1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <asm/mshyperv.h> 27 #include <linux/delay.h> 28 #include <linux/notifier.h> 29 #include <linux/ptrace.h> 30 #include <linux/screen_info.h> 31 #include <linux/kdebug.h> 32 #include <linux/efi.h> 33 #include <linux/random.h> 34 #include <linux/kernel.h> 35 #include <linux/syscore_ops.h> 36 #include <clocksource/hyperv_timer.h> 37 #include "hyperv_vmbus.h" 38 39 struct vmbus_dynid { 40 struct list_head node; 41 struct hv_vmbus_device_id id; 42 }; 43 44 static struct acpi_device *hv_acpi_dev; 45 46 static struct completion probe_event; 47 48 static int hyperv_cpuhp_online; 49 50 static void *hv_panic_page; 51 52 /* 53 * Boolean to control whether to report panic messages over Hyper-V. 54 * 55 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 56 */ 57 static int sysctl_record_panic_msg = 1; 58 59 static int hyperv_report_reg(void) 60 { 61 return !sysctl_record_panic_msg || !hv_panic_page; 62 } 63 64 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 65 void *args) 66 { 67 struct pt_regs *regs; 68 69 vmbus_initiate_unload(true); 70 71 /* 72 * Hyper-V should be notified only once about a panic. If we will be 73 * doing hyperv_report_panic_msg() later with kmsg data, don't do 74 * the notification here. 75 */ 76 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE 77 && hyperv_report_reg()) { 78 regs = current_pt_regs(); 79 hyperv_report_panic(regs, val, false); 80 } 81 return NOTIFY_DONE; 82 } 83 84 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 85 void *args) 86 { 87 struct die_args *die = (struct die_args *)args; 88 struct pt_regs *regs = die->regs; 89 90 /* 91 * Hyper-V should be notified only once about a panic. If we will be 92 * doing hyperv_report_panic_msg() later with kmsg data, don't do 93 * the notification here. 94 */ 95 if (hyperv_report_reg()) 96 hyperv_report_panic(regs, val, true); 97 return NOTIFY_DONE; 98 } 99 100 static struct notifier_block hyperv_die_block = { 101 .notifier_call = hyperv_die_event, 102 }; 103 static struct notifier_block hyperv_panic_block = { 104 .notifier_call = hyperv_panic_event, 105 }; 106 107 static const char *fb_mmio_name = "fb_range"; 108 static struct resource *fb_mmio; 109 static struct resource *hyperv_mmio; 110 static DEFINE_MUTEX(hyperv_mmio_lock); 111 112 static int vmbus_exists(void) 113 { 114 if (hv_acpi_dev == NULL) 115 return -ENODEV; 116 117 return 0; 118 } 119 120 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 121 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 122 { 123 int i; 124 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 125 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 126 } 127 128 static u8 channel_monitor_group(const struct vmbus_channel *channel) 129 { 130 return (u8)channel->offermsg.monitorid / 32; 131 } 132 133 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 134 { 135 return (u8)channel->offermsg.monitorid % 32; 136 } 137 138 static u32 channel_pending(const struct vmbus_channel *channel, 139 const struct hv_monitor_page *monitor_page) 140 { 141 u8 monitor_group = channel_monitor_group(channel); 142 143 return monitor_page->trigger_group[monitor_group].pending; 144 } 145 146 static u32 channel_latency(const struct vmbus_channel *channel, 147 const struct hv_monitor_page *monitor_page) 148 { 149 u8 monitor_group = channel_monitor_group(channel); 150 u8 monitor_offset = channel_monitor_offset(channel); 151 152 return monitor_page->latency[monitor_group][monitor_offset]; 153 } 154 155 static u32 channel_conn_id(struct vmbus_channel *channel, 156 struct hv_monitor_page *monitor_page) 157 { 158 u8 monitor_group = channel_monitor_group(channel); 159 u8 monitor_offset = channel_monitor_offset(channel); 160 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 161 } 162 163 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 164 char *buf) 165 { 166 struct hv_device *hv_dev = device_to_hv_device(dev); 167 168 if (!hv_dev->channel) 169 return -ENODEV; 170 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 171 } 172 static DEVICE_ATTR_RO(id); 173 174 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 175 char *buf) 176 { 177 struct hv_device *hv_dev = device_to_hv_device(dev); 178 179 if (!hv_dev->channel) 180 return -ENODEV; 181 return sprintf(buf, "%d\n", hv_dev->channel->state); 182 } 183 static DEVICE_ATTR_RO(state); 184 185 static ssize_t monitor_id_show(struct device *dev, 186 struct device_attribute *dev_attr, char *buf) 187 { 188 struct hv_device *hv_dev = device_to_hv_device(dev); 189 190 if (!hv_dev->channel) 191 return -ENODEV; 192 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 193 } 194 static DEVICE_ATTR_RO(monitor_id); 195 196 static ssize_t class_id_show(struct device *dev, 197 struct device_attribute *dev_attr, char *buf) 198 { 199 struct hv_device *hv_dev = device_to_hv_device(dev); 200 201 if (!hv_dev->channel) 202 return -ENODEV; 203 return sprintf(buf, "{%pUl}\n", 204 hv_dev->channel->offermsg.offer.if_type.b); 205 } 206 static DEVICE_ATTR_RO(class_id); 207 208 static ssize_t device_id_show(struct device *dev, 209 struct device_attribute *dev_attr, char *buf) 210 { 211 struct hv_device *hv_dev = device_to_hv_device(dev); 212 213 if (!hv_dev->channel) 214 return -ENODEV; 215 return sprintf(buf, "{%pUl}\n", 216 hv_dev->channel->offermsg.offer.if_instance.b); 217 } 218 static DEVICE_ATTR_RO(device_id); 219 220 static ssize_t modalias_show(struct device *dev, 221 struct device_attribute *dev_attr, char *buf) 222 { 223 struct hv_device *hv_dev = device_to_hv_device(dev); 224 char alias_name[VMBUS_ALIAS_LEN + 1]; 225 226 print_alias_name(hv_dev, alias_name); 227 return sprintf(buf, "vmbus:%s\n", alias_name); 228 } 229 static DEVICE_ATTR_RO(modalias); 230 231 #ifdef CONFIG_NUMA 232 static ssize_t numa_node_show(struct device *dev, 233 struct device_attribute *attr, char *buf) 234 { 235 struct hv_device *hv_dev = device_to_hv_device(dev); 236 237 if (!hv_dev->channel) 238 return -ENODEV; 239 240 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 241 } 242 static DEVICE_ATTR_RO(numa_node); 243 #endif 244 245 static ssize_t server_monitor_pending_show(struct device *dev, 246 struct device_attribute *dev_attr, 247 char *buf) 248 { 249 struct hv_device *hv_dev = device_to_hv_device(dev); 250 251 if (!hv_dev->channel) 252 return -ENODEV; 253 return sprintf(buf, "%d\n", 254 channel_pending(hv_dev->channel, 255 vmbus_connection.monitor_pages[0])); 256 } 257 static DEVICE_ATTR_RO(server_monitor_pending); 258 259 static ssize_t client_monitor_pending_show(struct device *dev, 260 struct device_attribute *dev_attr, 261 char *buf) 262 { 263 struct hv_device *hv_dev = device_to_hv_device(dev); 264 265 if (!hv_dev->channel) 266 return -ENODEV; 267 return sprintf(buf, "%d\n", 268 channel_pending(hv_dev->channel, 269 vmbus_connection.monitor_pages[1])); 270 } 271 static DEVICE_ATTR_RO(client_monitor_pending); 272 273 static ssize_t server_monitor_latency_show(struct device *dev, 274 struct device_attribute *dev_attr, 275 char *buf) 276 { 277 struct hv_device *hv_dev = device_to_hv_device(dev); 278 279 if (!hv_dev->channel) 280 return -ENODEV; 281 return sprintf(buf, "%d\n", 282 channel_latency(hv_dev->channel, 283 vmbus_connection.monitor_pages[0])); 284 } 285 static DEVICE_ATTR_RO(server_monitor_latency); 286 287 static ssize_t client_monitor_latency_show(struct device *dev, 288 struct device_attribute *dev_attr, 289 char *buf) 290 { 291 struct hv_device *hv_dev = device_to_hv_device(dev); 292 293 if (!hv_dev->channel) 294 return -ENODEV; 295 return sprintf(buf, "%d\n", 296 channel_latency(hv_dev->channel, 297 vmbus_connection.monitor_pages[1])); 298 } 299 static DEVICE_ATTR_RO(client_monitor_latency); 300 301 static ssize_t server_monitor_conn_id_show(struct device *dev, 302 struct device_attribute *dev_attr, 303 char *buf) 304 { 305 struct hv_device *hv_dev = device_to_hv_device(dev); 306 307 if (!hv_dev->channel) 308 return -ENODEV; 309 return sprintf(buf, "%d\n", 310 channel_conn_id(hv_dev->channel, 311 vmbus_connection.monitor_pages[0])); 312 } 313 static DEVICE_ATTR_RO(server_monitor_conn_id); 314 315 static ssize_t client_monitor_conn_id_show(struct device *dev, 316 struct device_attribute *dev_attr, 317 char *buf) 318 { 319 struct hv_device *hv_dev = device_to_hv_device(dev); 320 321 if (!hv_dev->channel) 322 return -ENODEV; 323 return sprintf(buf, "%d\n", 324 channel_conn_id(hv_dev->channel, 325 vmbus_connection.monitor_pages[1])); 326 } 327 static DEVICE_ATTR_RO(client_monitor_conn_id); 328 329 static ssize_t out_intr_mask_show(struct device *dev, 330 struct device_attribute *dev_attr, char *buf) 331 { 332 struct hv_device *hv_dev = device_to_hv_device(dev); 333 struct hv_ring_buffer_debug_info outbound; 334 int ret; 335 336 if (!hv_dev->channel) 337 return -ENODEV; 338 339 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 340 &outbound); 341 if (ret < 0) 342 return ret; 343 344 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 345 } 346 static DEVICE_ATTR_RO(out_intr_mask); 347 348 static ssize_t out_read_index_show(struct device *dev, 349 struct device_attribute *dev_attr, char *buf) 350 { 351 struct hv_device *hv_dev = device_to_hv_device(dev); 352 struct hv_ring_buffer_debug_info outbound; 353 int ret; 354 355 if (!hv_dev->channel) 356 return -ENODEV; 357 358 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 359 &outbound); 360 if (ret < 0) 361 return ret; 362 return sprintf(buf, "%d\n", outbound.current_read_index); 363 } 364 static DEVICE_ATTR_RO(out_read_index); 365 366 static ssize_t out_write_index_show(struct device *dev, 367 struct device_attribute *dev_attr, 368 char *buf) 369 { 370 struct hv_device *hv_dev = device_to_hv_device(dev); 371 struct hv_ring_buffer_debug_info outbound; 372 int ret; 373 374 if (!hv_dev->channel) 375 return -ENODEV; 376 377 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 378 &outbound); 379 if (ret < 0) 380 return ret; 381 return sprintf(buf, "%d\n", outbound.current_write_index); 382 } 383 static DEVICE_ATTR_RO(out_write_index); 384 385 static ssize_t out_read_bytes_avail_show(struct device *dev, 386 struct device_attribute *dev_attr, 387 char *buf) 388 { 389 struct hv_device *hv_dev = device_to_hv_device(dev); 390 struct hv_ring_buffer_debug_info outbound; 391 int ret; 392 393 if (!hv_dev->channel) 394 return -ENODEV; 395 396 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 397 &outbound); 398 if (ret < 0) 399 return ret; 400 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 401 } 402 static DEVICE_ATTR_RO(out_read_bytes_avail); 403 404 static ssize_t out_write_bytes_avail_show(struct device *dev, 405 struct device_attribute *dev_attr, 406 char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info outbound; 410 int ret; 411 412 if (!hv_dev->channel) 413 return -ENODEV; 414 415 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 416 &outbound); 417 if (ret < 0) 418 return ret; 419 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 420 } 421 static DEVICE_ATTR_RO(out_write_bytes_avail); 422 423 static ssize_t in_intr_mask_show(struct device *dev, 424 struct device_attribute *dev_attr, char *buf) 425 { 426 struct hv_device *hv_dev = device_to_hv_device(dev); 427 struct hv_ring_buffer_debug_info inbound; 428 int ret; 429 430 if (!hv_dev->channel) 431 return -ENODEV; 432 433 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 434 if (ret < 0) 435 return ret; 436 437 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 438 } 439 static DEVICE_ATTR_RO(in_intr_mask); 440 441 static ssize_t in_read_index_show(struct device *dev, 442 struct device_attribute *dev_attr, char *buf) 443 { 444 struct hv_device *hv_dev = device_to_hv_device(dev); 445 struct hv_ring_buffer_debug_info inbound; 446 int ret; 447 448 if (!hv_dev->channel) 449 return -ENODEV; 450 451 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 452 if (ret < 0) 453 return ret; 454 455 return sprintf(buf, "%d\n", inbound.current_read_index); 456 } 457 static DEVICE_ATTR_RO(in_read_index); 458 459 static ssize_t in_write_index_show(struct device *dev, 460 struct device_attribute *dev_attr, char *buf) 461 { 462 struct hv_device *hv_dev = device_to_hv_device(dev); 463 struct hv_ring_buffer_debug_info inbound; 464 int ret; 465 466 if (!hv_dev->channel) 467 return -ENODEV; 468 469 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 470 if (ret < 0) 471 return ret; 472 473 return sprintf(buf, "%d\n", inbound.current_write_index); 474 } 475 static DEVICE_ATTR_RO(in_write_index); 476 477 static ssize_t in_read_bytes_avail_show(struct device *dev, 478 struct device_attribute *dev_attr, 479 char *buf) 480 { 481 struct hv_device *hv_dev = device_to_hv_device(dev); 482 struct hv_ring_buffer_debug_info inbound; 483 int ret; 484 485 if (!hv_dev->channel) 486 return -ENODEV; 487 488 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 489 if (ret < 0) 490 return ret; 491 492 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 493 } 494 static DEVICE_ATTR_RO(in_read_bytes_avail); 495 496 static ssize_t in_write_bytes_avail_show(struct device *dev, 497 struct device_attribute *dev_attr, 498 char *buf) 499 { 500 struct hv_device *hv_dev = device_to_hv_device(dev); 501 struct hv_ring_buffer_debug_info inbound; 502 int ret; 503 504 if (!hv_dev->channel) 505 return -ENODEV; 506 507 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 508 if (ret < 0) 509 return ret; 510 511 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 512 } 513 static DEVICE_ATTR_RO(in_write_bytes_avail); 514 515 static ssize_t channel_vp_mapping_show(struct device *dev, 516 struct device_attribute *dev_attr, 517 char *buf) 518 { 519 struct hv_device *hv_dev = device_to_hv_device(dev); 520 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 521 unsigned long flags; 522 int buf_size = PAGE_SIZE, n_written, tot_written; 523 struct list_head *cur; 524 525 if (!channel) 526 return -ENODEV; 527 528 tot_written = snprintf(buf, buf_size, "%u:%u\n", 529 channel->offermsg.child_relid, channel->target_cpu); 530 531 spin_lock_irqsave(&channel->lock, flags); 532 533 list_for_each(cur, &channel->sc_list) { 534 if (tot_written >= buf_size - 1) 535 break; 536 537 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 538 n_written = scnprintf(buf + tot_written, 539 buf_size - tot_written, 540 "%u:%u\n", 541 cur_sc->offermsg.child_relid, 542 cur_sc->target_cpu); 543 tot_written += n_written; 544 } 545 546 spin_unlock_irqrestore(&channel->lock, flags); 547 548 return tot_written; 549 } 550 static DEVICE_ATTR_RO(channel_vp_mapping); 551 552 static ssize_t vendor_show(struct device *dev, 553 struct device_attribute *dev_attr, 554 char *buf) 555 { 556 struct hv_device *hv_dev = device_to_hv_device(dev); 557 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 558 } 559 static DEVICE_ATTR_RO(vendor); 560 561 static ssize_t device_show(struct device *dev, 562 struct device_attribute *dev_attr, 563 char *buf) 564 { 565 struct hv_device *hv_dev = device_to_hv_device(dev); 566 return sprintf(buf, "0x%x\n", hv_dev->device_id); 567 } 568 static DEVICE_ATTR_RO(device); 569 570 static ssize_t driver_override_store(struct device *dev, 571 struct device_attribute *attr, 572 const char *buf, size_t count) 573 { 574 struct hv_device *hv_dev = device_to_hv_device(dev); 575 char *driver_override, *old, *cp; 576 577 /* We need to keep extra room for a newline */ 578 if (count >= (PAGE_SIZE - 1)) 579 return -EINVAL; 580 581 driver_override = kstrndup(buf, count, GFP_KERNEL); 582 if (!driver_override) 583 return -ENOMEM; 584 585 cp = strchr(driver_override, '\n'); 586 if (cp) 587 *cp = '\0'; 588 589 device_lock(dev); 590 old = hv_dev->driver_override; 591 if (strlen(driver_override)) { 592 hv_dev->driver_override = driver_override; 593 } else { 594 kfree(driver_override); 595 hv_dev->driver_override = NULL; 596 } 597 device_unlock(dev); 598 599 kfree(old); 600 601 return count; 602 } 603 604 static ssize_t driver_override_show(struct device *dev, 605 struct device_attribute *attr, char *buf) 606 { 607 struct hv_device *hv_dev = device_to_hv_device(dev); 608 ssize_t len; 609 610 device_lock(dev); 611 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 612 device_unlock(dev); 613 614 return len; 615 } 616 static DEVICE_ATTR_RW(driver_override); 617 618 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 619 static struct attribute *vmbus_dev_attrs[] = { 620 &dev_attr_id.attr, 621 &dev_attr_state.attr, 622 &dev_attr_monitor_id.attr, 623 &dev_attr_class_id.attr, 624 &dev_attr_device_id.attr, 625 &dev_attr_modalias.attr, 626 #ifdef CONFIG_NUMA 627 &dev_attr_numa_node.attr, 628 #endif 629 &dev_attr_server_monitor_pending.attr, 630 &dev_attr_client_monitor_pending.attr, 631 &dev_attr_server_monitor_latency.attr, 632 &dev_attr_client_monitor_latency.attr, 633 &dev_attr_server_monitor_conn_id.attr, 634 &dev_attr_client_monitor_conn_id.attr, 635 &dev_attr_out_intr_mask.attr, 636 &dev_attr_out_read_index.attr, 637 &dev_attr_out_write_index.attr, 638 &dev_attr_out_read_bytes_avail.attr, 639 &dev_attr_out_write_bytes_avail.attr, 640 &dev_attr_in_intr_mask.attr, 641 &dev_attr_in_read_index.attr, 642 &dev_attr_in_write_index.attr, 643 &dev_attr_in_read_bytes_avail.attr, 644 &dev_attr_in_write_bytes_avail.attr, 645 &dev_attr_channel_vp_mapping.attr, 646 &dev_attr_vendor.attr, 647 &dev_attr_device.attr, 648 &dev_attr_driver_override.attr, 649 NULL, 650 }; 651 652 /* 653 * Device-level attribute_group callback function. Returns the permission for 654 * each attribute, and returns 0 if an attribute is not visible. 