1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <linux/delay.h> 27 #include <linux/notifier.h> 28 #include <linux/ptrace.h> 29 #include <linux/screen_info.h> 30 #include <linux/kdebug.h> 31 #include <linux/efi.h> 32 #include <linux/random.h> 33 #include <linux/kernel.h> 34 #include <linux/syscore_ops.h> 35 #include <clocksource/hyperv_timer.h> 36 #include "hyperv_vmbus.h" 37 38 struct vmbus_dynid { 39 struct list_head node; 40 struct hv_vmbus_device_id id; 41 }; 42 43 static struct acpi_device *hv_acpi_dev; 44 45 static struct completion probe_event; 46 47 static int hyperv_cpuhp_online; 48 49 static void *hv_panic_page; 50 51 /* Values parsed from ACPI DSDT */ 52 static int vmbus_irq; 53 int vmbus_interrupt; 54 55 /* 56 * Boolean to control whether to report panic messages over Hyper-V. 57 * 58 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg 59 */ 60 static int sysctl_record_panic_msg = 1; 61 62 static int hyperv_report_reg(void) 63 { 64 return !sysctl_record_panic_msg || !hv_panic_page; 65 } 66 67 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 68 void *args) 69 { 70 struct pt_regs *regs; 71 72 vmbus_initiate_unload(true); 73 74 /* 75 * Hyper-V should be notified only once about a panic. If we will be 76 * doing hyperv_report_panic_msg() later with kmsg data, don't do 77 * the notification here. 78 */ 79 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE 80 && hyperv_report_reg()) { 81 regs = current_pt_regs(); 82 hyperv_report_panic(regs, val, false); 83 } 84 return NOTIFY_DONE; 85 } 86 87 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 88 void *args) 89 { 90 struct die_args *die = args; 91 struct pt_regs *regs = die->regs; 92 93 /* Don't notify Hyper-V if the die event is other than oops */ 94 if (val != DIE_OOPS) 95 return NOTIFY_DONE; 96 97 /* 98 * Hyper-V should be notified only once about a panic. If we will be 99 * doing hyperv_report_panic_msg() later with kmsg data, don't do 100 * the notification here. 101 */ 102 if (hyperv_report_reg()) 103 hyperv_report_panic(regs, val, true); 104 return NOTIFY_DONE; 105 } 106 107 static struct notifier_block hyperv_die_block = { 108 .notifier_call = hyperv_die_event, 109 }; 110 static struct notifier_block hyperv_panic_block = { 111 .notifier_call = hyperv_panic_event, 112 }; 113 114 static const char *fb_mmio_name = "fb_range"; 115 static struct resource *fb_mmio; 116 static struct resource *hyperv_mmio; 117 static DEFINE_MUTEX(hyperv_mmio_lock); 118 119 static int vmbus_exists(void) 120 { 121 if (hv_acpi_dev == NULL) 122 return -ENODEV; 123 124 return 0; 125 } 126 127 static u8 channel_monitor_group(const struct vmbus_channel *channel) 128 { 129 return (u8)channel->offermsg.monitorid / 32; 130 } 131 132 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 133 { 134 return (u8)channel->offermsg.monitorid % 32; 135 } 136 137 static u32 channel_pending(const struct vmbus_channel *channel, 138 const struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 142 return monitor_page->trigger_group[monitor_group].pending; 143 } 144 145 static u32 channel_latency(const struct vmbus_channel *channel, 146 const struct hv_monitor_page *monitor_page) 147 { 148 u8 monitor_group = channel_monitor_group(channel); 149 u8 monitor_offset = channel_monitor_offset(channel); 150 151 return monitor_page->latency[monitor_group][monitor_offset]; 152 } 153 154 static u32 channel_conn_id(struct vmbus_channel *channel, 155 struct hv_monitor_page *monitor_page) 156 { 157 u8 monitor_group = channel_monitor_group(channel); 158 u8 monitor_offset = channel_monitor_offset(channel); 159 160 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 161 } 162 163 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 164 char *buf) 165 { 166 struct hv_device *hv_dev = device_to_hv_device(dev); 167 168 if (!hv_dev->channel) 169 return -ENODEV; 170 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 171 } 172 static DEVICE_ATTR_RO(id); 173 174 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 175 char *buf) 176 { 177 struct hv_device *hv_dev = device_to_hv_device(dev); 178 179 if (!hv_dev->channel) 180 return -ENODEV; 181 return sprintf(buf, "%d\n", hv_dev->channel->state); 182 } 183 static DEVICE_ATTR_RO(state); 184 185 static ssize_t monitor_id_show(struct device *dev, 186 struct device_attribute *dev_attr, char *buf) 187 { 188 struct hv_device *hv_dev = device_to_hv_device(dev); 189 190 if (!hv_dev->channel) 191 return -ENODEV; 192 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 193 } 194 static DEVICE_ATTR_RO(monitor_id); 195 196 static ssize_t class_id_show(struct device *dev, 197 struct device_attribute *dev_attr, char *buf) 198 { 199 struct hv_device *hv_dev = device_to_hv_device(dev); 200 201 if (!hv_dev->channel) 202 return -ENODEV; 203 return sprintf(buf, "{%pUl}\n", 204 &hv_dev->channel->offermsg.offer.if_type); 205 } 206 static DEVICE_ATTR_RO(class_id); 207 208 static ssize_t device_id_show(struct device *dev, 209 struct device_attribute *dev_attr, char *buf) 210 { 211 struct hv_device *hv_dev = device_to_hv_device(dev); 212 213 if (!hv_dev->channel) 214 return -ENODEV; 215 return sprintf(buf, "{%pUl}\n", 216 &hv_dev->channel->offermsg.offer.if_instance); 217 } 218 static DEVICE_ATTR_RO(device_id); 219 220 static ssize_t modalias_show(struct device *dev, 221 struct device_attribute *dev_attr, char *buf) 222 { 223 struct hv_device *hv_dev = device_to_hv_device(dev); 224 225 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 226 } 227 static DEVICE_ATTR_RO(modalias); 228 229 #ifdef CONFIG_NUMA 230 static ssize_t numa_node_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct hv_device *hv_dev = device_to_hv_device(dev); 234 235 if (!hv_dev->channel) 236 return -ENODEV; 237 238 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 239 } 240 static DEVICE_ATTR_RO(numa_node); 241 #endif 242 243 static ssize_t server_monitor_pending_show(struct device *dev, 244 struct device_attribute *dev_attr, 245 char *buf) 246 { 247 struct hv_device *hv_dev = device_to_hv_device(dev); 248 249 if (!hv_dev->channel) 250 return -ENODEV; 251 return sprintf(buf, "%d\n", 252 channel_pending(hv_dev->channel, 253 vmbus_connection.monitor_pages[0])); 254 } 255 static DEVICE_ATTR_RO(server_monitor_pending); 256 257 static ssize_t client_monitor_pending_show(struct device *dev, 258 struct device_attribute *dev_attr, 259 char *buf) 260 { 261 struct hv_device *hv_dev = device_to_hv_device(dev); 262 263 if (!hv_dev->channel) 264 return -ENODEV; 265 return sprintf(buf, "%d\n", 266 channel_pending(hv_dev->channel, 267 vmbus_connection.monitor_pages[1])); 268 } 269 static DEVICE_ATTR_RO(client_monitor_pending); 270 271 static ssize_t server_monitor_latency_show(struct device *dev, 272 struct device_attribute *dev_attr, 273 char *buf) 274 { 275 struct hv_device *hv_dev = device_to_hv_device(dev); 276 277 if (!hv_dev->channel) 278 return -ENODEV; 279 return