xref: /linux/drivers/hv/vmbus_drv.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static void *hv_panic_page;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs, val);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 			   const struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 
125 	return monitor_page->trigger_group[monitor_group].pending;
126 }
127 
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 			   const struct hv_monitor_page *monitor_page)
130 {
131 	u8 monitor_group = channel_monitor_group(channel);
132 	u8 monitor_offset = channel_monitor_offset(channel);
133 
134 	return monitor_page->latency[monitor_group][monitor_offset];
135 }
136 
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 			   struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 	u8 monitor_offset = channel_monitor_offset(channel);
142 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144 
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 		       char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155 
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 			  char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166 
167 static ssize_t monitor_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177 
178 static ssize_t class_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "{%pUl}\n",
186 		       hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189 
190 static ssize_t device_id_show(struct device *dev,
191 			      struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201 
202 static ssize_t modalias_show(struct device *dev,
203 			     struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 	char alias_name[VMBUS_ALIAS_LEN + 1];
207 
208 	print_alias_name(hv_dev, alias_name);
209 	return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212 
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215 			      struct device_attribute *attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 
222 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226 
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sprintf(buf, "%d\n",
236 		       channel_pending(hv_dev->channel,
237 				       vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240 
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 					   struct device_attribute *dev_attr,
243 					   char *buf)
244 {
245 	struct hv_device *hv_dev = device_to_hv_device(dev);
246 
247 	if (!hv_dev->channel)
248 		return -ENODEV;
249 	return sprintf(buf, "%d\n",
250 		       channel_pending(hv_dev->channel,
251 				       vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254 
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 					   struct device_attribute *dev_attr,
257 					   char *buf)
258 {
259 	struct hv_device *hv_dev = device_to_hv_device(dev);
260 
261 	if (!hv_dev->channel)
262 		return -ENODEV;
263 	return sprintf(buf, "%d\n",
264 		       channel_latency(hv_dev->channel,
265 				       vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268 
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 					   struct device_attribute *dev_attr,
271 					   char *buf)
272 {
273 	struct hv_device *hv_dev = device_to_hv_device(dev);
274 
275 	if (!hv_dev->channel)
276 		return -ENODEV;
277 	return sprintf(buf, "%d\n",
278 		       channel_latency(hv_dev->channel,
279 				       vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282 
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 					   struct device_attribute *dev_attr,
285 					   char *buf)
286 {
287 	struct hv_device *hv_dev = device_to_hv_device(dev);
288 
289 	if (!hv_dev->channel)
290 		return -ENODEV;
291 	return sprintf(buf, "%d\n",
292 		       channel_conn_id(hv_dev->channel,
293 				       vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296 
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 					   struct device_attribute *dev_attr,
299 					   char *buf)
300 {
301 	struct hv_device *hv_dev = device_to_hv_device(dev);
302 
303 	if (!hv_dev->channel)
304 		return -ENODEV;
305 	return sprintf(buf, "%d\n",
306 		       channel_conn_id(hv_dev->channel,
307 				       vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310 
311 static ssize_t out_intr_mask_show(struct device *dev,
312 				  struct device_attribute *dev_attr, char *buf)
313 {
314 	struct hv_device *hv_dev = device_to_hv_device(dev);
315 	struct hv_ring_buffer_debug_info outbound;
316 	int ret;
317 
318 	if (!hv_dev->channel)
319 		return -ENODEV;
320 
321 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
322 					  &outbound);
323 	if (ret < 0)
324 		return ret;
325 
326 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327 }
328 static DEVICE_ATTR_RO(out_intr_mask);
329 
330 static ssize_t out_read_index_show(struct device *dev,
331 				   struct device_attribute *dev_attr, char *buf)
332 {
333 	struct hv_device *hv_dev = device_to_hv_device(dev);
334 	struct hv_ring_buffer_debug_info outbound;
335 	int ret;
336 
337 	if (!hv_dev->channel)
338 		return -ENODEV;
339 
340 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341 					  &outbound);
342 	if (ret < 0)
343 		return ret;
344 	return sprintf(buf, "%d\n", outbound.current_read_index);
345 }
346 static DEVICE_ATTR_RO(out_read_index);
347 
348 static ssize_t out_write_index_show(struct device *dev,
349 				    struct device_attribute *dev_attr,
350 				    char *buf)
351 {
352 	struct hv_device *hv_dev = device_to_hv_device(dev);
353 	struct hv_ring_buffer_debug_info outbound;
354 	int ret;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 
359 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360 					  &outbound);
361 	if (ret < 0)
362 		return ret;
363 	return sprintf(buf, "%d\n", outbound.current_write_index);
364 }
365 static DEVICE_ATTR_RO(out_write_index);
366 
367 static ssize_t out_read_bytes_avail_show(struct device *dev,
368 					 struct device_attribute *dev_attr,
369 					 char *buf)
370 {
371 	struct hv_device *hv_dev = device_to_hv_device(dev);
372 	struct hv_ring_buffer_debug_info outbound;
373 	int ret;
374 
375 	if (!hv_dev->channel)
376 		return -ENODEV;
377 
378 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379 					  &outbound);
380 	if (ret < 0)
381 		return ret;
382 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
383 }
384 static DEVICE_ATTR_RO(out_read_bytes_avail);
385 
386 static ssize_t out_write_bytes_avail_show(struct device *dev,
387 					  struct device_attribute *dev_attr,
388 					  char *buf)
389 {
390 	struct hv_device *hv_dev = device_to_hv_device(dev);
391 	struct hv_ring_buffer_debug_info outbound;
392 	int ret;
393 
394 	if (!hv_dev->channel)
395 		return -ENODEV;
396 
397 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
398 					  &outbound);
399 	if (ret < 0)
400 		return ret;
401 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
402 }
403 static DEVICE_ATTR_RO(out_write_bytes_avail);
404 
405 static ssize_t in_intr_mask_show(struct device *dev,
406 				 struct device_attribute *dev_attr, char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info inbound;