655 */ 656 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 657 struct attribute *attr, int idx) 658 { 659 struct device *dev = kobj_to_dev(kobj); 660 const struct hv_device *hv_dev = device_to_hv_device(dev); 661 662 /* Hide the monitor attributes if the monitor mechanism is not used. */ 663 if (!hv_dev->channel->offermsg.monitor_allocated && 664 (attr == &dev_attr_monitor_id.attr || 665 attr == &dev_attr_server_monitor_pending.attr || 666 attr == &dev_attr_client_monitor_pending.attr || 667 attr == &dev_attr_server_monitor_latency.attr || 668 attr == &dev_attr_client_monitor_latency.attr || 669 attr == &dev_attr_server_monitor_conn_id.attr || 670 attr == &dev_attr_client_monitor_conn_id.attr)) 671 return 0; 672 673 return attr->mode; 674 } 675 676 static const struct attribute_group vmbus_dev_group = { 677 .attrs = vmbus_dev_attrs, 678 .is_visible = vmbus_dev_attr_is_visible 679 }; 680 __ATTRIBUTE_GROUPS(vmbus_dev); 681 682 /* 683 * vmbus_uevent - add uevent for our device 684 * 685 * This routine is invoked when a device is added or removed on the vmbus to 686 * generate a uevent to udev in the userspace. The udev will then look at its 687 * rule and the uevent generated here to load the appropriate driver 688 * 689 * The alias string will be of the form vmbus:guid where guid is the string 690 * representation of the device guid (each byte of the guid will be 691 * represented with two hex characters. 692 */ 693 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 694 { 695 struct hv_device *dev = device_to_hv_device(device); 696 int ret; 697 char alias_name[VMBUS_ALIAS_LEN + 1]; 698 699 print_alias_name(dev, alias_name); 700 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 701 return ret; 702 } 703 704 static const struct hv_vmbus_device_id * 705 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 706 { 707 if (id == NULL) 708 return NULL; /* empty device table */ 709 710 for (; !guid_is_null(&id->guid); id++) 711 if (guid_equal(&id->guid, guid)) 712 return id; 713 714 return NULL; 715 } 716 717 static const struct hv_vmbus_device_id * 718 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 719 { 720 const struct hv_vmbus_device_id *id = NULL; 721 struct vmbus_dynid *dynid; 722 723 spin_lock(&drv->dynids.lock); 724 list_for_each_entry(dynid, &drv->dynids.list, node) { 725 if (guid_equal(&dynid->id.guid, guid)) { 726 id = &dynid->id; 727 break; 728 } 729 } 730 spin_unlock(&drv->dynids.lock); 731 732 return id; 733 } 734 735 static const struct hv_vmbus_device_id vmbus_device_null; 736 737 /* 738 * Return a matching hv_vmbus_device_id pointer. 739 * If there is no match, return NULL. 740 */ 741 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 742 struct hv_device *dev) 743 { 744 const guid_t *guid = &dev->dev_type; 745 const struct hv_vmbus_device_id *id; 746 747 /* When driver_override is set, only bind to the matching driver */ 748 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 749 return NULL; 750 751 /* Look at the dynamic ids first, before the static ones */ 752 id = hv_vmbus_dynid_match(drv, guid); 753 if (!id) 754 id = hv_vmbus_dev_match(drv->id_table, guid); 755 756 /* driver_override will always match, send a dummy id */ 757 if (!id && dev->driver_override) 758 id = &vmbus_device_null; 759 760 return id; 761 } 762 763 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 764 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 765 { 766 struct vmbus_dynid *dynid; 767 768 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 769 if (!dynid) 770 return -ENOMEM; 771 772 dynid->id.guid = *guid; 773 774 spin_lock(&drv->dynids.lock); 775 list_add_tail(&dynid->node, &drv->dynids.list); 776 spin_unlock(&drv->dynids.lock); 777 778 return driver_attach(&drv->driver); 779 } 780 781 static void vmbus_free_dynids(struct hv_driver *drv) 782 { 783 struct vmbus_dynid *dynid, *n; 784 785 spin_lock(&drv->dynids.lock); 786 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 787 list_del(&dynid->node); 788 kfree(dynid); 789 } 790 spin_unlock(&drv->dynids.lock); 791 } 792 793 /* 794 * store_new_id - sysfs frontend to vmbus_add_dynid() 795 * 796 * Allow GUIDs to be added to an existing driver via sysfs. 797 */ 798 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 799 size_t count) 800 { 801 struct hv_driver *drv = drv_to_hv_drv(driver); 802 guid_t guid; 803 ssize_t retval; 804 805 retval = guid_parse(buf, &guid); 806 if (retval) 807 return retval; 808 809 if (hv_vmbus_dynid_match(drv, &guid)) 810 return -EEXIST; 811 812 retval = vmbus_add_dynid(drv, &guid); 813 if (retval) 814 return retval; 815 return count; 816 } 817 static DRIVER_ATTR_WO(new_id); 818 819 /* 820 * store_remove_id - remove a PCI device ID from this driver 821 * 822 * Removes a dynamic pci device ID to this driver. 823 */ 824 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 825 size_t count) 826 { 827 struct hv_driver *drv = drv_to_hv_drv(driver); 828 struct vmbus_dynid *dynid, *n; 829 guid_t guid; 830 ssize_t retval; 831 832 retval = guid_parse(buf, &guid); 833 if (retval) 834 return retval; 835 836 retval = -ENODEV; 837 spin_lock(&drv->dynids.lock); 838 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 839 struct hv_vmbus_device_id *id = &dynid->id; 840 841 if (guid_equal(&id->guid, &guid)) { 842 list_del(&dynid->node); 843 kfree(dynid); 844 retval = count; 845 break; 846 } 847 } 848 spin_unlock(&drv->dynids.lock); 849 850 return retval; 851 } 852 static DRIVER_ATTR_WO(remove_id); 853 854 static struct attribute *vmbus_drv_attrs[] = { 855 &driver_attr_new_id.attr, 856 &driver_attr_remove_id.attr, 857 NULL, 858 }; 859 ATTRIBUTE_GROUPS(vmbus_drv); 860 861 862 /* 863 * vmbus_match - Attempt to match the specified device to the specified driver 864 */ 865 static int vmbus_match(struct device *device, struct device_driver *driver) 866 { 867 struct hv_driver *drv = drv_to_hv_drv(driver); 868 struct hv_device *hv_dev = device_to_hv_device(device); 869 870 /* The hv_sock driver handles all hv_sock offers. */ 871 if (is_hvsock_channel(hv_dev->channel)) 872 return drv->hvsock; 873 874 if (hv_vmbus_get_id(drv, hv_dev)) 875 return 1; 876 877 return 0; 878 } 879 880 /* 881 * vmbus_probe - Add the new vmbus's child device 882 */ 883 static int vmbus_probe(struct device *child_device) 884 { 885 int ret = 0; 886 struct hv_driver *drv = 887 drv_to_hv_drv(child_device->driver); 888 struct hv_device *dev = device_to_hv_device(child_device); 889 const struct hv_vmbus_device_id *dev_id; 890 891 dev_id = hv_vmbus_get_id(drv, dev); 892 if (drv->probe) { 893 ret = drv->probe(dev, dev_id); 894 if (ret != 0) 895 pr_err("probe failed for device %s (%d)\n", 896 dev_name(child_device), ret); 897 898 } else { 899 pr_err("probe not set for driver %s\n", 900 dev_name(child_device)); 901 ret = -ENODEV; 902 } 903 return ret; 904 } 905 906 /* 907 * vmbus_remove - Remove a vmbus device 908 */ 909 static int vmbus_remove(struct device *child_device) 910 { 911 struct hv_driver *drv; 912 struct hv_device *dev = device_to_hv_device(child_device); 913 914 if (child_device->driver) { 915 drv = drv_to_hv_drv(child_device->driver); 916 if (drv->remove) 917 drv->remove(dev); 918 } 919 920 return 0; 921 } 922 923 924 /* 925 * vmbus_shutdown - Shutdown a vmbus device 926 */ 927 static void vmbus_shutdown(struct device *child_device) 928 { 929 struct hv_driver *drv; 930 struct hv_device *dev = device_to_hv_device(child_device); 931 932 933 /* The device may not be attached yet */ 934 if (!child_device->driver) 935 return; 936 937 drv = drv_to_hv_drv(child_device->driver); 938 939 if (drv->shutdown) 940 drv->shutdown(dev); 941 } 942 943 #ifdef CONFIG_PM_SLEEP 944 /* 945 * vmbus_suspend - Suspend a vmbus device 946 */ 947 static int vmbus_suspend(struct device *child_device) 948 { 949 struct hv_driver *drv; 950 struct hv_device *dev = device_to_hv_device(child_device); 951 952 /* The device may not be attached yet */ 953 if (!child_device->driver) 954 return 0; 955 956 drv = drv_to_hv_drv(child_device->driver); 957 if (!drv->suspend) 958 return -EOPNOTSUPP; 959 960 return drv->suspend(dev); 961 } 962 963 /* 964 * vmbus_resume - Resume a vmbus device 965 */ 966 static int vmbus_resume(struct device *child_device) 967 { 968 struct hv_driver *drv; 969 struct hv_device *dev = device_to_hv_device(child_device); 970 971 /* The device may not be attached yet */ 972 if (!child_device->driver) 973 return 0; 974 975 drv = drv_to_hv_drv(child_device->driver); 976 if (!drv->resume) 977 return -EOPNOTSUPP; 978 979 return drv->resume(dev); 980 } 981 #else 982 #define vmbus_suspend NULL 983 #define vmbus_resume NULL 984 #endif /* CONFIG_PM_SLEEP */ 985 986 /* 987 * vmbus_device_release - Final callback release of the vmbus child device 988 */ 989 static void vmbus_device_release(struct device *device) 990 { 991 struct hv_device *hv_dev = device_to_hv_device(device); 992 struct vmbus_channel *channel = hv_dev->channel; 993 994 hv_debug_rm_dev_dir(hv_dev); 995 996 mutex_lock(&vmbus_connection.channel_mutex); 997 hv_process_channel_removal(channel); 998 mutex_unlock(&vmbus_connection.channel_mutex); 999 kfree(hv_dev); 1000 } 1001 1002 /* 1003 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1004 * 1005 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1006 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1007 * is no way to wake up a Generation-2 VM. 1008 * 1009 * The other 4 ops are for hibernation. 