1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include <linux/random.h> 46 #include "hyperv_vmbus.h" 47 48 struct vmbus_dynid { 49 struct list_head node; 50 struct hv_vmbus_device_id id; 51 }; 52 53 static struct acpi_device *hv_acpi_dev; 54 55 static struct completion probe_event; 56 57 static int hyperv_cpuhp_online; 58 59 static void *hv_panic_page; 60 61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 62 void *args) 63 { 64 struct pt_regs *regs; 65 66 regs = current_pt_regs(); 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 73 void *args) 74 { 75 struct die_args *die = (struct die_args *)args; 76 struct pt_regs *regs = die->regs; 77 78 hyperv_report_panic(regs, val); 79 return NOTIFY_DONE; 80 } 81 82 static struct notifier_block hyperv_die_block = { 83 .notifier_call = hyperv_die_event, 84 }; 85 static struct notifier_block hyperv_panic_block = { 86 .notifier_call = hyperv_panic_event, 87 }; 88 89 static const char *fb_mmio_name = "fb_range"; 90 static struct resource *fb_mmio; 91 static struct resource *hyperv_mmio; 92 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 93 94 static int vmbus_exists(void) 95 { 96 if (hv_acpi_dev == NULL) 97 return -ENODEV; 98 99 return 0; 100 } 101 102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 104 { 105 int i; 106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 108 } 109 110 static u8 channel_monitor_group(const struct vmbus_channel *channel) 111 { 112 return (u8)channel->offermsg.monitorid / 32; 113 } 114 115 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 116 { 117 return (u8)channel->offermsg.monitorid % 32; 118 } 119 120 static u32 channel_pending(const struct vmbus_channel *channel, 121 const struct hv_monitor_page *monitor_page) 122 { 123 u8 monitor_group = channel_monitor_group(channel); 124 125 return monitor_page->trigger_group[monitor_group].pending; 126 } 127 128 static u32 channel_latency(const struct vmbus_channel *channel, 129 const struct hv_monitor_page *monitor_page) 130 { 131 u8 monitor_group = channel_monitor_group(channel); 132 u8 monitor_offset = channel_monitor_offset(channel); 133 134 return monitor_page->latency[monitor_group][monitor_offset]; 135 } 136 137 static u32 channel_conn_id(struct vmbus_channel *channel, 138 struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 u8 monitor_offset = channel_monitor_offset(channel); 142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 143 } 144 145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 146 char *buf) 147 { 148 struct hv_device *hv_dev = device_to_hv_device(dev); 149 150 if (!hv_dev->channel) 151 return -ENODEV; 152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 153 } 154 static DEVICE_ATTR_RO(id); 155 156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 157 char *buf) 158 { 159 struct hv_device *hv_dev = device_to_hv_device(dev); 160 161 if (!hv_dev->channel) 162 return -ENODEV; 163 return sprintf(buf, "%d\n", hv_dev->channel->state); 164 } 165 static DEVICE_ATTR_RO(state); 166 167 static ssize_t monitor_id_show(struct device *dev, 168 struct device_attribute *dev_attr, char *buf) 169 { 170 struct hv_device *hv_dev = device_to_hv_device(dev); 171 172 if (!hv_dev->channel) 173 return -ENODEV; 174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 175 } 176 static DEVICE_ATTR_RO(monitor_id); 177 178 static ssize_t class_id_show(struct device *dev, 179 struct device_attribute *dev_attr, char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "{%pUl}\n", 186 hv_dev->channel->offermsg.offer.if_type.b); 187 } 188 static DEVICE_ATTR_RO(class_id); 189 190 static ssize_t device_id_show(struct device *dev, 191 struct device_attribute *dev_attr, char *buf) 192 { 193 struct hv_device *hv_dev = device_to_hv_device(dev); 194 195 if (!hv_dev->channel) 196 return -ENODEV; 197 return sprintf(buf, "{%pUl}\n", 198 hv_dev->channel->offermsg.offer.if_instance.b); 199 } 200 static DEVICE_ATTR_RO(device_id); 201 202 static ssize_t modalias_show(struct device *dev, 203 struct device_attribute *dev_attr, char *buf) 204 { 205 struct hv_device *hv_dev = device_to_hv_device(dev); 206 char alias_name[VMBUS_ALIAS_LEN + 1]; 207 208 print_alias_name(hv_dev, alias_name); 209 return sprintf(buf, "vmbus:%s\n", alias_name); 210 } 211 static DEVICE_ATTR_RO(modalias); 212 213 #ifdef CONFIG_NUMA 214 static ssize_t numa_node_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct hv_device *hv_dev = device_to_hv_device(dev); 218 219 if (!hv_dev->channel) 220 return -ENODEV; 221 222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 223 } 224 static DEVICE_ATTR_RO(numa_node); 225 #endif 226 227 static ssize_t server_monitor_pending_show(struct device *dev, 228 struct device_attribute *dev_attr, 229 char *buf) 230 { 231 struct hv_device *hv_dev = device_to_hv_device(dev); 232 233 if (!hv_dev->channel) 234 return -ENODEV; 235 return sprintf(buf, "%d\n", 236 channel_pending(hv_dev->channel, 237 vmbus_connection.monitor_pages[1])); 238 } 239 static DEVICE_ATTR_RO(server_monitor_pending); 240 241 static ssize_t client_monitor_pending_show(struct device *dev, 242 struct device_attribute *dev_attr, 243 char *buf) 244 { 245 struct hv_device *hv_dev = device_to_hv_device(dev); 246 247 if (!hv_dev->channel) 248 return -ENODEV; 249 return sprintf(buf, "%d\n", 250 channel_pending(hv_dev->channel, 251 vmbus_connection.monitor_pages[1])); 252 } 253 static DEVICE_ATTR_RO(client_monitor_pending); 254 255 static ssize_t server_monitor_latency_show(struct device *dev, 256 struct device_attribute *dev_attr, 257 char *buf) 258 { 259 struct hv_device *hv_dev = device_to_hv_device(dev); 260 261 if (!hv_dev->channel) 262 return -ENODEV; 263 return sprintf(buf, "%d\n", 264 channel_latency(hv_dev->channel, 265 vmbus_connection.monitor_pages[0])); 266 } 267 static DEVICE_ATTR_RO(server_monitor_latency); 268 269 static ssize_t client_monitor_latency_show(struct device *dev, 270 struct device_attribute *dev_attr, 271 char *buf) 272 { 273 struct hv_device *hv_dev = device_to_hv_device(dev); 274 275 if (!hv_dev->channel) 276 return -ENODEV; 277 return sprintf(buf, "%d\n", 278 channel_latency(hv_dev->channel, 279 vmbus_connection.monitor_pages[1])); 280 } 281 static DEVICE_ATTR_RO(client_monitor_latency); 282 283 static ssize_t server_monitor_conn_id_show(struct device *dev, 284 struct device_attribute *dev_attr, 285 char *buf) 286 { 287 struct hv_device *hv_dev = device_to_hv_device(dev); 288 289 if (!hv_dev->channel) 290 return -ENODEV; 291 return sprintf(buf, "%d\n", 292 channel_conn_id(hv_dev->channel, 293 vmbus_connection.monitor_pages[0])); 294 } 295 static DEVICE_ATTR_RO(server_monitor_conn_id); 296 297 static ssize_t client_monitor_conn_id_show(struct device *dev, 298 struct device_attribute *dev_attr, 299 char *buf) 300 { 301 struct hv_device *hv_dev = device_to_hv_device(dev); 302 303 if (!hv_dev->channel) 