410 	int ret;
411 
412 	if (!hv_dev->channel)
413 		return -ENODEV;
414 
415 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
416 	if (ret < 0)
417 		return ret;
418 
419 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
420 }
421 static DEVICE_ATTR_RO(in_intr_mask);
422 
423 static ssize_t in_read_index_show(struct device *dev,
424 				  struct device_attribute *dev_attr, char *buf)
425 {
426 	struct hv_device *hv_dev = device_to_hv_device(dev);
427 	struct hv_ring_buffer_debug_info inbound;
428 	int ret;
429 
430 	if (!hv_dev->channel)
431 		return -ENODEV;
432 
433 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 	if (ret < 0)
435 		return ret;
436 
437 	return sprintf(buf, "%d\n", inbound.current_read_index);
438 }
439 static DEVICE_ATTR_RO(in_read_index);
440 
441 static ssize_t in_write_index_show(struct device *dev,
442 				   struct device_attribute *dev_attr, char *buf)
443 {
444 	struct hv_device *hv_dev = device_to_hv_device(dev);
445 	struct hv_ring_buffer_debug_info inbound;
446 	int ret;
447 
448 	if (!hv_dev->channel)
449 		return -ENODEV;
450 
451 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 	if (ret < 0)
453 		return ret;
454 
455 	return sprintf(buf, "%d\n", inbound.current_write_index);
456 }
457 static DEVICE_ATTR_RO(in_write_index);
458 
459 static ssize_t in_read_bytes_avail_show(struct device *dev,
460 					struct device_attribute *dev_attr,
461 					char *buf)
462 {
463 	struct hv_device *hv_dev = device_to_hv_device(dev);
464 	struct hv_ring_buffer_debug_info inbound;
465 	int ret;
466 
467 	if (!hv_dev->channel)
468 		return -ENODEV;
469 
470 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471 	if (ret < 0)
472 		return ret;
473 
474 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
475 }
476 static DEVICE_ATTR_RO(in_read_bytes_avail);
477 
478 static ssize_t in_write_bytes_avail_show(struct device *dev,
479 					 struct device_attribute *dev_attr,
480 					 char *buf)
481 {
482 	struct hv_device *hv_dev = device_to_hv_device(dev);
483 	struct hv_ring_buffer_debug_info inbound;
484 	int ret;
485 
486 	if (!hv_dev->channel)
487 		return -ENODEV;
488 
489 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
490 	if (ret < 0)
491 		return ret;
492 
493 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
494 }
495 static DEVICE_ATTR_RO(in_write_bytes_avail);
496 
497 static ssize_t channel_vp_mapping_show(struct device *dev,
498 				       struct device_attribute *dev_attr,
499 				       char *buf)
500 {
501 	struct hv_device *hv_dev = device_to_hv_device(dev);
502 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
503 	unsigned long flags;
504 	int buf_size = PAGE_SIZE, n_written, tot_written;
505 	struct list_head *cur;
506 
507 	if (!channel)
508 		return -ENODEV;
509 
510 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
511 		channel->offermsg.child_relid, channel->target_cpu);
512 
513 	spin_lock_irqsave(&channel->lock, flags);
514 
515 	list_for_each(cur, &channel->sc_list) {
516 		if (tot_written >= buf_size - 1)
517 			break;
518 
519 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
520 		n_written = scnprintf(buf + tot_written,
521 				     buf_size - tot_written,
522 				     "%u:%u\n",
523 				     cur_sc->offermsg.child_relid,
524 				     cur_sc->target_cpu);
525 		tot_written += n_written;
526 	}
527 
528 	spin_unlock_irqrestore(&channel->lock, flags);
529 
530 	return tot_written;
531 }
532 static DEVICE_ATTR_RO(channel_vp_mapping);
533 
534 static ssize_t vendor_show(struct device *dev,
535 			   struct device_attribute *dev_attr,
536 			   char *buf)
537 {
538 	struct hv_device *hv_dev = device_to_hv_device(dev);
539 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
540 }
541 static DEVICE_ATTR_RO(vendor);
542 
543 static ssize_t device_show(struct device *dev,
544 			   struct device_attribute *dev_attr,
545 			   char *buf)
546 {
547 	struct hv_device *hv_dev = device_to_hv_device(dev);
548 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
549 }
550 static DEVICE_ATTR_RO(device);
551 
552 static ssize_t driver_override_store(struct device *dev,
553 				     struct device_attribute *attr,
554 				     const char *buf, size_t count)
555 {
556 	struct hv_device *hv_dev = device_to_hv_device(dev);
557 	char *driver_override, *old, *cp;
558 
559 	/* We need to keep extra room for a newline */
560 	if (count >= (PAGE_SIZE - 1))
561 		return -EINVAL;
562 
563 	driver_override = kstrndup(buf, count, GFP_KERNEL);
564 	if (!driver_override)
565 		return -ENOMEM;
566 
567 	cp = strchr(driver_override, '\n');
568 	if (cp)
569 		*cp = '\0';
570 
571 	device_lock(dev);
572 	old = hv_dev->driver_override;
573 	if (strlen(driver_override)) {
574 		hv_dev->driver_override = driver_override;
575 	} else {
576 		kfree(driver_override);
577 		hv_dev->driver_override = NULL;
578 	}
579 	device_unlock(dev);
580 
581 	kfree(old);
582 
583 	return count;
584 }
585 
586 static ssize_t driver_override_show(struct device *dev,
587 				    struct device_attribute *attr, char *buf)
588 {
589 	struct hv_device *hv_dev = device_to_hv_device(dev);
590 	ssize_t len;
591 
592 	device_lock(dev);
593 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
594 	device_unlock(dev);
595 
596 	return len;
597 }
598 static DEVICE_ATTR_RW(driver_override);
599 
600 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
601 static struct attribute *vmbus_dev_attrs[] = {
602 	&dev_attr_id.attr,
603 	&dev_attr_state.attr,
604 	&dev_attr_monitor_id.attr,
605 	&dev_attr_class_id.attr,
606 	&dev_attr_device_id.attr,
607 	&dev_attr_modalias.attr,
608 #ifdef CONFIG_NUMA
609 	&dev_attr_numa_node.attr,
610 #endif
611 	&dev_attr_server_monitor_pending.attr,
612 	&dev_attr_client_monitor_pending.attr,
613 	&dev_attr_server_monitor_latency.attr,
614 	&dev_attr_client_monitor_latency.attr,
615 	&dev_attr_server_monitor_conn_id.attr,
616 	&dev_attr_client_monitor_conn_id.attr,
617 	&dev_attr_out_intr_mask.attr,
618 	&dev_attr_out_read_index.attr,
619 	&dev_attr_out_write_index.attr,
620 	&dev_attr_out_read_bytes_avail.attr,
621 	&dev_attr_out_write_bytes_avail.attr,
622 	&dev_attr_in_intr_mask.attr,
623 	&dev_attr_in_read_index.attr,
624 	&dev_attr_in_write_index.attr,
625 	&dev_attr_in_read_bytes_avail.attr,
626 	&dev_attr_in_write_bytes_avail.attr,
627 	&dev_attr_channel_vp_mapping.attr,
628 	&dev_attr_vendor.attr,
629 	&dev_attr_device.attr,
630 	&dev_attr_driver_override.attr,
631 	NULL,
632 };
633 ATTRIBUTE_GROUPS(vmbus_dev);
634 
635 /*
636  * vmbus_uevent - add uevent for our device
637  *
638  * This routine is invoked when a device is added or removed on the vmbus to
639  * generate a uevent to udev in the userspace. The udev will then look at its
640  * rule and the uevent generated here to load the appropriate driver
641  *
642  * The alias string will be of the form vmbus:guid where guid is the string
643  * representation of the device guid (each byte of the guid will be
644  * represented with two hex characters.