sprintf(buf, "%d\n", 280 channel_latency(hv_dev->channel, 281 vmbus_connection.monitor_pages[0])); 282 } 283 static DEVICE_ATTR_RO(server_monitor_latency); 284 285 static ssize_t client_monitor_latency_show(struct device *dev, 286 struct device_attribute *dev_attr, 287 char *buf) 288 { 289 struct hv_device *hv_dev = device_to_hv_device(dev); 290 291 if (!hv_dev->channel) 292 return -ENODEV; 293 return sprintf(buf, "%d\n", 294 channel_latency(hv_dev->channel, 295 vmbus_connection.monitor_pages[1])); 296 } 297 static DEVICE_ATTR_RO(client_monitor_latency); 298 299 static ssize_t server_monitor_conn_id_show(struct device *dev, 300 struct device_attribute *dev_attr, 301 char *buf) 302 { 303 struct hv_device *hv_dev = device_to_hv_device(dev); 304 305 if (!hv_dev->channel) 306 return -ENODEV; 307 return sprintf(buf, "%d\n", 308 channel_conn_id(hv_dev->channel, 309 vmbus_connection.monitor_pages[0])); 310 } 311 static DEVICE_ATTR_RO(server_monitor_conn_id); 312 313 static ssize_t client_monitor_conn_id_show(struct device *dev, 314 struct device_attribute *dev_attr, 315 char *buf) 316 { 317 struct hv_device *hv_dev = device_to_hv_device(dev); 318 319 if (!hv_dev->channel) 320 return -ENODEV; 321 return sprintf(buf, "%d\n", 322 channel_conn_id(hv_dev->channel, 323 vmbus_connection.monitor_pages[1])); 324 } 325 static DEVICE_ATTR_RO(client_monitor_conn_id); 326 327 static ssize_t out_intr_mask_show(struct device *dev, 328 struct device_attribute *dev_attr, char *buf) 329 { 330 struct hv_device *hv_dev = device_to_hv_device(dev); 331 struct hv_ring_buffer_debug_info outbound; 332 int ret; 333 334 if (!hv_dev->channel) 335 return -ENODEV; 336 337 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 338 &outbound); 339 if (ret < 0) 340 return ret; 341 342 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 343 } 344 static DEVICE_ATTR_RO(out_intr_mask); 345 346 static ssize_t out_read_index_show(struct device *dev, 347 struct device_attribute *dev_attr, char *buf) 348 { 349 struct hv_device *hv_dev = device_to_hv_device(dev); 350 struct hv_ring_buffer_debug_info outbound; 351 int ret; 352 353 if (!hv_dev->channel) 354 return -ENODEV; 355 356 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 357 &outbound); 358 if (ret < 0) 359 return ret; 360 return sprintf(buf, "%d\n", outbound.current_read_index); 361 } 362 static DEVICE_ATTR_RO(out_read_index); 363 364 static ssize_t out_write_index_show(struct device *dev, 365 struct device_attribute *dev_attr, 366 char *buf) 367 { 368 struct hv_device *hv_dev = device_to_hv_device(dev); 369 struct hv_ring_buffer_debug_info outbound; 370 int ret; 371 372 if (!hv_dev->channel) 373 return -ENODEV; 374 375 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 376 &outbound); 377 if (ret < 0) 378 return ret; 379 return sprintf(buf, "%d\n", outbound.current_write_index); 380 } 381 static DEVICE_ATTR_RO(out_write_index); 382 383 static ssize_t out_read_bytes_avail_show(struct device *dev, 384 struct device_attribute *dev_attr, 385 char *buf) 386 { 387 struct hv_device *hv_dev = device_to_hv_device(dev); 388 struct hv_ring_buffer_debug_info outbound; 389 int ret; 390 391 if (!hv_dev->channel) 392 return -ENODEV; 393 394 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 395 &outbound); 396 if (ret < 0) 397 return ret; 398 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 399 } 400 static DEVICE_ATTR_RO(out_read_bytes_avail); 401 402 static ssize_t out_write_bytes_avail_show(struct device *dev, 403 struct device_attribute *dev_attr, 404 char *buf) 405 { 406 struct hv_device *hv_dev = device_to_hv_device(dev); 407 struct hv_ring_buffer_debug_info outbound; 408 int ret; 409 410 if (!hv_dev->channel) 411 return -ENODEV; 412 413 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 414 &outbound); 415 if (ret < 0) 416 return ret; 417 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 418 } 419 static DEVICE_ATTR_RO(out_write_bytes_avail); 420 421 static ssize_t in_intr_mask_show(struct device *dev, 422 struct device_attribute *dev_attr, char *buf) 423 { 424 struct hv_device *hv_dev = device_to_hv_device(dev); 425 struct hv_ring_buffer_debug_info inbound; 426 int ret; 427 428 if (!hv_dev->channel) 429 return -ENODEV; 430 431 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 432 if (ret < 0) 433 return ret; 434 435 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 436 } 437 static DEVICE_ATTR_RO(in_intr_mask); 438 439 static ssize_t in_read_index_show(struct device *dev, 440 struct device_attribute *dev_attr, char *buf) 441 { 442 struct hv_device *hv_dev = device_to_hv_device(dev); 443 struct hv_ring_buffer_debug_info inbound; 444 int ret; 445 446 if (!hv_dev->channel) 447 return -ENODEV; 448 449 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 450 if (ret < 0) 451 return ret; 452 453 return sprintf(buf, "%d\n", inbound.current_read_index); 454 } 455 static DEVICE_ATTR_RO(in_read_index); 456 457 static ssize_t in_write_index_show(struct device *dev, 458 struct device_attribute *dev_attr, char *buf) 459 { 460 struct hv_device *hv_dev = device_to_hv_device(dev); 461 struct hv_ring_buffer_debug_info inbound; 462 int ret; 463 464 if (!hv_dev->channel) 465 return -ENODEV; 466 467 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 468 if (ret < 0) 469 return ret; 470 471 return sprintf(buf, "%d\n", inbound.current_write_index); 472 } 473 static DEVICE_ATTR_RO(in_write_index); 474 475 static ssize_t in_read_bytes_avail_show(struct device *dev, 476 struct device_attribute *dev_attr, 477 char *buf) 478 { 479 struct hv_device *hv_dev = device_to_hv_device(dev); 480 struct hv_ring_buffer_debug_info inbound; 481 int ret; 482 483 if (!hv_dev->channel) 484 return -ENODEV; 485 486 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 487 if (ret < 0) 488 return ret; 489 490 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 491 } 492 static DEVICE_ATTR_RO(in_read_bytes_avail); 493 494 static ssize_t in_write_bytes_avail_show(struct device *dev, 495 struct device_attribute *dev_attr, 496 char *buf) 497 { 498 struct hv_device *hv_dev = device_to_hv_device(dev); 499 struct hv_ring_buffer_debug_info inbound; 500 int ret; 501 502 if (!hv_dev->channel) 503 return -ENODEV; 504 505 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 506 if (ret < 0) 507 return ret; 508 509 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 510 } 511 static DEVICE_ATTR_RO(in_write_bytes_avail); 512 513 static ssize_t channel_vp_mapping_show(struct device *dev, 514 struct device_attribute *dev_attr, 515 char *buf) 516 { 517 struct hv_device *hv_dev = device_to_hv_device(dev); 518 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 519 int buf_size = PAGE_SIZE, n_written, tot_written; 520 struct list_head *cur; 521 522 if (!channel) 523 return -ENODEV; 524 525 mutex_lock(&vmbus_connection.channel_mutex); 526 527 tot_written = snprintf(buf, buf_size, "%u:%u\n", 528 