parser_init(&parser, np); 2320 if (ret) 2321 return ret; 2322 2323 for_each_of_range(&parser, &range) { 2324 struct resource *res; 2325 2326 res = kzalloc(sizeof(*res), GFP_KERNEL); 2327 if (!res) { 2328 vmbus_mmio_remove(); 2329 return -ENOMEM; 2330 } 2331 2332 res->name = "hyperv mmio"; 2333 res->flags = range.flags; 2334 res->start = range.cpu_addr; 2335 res->end = range.cpu_addr + range.size; 2336 2337 *cur_res = res; 2338 cur_res = &res->sibling; 2339 } 2340 2341 return ret; 2342 } 2343 2344 static int vmbus_platform_driver_probe(struct platform_device *pdev) 2345 { 2346 if (acpi_disabled) 2347 return vmbus_device_add(pdev); 2348 else 2349 return vmbus_acpi_add(pdev); 2350 } 2351 2352 static void vmbus_platform_driver_remove(struct platform_device *pdev) 2353 { 2354 vmbus_mmio_remove(); 2355 } 2356 2357 #ifdef CONFIG_PM_SLEEP 2358 static int vmbus_bus_suspend(struct device *dev) 2359 { 2360 struct hv_per_cpu_context *hv_cpu = per_cpu_ptr( 2361 hv_context.cpu_context, VMBUS_CONNECT_CPU); 2362 struct vmbus_channel *channel, *sc; 2363 2364 tasklet_disable(&hv_cpu->msg_dpc); 2365 vmbus_connection.ignore_any_offer_msg = true; 2366 /* The tasklet_enable() takes care of providing a memory barrier */ 2367 tasklet_enable(&hv_cpu->msg_dpc); 2368 2369 /* Drain all the workqueues as we are in suspend */ 2370 drain_workqueue(vmbus_connection.rescind_work_queue); 2371 drain_workqueue(vmbus_connection.work_queue); 2372 drain_workqueue(vmbus_connection.handle_primary_chan_wq); 2373 drain_workqueue(vmbus_connection.handle_sub_chan_wq); 2374 2375 mutex_lock(&vmbus_connection.channel_mutex); 2376 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2377 if (!is_hvsock_channel(channel)) 2378 continue; 2379 2380 vmbus_force_channel_rescinded(channel); 2381 } 2382 mutex_unlock(&vmbus_connection.channel_mutex); 2383 2384 /* 2385 * Wait until all the sub-channels and hv_sock channels have been 2386 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2387 * they would conflict with the new sub-channels that will be created 2388 * in the resume path. hv_sock channels should also be destroyed, but 2389 * a hv_sock channel of an established hv_sock connection can not be 2390 * really destroyed since it may still be referenced by the userspace 2391 * application, so we just force the hv_sock channel to be rescinded 2392 * by vmbus_force_channel_rescinded(), and the userspace application 2393 * will thoroughly destroy the channel after hibernation. 2394 * 2395 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2396 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2397 */ 2398 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2399 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2400 2401 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2402 pr_err("Can not suspend due to a previous failed resuming\n"); 2403 return -EBUSY; 2404 } 2405 2406 mutex_lock(&vmbus_connection.channel_mutex); 2407 2408 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2409 /* 2410 * Remove the channel from the array of channels and invalidate 2411 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2412 * up the relid (and other fields, if necessary) and add the 2413 * channel back to the array. 2414 */ 2415 vmbus_channel_unmap_relid(channel); 2416 channel->offermsg.child_relid = INVALID_RELID; 2417 2418 if (is_hvsock_channel(channel)) { 2419 if (!channel->rescind) { 2420 pr_err("hv_sock channel not rescinded!\n"); 2421 WARN_ON_ONCE(1); 2422 } 2423 continue; 2424 } 2425 2426 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2427 pr_err("Sub-channel not deleted!