304 return -ENODEV; 305 return sprintf(buf, "%d\n", 306 channel_conn_id(hv_dev->channel, 307 vmbus_connection.monitor_pages[1])); 308 } 309 static DEVICE_ATTR_RO(client_monitor_conn_id); 310 311 static ssize_t out_intr_mask_show(struct device *dev, 312 struct device_attribute *dev_attr, char *buf) 313 { 314 struct hv_device *hv_dev = device_to_hv_device(dev); 315 struct hv_ring_buffer_debug_info outbound; 316 int ret; 317 318 if (!hv_dev->channel) 319 return -ENODEV; 320 321 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 322 &outbound); 323 if (ret < 0) 324 return ret; 325 326 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 327 } 328 static DEVICE_ATTR_RO(out_intr_mask); 329 330 static ssize_t out_read_index_show(struct device *dev, 331 struct device_attribute *dev_attr, char *buf) 332 { 333 struct hv_device *hv_dev = device_to_hv_device(dev); 334 struct hv_ring_buffer_debug_info outbound; 335 int ret; 336 337 if (!hv_dev->channel) 338 return -ENODEV; 339 340 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 341 &outbound); 342 if (ret < 0) 343 return ret; 344 return sprintf(buf, "%d\n", outbound.current_read_index); 345 } 346 static DEVICE_ATTR_RO(out_read_index); 347 348 static ssize_t out_write_index_show(struct device *dev, 349 struct device_attribute *dev_attr, 350 char *buf) 351 { 352 struct hv_device *hv_dev = device_to_hv_device(dev); 353 struct hv_ring_buffer_debug_info outbound; 354 int ret; 355 356 if (!hv_dev->channel) 357 return -ENODEV; 358 359 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 360 &outbound); 361 if (ret < 0) 362 return ret; 363 return sprintf(buf, "%d\n", outbound.current_write_index); 364 } 365 static DEVICE_ATTR_RO(out_write_index); 366 367 static ssize_t out_read_bytes_avail_show(struct device *dev, 368 struct device_attribute *dev_attr, 369 char *buf) 370 { 371 struct hv_device *hv_dev = device_to_hv_device(dev); 372 struct hv_ring_buffer_debug_info outbound; 373 int ret; 374 375 if (!hv_dev->channel) 376 return -ENODEV; 377 378 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 379 &outbound); 380 if (ret < 0) 381 return ret; 382 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 383 } 384 static DEVICE_ATTR_RO(out_read_bytes_avail); 385 386 static ssize_t out_write_bytes_avail_show(struct device *dev, 387 struct device_attribute *dev_attr, 388 char *buf) 389 { 390 struct hv_device *hv_dev = device_to_hv_device(dev); 391 struct hv_ring_buffer_debug_info outbound; 392 int ret; 393 394 if (!hv_dev->channel) 395 return -ENODEV; 396 397 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 398 &outbound); 399 if (ret < 0) 400 return ret; 401 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 402 } 403 static DEVICE_ATTR_RO(out_write_bytes_avail); 404 405 static ssize_t in_intr_mask_show(struct device *dev, 406 struct device_attribute *dev_attr, char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info inbound; 410 int ret; 411 412 if (!hv_dev->channel) 413 return -ENODEV; 414 415 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 416 if (ret < 0) 417 return ret; 418 419 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 420 } 421 static DEVICE_ATTR_RO(in_intr_mask); 422 423 static ssize_t in_read_index_show(struct device *dev, 424 struct device_attribute *dev_attr, char *buf) 425 { 426 struct hv_device *hv_dev = device_to_hv_device(dev); 427 struct hv_ring_buffer_debug_info inbound; 428 int ret; 429 430 if (!hv_dev->channel) 431 return -ENODEV; 432 433 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 434 if (ret < 0) 435 return ret; 436 437 return sprintf(buf, "%d\n", inbound.current_read_index); 438 } 439 static DEVICE_ATTR_RO(in_read_index); 440 441 static ssize_t in_write_index_show(struct device *dev, 442 struct device_attribute *dev_attr, char *buf) 443 { 444 struct hv_device *hv_dev = device_to_hv_device(dev); 445 struct hv_ring_buffer_debug_info inbound; 446 int ret; 447 448 if (!hv_dev->channel) 449 return -ENODEV; 450 451 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 452 if (ret < 0) 453 return ret; 454 455 return sprintf(buf, "%d\n", inbound.current_write_index); 456 } 457 static DEVICE_ATTR_RO(in_write_index); 458 459 static ssize_t in_read_bytes_avail_show(struct device *dev, 460 struct device_attribute *dev_attr, 461 char *buf) 462 { 463 struct hv_device *hv_dev = device_to_hv_device(dev); 464 struct hv_ring_buffer_debug_info inbound; 465 int ret; 466 467 if (!hv_dev->channel) 468 return -ENODEV; 469 470 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 471 if (ret < 0) 472 return ret; 473 474 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 475 } 476 static DEVICE_ATTR_RO(in_read_bytes_avail); 477 478 static ssize_t in_write_bytes_avail_show(struct device *dev, 479 struct device_attribute *dev_attr, 480 char *buf) 481 { 482 struct hv_device *hv_dev = device_to_hv_device(dev); 483 struct hv_ring_buffer_debug_info inbound; 484 int ret; 485 486 if (!hv_dev->channel) 487 return -ENODEV; 488 489 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 490 if (ret < 0) 491 return ret; 492 493 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 494 } 495 static DEVICE_ATTR_RO(in_write_bytes_avail); 496 497 static ssize_t channel_vp_mapping_show(struct device *dev, 498 struct device_attribute *dev_attr, 499 char *buf) 500 { 501 struct hv_device *hv_dev = device_to_hv_device(dev); 502 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 503 unsigned long flags; 504 int buf_size = PAGE_SIZE, n_written, tot_written; 505 struct list_head *cur; 506 507 if (!channel) 508 return -ENODEV; 509 510 tot_written = snprintf(buf, buf_size, "%u:%u\n", 511 channel->offermsg.child_relid, channel->target_cpu); 512 513 spin_lock_irqsave(&channel->lock, flags); 514 515 list_for_each(cur, &channel->sc_list) { 516 if (tot_written >= buf_size - 1) 517 break; 518 519 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 520 n_written = scnprintf(buf + tot_written, 521 buf_size - tot_written, 522 "%u:%u\n", 523 cur_sc->offermsg.child_relid, 524 cur_sc->target_cpu); 525 tot_written += n_written; 526 } 527 528 spin_unlock_irqrestore(&channel->lock, flags); 529 530 return tot_written; 531 } 532 static DEVICE_ATTR_RO(channel_vp_mapping); 533 534 static ssize_t vendor_show(struct device *dev, 535 struct device_attribute *dev_attr, 536 char *buf) 537 { 538 struct hv_device *hv_dev = device_to_hv_device(dev); 539 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 540 } 541 static DEVICE_ATTR_RO(vendor); 542 543 static ssize_t device_show(struct device *dev, 544 struct device_attribute *dev_attr, 545 char *buf) 546 { 547 struct hv_device *hv_dev = device_to_hv_device(dev); 548 return sprintf(buf, "0x%x\n", hv_dev->device_id); 549 } 550 static DEVICE_ATTR_RO(device); 551 552 static ssize_t driver_override_store(struct device *dev, 553 struct device_attribute *attr, 554 const char *buf, size_t count) 555 { 556 struct hv_device *hv_dev = device_to_hv_device(dev); 557 char *driver_override, *old, *cp; 558 559 /* We need to keep extra room for a newline */ 560 if (count >= (PAGE_SIZE - 1)) 561 return -EINVAL; 562 563 driver_override = kstrndup(buf, count, GFP_KERNEL); 564 if (!driver_override) 565 return -ENOMEM; 566 567 cp = strchr(driver_override, '\n'); 568 if (cp) 569 *cp = '\0'; 570 571 device_lock(dev); 572 old = hv_dev->driver_override; 573 if (strlen(driver_override)) { 574 hv_dev->driver_override = driver_override; 575 } else { 576 kfree(driver_override); 577 hv_dev->driver_override = NULL; 578 } 579 device_unlock(dev); 580 581 kfree(old); 582 583 return count; 584 } 585 586 static ssize_t driver_override_show(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct hv_device *hv_dev = device_to_hv_device(dev); 590 ssize_t len; 591 592 device_lock(dev); 593 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 594 device_unlock(dev); 595 596 return len; 597 } 598 static DEVICE_ATTR_RW(driver_override); 599 600 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 601 static struct attribute *vmbus_dev_attrs[] = { 602 &dev_attr_id.attr, 603 &dev_attr_state.attr, 604 &dev_attr_monitor_id.attr, 605 &dev_attr_class_id.attr, 606 &dev_attr_device_id.attr, 607 &dev_attr_modalias.attr, 608 #ifdef CONFIG_NUMA 609 &dev_attr_numa_node.attr, 610 #endif 611 &dev_attr_server_monitor_pending.attr, 612 &dev_attr_client_monitor_pending.attr, 613 &dev_attr_server_monitor_latency.attr, 614 &dev_attr_client_monitor_latency.attr, 615 &dev_attr_server_monitor_conn_id.attr, 616 &dev_attr_client_monitor_conn_id.attr, 617 &dev_attr_out_intr_mask.attr, 618 &dev_attr_out_read_index.attr, 619 &dev_attr_out_write_index.attr, 620 &dev_attr_out_read_bytes_avail.attr, 621 &dev_attr_out_write_bytes_avail.attr, 622 &dev_attr_in_intr_mask.attr, 623 &dev_attr_in_read_index.attr, 624 &dev_attr_in_write_index.attr, 625 &dev_attr_in_read_bytes_avail.attr, 626 &dev_attr_in_write_bytes_avail.attr, 627 &dev_attr_channel_vp_mapping.attr, 628 &dev_attr_vendor.attr, 629 &dev_attr_device.attr, 630 &dev_attr_driver_override.attr, 631 NULL, 632 }; 633 ATTRIBUTE_GROUPS(vmbus_dev); 634 635 /* 636 * vmbus_uevent - add uevent for our device 637 * 638 * This routine is invoked when a device is added or removed on the vmbus to 639 * generate a uevent to udev in the userspace. The udev will then look at its 640 * rule and the uevent generated here to load the appropriate driver 641 * 642 * The alias string will be of the form vmbus:guid where guid is the string 643 * representation of the device guid (each byte of the guid will be 644 * represented with two hex characters. 645 */ 646 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 647 { 648 struct hv_device *dev = device_to_hv_device(device); 649 int ret; 650 char alias_name[VMBUS_ALIAS_LEN + 1]; 651 652 print_alias_name(dev, alias_name); 653 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 654 return ret; 655 } 656 657 static const uuid_le null_guid; 658 659 static inline bool is_null_guid(const uuid_le *guid) 660 { 661 if (uuid_le_cmp(*guid, null_guid)) 662 return false; 663 return true; 664 } 665 666 static const struct hv_vmbus_device_id * 667 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const uuid_le *guid) 668 669 { 670 if (id == NULL) 671 return NULL; /* empty device table */ 672 673 for (; !is_null_guid(&id->guid); id++) 674 if (!uuid_le_cmp(id->guid, *guid)) 675 return id; 676 677 return NULL; 678 } 679 680 static const struct hv_vmbus_device_id * 681 hv_vmbus_dynid_match(struct hv_driver *drv, const uuid_le *guid) 682 { 683 const struct hv_vmbus_device_id *id = NULL; 684 struct vmbus_dynid *dynid; 685 686 spin_lock(&drv->dynids.lock); 687 list_for_each_entry(dynid, &drv->dynids.list, node) { 688 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 689 id = &dynid->id; 690 break; 691 } 692 } 693 spin_unlock(&drv->dynids.lock); 694 695 return id; 696 } 697 698 static const struct hv_vmbus_device_id vmbus_device_null = { 699 .guid = NULL_UUID_LE, 700 }; 701 702 /* 703 * Return a matching hv_vmbus_device_id pointer. 704 * If there is no match, return NULL. 705 */ 706 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 707 struct hv_device *dev) 708 { 709 const uuid_le *guid = &dev->dev_type; 710 const struct hv_vmbus_device_id *id; 711 712 /* When driver_override is set, only bind to the matching driver */ 713 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 714 return NULL; 715 716 /* Look at the dynamic ids first, before the static ones */ 717 id = hv_vmbus_dynid_match(drv, guid); 718 if (!id) 719 id = hv_vmbus_dev_match(drv->id_table, guid); 720 721 /* driver_override will always match, send a dummy id */ 722 if (!id && dev->driver_override) 723 id = &vmbus_device_null; 724 725 return id; 726 } 727 728 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 729 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 730 { 731 struct vmbus_dynid *dynid; 732 733 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 734 if (!dynid) 735 return -ENOMEM; 736 737 dynid->id.guid = *guid; 738 739 spin_lock(&drv->dynids.lock); 740 list_add_tail(&dynid->node, &drv->dynids.list); 741 spin_unlock(&drv->dynids.lock); 742 743 return driver_attach(&drv->driver); 744 } 745 746 static void vmbus_free_dynids(struct hv_driver *drv) 747 { 748 struct vmbus_dynid *dynid, *n; 749 750 spin_lock(&drv->dynids.lock); 751 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 752 list_del(&dynid->node); 753 kfree(dynid); 754 } 755 spin_unlock(&drv->dynids.lock); 756 } 757 758 /* 759 * store_new_id - sysfs frontend to vmbus_add_dynid() 760 * 761 * Allow GUIDs to be added to an existing driver via sysfs. 762 */ 763 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 764 size_t count) 765 { 766 struct hv_driver *drv = drv_to_hv_drv(driver); 767 uuid_le guid; 768 ssize_t retval; 769 770 retval = uuid_le_to_bin(buf, &guid); 771 if (retval) 772 return retval; 773 774 if (hv_vmbus_dynid_match(drv, &guid)) 775 return -EEXIST; 776 777 retval = vmbus_add_dynid(drv, &guid); 778 if (retval) 779 return retval; 780 return count; 781 } 782 static DRIVER_ATTR_WO(new_id); 783 784 /* 785 * store_remove_id - remove a PCI device ID from this driver 786 * 787 * Removes a dynamic pci device ID to this driver. 