channel->offermsg.child_relid, channel->target_cpu); 529 530 list_for_each(cur, &channel->sc_list) { 531 if (tot_written >= buf_size - 1) 532 break; 533 534 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 535 n_written = scnprintf(buf + tot_written, 536 buf_size - tot_written, 537 "%u:%u\n", 538 cur_sc->offermsg.child_relid, 539 cur_sc->target_cpu); 540 tot_written += n_written; 541 } 542 543 mutex_unlock(&vmbus_connection.channel_mutex); 544 545 return tot_written; 546 } 547 static DEVICE_ATTR_RO(channel_vp_mapping); 548 549 static ssize_t vendor_show(struct device *dev, 550 struct device_attribute *dev_attr, 551 char *buf) 552 { 553 struct hv_device *hv_dev = device_to_hv_device(dev); 554 555 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 556 } 557 static DEVICE_ATTR_RO(vendor); 558 559 static ssize_t device_show(struct device *dev, 560 struct device_attribute *dev_attr, 561 char *buf) 562 { 563 struct hv_device *hv_dev = device_to_hv_device(dev); 564 565 return sprintf(buf, "0x%x\n", hv_dev->device_id); 566 } 567 static DEVICE_ATTR_RO(device); 568 569 static ssize_t driver_override_store(struct device *dev, 570 struct device_attribute *attr, 571 const char *buf, size_t count) 572 { 573 struct hv_device *hv_dev = device_to_hv_device(dev); 574 char *driver_override, *old, *cp; 575 576 /* We need to keep extra room for a newline */ 577 if (count >= (PAGE_SIZE - 1)) 578 return -EINVAL; 579 580 driver_override = kstrndup(buf, count, GFP_KERNEL); 581 if (!driver_override) 582 return -ENOMEM; 583 584 cp = strchr(driver_override, '\n'); 585 if (cp) 586 *cp = '\0'; 587 588 device_lock(dev); 589 old = hv_dev->driver_override; 590 if (strlen(driver_override)) { 591 hv_dev->driver_override = driver_override; 592 } else { 593 kfree(driver_override); 594 hv_dev->driver_override = NULL; 595 } 596 device_unlock(dev); 597 598 kfree(old); 599 600 return count; 601 } 602 603 static ssize_t driver_override_show(struct device *dev, 604 struct device_attribute *attr, char *buf) 605 { 606 struct hv_device *hv_dev = device_to_hv_device(dev); 607 ssize_t len; 608 609 device_lock(dev); 610 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 611 device_unlock(dev); 612 613 return len; 614 } 615 static DEVICE_ATTR_RW(driver_override); 616 617 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 618 static struct attribute *vmbus_dev_attrs[] = { 619 &dev_attr_id.attr, 620 &dev_attr_state.attr, 621 &dev_attr_monitor_id.attr, 622 &dev_attr_class_id.attr, 623 &dev_attr_device_id.attr, 624 &dev_attr_modalias.attr, 625 #ifdef CONFIG_NUMA 626 &dev_attr_numa_node.attr, 627 #endif 628 &dev_attr_server_monitor_pending.attr, 629 &dev_attr_client_monitor_pending.attr, 630 &dev_attr_server_monitor_latency.attr, 631 &dev_attr_client_monitor_latency.attr, 632 &dev_attr_server_monitor_conn_id.attr, 633 &dev_attr_client_monitor_conn_id.attr, 634 &dev_attr_out_intr_mask.attr, 635 &dev_attr_out_read_index.attr, 636 &dev_attr_out_write_index.attr, 637 &dev_attr_out_read_bytes_avail.attr, 638 &dev_attr_out_write_bytes_avail.attr, 639 &dev_attr_in_intr_mask.attr, 640 &dev_attr_in_read_index.attr, 641 &dev_attr_in_write_index.attr, 642 &dev_attr_in_read_bytes_avail.attr, 643 &dev_attr_in_write_bytes_avail.attr, 644 &dev_attr_channel_vp_mapping.attr, 645 &dev_attr_vendor.attr, 646 &dev_attr_device.attr, 647 &dev_attr_driver_override.attr, 648 NULL, 649 }; 650 651 /* 652 * Device-level attribute_group callback function. Returns the permission for 653 * each attribute, and returns 0 if an attribute is not visible. 654 */ 655 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 656 struct attribute *attr, int idx) 657 { 658 struct device *dev = kobj_to_dev(kobj); 659 const struct hv_device *hv_dev = device_to_hv_device(dev); 660 661 /* Hide the monitor attributes if the monitor mechanism is not used. */ 662 if (!hv_dev->channel->offermsg.monitor_allocated && 663 (attr == &dev_attr_monitor_id.attr || 664 attr == &dev_attr_server_monitor_pending.attr || 665 attr == &dev_attr_client_monitor_pending.attr || 666 attr == &dev_attr_server_monitor_latency.attr || 667 attr == &dev_attr_client_monitor_latency.attr || 668 attr == &dev_attr_server_monitor_conn_id.attr || 669 attr == &dev_attr_client_monitor_conn_id.attr)) 670 return 0; 671 672 return attr->mode; 673 } 674 675 static const struct attribute_group vmbus_dev_group = { 676 .attrs = vmbus_dev_attrs, 677 .is_visible = vmbus_dev_attr_is_visible 678 }; 679 __ATTRIBUTE_GROUPS(vmbus_dev); 680 681 /* 682 * vmbus_uevent - add uevent for our device 683 * 684 * This routine is invoked when a device is added or removed on the vmbus to 685 * generate a uevent to udev in the userspace. The udev will then look at its 686 * rule and the uevent generated here to load the appropriate driver 687 * 688 * The alias string will be of the form vmbus:guid where guid is the string 689 * representation of the device guid (each byte of the guid will be 690 * represented with two hex characters. 691 */ 692 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 693 { 694 struct hv_device *dev = device_to_hv_device(device); 695 const char *format = "MODALIAS=vmbus:%*phN"; 696 697 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 698 } 699 700 static const struct hv_vmbus_device_id * 701 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 702 { 703 if (id == NULL) 704 return NULL; /* empty device table */ 705 706 for (; !guid_is_null(&id->guid); id++) 707 if (guid_equal(&id->guid, guid)) 708 return id; 709 710 return NULL; 711 } 712 713 static const struct hv_vmbus_device_id * 714 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 715 { 716 const struct hv_vmbus_device_id *id = NULL; 717 struct vmbus_dynid *dynid; 718 719 spin_lock(&drv->dynids.lock); 720 list_for_each_entry(dynid, &drv->dynids.list, node) { 721 if (guid_equal(&dynid->id.guid, guid)) { 722 id = &dynid->id; 723 break; 724 } 725 } 726 spin_unlock(&drv->dynids.lock); 727 728 return id; 729 } 730 731 static const struct hv_vmbus_device_id vmbus_device_null; 732 733 /* 734 * Return a matching hv_vmbus_device_id pointer. 735 * If there is no match, return NULL. 736 */ 737 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 738 struct hv_device *dev) 739 { 740 const guid_t *guid = &dev->dev_type; 741 const struct hv_vmbus_device_id *id; 742 743 /* When driver_override is set, only bind to the matching driver */ 744 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 745 return NULL; 746 747 /* Look at the dynamic ids first, before the static ones */ 748 id = hv_vmbus_dynid_match(drv, guid); 749 if (!id) 750 id = hv_vmbus_dev_match(drv->id_table, guid); 751 752 /* driver_override will always match, send a dummy id */ 753 if (!id && dev->driver_override) 754 id = &vmbus_device_null; 755 756 return id; 757 } 758 759 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 760 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 761 { 762 struct vmbus_dynid *dynid; 763 764 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 765 if (!dynid) 766 return -ENOMEM; 767 768 dynid->id.guid = *guid; 769 770 spin_lock(&drv->dynids.lock); 771 list_add_tail(&dynid->node, &drv->dynids.list); 772 spin_unlock(&drv->dynids.lock); 773 774 return driver_attach(&drv->driver); 775 } 776 777 static void vmbus_free_dynids(struct hv_driver *drv) 778 { 779 struct vmbus_dynid *dynid, *n; 780 781 spin_lock(&drv->dynids.lock); 782 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 783 list_del(&dynid->node); 784 kfree(dynid); 785 } 786 spin_unlock(&drv->dynids.lock); 787 } 788 789 /* 790 * store_new_id - sysfs frontend to vmbus_add_dynid() 791 * 792 * Allow GUIDs to be added to an existing driver via sysfs. 