1010 */ 1011 1012 static const struct dev_pm_ops vmbus_pm = { 1013 .suspend_noirq = NULL, 1014 .resume_noirq = NULL, 1015 .freeze_noirq = vmbus_suspend, 1016 .thaw_noirq = vmbus_resume, 1017 .poweroff_noirq = vmbus_suspend, 1018 .restore_noirq = vmbus_resume, 1019 }; 1020 1021 /* The one and only one */ 1022 static struct bus_type hv_bus = { 1023 .name = "vmbus", 1024 .match = vmbus_match, 1025 .shutdown = vmbus_shutdown, 1026 .remove = vmbus_remove, 1027 .probe = vmbus_probe, 1028 .uevent = vmbus_uevent, 1029 .dev_groups = vmbus_dev_groups, 1030 .drv_groups = vmbus_drv_groups, 1031 .pm = &vmbus_pm, 1032 }; 1033 1034 struct onmessage_work_context { 1035 struct work_struct work; 1036 struct hv_message msg; 1037 }; 1038 1039 static void vmbus_onmessage_work(struct work_struct *work) 1040 { 1041 struct onmessage_work_context *ctx; 1042 1043 /* Do not process messages if we're in DISCONNECTED state */ 1044 if (vmbus_connection.conn_state == DISCONNECTED) 1045 return; 1046 1047 ctx = container_of(work, struct onmessage_work_context, 1048 work); 1049 vmbus_onmessage(&ctx->msg); 1050 kfree(ctx); 1051 } 1052 1053 void vmbus_on_msg_dpc(unsigned long data) 1054 { 1055 struct hv_per_cpu_context *hv_cpu = (void *)data; 1056 void *page_addr = hv_cpu->synic_message_page; 1057 struct hv_message *msg = (struct hv_message *)page_addr + 1058 VMBUS_MESSAGE_SINT; 1059 struct vmbus_channel_message_header *hdr; 1060 const struct vmbus_channel_message_table_entry *entry; 1061 struct onmessage_work_context *ctx; 1062 u32 message_type = msg->header.message_type; 1063 1064 if (message_type == HVMSG_NONE) 1065 /* no msg */ 1066 return; 1067 1068 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 1069 1070 trace_vmbus_on_msg_dpc(hdr); 1071 1072 if (hdr->msgtype >= CHANNELMSG_COUNT) { 1073 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 1074 goto msg_handled; 1075 } 1076 1077 entry = &channel_message_table[hdr->msgtype]; 1078 1079 if (!entry->message_handler) 1080 goto msg_handled; 1081 1082 if (entry->handler_type == VMHT_BLOCKING) { 1083 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 1084 if (ctx == NULL) 1085 return; 1086 1087 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1088 memcpy(&ctx->msg, msg, sizeof(*msg)); 1089 1090 /* 1091 * The host can generate a rescind message while we 1092 * may still be handling the original offer. We deal with 1093 * this condition by ensuring the processing is done on the 1094 * same CPU. 1095 */ 1096 switch (hdr->msgtype) { 1097 case CHANNELMSG_RESCIND_CHANNELOFFER: 1098 /* 1099 * If we are handling the rescind message; 1100 * schedule the work on the global work queue. 1101 */ 1102 schedule_work_on(vmbus_connection.connect_cpu, 1103 &ctx->work); 1104 break; 1105 1106 case CHANNELMSG_OFFERCHANNEL: 1107 atomic_inc(&vmbus_connection.offer_in_progress); 1108 queue_work_on(vmbus_connection.connect_cpu, 1109 vmbus_connection.work_queue, 1110 &ctx->work); 1111 break; 1112 1113 default: 1114 queue_work(vmbus_connection.work_queue, &ctx->work); 1115 } 1116 } else 1117 entry->message_handler(hdr); 1118 1119 msg_handled: 1120 vmbus_signal_eom(msg, message_type); 1121 } 1122 1123 #ifdef CONFIG_PM_SLEEP 1124 /* 1125 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1126 * hibernation, because hv_sock connections can not persist across hibernation. 1127 */ 1128 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1129 { 1130 struct onmessage_work_context *ctx; 1131 struct vmbus_channel_rescind_offer *rescind; 1132 1133 WARN_ON(!is_hvsock_channel(channel)); 1134 1135 /* 1136 * sizeof(*ctx) is small and the allocation should really not fail, 1137 * otherwise the state of the hv_sock connections ends up in limbo. 1138 */ 1139 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 1140 1141 /* 1142 * So far, these are not really used by Linux. Just set them to the 1143 * reasonable values conforming to the definitions of the fields. 1144 */ 1145 ctx->msg.header.message_type = 1; 1146 ctx->msg.header.payload_size = sizeof(*rescind); 1147 1148 /* These values are actually used by Linux. */ 1149 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload; 1150 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1151 rescind->child_relid = channel->offermsg.child_relid; 1152 1153 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1154 1155 queue_work_on(vmbus_connection.connect_cpu, 1156 vmbus_connection.work_queue, 1157 &ctx->work); 1158 } 1159 #endif /* CONFIG_PM_SLEEP */ 1160 1161 /* 1162 * Direct callback for channels using other deferred processing 1163 */ 1164 static void vmbus_channel_isr(struct vmbus_channel *channel) 1165 { 1166 void (*callback_fn)(void *); 1167 1168 callback_fn = READ_ONCE(channel->onchannel_callback); 1169 if (likely(callback_fn != NULL)) 1170 (*callback_fn)(channel->channel_callback_context); 1171 } 1172 1173 /* 1174 * Schedule all channels with events pending 1175 */ 1176 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1177 { 1178 unsigned long *recv_int_page; 1179 u32 maxbits, relid; 1180 1181 if (vmbus_proto_version < VERSION_WIN8) { 1182 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1183 recv_int_page = vmbus_connection.recv_int_page; 1184 } else { 1185 /* 1186 * When the host is win8 and beyond, the event page 1187 * can be directly checked to get the id of the channel 1188 * that has the interrupt pending. 1189 */ 1190 void *page_addr = hv_cpu->synic_event_page; 1191 union hv_synic_event_flags *event 1192 = (union hv_synic_event_flags *)page_addr + 1193 VMBUS_MESSAGE_SINT; 1194 1195 maxbits = HV_EVENT_FLAGS_COUNT; 1196 recv_int_page = event->flags; 1197 } 1198 1199 if (unlikely(!recv_int_page)) 1200 return; 1201 1202 for_each_set_bit(relid, recv_int_page, maxbits) { 1203 struct vmbus_channel *channel; 1204 1205 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1206 continue; 1207 1208 /* Special case - vmbus channel protocol msg */ 1209 if (relid == 0) 1210 continue; 1211 1212 rcu_read_lock(); 1213 1214 /* Find channel based on relid */ 1215 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1216 if (channel->offermsg.child_relid != relid) 1217 continue; 1218 1219 if (channel->rescind) 1220 continue; 1221 1222 trace_vmbus_chan_sched(channel); 1223 1224 ++channel->interrupts; 1225 1226 switch (channel->callback_mode) { 1227 case HV_CALL_ISR: 1228 vmbus_channel_isr(channel); 1229 break; 1230 1231 case HV_CALL_BATCHED: 1232 hv_begin_read(&channel->inbound); 1233 /* fallthrough */ 1234 case HV_CALL_DIRECT: 1235 tasklet_schedule(&channel->callback_event); 1236 } 1237 } 1238 1239 rcu_read_unlock(); 1240 } 1241 } 1242 1243 static void vmbus_isr(void) 1244 { 1245 struct hv_per_cpu_context *hv_cpu 1246 = this_cpu_ptr(hv_context.cpu_context); 1247 void *page_addr = hv_cpu->synic_event_page; 1248 struct hv_message *msg; 1249 union hv_synic_event_flags *event; 1250 bool handled = false; 1251 1252 if (unlikely(page_addr == NULL)) 1253 return; 1254 1255 event = (union hv_synic_event_flags *)page_addr + 1256 VMBUS_MESSAGE_SINT; 1257 /* 1258 * Check for events before checking for messages. This is the order 1259 * in which events and messages are checked in Windows guests on 1260 * Hyper-V, and the Windows team suggested we do the same. 1261 */ 1262 1263 if ((vmbus_proto_version == VERSION_WS2008) || 1264 (vmbus_proto_version == VERSION_WIN7)) { 1265 1266 /* Since we are a child, we only need to check bit 0 */ 1267 if (sync_test_and_clear_bit(0, event->flags)) 1268 handled = true; 1269 } else { 1270 /* 1271 * Our host is win8 or above. The signaling mechanism 1272 * has changed and we can directly look at the event page. 1273 * If bit n is set then we have an interrup on the channel 1274 * whose id is n. 1275 */ 1276 handled = true; 1277 } 1278 1279 if (handled) 1280 vmbus_chan_sched(hv_cpu); 1281 1282 page_addr = hv_cpu->synic_message_page; 1283 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1284 1285 /* Check if there are actual msgs to be processed */ 1286 if (msg->header.message_type != HVMSG_NONE) { 1287 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1288 hv_stimer0_isr(); 1289 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1290 } else 1291 tasklet_schedule(&hv_cpu->msg_dpc); 1292 } 1293 1294 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1295 } 1296 1297 /* 1298 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1299 * buffer and call into Hyper-V to transfer the data. 1300 */ 1301 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1302 enum kmsg_dump_reason reason) 1303 { 1304 size_t bytes_written; 1305 phys_addr_t panic_pa; 1306 1307 /* We are only interested in panics. */ 1308 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1309 return; 1310 1311 panic_pa = virt_to_phys(hv_panic_page); 1312 1313 /* 1314 * Write dump contents to the page. No need to synchronize; panic should 1315 * be single-threaded. 