788 */ 789 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 790 size_t count) 791 { 792 struct hv_driver *drv = drv_to_hv_drv(driver); 793 struct vmbus_dynid *dynid, *n; 794 uuid_le guid; 795 ssize_t retval; 796 797 retval = uuid_le_to_bin(buf, &guid); 798 if (retval) 799 return retval; 800 801 retval = -ENODEV; 802 spin_lock(&drv->dynids.lock); 803 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 804 struct hv_vmbus_device_id *id = &dynid->id; 805 806 if (!uuid_le_cmp(id->guid, guid)) { 807 list_del(&dynid->node); 808 kfree(dynid); 809 retval = count; 810 break; 811 } 812 } 813 spin_unlock(&drv->dynids.lock); 814 815 return retval; 816 } 817 static DRIVER_ATTR_WO(remove_id); 818 819 static struct attribute *vmbus_drv_attrs[] = { 820 &driver_attr_new_id.attr, 821 &driver_attr_remove_id.attr, 822 NULL, 823 }; 824 ATTRIBUTE_GROUPS(vmbus_drv); 825 826 827 /* 828 * vmbus_match - Attempt to match the specified device to the specified driver 829 */ 830 static int vmbus_match(struct device *device, struct device_driver *driver) 831 { 832 struct hv_driver *drv = drv_to_hv_drv(driver); 833 struct hv_device *hv_dev = device_to_hv_device(device); 834 835 /* The hv_sock driver handles all hv_sock offers. */ 836 if (is_hvsock_channel(hv_dev->channel)) 837 return drv->hvsock; 838 839 if (hv_vmbus_get_id(drv, hv_dev)) 840 return 1; 841 842 return 0; 843 } 844 845 /* 846 * vmbus_probe - Add the new vmbus's child device 847 */ 848 static int vmbus_probe(struct device *child_device) 849 { 850 int ret = 0; 851 struct hv_driver *drv = 852 drv_to_hv_drv(child_device->driver); 853 struct hv_device *dev = device_to_hv_device(child_device); 854 const struct hv_vmbus_device_id *dev_id; 855 856 dev_id = hv_vmbus_get_id(drv, dev); 857 if (drv->probe) { 858 ret = drv->probe(dev, dev_id); 859 if (ret != 0) 860 pr_err("probe failed for device %s (%d)\n", 861 dev_name(child_device), ret); 862 863 } else { 864 pr_err("probe not set for driver %s\n", 865 dev_name(child_device)); 866 ret = -ENODEV; 867 } 868 return ret; 869 } 870 871 /* 872 * vmbus_remove - Remove a vmbus device 873 */ 874 static int vmbus_remove(struct device *child_device) 875 { 876 struct hv_driver *drv; 877 struct hv_device *dev = device_to_hv_device(child_device); 878 879 if (child_device->driver) { 880 drv = drv_to_hv_drv(child_device->driver); 881 if (drv->remove) 882 drv->remove(dev); 883 } 884 885 return 0; 886 } 887 888 889 /* 890 * vmbus_shutdown - Shutdown a vmbus device 891 */ 892 static void vmbus_shutdown(struct device *child_device) 893 { 894 struct hv_driver *drv; 895 struct hv_device *dev = device_to_hv_device(child_device); 896 897 898 /* The device may not be attached yet */ 899 if (!child_device->driver) 900 return; 901 902 drv = drv_to_hv_drv(child_device->driver); 903 904 if (drv->shutdown) 905 drv->shutdown(dev); 906 } 907 908 909 /* 910 * vmbus_device_release - Final callback release of the vmbus child device 911 */ 912 static void vmbus_device_release(struct device *device) 913 { 914 struct hv_device *hv_dev = device_to_hv_device(device); 915 struct vmbus_channel *channel = hv_dev->channel; 916 917 mutex_lock(&vmbus_connection.channel_mutex); 918 hv_process_channel_removal(channel); 919 mutex_unlock(&vmbus_connection.channel_mutex); 920 kfree(hv_dev); 921 } 922 923 /* The one and only one */ 924 static struct bus_type hv_bus = { 925 .name = "vmbus", 926 .match = vmbus_match, 927 .shutdown = vmbus_shutdown, 928 .remove = vmbus_remove, 929 .probe = vmbus_probe, 930 .uevent = vmbus_uevent, 931 .dev_groups = vmbus_dev_groups, 932 .drv_groups = vmbus_drv_groups, 933 }; 934 935 struct onmessage_work_context { 936 struct work_struct work; 937 struct hv_message msg; 938 }; 939 940 static void vmbus_onmessage_work(struct work_struct *work) 941 { 942 struct onmessage_work_context *ctx; 943 944 /* Do not process messages if we're in DISCONNECTED state */ 945 if (vmbus_connection.conn_state == DISCONNECTED) 946 return; 947 948 ctx = container_of(work, struct onmessage_work_context, 949 work); 950 vmbus_onmessage(&ctx->msg); 951 kfree(ctx); 952 } 953 954 static void hv_process_timer_expiration(struct hv_message *msg, 955 struct hv_per_cpu_context *hv_cpu) 956 { 957 struct clock_event_device *dev = hv_cpu->clk_evt; 958 959 if (dev->event_handler) 960 dev->event_handler(dev); 961 962 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 963 } 964 965 void vmbus_on_msg_dpc(unsigned long data) 966 { 967 struct hv_per_cpu_context *hv_cpu = (void *)data; 968 void *page_addr = hv_cpu->synic_message_page; 969 struct hv_message *msg = (struct hv_message *)page_addr + 970 VMBUS_MESSAGE_SINT; 971 struct vmbus_channel_message_header *hdr; 972 const struct vmbus_channel_message_table_entry *entry; 973 struct onmessage_work_context *ctx; 974 u32 message_type = msg->header.message_type; 975 976 if (message_type == HVMSG_NONE) 977 /* no msg */ 978 return; 979 980 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 981 982 trace_vmbus_on_msg_dpc(hdr); 983 984 if (hdr->msgtype >= CHANNELMSG_COUNT) { 985 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 986 goto msg_handled; 987 } 988 989 entry = &channel_message_table[hdr->msgtype]; 990 if (entry->handler_type == VMHT_BLOCKING) { 991 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 992 if (ctx == NULL) 993 return; 994 995 INIT_WORK(&ctx->work, vmbus_onmessage_work); 996 memcpy(&ctx->msg, msg, sizeof(*msg)); 997 998 /* 999 * The host can generate a rescind message while we 1000 * may still be handling the original offer. We deal with 1001 * this condition by ensuring the processing is done on the 1002 * same CPU. 1003 */ 1004 switch (hdr->msgtype) { 1005 case CHANNELMSG_RESCIND_CHANNELOFFER: 1006 /* 1007 * If we are handling the rescind message; 1008 * schedule the work on the global work queue. 1009 */ 1010 schedule_work_on(vmbus_connection.connect_cpu, 1011 &ctx->work); 1012 break; 1013 1014 case CHANNELMSG_OFFERCHANNEL: 1015 atomic_inc(&vmbus_connection.offer_in_progress); 1016 queue_work_on(vmbus_connection.connect_cpu, 1017 vmbus_connection.work_queue, 1018 &ctx->work); 1019 break; 1020 1021 default: 1022 queue_work(vmbus_connection.work_queue, &ctx->work); 1023 } 1024 } else 1025 entry->message_handler(hdr); 1026 1027 msg_handled: 1028 vmbus_signal_eom(msg, message_type); 1029 } 1030 1031 1032 /* 1033 * Direct callback for channels using other deferred processing 1034 */ 1035 static void vmbus_channel_isr(struct vmbus_channel *channel) 1036 { 1037 void (*callback_fn)(void *); 1038 1039 callback_fn = READ_ONCE(channel->onchannel_callback); 1040 if (likely(callback_fn != NULL)) 1041 (*callback_fn)(channel->channel_callback_context); 1042 } 1043 1044 /* 1045 * Schedule all channels with events pending 1046 */ 1047 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1048 { 1049 unsigned long *recv_int_page; 1050 u32 maxbits, relid; 1051 1052 if (vmbus_proto_version < VERSION_WIN8) { 1053 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1054 recv_int_page = vmbus_connection.recv_int_page; 1055 } else { 1056 /* 1057 * When the host is win8 and beyond, the event page 1058 * can be directly checked to get the id of the channel 1059 * that has the interrupt pending. 