793 */ 794 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 795 size_t count) 796 { 797 struct hv_driver *drv = drv_to_hv_drv(driver); 798 guid_t guid; 799 ssize_t retval; 800 801 retval = guid_parse(buf, &guid); 802 if (retval) 803 return retval; 804 805 if (hv_vmbus_dynid_match(drv, &guid)) 806 return -EEXIST; 807 808 retval = vmbus_add_dynid(drv, &guid); 809 if (retval) 810 return retval; 811 return count; 812 } 813 static DRIVER_ATTR_WO(new_id); 814 815 /* 816 * store_remove_id - remove a PCI device ID from this driver 817 * 818 * Removes a dynamic pci device ID to this driver. 819 */ 820 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 821 size_t count) 822 { 823 struct hv_driver *drv = drv_to_hv_drv(driver); 824 struct vmbus_dynid *dynid, *n; 825 guid_t guid; 826 ssize_t retval; 827 828 retval = guid_parse(buf, &guid); 829 if (retval) 830 return retval; 831 832 retval = -ENODEV; 833 spin_lock(&drv->dynids.lock); 834 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 835 struct hv_vmbus_device_id *id = &dynid->id; 836 837 if (guid_equal(&id->guid, &guid)) { 838 list_del(&dynid->node); 839 kfree(dynid); 840 retval = count; 841 break; 842 } 843 } 844 spin_unlock(&drv->dynids.lock); 845 846 return retval; 847 } 848 static DRIVER_ATTR_WO(remove_id); 849 850 static struct attribute *vmbus_drv_attrs[] = { 851 &driver_attr_new_id.attr, 852 &driver_attr_remove_id.attr, 853 NULL, 854 }; 855 ATTRIBUTE_GROUPS(vmbus_drv); 856 857 858 /* 859 * vmbus_match - Attempt to match the specified device to the specified driver 860 */ 861 static int vmbus_match(struct device *device, struct device_driver *driver) 862 { 863 struct hv_driver *drv = drv_to_hv_drv(driver); 864 struct hv_device *hv_dev = device_to_hv_device(device); 865 866 /* The hv_sock driver handles all hv_sock offers. */ 867 if (is_hvsock_channel(hv_dev->channel)) 868 return drv->hvsock; 869 870 if (hv_vmbus_get_id(drv, hv_dev)) 871 return 1; 872 873 return 0; 874 } 875 876 /* 877 * vmbus_probe - Add the new vmbus's child device 878 */ 879 static int vmbus_probe(struct device *child_device) 880 { 881 int ret = 0; 882 struct hv_driver *drv = 883 drv_to_hv_drv(child_device->driver); 884 struct hv_device *dev = device_to_hv_device(child_device); 885 const struct hv_vmbus_device_id *dev_id; 886 887 dev_id = hv_vmbus_get_id(drv, dev); 888 if (drv->probe) { 889 ret = drv->probe(dev, dev_id); 890 if (ret != 0) 891 pr_err("probe failed for device %s (%d)\n", 892 dev_name(child_device), ret); 893 894 } else { 895 pr_err("probe not set for driver %s\n", 896 dev_name(child_device)); 897 ret = -ENODEV; 898 } 899 return ret; 900 } 901 902 /* 903 * vmbus_remove - Remove a vmbus device 904 */ 905 static int vmbus_remove(struct device *child_device) 906 { 907 struct hv_driver *drv; 908 struct hv_device *dev = device_to_hv_device(child_device); 909 910 if (child_device->driver) { 911 drv = drv_to_hv_drv(child_device->driver); 912 if (drv->remove) 913 drv->remove(dev); 914 } 915 916 return 0; 917 } 918 919 920 /* 921 * vmbus_shutdown - Shutdown a vmbus device 922 */ 923 static void vmbus_shutdown(struct device *child_device) 924 { 925 struct hv_driver *drv; 926 struct hv_device *dev = device_to_hv_device(child_device); 927 928 929 /* The device may not be attached yet */ 930 if (!child_device->driver) 931 return; 932 933 drv = drv_to_hv_drv(child_device->driver); 934 935 if (drv->shutdown) 936 drv->shutdown(dev); 937 } 938 939 #ifdef CONFIG_PM_SLEEP 940 /* 941 * vmbus_suspend - Suspend a vmbus device 942 */ 943 static int vmbus_suspend(struct device *child_device) 944 { 945 struct hv_driver *drv; 946 struct hv_device *dev = device_to_hv_device(child_device); 947 948 /* The device may not be attached yet */ 949 if (!child_device->driver) 950 return 0; 951 952 drv = drv_to_hv_drv(child_device->driver); 953 if (!drv->suspend) 954 return -EOPNOTSUPP; 955 956 return drv->suspend(dev); 957 } 958 959 /* 960 * vmbus_resume - Resume a vmbus device 961 */ 962 static int vmbus_resume(struct device *child_device) 963 { 964 struct hv_driver *drv; 965 struct hv_device *dev = device_to_hv_device(child_device); 966 967 /* The device may not be attached yet */ 968 if (!child_device->driver) 969 return 0; 970 971 drv = drv_to_hv_drv(child_device->driver); 972 if (!drv->resume) 973 return -EOPNOTSUPP; 974 975 return drv->resume(dev); 976 } 977 #else 978 #define vmbus_suspend NULL 979 #define vmbus_resume NULL 980 #endif /* CONFIG_PM_SLEEP */ 981 982 /* 983 * vmbus_device_release - Final callback release of the vmbus child device 984 */ 985 static void vmbus_device_release(struct device *device) 986 { 987 struct hv_device *hv_dev = device_to_hv_device(device); 988 struct vmbus_channel *channel = hv_dev->channel; 989 990 hv_debug_rm_dev_dir(hv_dev); 991 992 mutex_lock(&vmbus_connection.channel_mutex); 993 hv_process_channel_removal(channel); 994 mutex_unlock(&vmbus_connection.channel_mutex); 995 kfree(hv_dev); 996 } 997 998 /* 999 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1000 * 1001 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1002 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1003 * is no way to wake up a Generation-2 VM. 1004 * 1005 * The other 4 ops are for hibernation. 