645  */
646 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
647 {
648 	struct hv_device *dev = device_to_hv_device(device);
649 	int ret;
650 	char alias_name[VMBUS_ALIAS_LEN + 1];
651 
652 	print_alias_name(dev, alias_name);
653 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
654 	return ret;
655 }
656 
657 static const uuid_le null_guid;
658 
659 static inline bool is_null_guid(const uuid_le *guid)
660 {
661 	if (uuid_le_cmp(*guid, null_guid))
662 		return false;
663 	return true;
664 }
665 
666 static const struct hv_vmbus_device_id *
667 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const uuid_le *guid)
668 
669 {
670 	if (id == NULL)
671 		return NULL; /* empty device table */
672 
673 	for (; !is_null_guid(&id->guid); id++)
674 		if (!uuid_le_cmp(id->guid, *guid))
675 			return id;
676 
677 	return NULL;
678 }
679 
680 static const struct hv_vmbus_device_id *
681 hv_vmbus_dynid_match(struct hv_driver *drv, const uuid_le *guid)
682 {
683 	const struct hv_vmbus_device_id *id = NULL;
684 	struct vmbus_dynid *dynid;
685 
686 	spin_lock(&drv->dynids.lock);
687 	list_for_each_entry(dynid, &drv->dynids.list, node) {
688 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
689 			id = &dynid->id;
690 			break;
691 		}
692 	}
693 	spin_unlock(&drv->dynids.lock);
694 
695 	return id;
696 }
697 
698 static const struct hv_vmbus_device_id vmbus_device_null = {
699 	.guid = NULL_UUID_LE,
700 };
701 
702 /*
703  * Return a matching hv_vmbus_device_id pointer.
704  * If there is no match, return NULL.
705  */
706 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
707 							struct hv_device *dev)
708 {
709 	const uuid_le *guid = &dev->dev_type;
710 	const struct hv_vmbus_device_id *id;
711 
712 	/* When driver_override is set, only bind to the matching driver */
713 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
714 		return NULL;
715 
716 	/* Look at the dynamic ids first, before the static ones */
717 	id = hv_vmbus_dynid_match(drv, guid);
718 	if (!id)
719 		id = hv_vmbus_dev_match(drv->id_table, guid);
720 
721 	/* driver_override will always match, send a dummy id */
722 	if (!id && dev->driver_override)
723 		id = &vmbus_device_null;
724 
725 	return id;
726 }
727 
728 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
729 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
730 {
731 	struct vmbus_dynid *dynid;
732 
733 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
734 	if (!dynid)
735 		return -ENOMEM;
736 
737 	dynid->id.guid = *guid;
738 
739 	spin_lock(&drv->dynids.lock);
740 	list_add_tail(&dynid->node, &drv->dynids.list);
741 	spin_unlock(&drv->dynids.lock);
742 
743 	return driver_attach(&drv->driver);
744 }
745 
746 static void vmbus_free_dynids(struct hv_driver *drv)
747 {
748 	struct vmbus_dynid *dynid, *n;
749 
750 	spin_lock(&drv->dynids.lock);
751 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
752 		list_del(&dynid->node);
753 		kfree(dynid);
754 	}
755 	spin_unlock(&drv->dynids.lock);
756 }
757 
758 /*
759  * store_new_id - sysfs frontend to vmbus_add_dynid()
760  *
761  * Allow GUIDs to be added to an existing driver via sysfs.
762  */
763 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
764 			    size_t count)
765 {
766 	struct hv_driver *drv = drv_to_hv_drv(driver);
767 	uuid_le guid;
768 	ssize_t retval;
769 
770 	retval = uuid_le_to_bin(buf, &guid);
771 	if (retval)
772 		return retval;
773 
774 	if (hv_vmbus_dynid_match(drv, &guid))
775 		return -EEXIST;
776 
777 	retval = vmbus_add_dynid(drv, &guid);
778 	if (retval)
779 		return retval;
780 	return count;
781 }
782 static DRIVER_ATTR_WO(new_id);
783 
784 /*
785  * store_remove_id - remove a PCI device ID from this driver
786  *
787  * Removes a dynamic pci device ID to this driver.
788  */
789 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
790 			       size_t count)
791 {
792 	struct hv_driver *drv = drv_to_hv_drv(driver);
793 	struct vmbus_dynid *dynid, *n;
794 	uuid_le guid;
795 	ssize_t retval;
796 
797 	retval = uuid_le_to_bin(buf, &guid);
798 	if (retval)
799 		return retval;
800 
801 	retval = -ENODEV;
802 	spin_lock(&drv->dynids.lock);
803 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
804 		struct hv_vmbus_device_id *id = &dynid->id;
805 
806 		if (!uuid_le_cmp(id->guid, guid)) {
807 			list_del(&dynid->node);
808 			kfree(dynid);
809 			retval = count;
810 			break;
811 		}
812 	}
813 	spin_unlock(&drv->dynids.lock);
814 
815 	return retval;
816 }
817 static DRIVER_ATTR_WO(remove_id);
818 
819 static struct attribute *vmbus_drv_attrs[] = {
820 	&driver_attr_new_id.attr,
821 	&driver_attr_remove_id.attr,
822 	NULL,
823 };
824 ATTRIBUTE_GROUPS(vmbus_drv);
825 
826 
827 /*
828  * vmbus_match - Attempt to match the specified device to the specified driver
829  */
830 static int vmbus_match(struct device *device, struct device_driver *driver)
831 {
832 	struct hv_driver *drv = drv_to_hv_drv(driver);
833 	struct hv_device *hv_dev = device_to_hv_device(device);
834 
835 	/* The hv_sock driver handles all hv_sock offers. */
836 	if (is_hvsock_channel(hv_dev->channel))
837 		return drv->hvsock;
838 
839 	if (hv_vmbus_get_id(drv, hv_dev))
840 		return 1;
841 
842 	return 0;
843 }
844 
845 /*
846  * vmbus_probe - Add the new vmbus's child device
847  */
848 static int vmbus_probe(struct device *child_device)
849 {
850 	int ret = 0;
851 	struct hv_driver *drv =
852 			drv_to_hv_drv(child_device->driver);
853 	struct hv_device *dev = device_to_hv_device(child_device);
854 	const struct hv_vmbus_device_id *dev_id;
855 
856 	dev_id = hv_vmbus_get_id(drv, dev);
857 	if (drv->probe) {
858 		ret = drv->probe(dev, dev_id);
859 		if (ret != 0)
860 			pr_err("probe failed for device %s (%d)\n",
861 			       dev_name(child_device), ret);
862 
863 	} else {
864 		pr_err("probe not set for driver %s\n",
865 		       dev_name(child_device));
866 		ret = -ENODEV;
867 	}
868 	return ret;
869 }
870 
871 /*
872  * vmbus_remove - Remove a vmbus device
873  */
874 static int vmbus_remove(struct device *child_device)
875 {
876 	struct hv_driver *drv;
877 	struct hv_device *dev = device_to_hv_device(child_device);
878 
879 	if (child_device->driver) {
880 		drv = drv_to_hv_drv(child_device->driver);
881 		if (drv->remove)
882 			drv->remove(dev);
883 	}
884 
885 	return 0;
886 }
887 
888 
889 /*
890  * vmbus_shutdown - Shutdown a vmbus device
891  */
892 static void vmbus_shutdown(struct device *child_device)
893 {
894 	struct hv_driver *drv;
895 	struct hv_device *dev = device_to_hv_device(child_device);
896 
897 
898 	/* The device may not be attached yet */
899 	if (!child_device->driver)
900 		return;
901 
902 	drv = drv_to_hv_drv(child_device->driver);