1316 */ 1317 kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE, 1318 &bytes_written); 1319 if (bytes_written) 1320 hyperv_report_panic_msg(panic_pa, bytes_written); 1321 } 1322 1323 static struct kmsg_dumper hv_kmsg_dumper = { 1324 .dump = hv_kmsg_dump, 1325 }; 1326 1327 static struct ctl_table_header *hv_ctl_table_hdr; 1328 1329 /* 1330 * sysctl option to allow the user to control whether kmsg data should be 1331 * reported to Hyper-V on panic. 1332 */ 1333 static struct ctl_table hv_ctl_table[] = { 1334 { 1335 .procname = "hyperv_record_panic_msg", 1336 .data = &sysctl_record_panic_msg, 1337 .maxlen = sizeof(int), 1338 .mode = 0644, 1339 .proc_handler = proc_dointvec_minmax, 1340 .extra1 = SYSCTL_ZERO, 1341 .extra2 = SYSCTL_ONE 1342 }, 1343 {} 1344 }; 1345 1346 static struct ctl_table hv_root_table[] = { 1347 { 1348 .procname = "kernel", 1349 .mode = 0555, 1350 .child = hv_ctl_table 1351 }, 1352 {} 1353 }; 1354 1355 /* 1356 * vmbus_bus_init -Main vmbus driver initialization routine. 1357 * 1358 * Here, we 1359 * - initialize the vmbus driver context 1360 * - invoke the vmbus hv main init routine 1361 * - retrieve the channel offers 1362 */ 1363 static int vmbus_bus_init(void) 1364 { 1365 int ret; 1366 1367 /* Hypervisor initialization...setup hypercall page..etc */ 1368 ret = hv_init(); 1369 if (ret != 0) { 1370 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1371 return ret; 1372 } 1373 1374 ret = bus_register(&hv_bus); 1375 if (ret) 1376 return ret; 1377 1378 hv_setup_vmbus_irq(vmbus_isr); 1379 1380 ret = hv_synic_alloc(); 1381 if (ret) 1382 goto err_alloc; 1383 1384 /* 1385 * Initialize the per-cpu interrupt state and stimer state. 1386 * Then connect to the host. 1387 */ 1388 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1389 hv_synic_init, hv_synic_cleanup); 1390 if (ret < 0) 1391 goto err_cpuhp; 1392 hyperv_cpuhp_online = ret; 1393 1394 ret = vmbus_connect(); 1395 if (ret) 1396 goto err_connect; 1397 1398 /* 1399 * Only register if the crash MSRs are available 1400 */ 1401 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1402 u64 hyperv_crash_ctl; 1403 /* 1404 * Sysctl registration is not fatal, since by default 1405 * reporting is enabled. 1406 */ 1407 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1408 if (!hv_ctl_table_hdr) 1409 pr_err("Hyper-V: sysctl table register error"); 1410 1411 /* 1412 * Register for panic kmsg callback only if the right 1413 * capability is supported by the hypervisor. 1414 */ 1415 hv_get_crash_ctl(hyperv_crash_ctl); 1416 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1417 hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page(); 1418 if (hv_panic_page) { 1419 ret = kmsg_dump_register(&hv_kmsg_dumper); 1420 if (ret) { 1421 pr_err("Hyper-V: kmsg dump register " 1422 "error 0x%x\n", ret); 1423 hv_free_hyperv_page( 1424 (unsigned long)hv_panic_page); 1425 hv_panic_page = NULL; 1426 } 1427 } else 1428 pr_err("Hyper-V: panic message page memory " 1429 "allocation failed"); 1430 } 1431 1432 register_die_notifier(&hyperv_die_block); 1433 } 1434 1435 /* 1436 * Always register the panic notifier because we need to unload 1437 * the VMbus channel connection to prevent any VMbus 1438 * activity after the VM panics. 1439 */ 1440 atomic_notifier_chain_register(&panic_notifier_list, 1441 &hyperv_panic_block); 1442 1443 vmbus_request_offers(); 1444 1445 return 0; 1446 1447 err_connect: 1448 cpuhp_remove_state(hyperv_cpuhp_online); 1449 err_cpuhp: 1450 hv_synic_free(); 1451 err_alloc: 1452 hv_remove_vmbus_irq(); 1453 1454 bus_unregister(&hv_bus); 1455 unregister_sysctl_table(hv_ctl_table_hdr); 1456 hv_ctl_table_hdr = NULL; 1457 return ret; 1458 } 1459 1460 /** 1461 * __vmbus_child_driver_register() - Register a vmbus's driver 1462 * @hv_driver: Pointer to driver structure you want to register 1463 * @owner: owner module of the drv 1464 * @mod_name: module name string 1465 * 1466 * Registers the given driver with Linux through the 'driver_register()' call 1467 * and sets up the hyper-v vmbus handling for this driver. 1468 * It will return the state of the 'driver_register()' call. 1469 * 1470 */ 1471 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1472 { 1473 int ret; 1474 1475 pr_info("registering driver %s\n", hv_driver->name); 1476 1477 ret = vmbus_exists(); 1478 if (ret < 0) 1479 return ret; 1480 1481 hv_driver->driver.name = hv_driver->name; 1482 hv_driver->driver.owner = owner; 1483 hv_driver->driver.mod_name = mod_name; 1484 hv_driver->driver.bus = &hv_bus; 1485 1486 spin_lock_init(&hv_driver->dynids.lock); 1487 INIT_LIST_HEAD(&hv_driver->dynids.list); 1488 1489 ret = driver_register(&hv_driver->driver); 1490 1491 return ret; 1492 } 1493 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1494 1495 /** 1496 * vmbus_driver_unregister() - Unregister a vmbus's driver 1497 * @hv_driver: Pointer to driver structure you want to 1498 * un-register 1499 * 1500 * Un-register the given driver that was previous registered with a call to 1501 * vmbus_driver_register() 1502 */ 1503 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1504 { 1505 pr_info("unregistering driver %s\n", hv_driver->name); 1506 1507 if (!vmbus_exists()) { 1508 driver_unregister(&hv_driver->driver); 1509 vmbus_free_dynids(hv_driver); 1510 } 1511 } 1512 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1513 1514 1515 /* 1516 * Called when last reference to channel is gone. 1517 */ 1518 static void vmbus_chan_release(struct kobject *kobj) 1519 { 1520 struct vmbus_channel *channel 1521 = container_of(kobj, struct vmbus_channel, kobj); 1522 1523 kfree_rcu(channel, rcu); 1524 } 1525 1526 struct vmbus_chan_attribute { 1527 struct attribute attr; 1528 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1529 ssize_t (*store)(struct vmbus_channel *chan, 1530 const char *buf, size_t count); 1531 }; 1532 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1533 struct vmbus_chan_attribute chan_attr_##_name \ 1534 = __ATTR(_name, _mode, _show, _store) 1535 #define VMBUS_CHAN_ATTR_RW(_name) \ 1536 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1537 #define VMBUS_CHAN_ATTR_RO(_name) \ 1538 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1539 #define VMBUS_CHAN_ATTR_WO(_name) \ 1540 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1541 1542 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1543 struct attribute *attr, char *buf) 1544 { 1545 const struct vmbus_chan_attribute *attribute 1546 = container_of(attr, struct vmbus_chan_attribute, attr); 1547 struct vmbus_channel *chan 1548 = container_of(kobj, struct vmbus_channel, kobj); 1549 1550 if (!attribute->show) 1551 return -EIO; 1552 1553 return attribute->show(chan, buf); 1554 } 1555 1556 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1557 .show = vmbus_chan_attr_show, 1558 }; 1559 1560 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1561 { 1562 struct hv_ring_buffer_info *rbi = &channel->outbound; 1563 ssize_t ret; 1564 1565 mutex_lock(&rbi->ring_buffer_mutex); 1566 if (!rbi->ring_buffer) { 1567 mutex_unlock(&rbi->ring_buffer_mutex); 1568 return -EINVAL; 1569 } 1570 1571 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1572 mutex_unlock(&rbi->ring_buffer_mutex); 1573 return ret; 1574 } 1575 static VMBUS_CHAN_ATTR_RO(out_mask); 1576 1577 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1578 { 1579 struct hv_ring_buffer_info *rbi = &channel->inbound; 1580 ssize_t ret; 1581 1582 mutex_lock(&rbi->ring_buffer_mutex); 1583 if (!rbi->ring_buffer) { 1584 mutex_unlock(&rbi->ring_buffer_mutex); 1585 return -EINVAL; 1586 } 1587 1588 