1006 */ 1007 1008 static const struct dev_pm_ops vmbus_pm = { 1009 .suspend_noirq = NULL, 1010 .resume_noirq = NULL, 1011 .freeze_noirq = vmbus_suspend, 1012 .thaw_noirq = vmbus_resume, 1013 .poweroff_noirq = vmbus_suspend, 1014 .restore_noirq = vmbus_resume, 1015 }; 1016 1017 /* The one and only one */ 1018 static struct bus_type hv_bus = { 1019 .name = "vmbus", 1020 .match = vmbus_match, 1021 .shutdown = vmbus_shutdown, 1022 .remove = vmbus_remove, 1023 .probe = vmbus_probe, 1024 .uevent = vmbus_uevent, 1025 .dev_groups = vmbus_dev_groups, 1026 .drv_groups = vmbus_drv_groups, 1027 .pm = &vmbus_pm, 1028 }; 1029 1030 struct onmessage_work_context { 1031 struct work_struct work; 1032 struct { 1033 struct hv_message_header header; 1034 u8 payload[]; 1035 } msg; 1036 }; 1037 1038 static void vmbus_onmessage_work(struct work_struct *work) 1039 { 1040 struct onmessage_work_context *ctx; 1041 1042 /* Do not process messages if we're in DISCONNECTED state */ 1043 if (vmbus_connection.conn_state == DISCONNECTED) 1044 return; 1045 1046 ctx = container_of(work, struct onmessage_work_context, 1047 work); 1048 vmbus_onmessage((struct vmbus_channel_message_header *) 1049 &ctx->msg.payload); 1050 kfree(ctx); 1051 } 1052 1053 void vmbus_on_msg_dpc(unsigned long data) 1054 { 1055 struct hv_per_cpu_context *hv_cpu = (void *)data; 1056 void *page_addr = hv_cpu->synic_message_page; 1057 struct hv_message *msg = (struct hv_message *)page_addr + 1058 VMBUS_MESSAGE_SINT; 1059 struct vmbus_channel_message_header *hdr; 1060 const struct vmbus_channel_message_table_entry *entry; 1061 struct onmessage_work_context *ctx; 1062 u32 message_type = msg->header.message_type; 1063 1064 /* 1065 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1066 * it is being used in 'struct vmbus_channel_message_header' definition 1067 * which is supposed to match hypervisor ABI. 1068 */ 1069 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1070 1071 if (message_type == HVMSG_NONE) 1072 /* no msg */ 1073 return; 1074 1075 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 1076 1077 trace_vmbus_on_msg_dpc(hdr); 1078 1079 if (hdr->msgtype >= CHANNELMSG_COUNT) { 1080 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 1081 goto msg_handled; 1082 } 1083 1084 if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1085 WARN_ONCE(1, "payload size is too large (%d)\n", 1086 msg->header.payload_size); 1087 goto msg_handled; 1088 } 1089 1090 entry = &channel_message_table[hdr->msgtype]; 1091 1092 if (!entry->message_handler) 1093 goto msg_handled; 1094 1095 if (msg->header.payload_size < entry->min_payload_len) { 1096 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", 1097 hdr->msgtype, msg->header.payload_size); 1098 goto msg_handled; 1099 } 1100 1101 if (entry->handler_type == VMHT_BLOCKING) { 1102 ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size, 1103 GFP_ATOMIC); 1104 if (ctx == NULL) 1105 return; 1106 1107 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1108 memcpy(&ctx->msg, msg, sizeof(msg->header) + 1109 msg->header.payload_size); 1110 1111 /* 1112 * The host can generate a rescind message while we 1113 * may still be handling the original offer. We deal with 1114 * this condition by relying on the synchronization provided 1115 * by offer_in_progress and by channel_mutex. See also the 1116 * inline comments in vmbus_onoffer_rescind(). 1117 */ 1118 switch (hdr->msgtype) { 1119 case CHANNELMSG_RESCIND_CHANNELOFFER: 1120 /* 1121 * If we are handling the rescind message; 1122 * schedule the work on the global work queue. 1123 * 1124 * The OFFER message and the RESCIND message should 1125 * not be handled by the same serialized work queue, 1126 * because the OFFER handler may call vmbus_open(), 1127 * which tries to open the channel by sending an 1128 * OPEN_CHANNEL message to the host and waits for 1129 * the host's response; however, if the host has 1130 * rescinded the channel before it receives the 1131 * OPEN_CHANNEL message, the host just silently 1132 * ignores the OPEN_CHANNEL message; as a result, 1133 * the guest's OFFER handler hangs for ever, if we 1134 * handle the RESCIND message in the same serialized 1135 * work queue: the RESCIND handler can not start to 1136 * run before the OFFER handler finishes. 1137 */ 1138 schedule_work(&ctx->work); 1139 break; 1140 1141 case CHANNELMSG_OFFERCHANNEL: 1142 /* 1143 * The host sends the offer message of a given channel 1144 * before sending the rescind message of the same 1145 * channel. These messages are sent to the guest's 1146 * connect CPU; the guest then starts processing them 1147 * in the tasklet handler on this CPU: 1148 * 1149 * VMBUS_CONNECT_CPU 1150 * 1151 * [vmbus_on_msg_dpc()] 1152 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1153 * queue_work() 1154 * ... 1155 * [vmbus_on_msg_dpc()] 1156 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1157 * 1158 * We rely on the memory-ordering properties of the 1159 * queue_work() and schedule_work() primitives, which 1160 * guarantee that the atomic increment will be visible 1161 * to the CPUs which will execute the offer & rescind 1162 * works by the time these works will start execution. 1163 */ 1164 atomic_inc(&vmbus_connection.offer_in_progress); 1165 fallthrough; 1166 1167 default: 1168 queue_work(vmbus_connection.work_queue, &ctx->work); 1169 } 1170 } else 1171 entry->message_handler(hdr); 1172 1173 msg_handled: 1174 vmbus_signal_eom(msg, message_type); 1175 } 1176 1177 #ifdef CONFIG_PM_SLEEP 1178 /* 1179 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1180 * hibernation, because hv_sock connections can not persist across hibernation. 1181 */ 1182 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1183 { 1184 struct onmessage_work_context *ctx; 1185 struct vmbus_channel_rescind_offer *rescind; 1186 1187 WARN_ON(!is_hvsock_channel(channel)); 1188 1189 /* 1190 * Allocation size is small and the allocation should really not fail, 1191 * otherwise the state of the hv_sock connections ends up in limbo. 1192 */ 1193 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1194 GFP_KERNEL | __GFP_NOFAIL); 1195 1196 /* 1197 * So far, these are not really used by Linux. Just set them to the 1198 * reasonable values conforming to the definitions of the fields. 1199 */ 1200 ctx->msg.header.message_type = 1; 1201 ctx->msg.header.payload_size = sizeof(*rescind); 1202 1203 /* These values are actually used by Linux. */ 1204 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1205 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1206 rescind->child_relid = channel->offermsg.child_relid; 1207 1208 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1209 1210 queue_work(vmbus_connection.work_queue, &ctx->work); 1211 } 1212 #endif /* CONFIG_PM_SLEEP */ 1213 1214 /* 1215 * Schedule all channels with events pending 1216 */ 1217 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1218 { 1219 unsigned long *recv_int_page; 1220 u32 maxbits, relid; 1221 1222 if (vmbus_proto_version < VERSION_WIN8) { 1223 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1224 recv_int_page = vmbus_connection.recv_int_page; 1225 } else { 1226 /* 1227 * When the host is win8 and beyond, the event page 1228 * can be directly checked to get the id of the channel 1229 * that has the interrupt pending. 1230 */ 1231 void *page_addr = hv_cpu->synic_event_page; 1232 union hv_synic_event_flags *event 1233 = (union hv_synic_event_flags *)page_addr + 1234 VMBUS_MESSAGE_SINT; 1235 1236 maxbits = HV_EVENT_FLAGS_COUNT; 1237 recv_int_page = event->flags; 1238 } 1239 1240 if (unlikely(!recv_int_page)) 1241 return; 1242 1243 for_each_set_bit(relid, recv_int_page, maxbits) { 1244 void (*callback_fn)(void *context); 1245 struct vmbus_channel *channel; 1246 1247 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1248 continue; 1249 1250 /* Special case - vmbus channel protocol msg */ 1251 if (relid == 0) 1252 continue; 1253 1254 /* 1255 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1256 * Guarantees that the channel data structure doesn't 1257 * get freed while the channel pointer below is being 1258 * dereferenced. 