1060 */ 1061 void *page_addr = hv_cpu->synic_event_page; 1062 union hv_synic_event_flags *event 1063 = (union hv_synic_event_flags *)page_addr + 1064 VMBUS_MESSAGE_SINT; 1065 1066 maxbits = HV_EVENT_FLAGS_COUNT; 1067 recv_int_page = event->flags; 1068 } 1069 1070 if (unlikely(!recv_int_page)) 1071 return; 1072 1073 for_each_set_bit(relid, recv_int_page, maxbits) { 1074 struct vmbus_channel *channel; 1075 1076 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1077 continue; 1078 1079 /* Special case - vmbus channel protocol msg */ 1080 if (relid == 0) 1081 continue; 1082 1083 rcu_read_lock(); 1084 1085 /* Find channel based on relid */ 1086 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1087 if (channel->offermsg.child_relid != relid) 1088 continue; 1089 1090 if (channel->rescind) 1091 continue; 1092 1093 trace_vmbus_chan_sched(channel); 1094 1095 ++channel->interrupts; 1096 1097 switch (channel->callback_mode) { 1098 case HV_CALL_ISR: 1099 vmbus_channel_isr(channel); 1100 break; 1101 1102 case HV_CALL_BATCHED: 1103 hv_begin_read(&channel->inbound); 1104 /* fallthrough */ 1105 case HV_CALL_DIRECT: 1106 tasklet_schedule(&channel->callback_event); 1107 } 1108 } 1109 1110 rcu_read_unlock(); 1111 } 1112 } 1113 1114 static void vmbus_isr(void) 1115 { 1116 struct hv_per_cpu_context *hv_cpu 1117 = this_cpu_ptr(hv_context.cpu_context); 1118 void *page_addr = hv_cpu->synic_event_page; 1119 struct hv_message *msg; 1120 union hv_synic_event_flags *event; 1121 bool handled = false; 1122 1123 if (unlikely(page_addr == NULL)) 1124 return; 1125 1126 event = (union hv_synic_event_flags *)page_addr + 1127 VMBUS_MESSAGE_SINT; 1128 /* 1129 * Check for events before checking for messages. This is the order 1130 * in which events and messages are checked in Windows guests on 1131 * Hyper-V, and the Windows team suggested we do the same. 1132 */ 1133 1134 if ((vmbus_proto_version == VERSION_WS2008) || 1135 (vmbus_proto_version == VERSION_WIN7)) { 1136 1137 /* Since we are a child, we only need to check bit 0 */ 1138 if (sync_test_and_clear_bit(0, event->flags)) 1139 handled = true; 1140 } else { 1141 /* 1142 * Our host is win8 or above. The signaling mechanism 1143 * has changed and we can directly look at the event page. 1144 * If bit n is set then we have an interrup on the channel 1145 * whose id is n. 1146 */ 1147 handled = true; 1148 } 1149 1150 if (handled) 1151 vmbus_chan_sched(hv_cpu); 1152 1153 page_addr = hv_cpu->synic_message_page; 1154 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1155 1156 /* Check if there are actual msgs to be processed */ 1157 if (msg->header.message_type != HVMSG_NONE) { 1158 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1159 hv_process_timer_expiration(msg, hv_cpu); 1160 else 1161 tasklet_schedule(&hv_cpu->msg_dpc); 1162 } 1163 1164 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1165 } 1166 1167 /* 1168 * Boolean to control whether to report panic messages over Hyper-V. 1169 * 1170 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1171 */ 1172 static int sysctl_record_panic_msg = 1; 1173 1174 /* 1175 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1176 * buffer and call into Hyper-V to transfer the data. 1177 */ 1178 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1179 enum kmsg_dump_reason reason) 1180 { 1181 size_t bytes_written; 1182 phys_addr_t panic_pa; 1183 1184 /* We are only interested in panics. */ 1185 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1186 return; 1187 1188 panic_pa = virt_to_phys(hv_panic_page); 1189 1190 /* 1191 * Write dump contents to the page. No need to synchronize; panic should 1192 * be single-threaded. 1193 */ 1194 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1195 &bytes_written); 1196 if (bytes_written) 1197 hyperv_report_panic_msg(panic_pa, bytes_written); 1198 } 1199 1200 static struct kmsg_dumper hv_kmsg_dumper = { 1201 .dump = hv_kmsg_dump, 1202 }; 1203 1204 static struct ctl_table_header *hv_ctl_table_hdr; 1205 static int zero; 1206 static int one = 1; 1207 1208 /* 1209 * sysctl option to allow the user to control whether kmsg data should be 1210 * reported to Hyper-V on panic. 1211 */ 1212 static struct ctl_table hv_ctl_table[] = { 1213 { 1214 .procname = "hyperv_record_panic_msg", 1215 .data = &sysctl_record_panic_msg, 1216 .maxlen = sizeof(int), 1217 .mode = 0644, 1218 .proc_handler = proc_dointvec_minmax, 1219 .extra1 = &zero, 1220 .extra2 = &one 1221 }, 1222 {} 1223 }; 1224 1225 static struct ctl_table hv_root_table[] = { 1226 { 1227 .procname = "kernel", 1228 .mode = 0555, 1229 .child = hv_ctl_table 1230 }, 1231 {} 1232 }; 1233 1234 /* 1235 * vmbus_bus_init -Main vmbus driver initialization routine. 1236 * 1237 * Here, we 1238 * - initialize the vmbus driver context 1239 * - invoke the vmbus hv main init routine 1240 * - retrieve the channel offers 1241 */ 1242 static int vmbus_bus_init(void) 1243 { 1244 int ret; 1245 1246 /* Hypervisor initialization...setup hypercall page..etc */ 1247 ret = hv_init(); 1248 if (ret != 0) { 1249 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1250 return ret; 1251 } 1252 1253 ret = bus_register(&hv_bus); 1254 if (ret) 1255 return ret; 1256 1257 hv_setup_vmbus_irq(vmbus_isr); 1258 1259 ret = hv_synic_alloc(); 1260 if (ret) 1261 goto err_alloc; 1262 /* 1263 * Initialize the per-cpu interrupt state and 1264 * connect to the host. 1265 */ 1266 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1267 hv_synic_init, hv_synic_cleanup); 1268 if (ret < 0) 1269 goto err_alloc; 1270 hyperv_cpuhp_online = ret; 1271 1272 ret = vmbus_connect(); 1273 if (ret) 1274 goto err_connect; 1275 1276 /* 1277 * Only register if the crash MSRs are available 1278 */ 1279 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1280 u64 hyperv_crash_ctl; 1281 /* 1282 * Sysctl registration is not fatal, since by default 1283 * reporting is enabled. 1284 */ 1285 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1286 if (!hv_ctl_table_hdr) 1287 pr_err("Hyper-V: sysctl table register error"); 1288 1289 /* 1290 * Register for panic kmsg callback only if the right 1291 * capability is supported by the hypervisor. 1292 */ 1293 hv_get_crash_ctl(hyperv_crash_ctl); 1294 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1295 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1296 if (hv_panic_page) { 1297 ret = kmsg_dump_register(&hv_kmsg_dumper); 1298 if (ret) 1299 pr_err("Hyper-V: kmsg dump register " 1300 "error 0x%x\n", ret); 1301 } else 1302 pr_err("Hyper-V: panic message page memory " 1303 "allocation failed"); 1304 } 1305 1306 register_die_notifier(&hyperv_die_block); 1307 atomic_notifier_chain_register(&panic_notifier_list, 1308 &hyperv_panic_block); 1309 } 1310 1311 vmbus_request_offers(); 1312 1313 return 0; 1314 1315 err_connect: 1316 cpuhp_remove_state(hyperv_cpuhp_online); 1317 err_alloc: 1318 hv_synic_free(); 1319 hv_remove_vmbus_irq(); 1320 1321 bus_unregister(&hv_bus); 1322 free_page((unsigned long)hv_panic_page); 1323 unregister_sysctl_table(hv_ctl_table_hdr); 1324 hv_ctl_table_hdr = NULL; 1325 return ret; 1326 } 1327 1328 /** 1329 * __vmbus_child_driver_register() - Register a vmbus's driver 1330 * @hv_driver: Pointer to driver structure you want to register 1331 * @owner: owner module of the drv 1332 * @mod_name: module name string 1333 * 1334 * Registers the given driver with Linux through the 'driver_register()' call 1335 * and sets up the hyper-v vmbus handling for this driver. 