\n"); 2428 WARN_ON_ONCE(1); 2429 } 2430 2431 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2432 } 2433 2434 mutex_unlock(&vmbus_connection.channel_mutex); 2435 2436 vmbus_initiate_unload(false); 2437 2438 /* Reset the event for the next resume. */ 2439 reinit_completion(&vmbus_connection.ready_for_resume_event); 2440 2441 return 0; 2442 } 2443 2444 static int vmbus_bus_resume(struct device *dev) 2445 { 2446 struct vmbus_channel_msginfo *msginfo; 2447 size_t msgsize; 2448 int ret; 2449 2450 vmbus_connection.ignore_any_offer_msg = false; 2451 2452 /* 2453 * We only use the 'vmbus_proto_version', which was in use before 2454 * hibernation, to re-negotiate with the host. 2455 */ 2456 if (!vmbus_proto_version) { 2457 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2458 return -EINVAL; 2459 } 2460 2461 msgsize = sizeof(*msginfo) + 2462 sizeof(struct vmbus_channel_initiate_contact); 2463 2464 msginfo = kzalloc(msgsize, GFP_KERNEL); 2465 2466 if (msginfo == NULL) 2467 return -ENOMEM; 2468 2469 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2470 2471 kfree(msginfo); 2472 2473 if (ret != 0) 2474 return ret; 2475 2476 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2477 2478 vmbus_request_offers(); 2479 2480 if (wait_for_completion_timeout( 2481 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2482 pr_err("Some vmbus device is missing after suspending?\n"); 2483 2484 /* Reset the event for the next suspend. */ 2485 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2486 2487 return 0; 2488 } 2489 #else 2490 #define vmbus_bus_suspend NULL 2491 #define vmbus_bus_resume NULL 2492 #endif /* CONFIG_PM_SLEEP */ 2493 2494 static const __maybe_unused struct of_device_id vmbus_of_match[] = { 2495 { 2496 .compatible = "microsoft,vmbus", 2497 }, 2498 { 2499 /* sentinel */ 2500 }, 2501 }; 2502 MODULE_DEVICE_TABLE(of, vmbus_of_match); 2503 2504 static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = { 2505 {"VMBUS", 0}, 2506 {"VMBus", 0}, 2507 {"", 0}, 2508 }; 2509 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2510 2511 /* 2512 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2513 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2514 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2515 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2516 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2517 * resume callback must also run via the "noirq" ops. 2518 * 2519 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2520 * earlier in this file before vmbus_pm. 2521 */ 2522 2523 static const struct dev_pm_ops vmbus_bus_pm = { 2524 .suspend_noirq = NULL, 2525 .resume_noirq = NULL, 2526 .freeze_noirq = vmbus_bus_suspend, 2527 .thaw_noirq = vmbus_bus_resume, 2528 .poweroff_noirq = vmbus_bus_suspend, 2529 .restore_noirq = vmbus_bus_resume 2530 }; 2531 2532 static struct platform_driver vmbus_platform_driver = { 2533 .probe = vmbus_platform_driver_probe, 2534 .remove_new = vmbus_platform_driver_remove, 2535 .driver = { 2536 .name = "vmbus", 2537 .acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids), 2538 .of_match_table = of_match_ptr(vmbus_of_match), 2539 .pm = &vmbus_bus_pm, 2540 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2541 } 2542 }; 2543 2544 static void hv_kexec_handler(void) 2545 { 2546 hv_stimer_global_cleanup(); 2547 vmbus_initiate_unload(false); 2548 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2549 mb(); 2550 cpuhp_remove_state(hyperv_cpuhp_online); 2551 }; 2552 2553 static void hv_crash_handler(struct pt_regs *regs) 2554 { 2555 int cpu; 2556 2557 vmbus_initiate_unload(true); 2558 /* 2559 * In crash handler we can't schedule synic cleanup for all CPUs, 2560 * doing the cleanup for current CPU only. This should be sufficient 2561 * for kdump. 2562 */ 2563 cpu = smp_processor_id(); 2564 hv_stimer_cleanup(cpu); 2565 hv_synic_disable_regs(cpu); 2566 }; 2567 2568 static int hv_synic_suspend(void) 2569 { 2570 /* 2571 * When we reach here, all the non-boot CPUs have been offlined. 