903 
904 	if (drv->shutdown)
905 		drv->shutdown(dev);
906 }
907 
908 
909 /*
910  * vmbus_device_release - Final callback release of the vmbus child device
911  */
912 static void vmbus_device_release(struct device *device)
913 {
914 	struct hv_device *hv_dev = device_to_hv_device(device);
915 	struct vmbus_channel *channel = hv_dev->channel;
916 
917 	mutex_lock(&vmbus_connection.channel_mutex);
918 	hv_process_channel_removal(channel);
919 	mutex_unlock(&vmbus_connection.channel_mutex);
920 	kfree(hv_dev);
921 }
922 
923 /* The one and only one */
924 static struct bus_type  hv_bus = {
925 	.name =		"vmbus",
926 	.match =		vmbus_match,
927 	.shutdown =		vmbus_shutdown,
928 	.remove =		vmbus_remove,
929 	.probe =		vmbus_probe,
930 	.uevent =		vmbus_uevent,
931 	.dev_groups =		vmbus_dev_groups,
932 	.drv_groups =		vmbus_drv_groups,
933 };
934 
935 struct onmessage_work_context {
936 	struct work_struct work;
937 	struct hv_message msg;
938 };
939 
940 static void vmbus_onmessage_work(struct work_struct *work)
941 {
942 	struct onmessage_work_context *ctx;
943 
944 	/* Do not process messages if we're in DISCONNECTED state */
945 	if (vmbus_connection.conn_state == DISCONNECTED)
946 		return;
947 
948 	ctx = container_of(work, struct onmessage_work_context,
949 			   work);
950 	vmbus_onmessage(&ctx->msg);
951 	kfree(ctx);
952 }
953 
954 static void hv_process_timer_expiration(struct hv_message *msg,
955 					struct hv_per_cpu_context *hv_cpu)
956 {
957 	struct clock_event_device *dev = hv_cpu->clk_evt;
958 
959 	if (dev->event_handler)
960 		dev->event_handler(dev);
961 
962 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
963 }
964 
965 void vmbus_on_msg_dpc(unsigned long data)
966 {
967 	struct hv_per_cpu_context *hv_cpu = (void *)data;
968 	void *page_addr = hv_cpu->synic_message_page;
969 	struct hv_message *msg = (struct hv_message *)page_addr +
970 				  VMBUS_MESSAGE_SINT;
971 	struct vmbus_channel_message_header *hdr;
972 	const struct vmbus_channel_message_table_entry *entry;
973 	struct onmessage_work_context *ctx;
974 	u32 message_type = msg->header.message_type;
975 
976 	if (message_type == HVMSG_NONE)
977 		/* no msg */
978 		return;
979 
980 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
981 
982 	trace_vmbus_on_msg_dpc(hdr);
983 
984 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
985 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
986 		goto msg_handled;
987 	}
988 
989 	entry = &channel_message_table[hdr->msgtype];
990 	if (entry->handler_type	== VMHT_BLOCKING) {
991 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
992 		if (ctx == NULL)
993 			return;
994 
995 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
996 		memcpy(&ctx->msg, msg, sizeof(*msg));
997 
998 		/*
999 		 * The host can generate a rescind message while we
1000 		 * may still be handling the original offer. We deal with
1001 		 * this condition by ensuring the processing is done on the
1002 		 * same CPU.
1003 		 */
1004 		switch (hdr->msgtype) {
1005 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1006 			/*
1007 			 * If we are handling the rescind message;
1008 			 * schedule the work on the global work queue.
1009 			 */
1010 			schedule_work_on(vmbus_connection.connect_cpu,
1011 					 &ctx->work);
1012 			break;
1013 
1014 		case CHANNELMSG_OFFERCHANNEL:
1015 			atomic_inc(&vmbus_connection.offer_in_progress);
1016 			queue_work_on(vmbus_connection.connect_cpu,
1017 				      vmbus_connection.work_queue,
1018 				      &ctx->work);
1019 			break;
1020 
1021 		default:
1022 			queue_work(vmbus_connection.work_queue, &ctx->work);
1023 		}
1024 	} else
1025 		entry->message_handler(hdr);
1026 
1027 msg_handled:
1028 	vmbus_signal_eom(msg, message_type);
1029 }
1030 
1031 
1032 /*
1033  * Direct callback for channels using other deferred processing
1034  */
1035 static void vmbus_channel_isr(struct vmbus_channel *channel)
1036 {
1037 	void (*callback_fn)(void *);
1038 
1039 	callback_fn = READ_ONCE(channel->onchannel_callback);
1040 	if (likely(callback_fn != NULL))
1041 		(*callback_fn)(channel->channel_callback_context);
1042 }
1043 
1044 /*
1045  * Schedule all channels with events pending
1046  */
1047 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1048 {
1049 	unsigned long *recv_int_page;
1050 	u32 maxbits, relid;
1051 
1052 	if (vmbus_proto_version < VERSION_WIN8) {
1053 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1054 		recv_int_page = vmbus_connection.recv_int_page;
1055 	} else {
1056 		/*
1057 		 * When the host is win8 and beyond, the event page
1058 		 * can be directly checked to get the id of the channel
1059 		 * that has the interrupt pending.
1060 		 */
1061 		void *page_addr = hv_cpu->synic_event_page;
1062 		union hv_synic_event_flags *event
1063 			= (union hv_synic_event_flags *)page_addr +
1064 						 VMBUS_MESSAGE_SINT;
1065 
1066 		maxbits = HV_EVENT_FLAGS_COUNT;
1067 		recv_int_page = event->flags;
1068 	}
1069 
1070 	if (unlikely(!recv_int_page))
1071 		return;
1072 
1073 	for_each_set_bit(relid, recv_int_page, maxbits) {
1074 		struct vmbus_channel *channel;
1075 
1076 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1077 			continue;
1078 
1079 		/* Special case - vmbus channel protocol msg */
1080 		if (relid == 0)
1081 			continue;
1082 
1083 		rcu_read_lock();
1084 
1085 		/* Find channel based on relid */
1086 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1087 			if (channel->offermsg.child_relid != relid)
1088 				continue;
1089 
1090 			if (channel->rescind)
1091 				continue;
1092 
1093 			trace_vmbus_chan_sched(channel);
1094 
1095 			++channel->interrupts;
1096 
1097 			switch (channel->callback_mode) {
1098 			case HV_CALL_ISR:
1099 				vmbus_channel_isr(channel);
1100 				break;
1101 
1102 			case HV_CALL_BATCHED:
1103 				hv_begin_read(&channel->inbound);
1104 				/* fallthrough */
1105 			case HV_CALL_DIRECT:
1106 				tasklet_schedule(&channel->callback_event);
1107 			}
1108 		}
1109 
1110 		rcu_read_unlock();
1111 	}
1112 }
1113 
1114 static void vmbus_isr(void)
1115 {
1116 	struct hv_per_cpu_context *hv_cpu
1117 		= this_cpu_ptr(hv_context.cpu_context);
1118 	void *page_addr = hv_cpu->synic_event_page;
1119 	struct hv_message *msg;
1120 	union hv_synic_event_flags *event;
1121 	bool handled = false;
1122 
1123 	if (unlikely(page_addr == NULL))
1124 		return;
1125 
1126 	event = (union hv_synic_event_flags *)page_addr +
1127 					 VMBUS_MESSAGE_SINT;
1128 	/*
1129 	 * Check for events before checking for messages. This is the order
1130 	 * in which events and messages are checked in Windows guests on
1131 	 * Hyper-V, and the Windows team suggested we do the same.