1336 * It will return the state of the 'driver_register()' call. 1337 * 1338 */ 1339 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1340 { 1341 int ret; 1342 1343 pr_info("registering driver %s\n", hv_driver->name); 1344 1345 ret = vmbus_exists(); 1346 if (ret < 0) 1347 return ret; 1348 1349 hv_driver->driver.name = hv_driver->name; 1350 hv_driver->driver.owner = owner; 1351 hv_driver->driver.mod_name = mod_name; 1352 hv_driver->driver.bus = &hv_bus; 1353 1354 spin_lock_init(&hv_driver->dynids.lock); 1355 INIT_LIST_HEAD(&hv_driver->dynids.list); 1356 1357 ret = driver_register(&hv_driver->driver); 1358 1359 return ret; 1360 } 1361 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1362 1363 /** 1364 * vmbus_driver_unregister() - Unregister a vmbus's driver 1365 * @hv_driver: Pointer to driver structure you want to 1366 * un-register 1367 * 1368 * Un-register the given driver that was previous registered with a call to 1369 * vmbus_driver_register() 1370 */ 1371 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1372 { 1373 pr_info("unregistering driver %s\n", hv_driver->name); 1374 1375 if (!vmbus_exists()) { 1376 driver_unregister(&hv_driver->driver); 1377 vmbus_free_dynids(hv_driver); 1378 } 1379 } 1380 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1381 1382 1383 /* 1384 * Called when last reference to channel is gone. 1385 */ 1386 static void vmbus_chan_release(struct kobject *kobj) 1387 { 1388 struct vmbus_channel *channel 1389 = container_of(kobj, struct vmbus_channel, kobj); 1390 1391 kfree_rcu(channel, rcu); 1392 } 1393 1394 struct vmbus_chan_attribute { 1395 struct attribute attr; 1396 ssize_t (*show)(const struct vmbus_channel *chan, char *buf); 1397 ssize_t (*store)(struct vmbus_channel *chan, 1398 const char *buf, size_t count); 1399 }; 1400 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1401 struct vmbus_chan_attribute chan_attr_##_name \ 1402 = __ATTR(_name, _mode, _show, _store) 1403 #define VMBUS_CHAN_ATTR_RW(_name) \ 1404 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1405 #define VMBUS_CHAN_ATTR_RO(_name) \ 1406 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1407 #define VMBUS_CHAN_ATTR_WO(_name) \ 1408 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1409 1410 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1411 struct attribute *attr, char *buf) 1412 { 1413 const struct vmbus_chan_attribute *attribute 1414 = container_of(attr, struct vmbus_chan_attribute, attr); 1415 const struct vmbus_channel *chan 1416 = container_of(kobj, struct vmbus_channel, kobj); 1417 1418 if (!attribute->show) 1419 return -EIO; 1420 1421 if (chan->state != CHANNEL_OPENED_STATE) 1422 return -EINVAL; 1423 1424 return attribute->show(chan, buf); 1425 } 1426 1427 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1428 .show = vmbus_chan_attr_show, 1429 }; 1430 1431 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf) 1432 { 1433 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1434 1435 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1436 } 1437 static VMBUS_CHAN_ATTR_RO(out_mask); 1438 1439 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf) 1440 { 1441 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1442 1443 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1444 } 1445 static VMBUS_CHAN_ATTR_RO(in_mask); 1446 1447 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf) 1448 { 1449 const struct hv_ring_buffer_info *rbi = &channel->inbound; 1450 1451 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1452 } 1453 static VMBUS_CHAN_ATTR_RO(read_avail); 1454 1455 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf) 1456 { 1457 const struct hv_ring_buffer_info *rbi = &channel->outbound; 1458 1459 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1460 } 1461 static VMBUS_CHAN_ATTR_RO(write_avail); 1462 1463 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf) 1464 { 1465 return sprintf(buf, "%u\n", channel->target_cpu); 1466 } 1467 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1468 1469 static ssize_t channel_pending_show(const struct vmbus_channel *channel, 1470 char *buf) 1471 { 1472 return sprintf(buf, "%d\n", 1473 channel_pending(channel, 1474 vmbus_connection.monitor_pages[1])); 1475 } 1476 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1477 1478 static ssize_t channel_latency_show(const struct vmbus_channel *channel, 1479 char *buf) 1480 { 1481 return sprintf(buf, "%d\n", 1482 channel_latency(channel, 1483 vmbus_connection.monitor_pages[1])); 1484 } 1485 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1486 1487 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf) 1488 { 1489 return sprintf(buf, "%llu\n", channel->interrupts); 1490 } 1491 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1492 1493 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf) 1494 { 1495 return sprintf(buf, "%llu\n", channel->sig_events); 1496 } 1497 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1498 1499 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel, 1500 char *buf) 1501 { 1502 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1503 } 1504 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1505 1506 static ssize_t subchannel_id_show(const struct vmbus_channel *channel, 1507 char *buf) 1508 { 1509 return sprintf(buf, "%u\n", 1510 channel->offermsg.offer.sub_channel_index); 1511 } 1512 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1513 1514 static struct attribute *vmbus_chan_attrs[] = { 1515 &chan_attr_out_mask.attr, 1516 &chan_attr_in_mask.attr, 1517 &chan_attr_read_avail.attr, 1518 &chan_attr_write_avail.attr, 1519 &chan_attr_cpu.attr, 1520 &chan_attr_pending.attr, 1521 &chan_attr_latency.attr, 1522 &chan_attr_interrupts.attr, 1523 &chan_attr_events.attr, 1524 &chan_attr_monitor_id.attr, 1525 &chan_attr_subchannel_id.attr, 1526 NULL 1527 }; 1528 1529 static struct kobj_type vmbus_chan_ktype = { 1530 .sysfs_ops = &vmbus_chan_sysfs_ops, 1531 .release = vmbus_chan_release, 1532 .default_attrs = vmbus_chan_attrs, 1533 }; 1534 1535 /* 1536 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1537 */ 1538 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1539 { 1540 struct kobject *kobj = &channel->kobj; 1541 u32 relid = channel->offermsg.child_relid; 1542 int ret; 1543 1544 kobj->kset = dev->channels_kset; 1545 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1546 "%u", relid); 1547 if (ret) 1548 return ret; 1549 1550 kobject_uevent(kobj, KOBJ_ADD); 1551 1552 return 0; 1553 } 1554 1555 /* 1556 * vmbus_device_create - Creates and registers a new child device 1557 * on the vmbus. 