1259 */ 1260 rcu_read_lock(); 1261 1262 /* Find channel based on relid */ 1263 channel = relid2channel(relid); 1264 if (channel == NULL) 1265 goto sched_unlock_rcu; 1266 1267 if (channel->rescind) 1268 goto sched_unlock_rcu; 1269 1270 /* 1271 * Make sure that the ring buffer data structure doesn't get 1272 * freed while we dereference the ring buffer pointer. Test 1273 * for the channel's onchannel_callback being NULL within a 1274 * sched_lock critical section. See also the inline comments 1275 * in vmbus_reset_channel_cb(). 1276 */ 1277 spin_lock(&channel->sched_lock); 1278 1279 callback_fn = channel->onchannel_callback; 1280 if (unlikely(callback_fn == NULL)) 1281 goto sched_unlock; 1282 1283 trace_vmbus_chan_sched(channel); 1284 1285 ++channel->interrupts; 1286 1287 switch (channel->callback_mode) { 1288 case HV_CALL_ISR: 1289 (*callback_fn)(channel->channel_callback_context); 1290 break; 1291 1292 case HV_CALL_BATCHED: 1293 hv_begin_read(&channel->inbound); 1294 fallthrough; 1295 case HV_CALL_DIRECT: 1296 tasklet_schedule(&channel->callback_event); 1297 } 1298 1299 sched_unlock: 1300 spin_unlock(&channel->sched_lock); 1301 sched_unlock_rcu: 1302 rcu_read_unlock(); 1303 } 1304 } 1305 1306 static void vmbus_isr(void) 1307 { 1308 struct hv_per_cpu_context *hv_cpu 1309 = this_cpu_ptr(hv_context.cpu_context); 1310 void *page_addr = hv_cpu->synic_event_page; 1311 struct hv_message *msg; 1312 union hv_synic_event_flags *event; 1313 bool handled = false; 1314 1315 if (unlikely(page_addr == NULL)) 1316 return; 1317 1318 event = (union hv_synic_event_flags *)page_addr + 1319 VMBUS_MESSAGE_SINT; 1320 /* 1321 * Check for events before checking for messages. This is the order 1322 * in which events and messages are checked in Windows guests on 1323 * Hyper-V, and the Windows team suggested we do the same. 1324 */ 1325 1326 if ((vmbus_proto_version == VERSION_WS2008) || 1327 (vmbus_proto_version == VERSION_WIN7)) { 1328 1329 /* Since we are a child, we only need to check bit 0 */ 1330 if (sync_test_and_clear_bit(0, event->flags)) 1331 handled = true; 1332 } else { 1333 /* 1334 * Our host is win8 or above. The signaling mechanism 1335 * has changed and we can directly look at the event page. 1336 * If bit n is set then we have an interrup on the channel 1337 * whose id is n. 1338 */ 1339 handled = true; 1340 } 1341 1342 if (handled) 1343 vmbus_chan_sched(hv_cpu); 1344 1345 page_addr = hv_cpu->synic_message_page; 1346 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1347 1348 /* Check if there are actual msgs to be processed */ 1349 if (msg->header.message_type != HVMSG_NONE) { 1350 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1351 hv_stimer0_isr(); 1352 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1353 } else 1354 tasklet_schedule(&hv_cpu->msg_dpc); 1355 } 1356 1357 add_interrupt_randomness(hv_get_vector(), 0); 1358 } 1359 1360 /* 1361 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1362 * buffer and call into Hyper-V to transfer the data. 1363 */ 1364 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1365 enum kmsg_dump_reason reason) 1366 { 1367 size_t bytes_written; 1368 phys_addr_t panic_pa; 1369 1370 /* We are only interested in panics. */ 1371 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1372 return; 1373 1374 panic_pa = virt_to_phys(hv_panic_page); 1375 1376 /* 1377 * Write dump contents to the page. No need to synchronize; panic should 1378 * be single-threaded. 1379 */ 1380 kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE, 1381 &bytes_written); 1382 if (bytes_written) 1383 hyperv_report_panic_msg(panic_pa, bytes_written); 1384 } 1385 1386 static struct kmsg_dumper hv_kmsg_dumper = { 1387 .dump = hv_kmsg_dump, 1388 }; 1389 1390 static void hv_kmsg_dump_register(void) 1391 { 1392 int ret; 1393 1394 hv_panic_page = hv_alloc_hyperv_zeroed_page(); 1395 if (!hv_panic_page) { 1396 pr_err("Hyper-V: panic message page memory allocation failed\n"); 1397 return; 1398 } 1399 1400 ret = kmsg_dump_register(&hv_kmsg_dumper); 1401 if (ret) { 1402 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); 1403 hv_free_hyperv_page((unsigned long)hv_panic_page); 1404 hv_panic_page = NULL; 1405 } 1406 } 1407 1408 static struct ctl_table_header *hv_ctl_table_hdr; 1409 1410 /* 1411 * sysctl option to allow the user to control whether kmsg data should be 1412 * reported to Hyper-V on panic. 1413 */ 1414 static struct ctl_table hv_ctl_table[] = { 1415 { 1416 .procname = "hyperv_record_panic_msg", 1417 .data = &sysctl_record_panic_msg, 1418 .maxlen = sizeof(int), 1419 .mode = 0644, 1420 .proc_handler = proc_dointvec_minmax, 1421 .extra1 = SYSCTL_ZERO, 1422 .extra2 = SYSCTL_ONE 1423 }, 1424 {} 1425 }; 1426 1427 static struct ctl_table hv_root_table[] = { 1428 { 1429 .procname = "kernel", 1430 .mode = 0555, 1431 .child = hv_ctl_table 1432 }, 1433 {} 1434 }; 1435 1436 /* 1437 * vmbus_bus_init -Main vmbus driver initialization routine. 1438 * 1439 * Here, we 1440 * - initialize the vmbus driver context 1441 * - invoke the vmbus hv main init routine 1442 * - retrieve the channel offers 1443 */ 1444 static int vmbus_bus_init(void) 1445 { 1446 int ret; 1447 1448 ret = hv_init(); 1449 if (ret != 0) { 1450 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1451 return ret; 1452 } 1453 1454 ret = bus_register(&hv_bus); 1455 if (ret) 1456 return ret; 1457 1458 ret = hv_setup_vmbus_irq(vmbus_irq, vmbus_isr); 1459 if (ret) 1460 goto err_setup; 1461 1462 ret = hv_synic_alloc(); 1463 if (ret) 1464 goto err_alloc; 1465 1466 /* 1467 * Initialize the per-cpu interrupt state and stimer state. 1468 * Then connect to the host. 1469 */ 1470 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1471 hv_synic_init, hv_synic_cleanup); 1472 if (ret < 0) 1473 goto err_cpuhp; 1474 hyperv_cpuhp_online = ret; 1475 1476 ret = vmbus_connect(); 1477 if (ret) 1478 goto err_connect; 1479 1480 /* 1481 * Only register if the crash MSRs are available 1482 */ 1483 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1484 u64 hyperv_crash_ctl; 1485 /* 1486 * Sysctl registration is not fatal, since by default 1487 * reporting is enabled. 1488 */ 1489 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1490 if (!hv_ctl_table_hdr) 1491 pr_err("Hyper-V: sysctl table register error"); 1492 1493 /* 1494 * Register for panic kmsg callback only if the right 1495 * capability is supported by the hypervisor. 1496 */ 1497 hv_get_crash_ctl(hyperv_crash_ctl); 1498 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) 1499 hv_kmsg_dump_register(); 1500 1501 register_die_notifier(&hyperv_die_block); 1502 } 1503 1504 /* 1505 * Always register the panic notifier because we need to unload 1506 * the VMbus channel connection to prevent any VMbus 1507 * activity after the VM panics. 