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1589 mutex_unlock(&rbi->ring_buffer_mutex); 1590 return ret; 1591 } 1592 static VMBUS_CHAN_ATTR_RO(in_mask); 1593 1594 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1595 { 1596 struct hv_ring_buffer_info *rbi = &channel->inbound; 1597 ssize_t ret; 1598 1599 mutex_lock(&rbi->ring_buffer_mutex); 1600 if (!rbi->ring_buffer) { 1601 mutex_unlock(&rbi->ring_buffer_mutex); 1602 return -EINVAL; 1603 } 1604 1605 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1606 mutex_unlock(&rbi->ring_buffer_mutex); 1607 return ret; 1608 } 1609 static VMBUS_CHAN_ATTR_RO(read_avail); 1610 1611 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1612 { 1613 struct hv_ring_buffer_info *rbi = &channel->outbound; 1614 ssize_t ret; 1615 1616 mutex_lock(&rbi->ring_buffer_mutex); 1617 if (!rbi->ring_buffer) { 1618 mutex_unlock(&rbi->ring_buffer_mutex); 1619 return -EINVAL; 1620 } 1621 1622 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1623 mutex_unlock(&rbi->ring_buffer_mutex); 1624 return ret; 1625 } 1626 static VMBUS_CHAN_ATTR_RO(write_avail); 1627 1628 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf) 1629 { 1630 return sprintf(buf, "%u\n", channel->target_cpu); 1631 } 1632 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1633 1634 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1635 char *buf) 1636 { 1637 return sprintf(buf, "%d\n", 1638 channel_pending(channel, 1639 vmbus_connection.monitor_pages[1])); 1640 } 1641 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1642 1643 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1644 char *buf) 1645 { 1646 return sprintf(buf, "%d\n", 1647 channel_latency(channel, 1648 vmbus_connection.monitor_pages[1])); 1649 } 1650 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1651 1652 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1653 { 1654 return sprintf(buf, "%llu\n", channel->interrupts); 1655 } 1656 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1657 1658 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1659 { 1660 return sprintf(buf, "%llu\n", channel->sig_events); 1661 } 1662 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1663 1664 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1665 char *buf) 1666 { 1667 return sprintf(buf, "%llu\n", 1668 (unsigned long long)channel->intr_in_full); 1669 } 1670 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1671 1672 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1673 char *buf) 1674 { 1675 return sprintf(buf, "%llu\n", 1676 (unsigned long long)channel->intr_out_empty); 1677 } 1678 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1679 1680 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1681 char *buf) 1682 { 1683 return sprintf(buf, "%llu\n", 1684 (unsigned long long)channel->out_full_first); 1685 } 1686 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1687 1688 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1689 char *buf) 1690 { 1691 return sprintf(buf, "%llu\n", 1692 (unsigned long long)channel->out_full_total); 1693 } 1694 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1695 1696 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1697 char *buf) 1698 { 1699 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1700 } 1701 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1702 1703 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1704 char *buf) 1705 { 1706 return sprintf(buf, "%u\n", 1707 channel->offermsg.offer.sub_channel_index); 1708 } 1709 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1710 1711 static struct attribute *vmbus_chan_attrs[] = { 1712 &chan_attr_out_mask.attr, 1713 &chan_attr_in_mask.attr, 1714 &chan_attr_read_avail.attr, 1715 &chan_attr_write_avail.attr, 1716 &chan_attr_cpu.attr, 1717 &chan_attr_pending.attr, 1718 &chan_attr_latency.attr, 1719 &chan_attr_interrupts.attr, 1720 &chan_attr_events.attr, 1721 &chan_attr_intr_in_full.attr, 1722 &chan_attr_intr_out_empty.attr, 1723 &chan_attr_out_full_first.attr, 1724 &chan_attr_out_full_total.attr, 1725 &chan_attr_monitor_id.attr, 1726 &chan_attr_subchannel_id.attr, 1727 NULL 1728 }; 1729 1730 /* 1731 * Channel-level attribute_group callback function. Returns the permission for 1732 * each attribute, and returns 0 if an attribute is not visible. 1733 */ 1734 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1735 struct attribute *attr, int idx) 1736 { 1737 const struct vmbus_channel *channel = 1738 container_of(kobj, struct vmbus_channel, kobj); 1739 1740 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1741 if (!channel->offermsg.monitor_allocated && 1742 (attr == &chan_attr_pending.attr || 1743 attr == &chan_attr_latency.attr || 1744 attr == &chan_attr_monitor_id.attr)) 1745 return 0; 1746 1747 return attr->mode; 1748 } 1749 1750 static struct attribute_group vmbus_chan_group = { 1751 .attrs = vmbus_chan_attrs, 1752 .is_visible = vmbus_chan_attr_is_visible 1753 }; 1754 1755 static struct kobj_type vmbus_chan_ktype = { 1756 .sysfs_ops = &vmbus_chan_sysfs_ops, 1757 .release = vmbus_chan_release, 1758 }; 1759 1760 /* 1761 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1762 */ 1763 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1764 { 1765 const struct device *device = &dev->device; 1766 struct kobject *kobj = &channel->kobj; 1767 u32 relid = channel->offermsg.child_relid; 1768 int ret; 1769 1770 kobj->kset = dev->channels_kset; 1771 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1772 "%u", relid); 1773 if (ret) 1774 return ret; 1775 1776 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1777 1778 if (ret) { 1779 /* 1780 * The calling functions' error handling paths will cleanup the 1781 * empty channel directory. 1782 */ 1783 dev_err(device, "Unable to set up channel sysfs files\n"); 1784 return ret; 1785 } 1786 1787 kobject_uevent(kobj, KOBJ_ADD); 1788 1789 return 0; 1790 } 1791 1792 /* 1793 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1794 */ 1795 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1796 { 1797 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1798 } 1799 1800 /* 1801 * vmbus_device_create - Creates and registers a new child device 1802 * on the vmbus. 1803 */ 1804 struct hv_device *vmbus_device_create(const guid_t *type, 1805 const guid_t *instance, 1806 struct vmbus_channel *channel) 1807 { 1808 struct hv_device *child_device_obj; 1809 1810 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1811 if (!child_device_obj) { 1812 pr_err("Unable to allocate device object for child device\n"); 1813 return NULL; 1814 } 1815 1816 child_device_obj->channel = channel; 1817 guid_copy(&child_device_obj->dev_type, type); 1818 guid_copy(&child_device_obj->dev_instance, instance); 1819 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1820 1821 return child_device_obj; 1822 } 1823 1824 /* 1825 * vmbus_device_register - Register the child device 1826 */ 1827 int vmbus_device_register(struct hv_device *child_device_obj) 1828 { 1829 struct kobject *kobj = &child_device_obj->device.kobj; 1830 int ret; 1831 1832 dev_set_name(&child_device_obj->device, "%pUl", 1833 child_device_obj->channel->offermsg.offer.if_instance.b); 1834 1835 child_device_obj->device.bus = &hv_bus; 1836 child_device_obj->device.parent = &hv_acpi_dev->dev; 1837 child_device_obj->device.release = vmbus_device_release; 1838 1839 /* 1840 * Register with the LDM. This will kick off the driver/device 1841 * binding...which will eventually call vmbus_match() and vmbus_probe() 1842 */ 1843 ret = device_register(&child_device_obj->device); 1844 if (ret) { 1845 pr_err("Unable to register child device\n"); 1846 return ret; 1847 } 1848 1849 child_device_obj->channels_kset = kset_create_and_add("channels", 1850 NULL, kobj); 1851 if (!child_device_obj->channels_kset) { 1852 ret = -ENOMEM; 1853 goto err_dev_unregister; 1854 } 1855 1856 ret = vmbus_add_channel_kobj(child_device_obj, 1857 child_device_obj->channel); 1858 if (ret) { 1859 pr_err("Unable to register primary channeln"); 1860 goto err_kset_unregister; 1861 } 1862 hv_debug_add_dev_dir(child_device_obj); 1863 1864 return 0; 1865 1866 err_kset_unregister: 1867 kset_unregister(child_device_obj->channels_kset); 1868 1869 err_dev_unregister: 1870 device_unregister(&child_device_obj->device); 1871 return ret; 1872 } 1873 1874 /* 1875 * vmbus_device_unregister - Remove the specified child device 1876 * from the vmbus. 1877 */ 1878 void vmbus_device_unregister(struct hv_device *device_obj) 1879 { 1880 pr_debug("child device %s unregistered\n", 1881 dev_name(&device_obj->device)); 1882 1883 kset_unregister(device_obj->channels_kset); 1884 1885 /* 1886 * Kick off the process of unregistering the device. 