1132 	 */
1133 
1134 	if ((vmbus_proto_version == VERSION_WS2008) ||
1135 		(vmbus_proto_version == VERSION_WIN7)) {
1136 
1137 		/* Since we are a child, we only need to check bit 0 */
1138 		if (sync_test_and_clear_bit(0, event->flags))
1139 			handled = true;
1140 	} else {
1141 		/*
1142 		 * Our host is win8 or above. The signaling mechanism
1143 		 * has changed and we can directly look at the event page.
1144 		 * If bit n is set then we have an interrup on the channel
1145 		 * whose id is n.
1146 		 */
1147 		handled = true;
1148 	}
1149 
1150 	if (handled)
1151 		vmbus_chan_sched(hv_cpu);
1152 
1153 	page_addr = hv_cpu->synic_message_page;
1154 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1155 
1156 	/* Check if there are actual msgs to be processed */
1157 	if (msg->header.message_type != HVMSG_NONE) {
1158 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1159 			hv_process_timer_expiration(msg, hv_cpu);
1160 		else
1161 			tasklet_schedule(&hv_cpu->msg_dpc);
1162 	}
1163 
1164 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1165 }
1166 
1167 /*
1168  * Boolean to control whether to report panic messages over Hyper-V.
1169  *
1170  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1171  */
1172 static int sysctl_record_panic_msg = 1;
1173 
1174 /*
1175  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1176  * buffer and call into Hyper-V to transfer the data.
1177  */
1178 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1179 			 enum kmsg_dump_reason reason)
1180 {
1181 	size_t bytes_written;
1182 	phys_addr_t panic_pa;
1183 
1184 	/* We are only interested in panics. */
1185 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1186 		return;
1187 
1188 	panic_pa = virt_to_phys(hv_panic_page);
1189 
1190 	/*
1191 	 * Write dump contents to the page. No need to synchronize; panic should
1192 	 * be single-threaded.
1193 	 */
1194 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1195 			     &bytes_written);
1196 	if (bytes_written)
1197 		hyperv_report_panic_msg(panic_pa, bytes_written);
1198 }
1199 
1200 static struct kmsg_dumper hv_kmsg_dumper = {
1201 	.dump = hv_kmsg_dump,
1202 };
1203 
1204 static struct ctl_table_header *hv_ctl_table_hdr;
1205 static int zero;
1206 static int one = 1;
1207 
1208 /*
1209  * sysctl option to allow the user to control whether kmsg data should be
1210  * reported to Hyper-V on panic.
1211  */
1212 static struct ctl_table hv_ctl_table[] = {
1213 	{
1214 		.procname       = "hyperv_record_panic_msg",
1215 		.data           = &sysctl_record_panic_msg,
1216 		.maxlen         = sizeof(int),
1217 		.mode           = 0644,
1218 		.proc_handler   = proc_dointvec_minmax,
1219 		.extra1		= &zero,
1220 		.extra2		= &one
1221 	},
1222 	{}
1223 };
1224 
1225 static struct ctl_table hv_root_table[] = {
1226 	{
1227 		.procname	= "kernel",
1228 		.mode		= 0555,
1229 		.child		= hv_ctl_table
1230 	},
1231 	{}
1232 };
1233 
1234 /*
1235  * vmbus_bus_init -Main vmbus driver initialization routine.
1236  *
1237  * Here, we
1238  *	- initialize the vmbus driver context
1239  *	- invoke the vmbus hv main init routine
1240  *	- retrieve the channel offers
1241  */
1242 static int vmbus_bus_init(void)
1243 {
1244 	int ret;
1245 
1246 	/* Hypervisor initialization...setup hypercall page..etc */
1247 	ret = hv_init();
1248 	if (ret != 0) {
1249 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1250 		return ret;
1251 	}
1252 
1253 	ret = bus_register(&hv_bus);
1254 	if (ret)
1255 		return ret;
1256 
1257 	hv_setup_vmbus_irq(vmbus_isr);
1258 
1259 	ret = hv_synic_alloc();
1260 	if (ret)
1261 		goto err_alloc;
1262 	/*
1263 	 * Initialize the per-cpu interrupt state and
1264 	 * connect to the host.
1265 	 */
1266 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1267 				hv_synic_init, hv_synic_cleanup);
1268 	if (ret < 0)
1269 		goto err_alloc;
1270 	hyperv_cpuhp_online = ret;
1271 
1272 	ret = vmbus_connect();
1273 	if (ret)
1274 		goto err_connect;
1275 
1276 	/*
1277 	 * Only register if the crash MSRs are available
1278 	 */
1279 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1280 		u64 hyperv_crash_ctl;
1281 		/*
1282 		 * Sysctl registration is not fatal, since by default
1283 		 * reporting is enabled.
1284 		 */
1285 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1286 		if (!hv_ctl_table_hdr)
1287 			pr_err("Hyper-V: sysctl table register error");
1288 
1289 		/*
1290 		 * Register for panic kmsg callback only if the right
1291 		 * capability is supported by the hypervisor.
1292 		 */
1293 		hv_get_crash_ctl(hyperv_crash_ctl);
1294 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1295 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1296 			if (hv_panic_page) {
1297 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1298 				if (ret)
1299 					pr_err("Hyper-V: kmsg dump register "
1300 						"error 0x%x\n", ret);
1301 			} else
1302 				pr_err("Hyper-V: panic message page memory "
1303 					"allocation failed");
1304 		}
1305 
1306 		register_die_notifier(&hyperv_die_block);
1307 		atomic_notifier_chain_register(&panic_notifier_list,
1308 					       &hyperv_panic_block);
1309 	}
1310 
1311 	vmbus_request_offers();
1312 
1313 	return 0;
1314 
1315 err_connect:
1316 	cpuhp_remove_state(hyperv_cpuhp_online);
1317 err_alloc:
1318 	hv_synic_free();
1319 	hv_remove_vmbus_irq();
1320 
1321 	bus_unregister(&hv_bus);
1322 	free_page((unsigned long)hv_panic_page);
1323 	unregister_sysctl_table(hv_ctl_table_hdr);
1324 	hv_ctl_table_hdr = NULL;
1325 	return ret;
1326 }
1327 
1328 /**
1329  * __vmbus_child_driver_register() - Register a vmbus's driver
1330  * @hv_driver: Pointer to driver structure you want to register
1331  * @owner: owner module of the drv
1332  * @mod_name: module name string
1333  *
1334  * Registers the given driver with Linux through the 'driver_register()' call
1335  * and sets up the hyper-v vmbus handling for this driver.
1336  * It will return the state of the 'driver_register()' call.