1508 */ 1509 atomic_notifier_chain_register(&panic_notifier_list, 1510 &hyperv_panic_block); 1511 1512 vmbus_request_offers(); 1513 1514 return 0; 1515 1516 err_connect: 1517 cpuhp_remove_state(hyperv_cpuhp_online); 1518 err_cpuhp: 1519 hv_synic_free(); 1520 err_alloc: 1521 hv_remove_vmbus_irq(); 1522 err_setup: 1523 bus_unregister(&hv_bus); 1524 unregister_sysctl_table(hv_ctl_table_hdr); 1525 hv_ctl_table_hdr = NULL; 1526 return ret; 1527 } 1528 1529 /** 1530 * __vmbus_child_driver_register() - Register a vmbus's driver 1531 * @hv_driver: Pointer to driver structure you want to register 1532 * @owner: owner module of the drv 1533 * @mod_name: module name string 1534 * 1535 * Registers the given driver with Linux through the 'driver_register()' call 1536 * and sets up the hyper-v vmbus handling for this driver. 1537 * It will return the state of the 'driver_register()' call. 1538 * 1539 */ 1540 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1541 { 1542 int ret; 1543 1544 pr_info("registering driver %s\n", hv_driver->name); 1545 1546 ret = vmbus_exists(); 1547 if (ret < 0) 1548 return ret; 1549 1550 hv_driver->driver.name = hv_driver->name; 1551 hv_driver->driver.owner = owner; 1552 hv_driver->driver.mod_name = mod_name; 1553 hv_driver->driver.bus = &hv_bus; 1554 1555 spin_lock_init(&hv_driver->dynids.lock); 1556 INIT_LIST_HEAD(&hv_driver->dynids.list); 1557 1558 ret = driver_register(&hv_driver->driver); 1559 1560 return ret; 1561 } 1562 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1563 1564 /** 1565 * vmbus_driver_unregister() - Unregister a vmbus's driver 1566 * @hv_driver: Pointer to driver structure you want to 1567 * un-register 1568 * 1569 * Un-register the given driver that was previous registered with a call to 1570 * vmbus_driver_register() 1571 */ 1572 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1573 { 1574 pr_info("unregistering driver %s\n", hv_driver->name); 1575 1576 if (!vmbus_exists()) { 1577 driver_unregister(&hv_driver->driver); 1578 vmbus_free_dynids(hv_driver); 1579 } 1580 } 1581 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1582 1583 1584 /* 1585 * Called when last reference to channel is gone. 1586 */ 1587 static void vmbus_chan_release(struct kobject *kobj) 1588 { 1589 struct vmbus_channel *channel 1590 = container_of(kobj, struct vmbus_channel, kobj); 1591 1592 kfree_rcu(channel, rcu); 1593 } 1594 1595 struct vmbus_chan_attribute { 1596 struct attribute attr; 1597 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1598 ssize_t (*store)(struct vmbus_channel *chan, 1599 const char *buf, size_t count); 1600 }; 1601 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1602 struct vmbus_chan_attribute chan_attr_##_name \ 1603 = __ATTR(_name, _mode, _show, _store) 1604 #define VMBUS_CHAN_ATTR_RW(_name) \ 1605 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1606 #define VMBUS_CHAN_ATTR_RO(_name) \ 1607 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1608 #define VMBUS_CHAN_ATTR_WO(_name) \ 1609 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1610 1611 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1612 struct attribute *attr, char *buf) 1613 { 1614 const struct vmbus_chan_attribute *attribute 1615 = container_of(attr, struct vmbus_chan_attribute, attr); 1616 struct vmbus_channel *chan 1617 = container_of(kobj, struct vmbus_channel, kobj); 1618 1619 if (!attribute->show) 1620 return -EIO; 1621 1622 return attribute->show(chan, buf); 1623 } 1624 1625 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1626 struct attribute *attr, const char *buf, 1627 size_t count) 1628 { 1629 const struct vmbus_chan_attribute *attribute 1630 = container_of(attr, struct vmbus_chan_attribute, attr); 1631 struct vmbus_channel *chan 1632 = container_of(kobj, struct vmbus_channel, kobj); 1633 1634 if (!attribute->store) 1635 return -EIO; 1636 1637 return attribute->store(chan, buf, count); 1638 } 1639 1640 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1641 .show = vmbus_chan_attr_show, 1642 .store = vmbus_chan_attr_store, 1643 }; 1644 1645 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1646 { 1647 struct hv_ring_buffer_info *rbi = &channel->outbound; 1648 ssize_t ret; 1649 1650 mutex_lock(&rbi->ring_buffer_mutex); 1651 if (!rbi->ring_buffer) { 1652 mutex_unlock(&rbi->ring_buffer_mutex); 1653 return -EINVAL; 1654 } 1655 1656 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1657 mutex_unlock(&rbi->ring_buffer_mutex); 1658 return ret; 1659 } 1660 static VMBUS_CHAN_ATTR_RO(out_mask); 1661 1662 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1663 { 1664 struct hv_ring_buffer_info *rbi = &channel->inbound; 1665 ssize_t ret; 1666 1667 mutex_lock(&rbi->ring_buffer_mutex); 1668 if (!rbi->ring_buffer) { 1669 mutex_unlock(&rbi->ring_buffer_mutex); 1670 return -EINVAL; 1671 } 1672 1673 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1674 mutex_unlock(&rbi->ring_buffer_mutex); 1675 return ret; 1676 } 1677 static VMBUS_CHAN_ATTR_RO(in_mask); 1678 1679 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1680 { 1681 struct hv_ring_buffer_info *rbi = &channel->inbound; 1682 ssize_t ret; 1683 1684 mutex_lock(&rbi->ring_buffer_mutex); 1685 if (!rbi->ring_buffer) { 1686 mutex_unlock(&rbi->ring_buffer_mutex); 1687 return -EINVAL; 1688 } 1689 1690 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1691 mutex_unlock(&rbi->ring_buffer_mutex); 1692 return ret; 1693 } 1694 static VMBUS_CHAN_ATTR_RO(read_avail); 1695 1696 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1697 { 1698 struct hv_ring_buffer_info *rbi = &channel->outbound; 1699 ssize_t ret; 1700 1701 mutex_lock(&rbi->ring_buffer_mutex); 1702 if (!rbi->ring_buffer) { 1703 mutex_unlock(&rbi->ring_buffer_mutex); 1704 return -EINVAL; 1705 } 1706 1707 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1708 mutex_unlock(&rbi->ring_buffer_mutex); 1709 return ret; 1710 } 1711 static VMBUS_CHAN_ATTR_RO(write_avail); 1712 1713 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1714 { 1715 return sprintf(buf, "%u\n", channel->target_cpu); 1716 } 1717 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1718 const char *buf, size_t count) 1719 { 1720 u32 target_cpu, origin_cpu; 1721 ssize_t ret = count; 1722 1723 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1724 return -EIO; 1725 1726 if (sscanf(buf, "%uu", &target_cpu) != 1) 1727 return -EIO; 1728 1729 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1730 if (target_cpu >= nr_cpumask_bits) 1731 return -EINVAL; 1732 1733 /* No CPUs should come up or down during this. */ 1734 cpus_read_lock(); 1735 1736 if (!cpu_online(target_cpu)) { 1737 cpus_read_unlock(); 1738 return -EINVAL; 1739 } 1740 1741 /* 1742 * Synchronizes target_cpu_store() and channel closure: 1743 * 1744 * { Initially: state = CHANNEL_OPENED } 1745 * 1746 * CPU1 CPU2 1747 * 1748 * [target_cpu_store()] [vmbus_disconnect_ring()] 1749 * 1750 * LOCK channel_mutex LOCK channel_mutex 1751 * LOAD r1 = state LOAD r2 = state 1752 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1753 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1754 * [...] SEND CLOSECHANNEL 1755 * UNLOCK channel_mutex UNLOCK channel_mutex 1756 * 1757 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1758 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1759 * 1760 * Note. The host processes the channel messages "sequentially", in 1761 * the order in which they are received on a per-partition basis. 