2572 * If we're in a legacy configuration where stimer Direct Mode is 2573 * not enabled, the stimers on the non-boot CPUs have been unbound 2574 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2575 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2576 * 2577 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2578 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2579 * 1) it's unnecessary as interrupts remain disabled between 2580 * syscore_suspend() and syscore_resume(): see create_image() and 2581 * resume_target_kernel() 2582 * 2) the stimer on CPU0 is automatically disabled later by 2583 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2584 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2585 * 3) a warning would be triggered if we call 2586 * clockevents_unbind_device(), which may sleep, in an 2587 * interrupts-disabled context. 2588 */ 2589 2590 hv_synic_disable_regs(0); 2591 2592 return 0; 2593 } 2594 2595 static void hv_synic_resume(void) 2596 { 2597 hv_synic_enable_regs(0); 2598 2599 /* 2600 * Note: we don't need to call hv_stimer_init(0), because the timer 2601 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2602 * automatically re-enabled in timekeeping_resume(). 2603 */ 2604 } 2605 2606 /* The callbacks run only on CPU0, with irqs_disabled. */ 2607 static struct syscore_ops hv_synic_syscore_ops = { 2608 .suspend = hv_synic_suspend, 2609 .resume = hv_synic_resume, 2610 }; 2611 2612 static int __init hv_acpi_init(void) 2613 { 2614 int ret; 2615 2616 if (!hv_is_hyperv_initialized()) 2617 return -ENODEV; 2618 2619 if (hv_root_partition && !hv_nested) 2620 return 0; 2621 2622 /* 2623 * Get ACPI resources first. 2624 */ 2625 ret = platform_driver_register(&vmbus_platform_driver); 2626 if (ret) 2627 return ret; 2628 2629 if (!hv_dev) { 2630 ret = -ENODEV; 2631 goto cleanup; 2632 } 2633 2634 /* 2635 * If we're on an architecture with a hardcoded hypervisor 2636 * vector (i.e. x86/x64), override the VMbus interrupt found 2637 * in the ACPI tables. Ensure vmbus_irq is not set since the 2638 * normal Linux IRQ mechanism is not used in this case. 2639 */ 2640 #ifdef HYPERVISOR_CALLBACK_VECTOR 2641 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; 2642 vmbus_irq = -1; 2643 #endif 2644 2645 hv_debug_init(); 2646 2647 ret = vmbus_bus_init(); 2648 if (ret) 2649 goto cleanup; 2650 2651 hv_setup_kexec_handler(hv_kexec_handler); 2652 hv_setup_crash_handler(hv_crash_handler); 2653 2654 register_syscore_ops(&hv_synic_syscore_ops); 2655 2656 return 0; 2657 2658 cleanup: 2659 platform_driver_unregister(&vmbus_platform_driver); 2660 hv_dev = NULL; 2661 return ret; 2662 } 2663 2664 static void __exit vmbus_exit(void) 2665 { 2666 int cpu; 2667 2668 unregister_syscore_ops(&hv_synic_syscore_ops); 2669 2670 hv_remove_kexec_handler(); 2671 hv_remove_crash_handler(); 2672 vmbus_connection.conn_state = DISCONNECTED; 2673 hv_stimer_global_cleanup(); 2674 vmbus_disconnect(); 2675 if (vmbus_irq == -1) { 2676 hv_remove_vmbus_handler(); 2677 } else { 2678 free_percpu_irq(vmbus_irq, vmbus_evt); 2679 free_percpu(vmbus_evt); 2680 } 2681 for_each_online_cpu(cpu) { 2682 struct hv_per_cpu_context *hv_cpu 2683 = per_cpu_ptr(hv_context.cpu_context, cpu); 2684 2685 tasklet_kill(&hv_cpu->msg_dpc); 2686 } 2687 hv_debug_rm_all_dir(); 2688 2689 vmbus_free_channels(); 2690 kfree(vmbus_connection.channels); 2691 2692 /* 2693 * The vmbus panic notifier is always registered, hence we should 2694 * also unconditionally unregister it here as well. 2695 */ 2696 atomic_notifier_chain_unregister(&panic_notifier_list, 2697 &hyperv_panic_vmbus_unload_block); 2698 2699 bus_unregister(&hv_bus); 2700 2701 cpuhp_remove_state(hyperv_cpuhp_online); 2702 hv_synic_free(); 2703 platform_driver_unregister(&vmbus_platform_driver); 2704 } 2705 2706 2707 MODULE_LICENSE("GPL"); 2708 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2709 2710 subsys_initcall(hv_acpi_init); 2711 module_exit(vmbus_exit); 2712