1337  *
1338  */
1339 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1340 {
1341 	int ret;
1342 
1343 	pr_info("registering driver %s\n", hv_driver->name);
1344 
1345 	ret = vmbus_exists();
1346 	if (ret < 0)
1347 		return ret;
1348 
1349 	hv_driver->driver.name = hv_driver->name;
1350 	hv_driver->driver.owner = owner;
1351 	hv_driver->driver.mod_name = mod_name;
1352 	hv_driver->driver.bus = &hv_bus;
1353 
1354 	spin_lock_init(&hv_driver->dynids.lock);
1355 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1356 
1357 	ret = driver_register(&hv_driver->driver);
1358 
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1362 
1363 /**
1364  * vmbus_driver_unregister() - Unregister a vmbus's driver
1365  * @hv_driver: Pointer to driver structure you want to
1366  *             un-register
1367  *
1368  * Un-register the given driver that was previous registered with a call to
1369  * vmbus_driver_register()
1370  */
1371 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1372 {
1373 	pr_info("unregistering driver %s\n", hv_driver->name);
1374 
1375 	if (!vmbus_exists()) {
1376 		driver_unregister(&hv_driver->driver);
1377 		vmbus_free_dynids(hv_driver);
1378 	}
1379 }
1380 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1381 
1382 
1383 /*
1384  * Called when last reference to channel is gone.
1385  */
1386 static void vmbus_chan_release(struct kobject *kobj)
1387 {
1388 	struct vmbus_channel *channel
1389 		= container_of(kobj, struct vmbus_channel, kobj);
1390 
1391 	kfree_rcu(channel, rcu);
1392 }
1393 
1394 struct vmbus_chan_attribute {
1395 	struct attribute attr;
1396 	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1397 	ssize_t (*store)(struct vmbus_channel *chan,
1398 			 const char *buf, size_t count);
1399 };
1400 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1401 	struct vmbus_chan_attribute chan_attr_##_name \
1402 		= __ATTR(_name, _mode, _show, _store)
1403 #define VMBUS_CHAN_ATTR_RW(_name) \
1404 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1405 #define VMBUS_CHAN_ATTR_RO(_name) \
1406 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1407 #define VMBUS_CHAN_ATTR_WO(_name) \
1408 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1409 
1410 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1411 				    struct attribute *attr, char *buf)
1412 {
1413 	const struct vmbus_chan_attribute *attribute
1414 		= container_of(attr, struct vmbus_chan_attribute, attr);
1415 	const struct vmbus_channel *chan
1416 		= container_of(kobj, struct vmbus_channel, kobj);
1417 
1418 	if (!attribute->show)
1419 		return -EIO;
1420 
1421 	if (chan->state != CHANNEL_OPENED_STATE)
1422 		return -EINVAL;
1423 
1424 	return attribute->show(chan, buf);
1425 }
1426 
1427 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1428 	.show = vmbus_chan_attr_show,
1429 };
1430 
1431 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1432 {
1433 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1434 
1435 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1436 }
1437 static VMBUS_CHAN_ATTR_RO(out_mask);
1438 
1439 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1440 {
1441 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1442 
1443 	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1444 }
1445 static VMBUS_CHAN_ATTR_RO(in_mask);
1446 
1447 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1448 {
1449 	const struct hv_ring_buffer_info *rbi = &channel->inbound;
1450 
1451 	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1452 }
1453 static VMBUS_CHAN_ATTR_RO(read_avail);
1454 
1455 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1456 {
1457 	const struct hv_ring_buffer_info *rbi = &channel->outbound;
1458 
1459 	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1460 }
1461 static VMBUS_CHAN_ATTR_RO(write_avail);
1462 
1463 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1464 {
1465 	return sprintf(buf, "%u\n", channel->target_cpu);
1466 }
1467 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1468 
1469 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1470 				    char *buf)
1471 {
1472 	return sprintf(buf, "%d\n",
1473 		       channel_pending(channel,
1474 				       vmbus_connection.monitor_pages[1]));
1475 }
1476 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1477 
1478 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1479 				    char *buf)
1480 {
1481 	return sprintf(buf, "%d\n",
1482 		       channel_latency(channel,
1483 				       vmbus_connection.monitor_pages[1]));
1484 }
1485 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1486 
1487 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1488 {
1489 	return sprintf(buf, "%llu\n", channel->interrupts);
1490 }
1491 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1492 
1493 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1494 {
1495 	return sprintf(buf, "%llu\n", channel->sig_events);
1496 }
1497 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1498 
1499 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1500 					  char *buf)
1501 {
1502 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1503 }
1504 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1505 
1506 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1507 				  char *buf)
1508 {
1509 	return sprintf(buf, "%u\n",
1510 		       channel->offermsg.offer.sub_channel_index);
1511 }
1512 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1513 
1514 static struct attribute *vmbus_chan_attrs[] = {
1515 	&chan_attr_out_mask.attr,
1516 	&chan_attr_in_mask.attr,
1517 	&chan_attr_read_avail.attr,
1518 	&chan_attr_write_avail.attr,
1519 	&chan_attr_cpu.attr,
1520 	&chan_attr_pending.attr,
1521 	&chan_attr_latency.attr,
1522 	&chan_attr_interrupts.attr,
1523 	&chan_attr_events.attr,
1524 	&chan_attr_monitor_id.attr,
1525 	&chan_attr_subchannel_id.attr,
1526 	NULL
1527 };
1528 
1529 static struct kobj_type vmbus_chan_ktype = {
1530 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1531 	.release = vmbus_chan_release,
1532 	.default_attrs = vmbus_chan_attrs,
1533 };
1534 
1535 /*
1536  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1537  */
1538 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1539 {
1540 	struct kobject *kobj = &channel->kobj;
1541 	u32 relid = channel->offermsg.child_relid;
1542 	int ret;
1543 
1544 	kobj->kset = dev->channels_kset;
1545 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1546 				   "%u", relid);
1547 	if (ret)
1548 		return ret;
1549 
1550 	kobject_uevent(kobj, KOBJ_ADD);
1551 
1552 	return 0;
1553 }
1554 
1555 /*
1556  * vmbus_device_create - Creates and registers a new child device
1557  * on the vmbus.