1887 * This will call vmbus_remove() and eventually vmbus_device_release() 1888 */ 1889 device_unregister(&device_obj->device); 1890 } 1891 1892 1893 /* 1894 * VMBUS is an acpi enumerated device. Get the information we 1895 * need from DSDT. 1896 */ 1897 #define VTPM_BASE_ADDRESS 0xfed40000 1898 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1899 { 1900 resource_size_t start = 0; 1901 resource_size_t end = 0; 1902 struct resource *new_res; 1903 struct resource **old_res = &hyperv_mmio; 1904 struct resource **prev_res = NULL; 1905 1906 switch (res->type) { 1907 1908 /* 1909 * "Address" descriptors are for bus windows. Ignore 1910 * "memory" descriptors, which are for registers on 1911 * devices. 1912 */ 1913 case ACPI_RESOURCE_TYPE_ADDRESS32: 1914 start = res->data.address32.address.minimum; 1915 end = res->data.address32.address.maximum; 1916 break; 1917 1918 case ACPI_RESOURCE_TYPE_ADDRESS64: 1919 start = res->data.address64.address.minimum; 1920 end = res->data.address64.address.maximum; 1921 break; 1922 1923 default: 1924 /* Unused resource type */ 1925 return AE_OK; 1926 1927 } 1928 /* 1929 * Ignore ranges that are below 1MB, as they're not 1930 * necessary or useful here. 1931 */ 1932 if (end < 0x100000) 1933 return AE_OK; 1934 1935 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1936 if (!new_res) 1937 return AE_NO_MEMORY; 1938 1939 /* If this range overlaps the virtual TPM, truncate it. */ 1940 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1941 end = VTPM_BASE_ADDRESS; 1942 1943 new_res->name = "hyperv mmio"; 1944 new_res->flags = IORESOURCE_MEM; 1945 new_res->start = start; 1946 new_res->end = end; 1947 1948 /* 1949 * If two ranges are adjacent, merge them. 1950 */ 1951 do { 1952 if (!*old_res) { 1953 *old_res = new_res; 1954 break; 1955 } 1956 1957 if (((*old_res)->end + 1) == new_res->start) { 1958 (*old_res)->end = new_res->end; 1959 kfree(new_res); 1960 break; 1961 } 1962 1963 if ((*old_res)->start == new_res->end + 1) { 1964 (*old_res)->start = new_res->start; 1965 kfree(new_res); 1966 break; 1967 } 1968 1969 if ((*old_res)->start > new_res->end) { 1970 new_res->sibling = *old_res; 1971 if (prev_res) 1972 (*prev_res)->sibling = new_res; 1973 *old_res = new_res; 1974 break; 1975 } 1976 1977 prev_res = old_res; 1978 old_res = &(*old_res)->sibling; 1979 1980 } while (1); 1981 1982 return AE_OK; 1983 } 1984 1985 static int vmbus_acpi_remove(struct acpi_device *device) 1986 { 1987 struct resource *cur_res; 1988 struct resource *next_res; 1989 1990 if (hyperv_mmio) { 1991 if (fb_mmio) { 1992 __release_region(hyperv_mmio, fb_mmio->start, 1993 resource_size(fb_mmio)); 1994 fb_mmio = NULL; 1995 } 1996 1997 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1998 next_res = cur_res->sibling; 1999 kfree(cur_res); 2000 } 2001 } 2002 2003 return 0; 2004 } 2005 2006 static void vmbus_reserve_fb(void) 2007 { 2008 int size; 2009 /* 2010 * Make a claim for the frame buffer in the resource tree under the 2011 * first node, which will be the one below 4GB. The length seems to 2012 * be underreported, particularly in a Generation 1 VM. So start out 2013 * reserving a larger area and make it smaller until it succeeds. 2014 */ 2015 2016 if (screen_info.lfb_base) { 2017 if (efi_enabled(EFI_BOOT)) 2018 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2019 else 2020 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 2021 2022 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 2023 fb_mmio = __request_region(hyperv_mmio, 2024 screen_info.lfb_base, size, 2025 fb_mmio_name, 0); 2026 } 2027 } 2028 } 2029 2030 /** 2031 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2032 * @new: If successful, supplied a pointer to the 2033 * allocated MMIO space. 2034 * @device_obj: Identifies the caller 2035 * @min: Minimum guest physical address of the 2036 * allocation 2037 * @max: Maximum guest physical address 2038 * @size: Size of the range to be allocated 2039 * @align: Alignment of the range to be allocated 2040 * @fb_overlap_ok: Whether this allocation can be allowed 2041 * to overlap the video frame buffer. 2042 * 2043 * This function walks the resources granted to VMBus by the 2044 * _CRS object in the ACPI namespace underneath the parent 2045 * "bridge" whether that's a root PCI bus in the Generation 1 2046 * case or a Module Device in the Generation 2 case. It then 2047 * attempts to allocate from the global MMIO pool in a way that 2048 * matches the constraints supplied in these parameters and by 2049 * that _CRS. 2050 * 2051 * Return: 0 on success, -errno on failure 2052 */ 2053 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2054 resource_size_t min, resource_size_t max, 2055 resource_size_t size, resource_size_t align, 2056 bool fb_overlap_ok) 2057 { 2058 struct resource *iter, *shadow; 2059 resource_size_t range_min, range_max, start; 2060 const char *dev_n = dev_name(&device_obj->device); 2061 int retval; 2062 2063 retval = -ENXIO; 2064 mutex_lock(&hyperv_mmio_lock); 2065 2066 /* 2067 * If overlaps with frame buffers are allowed, then first attempt to 2068 * make the allocation from within the reserved region. Because it 2069 * is already reserved, no shadow allocation is necessary. 2070 */ 2071 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2072 !(max < fb_mmio->start)) { 2073 2074 range_min = fb_mmio->start; 2075 range_max = fb_mmio->end; 2076 start = (range_min + align - 1) & ~(align - 1); 2077 for (; start + size - 1 <= range_max; start += align) { 2078 *new = request_mem_region_exclusive(start, size, dev_n); 2079 if (*new) { 2080 retval = 0; 2081 goto exit; 2082 } 2083 } 2084 } 2085 2086 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2087 if ((iter->start >= max) || (iter->end <= min)) 2088 continue; 2089 2090 range_min = iter->start; 2091 range_max = iter->end; 2092 start = (range_min + align - 1) & ~(align - 1); 2093 for (; start + size - 1 <= range_max; start += align) { 2094 shadow = __request_region(iter, start, size, NULL, 2095 IORESOURCE_BUSY); 2096 if (!shadow) 2097 continue; 2098 2099 *new = request_mem_region_exclusive(start, size, dev_n); 2100 if (*new) { 2101 shadow->name = (char *)*new; 2102 retval = 0; 2103 goto exit; 2104 } 2105 2106 __release_region(iter, start, size); 2107 } 2108 } 2109 2110 exit: 2111 mutex_unlock(&hyperv_mmio_lock); 2112 return retval; 2113 } 2114 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2115 2116 /** 2117 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2118 * @start: Base address of region to release. 2119 * @size: Size of the range to be allocated 2120 * 2121 * This function releases anything requested by 2122 * vmbus_mmio_allocate(). 2123 */ 2124 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2125 { 2126 struct resource *iter; 2127 2128 mutex_lock(&hyperv_mmio_lock); 2129 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2130 if ((iter->start >= start + size) || (iter->end <= start)) 2131 continue; 2132 2133 __release_region(iter, start, size); 2134 } 2135 release_mem_region(start, size); 2136 mutex_unlock(&hyperv_mmio_lock); 2137 2138 } 2139 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2140 2141 static int vmbus_acpi_add(struct acpi_device *device) 2142 { 2143 acpi_status result; 2144 int ret_val = -ENODEV; 2145 struct acpi_device *ancestor; 2146 2147 hv_acpi_dev = device; 2148 2149 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2150 vmbus_walk_resources, NULL); 2151 2152 if (ACPI_FAILURE(result)) 2153 goto acpi_walk_err; 2154 /* 2155 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2156 * firmware) is the VMOD that has the mmio ranges. Get that. 2157 */ 2158 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2159 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2160 vmbus_walk_resources, NULL); 2161 2162 if (ACPI_FAILURE(result)) 2163 continue; 2164 if (hyperv_mmio) { 2165 vmbus_reserve_fb(); 2166 break; 2167 } 2168 } 2169 ret_val = 0; 2170 2171 acpi_walk_err: 2172 complete(&probe_event); 2173 if (ret_val) 2174 vmbus_acpi_remove(device); 2175 return ret_val; 2176 } 2177 2178 #ifdef CONFIG_PM_SLEEP 2179 static int vmbus_bus_suspend(struct device *dev) 2180 { 2181 struct vmbus_channel *channel, *sc; 2182 unsigned long flags; 2183 2184 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2185 /* 2186 * We wait here until the completion of any channel 2187 * offers that are currently in progress. 