1558 */ 1559 struct hv_device *vmbus_device_create(const uuid_le *type, 1560 const uuid_le *instance, 1561 struct vmbus_channel *channel) 1562 { 1563 struct hv_device *child_device_obj; 1564 1565 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1566 if (!child_device_obj) { 1567 pr_err("Unable to allocate device object for child device\n"); 1568 return NULL; 1569 } 1570 1571 child_device_obj->channel = channel; 1572 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1573 memcpy(&child_device_obj->dev_instance, instance, 1574 sizeof(uuid_le)); 1575 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1576 1577 1578 return child_device_obj; 1579 } 1580 1581 /* 1582 * vmbus_device_register - Register the child device 1583 */ 1584 int vmbus_device_register(struct hv_device *child_device_obj) 1585 { 1586 struct kobject *kobj = &child_device_obj->device.kobj; 1587 int ret; 1588 1589 dev_set_name(&child_device_obj->device, "%pUl", 1590 child_device_obj->channel->offermsg.offer.if_instance.b); 1591 1592 child_device_obj->device.bus = &hv_bus; 1593 child_device_obj->device.parent = &hv_acpi_dev->dev; 1594 child_device_obj->device.release = vmbus_device_release; 1595 1596 /* 1597 * Register with the LDM. This will kick off the driver/device 1598 * binding...which will eventually call vmbus_match() and vmbus_probe() 1599 */ 1600 ret = device_register(&child_device_obj->device); 1601 if (ret) { 1602 pr_err("Unable to register child device\n"); 1603 return ret; 1604 } 1605 1606 child_device_obj->channels_kset = kset_create_and_add("channels", 1607 NULL, kobj); 1608 if (!child_device_obj->channels_kset) { 1609 ret = -ENOMEM; 1610 goto err_dev_unregister; 1611 } 1612 1613 ret = vmbus_add_channel_kobj(child_device_obj, 1614 child_device_obj->channel); 1615 if (ret) { 1616 pr_err("Unable to register primary channeln"); 1617 goto err_kset_unregister; 1618 } 1619 1620 return 0; 1621 1622 err_kset_unregister: 1623 kset_unregister(child_device_obj->channels_kset); 1624 1625 err_dev_unregister: 1626 device_unregister(&child_device_obj->device); 1627 return ret; 1628 } 1629 1630 /* 1631 * vmbus_device_unregister - Remove the specified child device 1632 * from the vmbus. 1633 */ 1634 void vmbus_device_unregister(struct hv_device *device_obj) 1635 { 1636 pr_debug("child device %s unregistered\n", 1637 dev_name(&device_obj->device)); 1638 1639 kset_unregister(device_obj->channels_kset); 1640 1641 /* 1642 * Kick off the process of unregistering the device. 1643 * This will call vmbus_remove() and eventually vmbus_device_release() 1644 */ 1645 device_unregister(&device_obj->device); 1646 } 1647 1648 1649 /* 1650 * VMBUS is an acpi enumerated device. Get the information we 1651 * need from DSDT. 1652 */ 1653 #define VTPM_BASE_ADDRESS 0xfed40000 1654 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1655 { 1656 resource_size_t start = 0; 1657 resource_size_t end = 0; 1658 struct resource *new_res; 1659 struct resource **old_res = &hyperv_mmio; 1660 struct resource **prev_res = NULL; 1661 1662 switch (res->type) { 1663 1664 /* 1665 * "Address" descriptors are for bus windows. Ignore 1666 * "memory" descriptors, which are for registers on 1667 * devices. 1668 */ 1669 case ACPI_RESOURCE_TYPE_ADDRESS32: 1670 start = res->data.address32.address.minimum; 1671 end = res->data.address32.address.maximum; 1672 break; 1673 1674 case ACPI_RESOURCE_TYPE_ADDRESS64: 1675 start = res->data.address64.address.minimum; 1676 end = res->data.address64.address.maximum; 1677 break; 1678 1679 default: 1680 /* Unused resource type */ 1681 return AE_OK; 1682 1683 } 1684 /* 1685 * Ignore ranges that are below 1MB, as they're not 1686 * necessary or useful here. 1687 */ 1688 if (end < 0x100000) 1689 return AE_OK; 1690 1691 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1692 if (!new_res) 1693 return AE_NO_MEMORY; 1694 1695 /* If this range overlaps the virtual TPM, truncate it. */ 1696 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1697 end = VTPM_BASE_ADDRESS; 1698 1699 new_res->name = "hyperv mmio"; 1700 new_res->flags = IORESOURCE_MEM; 1701 new_res->start = start; 1702 new_res->end = end; 1703 1704 /* 1705 * If two ranges are adjacent, merge them. 1706 */ 1707 do { 1708 if (!*old_res) { 1709 *old_res = new_res; 1710 break; 1711 } 1712 1713 if (((*old_res)->end + 1) == new_res->start) { 1714 (*old_res)->end = new_res->end; 1715 kfree(new_res); 1716 break; 1717 } 1718 1719 if ((*old_res)->start == new_res->end + 1) { 1720 (*old_res)->start = new_res->start; 1721 kfree(new_res); 1722 break; 1723 } 1724 1725 if ((*old_res)->start > new_res->end) { 1726 new_res->sibling = *old_res; 1727 if (prev_res) 1728 (*prev_res)->sibling = new_res; 1729 *old_res = new_res; 1730 break; 1731 } 1732 1733 prev_res = old_res; 1734 old_res = &(*old_res)->sibling; 1735 1736 } while (1); 1737 1738 return AE_OK; 1739 } 1740 1741 static int vmbus_acpi_remove(struct acpi_device *device) 1742 { 1743 struct resource *cur_res; 1744 struct resource *next_res; 1745 1746 if (hyperv_mmio) { 1747 if (fb_mmio) { 1748 __release_region(hyperv_mmio, fb_mmio->start, 1749 resource_size(fb_mmio)); 1750 fb_mmio = NULL; 1751 } 1752 1753 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1754 next_res = cur_res->sibling; 1755 kfree(cur_res); 1756 } 1757 } 1758 1759 return 0; 1760 } 1761 1762 static void vmbus_reserve_fb(void) 1763 { 1764 int size; 1765 /* 1766 * Make a claim for the frame buffer in the resource tree under the 1767 * first node, which will be the one below 4GB. The length seems to 1768 * be underreported, particularly in a Generation 1 VM. So start out 1769 * reserving a larger area and make it smaller until it succeeds. 1770 */ 1771 1772 if (screen_info.lfb_base) { 1773 if (efi_enabled(EFI_BOOT)) 1774 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1775 else 1776 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1777 1778 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1779 fb_mmio = __request_region(hyperv_mmio, 1780 screen_info.lfb_base, size, 1781 fb_mmio_name, 0); 1782 } 1783 } 1784 } 1785 1786 /** 1787 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1788 * @new: If successful, supplied a pointer to the 1789 * allocated MMIO space. 1790 * @device_obj: Identifies the caller 1791 * @min: Minimum guest physical address of the 1792 * allocation 1793 * @max: Maximum guest physical address 1794 * @size: Size of the range to be allocated 1795 * @align: Alignment of the range to be allocated 1796 * @fb_overlap_ok: Whether this allocation can be allowed 1797 * to overlap the video frame buffer. 