1558  */
1559 struct hv_device *vmbus_device_create(const uuid_le *type,
1560 				      const uuid_le *instance,
1561 				      struct vmbus_channel *channel)
1562 {
1563 	struct hv_device *child_device_obj;
1564 
1565 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1566 	if (!child_device_obj) {
1567 		pr_err("Unable to allocate device object for child device\n");
1568 		return NULL;
1569 	}
1570 
1571 	child_device_obj->channel = channel;
1572 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1573 	memcpy(&child_device_obj->dev_instance, instance,
1574 	       sizeof(uuid_le));
1575 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1576 
1577 
1578 	return child_device_obj;
1579 }
1580 
1581 /*
1582  * vmbus_device_register - Register the child device
1583  */
1584 int vmbus_device_register(struct hv_device *child_device_obj)
1585 {
1586 	struct kobject *kobj = &child_device_obj->device.kobj;
1587 	int ret;
1588 
1589 	dev_set_name(&child_device_obj->device, "%pUl",
1590 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1591 
1592 	child_device_obj->device.bus = &hv_bus;
1593 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1594 	child_device_obj->device.release = vmbus_device_release;
1595 
1596 	/*
1597 	 * Register with the LDM. This will kick off the driver/device
1598 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1599 	 */
1600 	ret = device_register(&child_device_obj->device);
1601 	if (ret) {
1602 		pr_err("Unable to register child device\n");
1603 		return ret;
1604 	}
1605 
1606 	child_device_obj->channels_kset = kset_create_and_add("channels",
1607 							      NULL, kobj);
1608 	if (!child_device_obj->channels_kset) {
1609 		ret = -ENOMEM;
1610 		goto err_dev_unregister;
1611 	}
1612 
1613 	ret = vmbus_add_channel_kobj(child_device_obj,
1614 				     child_device_obj->channel);
1615 	if (ret) {
1616 		pr_err("Unable to register primary channeln");
1617 		goto err_kset_unregister;
1618 	}
1619 
1620 	return 0;
1621 
1622 err_kset_unregister:
1623 	kset_unregister(child_device_obj->channels_kset);
1624 
1625 err_dev_unregister:
1626 	device_unregister(&child_device_obj->device);
1627 	return ret;
1628 }
1629 
1630 /*
1631  * vmbus_device_unregister - Remove the specified child device
1632  * from the vmbus.
1633  */
1634 void vmbus_device_unregister(struct hv_device *device_obj)
1635 {
1636 	pr_debug("child device %s unregistered\n",
1637 		dev_name(&device_obj->device));
1638 
1639 	kset_unregister(device_obj->channels_kset);
1640 
1641 	/*
1642 	 * Kick off the process of unregistering the device.
1643 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1644 	 */
1645 	device_unregister(&device_obj->device);
1646 }
1647 
1648 
1649 /*
1650  * VMBUS is an acpi enumerated device. Get the information we
1651  * need from DSDT.
1652  */
1653 #define VTPM_BASE_ADDRESS 0xfed40000
1654 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1655 {
1656 	resource_size_t start = 0;
1657 	resource_size_t end = 0;
1658 	struct resource *new_res;
1659 	struct resource **old_res = &hyperv_mmio;
1660 	struct resource **prev_res = NULL;
1661 
1662 	switch (res->type) {
1663 
1664 	/*
1665 	 * "Address" descriptors are for bus windows. Ignore
1666 	 * "memory" descriptors, which are for registers on
1667 	 * devices.
1668 	 */
1669 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1670 		start = res->data.address32.address.minimum;
1671 		end = res->data.address32.address.maximum;
1672 		break;
1673 
1674 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1675 		start = res->data.address64.address.minimum;
1676 		end = res->data.address64.address.maximum;
1677 		break;
1678 
1679 	default:
1680 		/* Unused resource type */
1681 		return AE_OK;
1682 
1683 	}
1684 	/*
1685 	 * Ignore ranges that are below 1MB, as they're not
1686 	 * necessary or useful here.
1687 	 */
1688 	if (end < 0x100000)
1689 		return AE_OK;
1690 
1691 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1692 	if (!new_res)
1693 		return AE_NO_MEMORY;
1694 
1695 	/* If this range overlaps the virtual TPM, truncate it. */
1696 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1697 		end = VTPM_BASE_ADDRESS;
1698 
1699 	new_res->name = "hyperv mmio";
1700 	new_res->flags = IORESOURCE_MEM;
1701 	new_res->start = start;
1702 	new_res->end = end;
1703 
1704 	/*
1705 	 * If two ranges are adjacent, merge them.
1706 	 */
1707 	do {
1708 		if (!*old_res) {
1709 			*old_res = new_res;
1710 			break;
1711 		}
1712 
1713 		if (((*old_res)->end + 1) == new_res->start) {
1714 			(*old_res)->end = new_res->end;
1715 			kfree(new_res);
1716 			break;
1717 		}
1718 
1719 		if ((*old_res)->start == new_res->end + 1) {
1720 			(*old_res)->start = new_res->start;
1721 			kfree(new_res);
1722 			break;
1723 		}
1724 
1725 		if ((*old_res)->start > new_res->end) {
1726 			new_res->sibling = *old_res;
1727 			if (prev_res)
1728 				(*prev_res)->sibling = new_res;
1729 			*old_res = new_res;
1730 			break;
1731 		}
1732 
1733 		prev_res = old_res;
1734 		old_res = &(*old_res)->sibling;
1735 
1736 	} while (1);
1737 
1738 	return AE_OK;
1739 }
1740 
1741 static int vmbus_acpi_remove(struct acpi_device *device)
1742 {
1743 	struct resource *cur_res;
1744 	struct resource *next_res;
1745 
1746 	if (hyperv_mmio) {
1747 		if (fb_mmio) {
1748 			__release_region(hyperv_mmio, fb_mmio->start,
1749 					 resource_size(fb_mmio));
1750 			fb_mmio = NULL;
1751 		}
1752 
1753 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1754 			next_res = cur_res->sibling;
1755 			kfree(cur_res);
1756 		}
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static void vmbus_reserve_fb(void)
1763 {
1764 	int size;
1765 	/*
1766 	 * Make a claim for the frame buffer in the resource tree under the
1767 	 * first node, which will be the one below 4GB.  The length seems to
1768 	 * be underreported, particularly in a Generation 1 VM.  So start out
1769 	 * reserving a larger area and make it smaller until it succeeds.
1770 	 */
1771 
1772 	if (screen_info.lfb_base) {
1773 		if (efi_enabled(EFI_BOOT))
1774 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1775 		else
1776 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1777 
1778 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1779 			fb_mmio = __request_region(hyperv_mmio,
1780 						   screen_info.lfb_base, size,
1781 						   fb_mmio_name, 0);
1782 		}
1783 	}
1784 }
1785 
1786 /**
1787  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1788  * @new:		If successful, supplied a pointer to the
1789  *			allocated MMIO space.
1790  * @device_obj:		Identifies the caller
1791  * @min:		Minimum guest physical address of the
1792  *			allocation
1793  * @max:		Maximum guest physical address
1794  * @size:		Size of the range to be allocated
1795  * @align:		Alignment of the range to be allocated
1796  * @fb_overlap_ok:	Whether this allocation can be allowed
1797  *			to overlap the video frame buffer.
1798  *
1799  * This function walks the resources granted to VMBus by the
1800  * _CRS object in the ACPI namespace underneath the parent
1801  * "bridge" whether that's a root PCI bus in the Generation 1
1802  * case or a Module Device in the Generation 2 case.  It then
1803  * attempts to allocate from the global MMIO pool in a way that
1804  * matches the constraints supplied in these parameters and by
1805  * that _CRS.
1806  *
1807  * Return: 0 on success, -errno on failure
1808  */
1809 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1810 			resource_size_t min, resource_size_t max,
1811 			resource_size_t size, resource_size_t align,
1812 			bool fb_overlap_ok)
1813 {
1814 	struct resource *iter, *shadow;
1815 	resource_size_t range_min, range_max, start;
1816 	const char *dev_n = dev_name(&device_obj->device);
1817 	int retval;
1818 
1819 	retval = -ENXIO;
1820 	down(&hyperv_mmio_lock);
1821 
1822 	/*
1823 	 * If overlaps with frame buffers are allowed, then first attempt to
1824 	 * make the allocation from within the reserved region.  Because it
1825 	 * is already reserved, no shadow allocation is necessary.