2188 */ 2189 msleep(1); 2190 } 2191 2192 mutex_lock(&vmbus_connection.channel_mutex); 2193 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2194 if (!is_hvsock_channel(channel)) 2195 continue; 2196 2197 vmbus_force_channel_rescinded(channel); 2198 } 2199 mutex_unlock(&vmbus_connection.channel_mutex); 2200 2201 /* 2202 * Wait until all the sub-channels and hv_sock channels have been 2203 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2204 * they would conflict with the new sub-channels that will be created 2205 * in the resume path. hv_sock channels should also be destroyed, but 2206 * a hv_sock channel of an established hv_sock connection can not be 2207 * really destroyed since it may still be referenced by the userspace 2208 * application, so we just force the hv_sock channel to be rescinded 2209 * by vmbus_force_channel_rescinded(), and the userspace application 2210 * will thoroughly destroy the channel after hibernation. 2211 * 2212 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2213 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2214 */ 2215 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2216 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2217 2218 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0); 2219 2220 mutex_lock(&vmbus_connection.channel_mutex); 2221 2222 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2223 /* 2224 * Invalidate the field. Upon resume, vmbus_onoffer() will fix 2225 * up the field, and the other fields (if necessary). 2226 */ 2227 channel->offermsg.child_relid = INVALID_RELID; 2228 2229 if (is_hvsock_channel(channel)) { 2230 if (!channel->rescind) { 2231 pr_err("hv_sock channel not rescinded!\n"); 2232 WARN_ON_ONCE(1); 2233 } 2234 continue; 2235 } 2236 2237 spin_lock_irqsave(&channel->lock, flags); 2238 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2239 pr_err("Sub-channel not deleted!\n"); 2240 WARN_ON_ONCE(1); 2241 } 2242 spin_unlock_irqrestore(&channel->lock, flags); 2243 2244 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2245 } 2246 2247 mutex_unlock(&vmbus_connection.channel_mutex); 2248 2249 vmbus_initiate_unload(false); 2250 2251 /* Reset the event for the next resume. */ 2252 reinit_completion(&vmbus_connection.ready_for_resume_event); 2253 2254 return 0; 2255 } 2256 2257 static int vmbus_bus_resume(struct device *dev) 2258 { 2259 struct vmbus_channel_msginfo *msginfo; 2260 size_t msgsize; 2261 int ret; 2262 2263 /* 2264 * We only use the 'vmbus_proto_version', which was in use before 2265 * hibernation, to re-negotiate with the host. 2266 */ 2267 if (!vmbus_proto_version) { 2268 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2269 return -EINVAL; 2270 } 2271 2272 msgsize = sizeof(*msginfo) + 2273 sizeof(struct vmbus_channel_initiate_contact); 2274 2275 msginfo = kzalloc(msgsize, GFP_KERNEL); 2276 2277 if (msginfo == NULL) 2278 return -ENOMEM; 2279 2280 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2281 2282 kfree(msginfo); 2283 2284 if (ret != 0) 2285 return ret; 2286 2287 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2288 2289 vmbus_request_offers(); 2290 2291 wait_for_completion(&vmbus_connection.ready_for_resume_event); 2292 2293 /* Reset the event for the next suspend. */ 2294 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2295 2296 return 0; 2297 } 2298 #else 2299 #define vmbus_bus_suspend NULL 2300 #define vmbus_bus_resume NULL 2301 #endif /* CONFIG_PM_SLEEP */ 2302 2303 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2304 {"VMBUS", 0}, 2305 {"VMBus", 0}, 2306 {"", 0}, 2307 }; 2308 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2309 2310 /* 2311 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2312 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2313 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2314 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2315 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2316 * resume callback must also run via the "noirq" ops. 2317 * 2318 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2319 * earlier in this file before vmbus_pm. 2320 */ 2321 2322 static const struct dev_pm_ops vmbus_bus_pm = { 2323 .suspend_noirq = NULL, 2324 .resume_noirq = NULL, 2325 .freeze_noirq = vmbus_bus_suspend, 2326 .thaw_noirq = vmbus_bus_resume, 2327 .poweroff_noirq = vmbus_bus_suspend, 2328 .restore_noirq = vmbus_bus_resume 2329 }; 2330 2331 static struct acpi_driver vmbus_acpi_driver = { 2332 .name = "vmbus", 2333 .ids = vmbus_acpi_device_ids, 2334 .ops = { 2335 .add = vmbus_acpi_add, 2336 .remove = vmbus_acpi_remove, 2337 }, 2338 .drv.pm = &vmbus_bus_pm, 2339 }; 2340 2341 static void hv_kexec_handler(void) 2342 { 2343 hv_stimer_global_cleanup(); 2344 vmbus_initiate_unload(false); 2345 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2346 mb(); 2347 cpuhp_remove_state(hyperv_cpuhp_online); 2348 hyperv_cleanup(); 2349 }; 2350 2351 static void hv_crash_handler(struct pt_regs *regs) 2352 { 2353 int cpu; 2354 2355 vmbus_initiate_unload(true); 2356 /* 2357 * In crash handler we can't schedule synic cleanup for all CPUs, 2358 * doing the cleanup for current CPU only. This should be sufficient 2359 * for kdump. 2360 */ 2361 cpu = smp_processor_id(); 2362 hv_stimer_cleanup(cpu); 2363 hv_synic_disable_regs(cpu); 2364 hyperv_cleanup(); 2365 }; 2366 2367 static int hv_synic_suspend(void) 2368 { 2369 /* 2370 * When we reach here, all the non-boot CPUs have been offlined. 2371 * If we're in a legacy configuration where stimer Direct Mode is 2372 * not enabled, the stimers on the non-boot CPUs have been unbound 2373 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2374 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2375 * 2376 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2377 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2378 * 1) it's unnecessary as interrupts remain disabled between 2379 * syscore_suspend() and syscore_resume(): see create_image() and 2380 * resume_target_kernel() 2381 * 2) the stimer on CPU0 is automatically disabled later by 2382 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2383 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2384 * 3) a warning would be triggered if we call 2385 * clockevents_unbind_device(), which may sleep, in an 2386 * interrupts-disabled context. 2387 */ 2388 2389 hv_synic_disable_regs(0); 2390 2391 return 0; 2392 } 2393 2394 static void hv_synic_resume(void) 2395 { 2396 hv_synic_enable_regs(0); 2397 2398 /* 2399 * Note: we don't need to call hv_stimer_init(0), because the timer 2400 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2401 * automatically re-enabled in timekeeping_resume(). 2402 */ 2403 } 2404 2405 /* The callbacks run only on CPU0, with irqs_disabled. */ 2406 static struct syscore_ops hv_synic_syscore_ops = { 2407 .suspend = hv_synic_suspend, 2408 .resume = hv_synic_resume, 2409 }; 2410 2411 static int __init hv_acpi_init(void) 2412 { 2413 int ret, t; 2414 2415 if (!hv_is_hyperv_initialized()) 2416 return -ENODEV; 2417 2418 init_completion(&probe_event); 2419 2420 /* 2421 * Get ACPI resources first. 2422 */ 2423 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2424 2425 if (ret) 2426 return ret; 2427 2428 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2429 if (t == 0) { 2430 ret = -ETIMEDOUT; 2431 goto cleanup; 2432 } 2433 hv_debug_init(); 2434 2435 ret = vmbus_bus_init(); 2436 if (ret) 2437 goto cleanup; 2438 2439 hv_setup_kexec_handler(hv_kexec_handler); 2440 hv_setup_crash_handler(hv_crash_handler); 2441 2442 register_syscore_ops(&hv_synic_syscore_ops); 2443 2444 return 0; 2445 2446 cleanup: 2447 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2448 hv_acpi_dev = NULL; 2449 return ret; 2450 } 2451 2452 static void __exit vmbus_exit(void) 2453 { 2454 int cpu; 2455 2456 unregister_syscore_ops(&hv_synic_syscore_ops); 2457 2458 hv_remove_kexec_handler(); 2459 hv_remove_crash_handler(); 2460 vmbus_connection.conn_state = DISCONNECTED; 2461 hv_stimer_global_cleanup(); 2462 vmbus_disconnect(); 2463 hv_remove_vmbus_irq(); 2464 for_each_online_cpu(cpu) { 2465 struct hv_per_cpu_context *hv_cpu 2466 = per_cpu_ptr(hv_context.cpu_context, cpu); 2467 2468 tasklet_kill(&hv_cpu->msg_dpc); 2469 } 2470 hv_debug_rm_all_dir(); 2471 2472 vmbus_free_channels(); 2473 2474 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2475 kmsg_dump_unregister(&hv_kmsg_dumper); 2476 unregister_die_notifier(&hyperv_die_block); 2477 atomic_notifier_chain_unregister(&panic_notifier_list, 2478 &hyperv_panic_block); 2479 } 2480 2481 free_page((unsigned long)hv_panic_page); 2482 unregister_sysctl_table(hv_ctl_table_hdr); 2483 hv_ctl_table_hdr = NULL; 2484 bus_unregister(&hv_bus); 2485 2486 cpuhp_remove_state(hyperv_cpuhp_online); 2487 hv_synic_free(); 2488 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2489 } 2490 2491 2492 MODULE_LICENSE("GPL"); 2493 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2494 2495 subsys_initcall(hv_acpi_init); 2496 module_exit(vmbus_exit); 2497