1798 * 1799 * This function walks the resources granted to VMBus by the 1800 * _CRS object in the ACPI namespace underneath the parent 1801 * "bridge" whether that's a root PCI bus in the Generation 1 1802 * case or a Module Device in the Generation 2 case. It then 1803 * attempts to allocate from the global MMIO pool in a way that 1804 * matches the constraints supplied in these parameters and by 1805 * that _CRS. 1806 * 1807 * Return: 0 on success, -errno on failure 1808 */ 1809 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1810 resource_size_t min, resource_size_t max, 1811 resource_size_t size, resource_size_t align, 1812 bool fb_overlap_ok) 1813 { 1814 struct resource *iter, *shadow; 1815 resource_size_t range_min, range_max, start; 1816 const char *dev_n = dev_name(&device_obj->device); 1817 int retval; 1818 1819 retval = -ENXIO; 1820 down(&hyperv_mmio_lock); 1821 1822 /* 1823 * If overlaps with frame buffers are allowed, then first attempt to 1824 * make the allocation from within the reserved region. Because it 1825 * is already reserved, no shadow allocation is necessary. 1826 */ 1827 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1828 !(max < fb_mmio->start)) { 1829 1830 range_min = fb_mmio->start; 1831 range_max = fb_mmio->end; 1832 start = (range_min + align - 1) & ~(align - 1); 1833 for (; start + size - 1 <= range_max; start += align) { 1834 *new = request_mem_region_exclusive(start, size, dev_n); 1835 if (*new) { 1836 retval = 0; 1837 goto exit; 1838 } 1839 } 1840 } 1841 1842 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1843 if ((iter->start >= max) || (iter->end <= min)) 1844 continue; 1845 1846 range_min = iter->start; 1847 range_max = iter->end; 1848 start = (range_min + align - 1) & ~(align - 1); 1849 for (; start + size - 1 <= range_max; start += align) { 1850 shadow = __request_region(iter, start, size, NULL, 1851 IORESOURCE_BUSY); 1852 if (!shadow) 1853 continue; 1854 1855 *new = request_mem_region_exclusive(start, size, dev_n); 1856 if (*new) { 1857 shadow->name = (char *)*new; 1858 retval = 0; 1859 goto exit; 1860 } 1861 1862 __release_region(iter, start, size); 1863 } 1864 } 1865 1866 exit: 1867 up(&hyperv_mmio_lock); 1868 return retval; 1869 } 1870 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1871 1872 /** 1873 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1874 * @start: Base address of region to release. 1875 * @size: Size of the range to be allocated 1876 * 1877 * This function releases anything requested by 1878 * vmbus_mmio_allocate(). 1879 */ 1880 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1881 { 1882 struct resource *iter; 1883 1884 down(&hyperv_mmio_lock); 1885 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1886 if ((iter->start >= start + size) || (iter->end <= start)) 1887 continue; 1888 1889 __release_region(iter, start, size); 1890 } 1891 release_mem_region(start, size); 1892 up(&hyperv_mmio_lock); 1893 1894 } 1895 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1896 1897 static int vmbus_acpi_add(struct acpi_device *device) 1898 { 1899 acpi_status result; 1900 int ret_val = -ENODEV; 1901 struct acpi_device *ancestor; 1902 1903 hv_acpi_dev = device; 1904 1905 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1906 vmbus_walk_resources, NULL); 1907 1908 if (ACPI_FAILURE(result)) 1909 goto acpi_walk_err; 1910 /* 1911 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1912 * firmware) is the VMOD that has the mmio ranges. Get that. 1913 */ 1914 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1915 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1916 vmbus_walk_resources, NULL); 1917 1918 if (ACPI_FAILURE(result)) 1919 continue; 1920 if (hyperv_mmio) { 1921 vmbus_reserve_fb(); 1922 break; 1923 } 1924 } 1925 ret_val = 0; 1926 1927 acpi_walk_err: 1928 complete(&probe_event); 1929 if (ret_val) 1930 vmbus_acpi_remove(device); 1931 return ret_val; 1932 } 1933 1934 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1935 {"VMBUS", 0}, 1936 {"VMBus", 0}, 1937 {"", 0}, 1938 }; 1939 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1940 1941 static struct acpi_driver vmbus_acpi_driver = { 1942 .name = "vmbus", 1943 .ids = vmbus_acpi_device_ids, 1944 .ops = { 1945 .add = vmbus_acpi_add, 1946 .remove = vmbus_acpi_remove, 1947 }, 1948 }; 1949 1950 static void hv_kexec_handler(void) 1951 { 1952 hv_synic_clockevents_cleanup(); 1953 vmbus_initiate_unload(false); 1954 vmbus_connection.conn_state = DISCONNECTED; 1955 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1956 mb(); 1957 cpuhp_remove_state(hyperv_cpuhp_online); 1958 hyperv_cleanup(); 1959 }; 1960 1961 static void hv_crash_handler(struct pt_regs *regs) 1962 { 1963 vmbus_initiate_unload(true); 1964 /* 1965 * In crash handler we can't schedule synic cleanup for all CPUs, 1966 * doing the cleanup for current CPU only. This should be sufficient 1967 * for kdump. 1968 */ 1969 vmbus_connection.conn_state = DISCONNECTED; 1970 hv_synic_cleanup(smp_processor_id()); 1971 hyperv_cleanup(); 1972 }; 1973 1974 static int __init hv_acpi_init(void) 1975 { 1976 int ret, t; 1977 1978 if (!hv_is_hyperv_initialized()) 1979 return -ENODEV; 1980 1981 init_completion(&probe_event); 1982 1983 /* 1984 * Get ACPI resources first. 1985 */ 1986 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1987 1988 if (ret) 1989 return ret; 1990 1991 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1992 if (t == 0) { 1993 ret = -ETIMEDOUT; 1994 goto cleanup; 1995 } 1996 1997 ret = vmbus_bus_init(); 1998 if (ret) 1999 goto cleanup; 2000 2001 hv_setup_kexec_handler(hv_kexec_handler); 2002 hv_setup_crash_handler(hv_crash_handler); 2003 2004 return 0; 2005 2006 cleanup: 2007 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2008 hv_acpi_dev = NULL; 2009 return ret; 2010 } 2011 2012 static void __exit vmbus_exit(void) 2013 { 2014 int cpu; 2015 2016 hv_remove_kexec_handler(); 2017 hv_remove_crash_handler(); 2018 vmbus_connection.conn_state = DISCONNECTED; 2019 hv_synic_clockevents_cleanup(); 2020 vmbus_disconnect(); 2021 hv_remove_vmbus_irq(); 2022 for_each_online_cpu(cpu) { 2023 struct hv_per_cpu_context *hv_cpu 2024 = per_cpu_ptr(hv_context.cpu_context, cpu); 2025 2026 tasklet_kill(&hv_cpu->msg_dpc); 2027 } 2028 vmbus_free_channels(); 2029 2030 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2031 kmsg_dump_unregister(&hv_kmsg_dumper); 2032 unregister_die_notifier(&hyperv_die_block); 2033 atomic_notifier_chain_unregister(&panic_notifier_list, 2034 &hyperv_panic_block); 2035 } 2036 2037 free_page((unsigned long)hv_panic_page); 2038 unregister_sysctl_table(hv_ctl_table_hdr); 2039 hv_ctl_table_hdr = NULL; 2040 bus_unregister(&hv_bus); 2041 2042 cpuhp_remove_state(hyperv_cpuhp_online); 2043 hv_synic_free(); 2044 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2045 } 2046 2047 2048 MODULE_LICENSE("GPL"); 2049 2050 subsys_initcall(hv_acpi_init); 2051 module_exit(vmbus_exit); 2052