1826 	 */
1827 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1828 	    !(max < fb_mmio->start)) {
1829 
1830 		range_min = fb_mmio->start;
1831 		range_max = fb_mmio->end;
1832 		start = (range_min + align - 1) & ~(align - 1);
1833 		for (; start + size - 1 <= range_max; start += align) {
1834 			*new = request_mem_region_exclusive(start, size, dev_n);
1835 			if (*new) {
1836 				retval = 0;
1837 				goto exit;
1838 			}
1839 		}
1840 	}
1841 
1842 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1843 		if ((iter->start >= max) || (iter->end <= min))
1844 			continue;
1845 
1846 		range_min = iter->start;
1847 		range_max = iter->end;
1848 		start = (range_min + align - 1) & ~(align - 1);
1849 		for (; start + size - 1 <= range_max; start += align) {
1850 			shadow = __request_region(iter, start, size, NULL,
1851 						  IORESOURCE_BUSY);
1852 			if (!shadow)
1853 				continue;
1854 
1855 			*new = request_mem_region_exclusive(start, size, dev_n);
1856 			if (*new) {
1857 				shadow->name = (char *)*new;
1858 				retval = 0;
1859 				goto exit;
1860 			}
1861 
1862 			__release_region(iter, start, size);
1863 		}
1864 	}
1865 
1866 exit:
1867 	up(&hyperv_mmio_lock);
1868 	return retval;
1869 }
1870 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1871 
1872 /**
1873  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1874  * @start:		Base address of region to release.
1875  * @size:		Size of the range to be allocated
1876  *
1877  * This function releases anything requested by
1878  * vmbus_mmio_allocate().
1879  */
1880 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1881 {
1882 	struct resource *iter;
1883 
1884 	down(&hyperv_mmio_lock);
1885 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1886 		if ((iter->start >= start + size) || (iter->end <= start))
1887 			continue;
1888 
1889 		__release_region(iter, start, size);
1890 	}
1891 	release_mem_region(start, size);
1892 	up(&hyperv_mmio_lock);
1893 
1894 }
1895 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1896 
1897 static int vmbus_acpi_add(struct acpi_device *device)
1898 {
1899 	acpi_status result;
1900 	int ret_val = -ENODEV;
1901 	struct acpi_device *ancestor;
1902 
1903 	hv_acpi_dev = device;
1904 
1905 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1906 					vmbus_walk_resources, NULL);
1907 
1908 	if (ACPI_FAILURE(result))
1909 		goto acpi_walk_err;
1910 	/*
1911 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1912 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1913 	 */
1914 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1915 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1916 					     vmbus_walk_resources, NULL);
1917 
1918 		if (ACPI_FAILURE(result))
1919 			continue;
1920 		if (hyperv_mmio) {
1921 			vmbus_reserve_fb();
1922 			break;
1923 		}
1924 	}
1925 	ret_val = 0;
1926 
1927 acpi_walk_err:
1928 	complete(&probe_event);
1929 	if (ret_val)
1930 		vmbus_acpi_remove(device);
1931 	return ret_val;
1932 }
1933 
1934 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1935 	{"VMBUS", 0},
1936 	{"VMBus", 0},
1937 	{"", 0},
1938 };
1939 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1940 
1941 static struct acpi_driver vmbus_acpi_driver = {
1942 	.name = "vmbus",
1943 	.ids = vmbus_acpi_device_ids,
1944 	.ops = {
1945 		.add = vmbus_acpi_add,
1946 		.remove = vmbus_acpi_remove,
1947 	},
1948 };
1949 
1950 static void hv_kexec_handler(void)
1951 {
1952 	hv_synic_clockevents_cleanup();
1953 	vmbus_initiate_unload(false);
1954 	vmbus_connection.conn_state = DISCONNECTED;
1955 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1956 	mb();
1957 	cpuhp_remove_state(hyperv_cpuhp_online);
1958 	hyperv_cleanup();
1959 };
1960 
1961 static void hv_crash_handler(struct pt_regs *regs)
1962 {
1963 	vmbus_initiate_unload(true);
1964 	/*
1965 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1966 	 * doing the cleanup for current CPU only. This should be sufficient
1967 	 * for kdump.
1968 	 */
1969 	vmbus_connection.conn_state = DISCONNECTED;
1970 	hv_synic_cleanup(smp_processor_id());
1971 	hyperv_cleanup();
1972 };
1973 
1974 static int __init hv_acpi_init(void)
1975 {
1976 	int ret, t;
1977 
1978 	if (!hv_is_hyperv_initialized())
1979 		return -ENODEV;
1980 
1981 	init_completion(&probe_event);
1982 
1983 	/*
1984 	 * Get ACPI resources first.
1985 	 */
1986 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1987 
1988 	if (ret)
1989 		return ret;
1990 
1991 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1992 	if (t == 0) {
1993 		ret = -ETIMEDOUT;
1994 		goto cleanup;
1995 	}
1996 
1997 	ret = vmbus_bus_init();
1998 	if (ret)
1999 		goto cleanup;
2000 
2001 	hv_setup_kexec_handler(hv_kexec_handler);
2002 	hv_setup_crash_handler(hv_crash_handler);
2003 
2004 	return 0;
2005 
2006 cleanup:
2007 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2008 	hv_acpi_dev = NULL;
2009 	return ret;
2010 }
2011 
2012 static void __exit vmbus_exit(void)
2013 {
2014 	int cpu;
2015 
2016 	hv_remove_kexec_handler();
2017 	hv_remove_crash_handler();
2018 	vmbus_connection.conn_state = DISCONNECTED;
2019 	hv_synic_clockevents_cleanup();
2020 	vmbus_disconnect();
2021 	hv_remove_vmbus_irq();
2022 	for_each_online_cpu(cpu) {
2023 		struct hv_per_cpu_context *hv_cpu
2024 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2025 
2026 		tasklet_kill(&hv_cpu->msg_dpc);
2027 	}
2028 	vmbus_free_channels();
2029 
2030 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2031 		kmsg_dump_unregister(&hv_kmsg_dumper);
2032 		unregister_die_notifier(&hyperv_die_block);
2033 		atomic_notifier_chain_unregister(&panic_notifier_list,
2034 						 &hyperv_panic_block);
2035 	}
2036 
2037 	free_page((unsigned long)hv_panic_page);
2038 	unregister_sysctl_table(hv_ctl_table_hdr);
2039 	hv_ctl_table_hdr = NULL;
2040 	bus_unregister(&hv_bus);
2041 
2042 	cpuhp_remove_state(hyperv_cpuhp_online);
2043 	hv_synic_free();
2044 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2045 }
2046 
2047 
2048 MODULE_LICENSE("GPL");
2049 
2050 subsys_initcall(hv_acpi_init);
2051 module_exit(vmbus_exit);
2052