1762 */ 1763 mutex_lock(&vmbus_connection.channel_mutex); 1764 1765 /* 1766 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1767 * avoid sending the message and fail here for such channels. 1768 */ 1769 if (channel->state != CHANNEL_OPENED_STATE) { 1770 ret = -EIO; 1771 goto cpu_store_unlock; 1772 } 1773 1774 origin_cpu = channel->target_cpu; 1775 if (target_cpu == origin_cpu) 1776 goto cpu_store_unlock; 1777 1778 if (vmbus_send_modifychannel(channel->offermsg.child_relid, 1779 hv_cpu_number_to_vp_number(target_cpu))) { 1780 ret = -EIO; 1781 goto cpu_store_unlock; 1782 } 1783 1784 /* 1785 * Warning. At this point, there is *no* guarantee that the host will 1786 * have successfully processed the vmbus_send_modifychannel() request. 1787 * See the header comment of vmbus_send_modifychannel() for more info. 1788 * 1789 * Lags in the processing of the above vmbus_send_modifychannel() can 1790 * result in missed interrupts if the "old" target CPU is taken offline 1791 * before Hyper-V starts sending interrupts to the "new" target CPU. 1792 * But apart from this offlining scenario, the code tolerates such 1793 * lags. It will function correctly even if a channel interrupt comes 1794 * in on a CPU that is different from the channel target_cpu value. 1795 */ 1796 1797 channel->target_cpu = target_cpu; 1798 1799 /* See init_vp_index(). */ 1800 if (hv_is_perf_channel(channel)) 1801 hv_update_alloced_cpus(origin_cpu, target_cpu); 1802 1803 /* Currently set only for storvsc channels. */ 1804 if (channel->change_target_cpu_callback) { 1805 (*channel->change_target_cpu_callback)(channel, 1806 origin_cpu, target_cpu); 1807 } 1808 1809 cpu_store_unlock: 1810 mutex_unlock(&vmbus_connection.channel_mutex); 1811 cpus_read_unlock(); 1812 return ret; 1813 } 1814 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1815 1816 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1817 char *buf) 1818 { 1819 return sprintf(buf, "%d\n", 1820 channel_pending(channel, 1821 vmbus_connection.monitor_pages[1])); 1822 } 1823 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1824 1825 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1826 char *buf) 1827 { 1828 return sprintf(buf, "%d\n", 1829 channel_latency(channel, 1830 vmbus_connection.monitor_pages[1])); 1831 } 1832 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1833 1834 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1835 { 1836 return sprintf(buf, "%llu\n", channel->interrupts); 1837 } 1838 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1839 1840 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1841 { 1842 return sprintf(buf, "%llu\n", channel->sig_events); 1843 } 1844 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1845 1846 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1847 char *buf) 1848 { 1849 return sprintf(buf, "%llu\n", 1850 (unsigned long long)channel->intr_in_full); 1851 } 1852 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1853 1854 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1855 char *buf) 1856 { 1857 return sprintf(buf, "%llu\n", 1858 (unsigned long long)channel->intr_out_empty); 1859 } 1860 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1861 1862 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1863 char *buf) 1864 { 1865 return sprintf(buf, "%llu\n", 1866 (unsigned long long)channel->out_full_first); 1867 } 1868 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1869 1870 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1871 char *buf) 1872 { 1873 return sprintf(buf, "%llu\n", 1874 (unsigned long long)channel->out_full_total); 1875 } 1876 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1877 1878 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1879 char *buf) 1880 { 1881 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1882 } 1883 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1884 1885 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1886 char *buf) 1887 { 1888 return sprintf(buf, "%u\n", 1889 channel->offermsg.offer.sub_channel_index); 1890 } 1891 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1892 1893 static struct attribute *vmbus_chan_attrs[] = { 1894 &chan_attr_out_mask.attr, 1895 &chan_attr_in_mask.attr, 1896 &chan_attr_read_avail.attr, 1897 &chan_attr_write_avail.attr, 1898 &chan_attr_cpu.attr, 1899 &chan_attr_pending.attr, 1900 &chan_attr_latency.attr, 1901 &chan_attr_interrupts.attr, 1902 &chan_attr_events.attr, 1903 &chan_attr_intr_in_full.attr, 1904 &chan_attr_intr_out_empty.attr, 1905 &chan_attr_out_full_first.attr, 1906 &chan_attr_out_full_total.attr, 1907 &chan_attr_monitor_id.attr, 1908 &chan_attr_subchannel_id.attr, 1909 NULL 1910 }; 1911 1912 /* 1913 * Channel-level attribute_group callback function. Returns the permission for 1914 * each attribute, and returns 0 if an attribute is not visible. 1915 */ 1916 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1917 struct attribute *attr, int idx) 1918 { 1919 const struct vmbus_channel *channel = 1920 container_of(kobj, struct vmbus_channel, kobj); 1921 1922 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1923 if (!channel->offermsg.monitor_allocated && 1924 (attr == &chan_attr_pending.attr || 1925 attr == &chan_attr_latency.attr || 1926 attr == &chan_attr_monitor_id.attr)) 1927 return 0; 1928 1929 return attr->mode; 1930 } 1931 1932 static struct attribute_group vmbus_chan_group = { 1933 .attrs = vmbus_chan_attrs, 1934 .is_visible = vmbus_chan_attr_is_visible 1935 }; 1936 1937 static struct kobj_type vmbus_chan_ktype = { 1938 .sysfs_ops = &vmbus_chan_sysfs_ops, 1939 .release = vmbus_chan_release, 1940 }; 1941 1942 /* 1943 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1944 */ 1945 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1946 { 1947 const struct device *device = &dev->device; 1948 struct kobject *kobj = &channel->kobj; 1949 u32 relid = channel->offermsg.child_relid; 1950 int ret; 1951 1952 kobj->kset = dev->channels_kset; 1953 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1954 "%u", relid); 1955 if (ret) 1956 return ret; 1957 1958 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1959 1960 if (ret) { 1961 /* 1962 * The calling functions' error handling paths will cleanup the 1963 * empty channel directory. 1964 */ 1965 dev_err(device, "Unable to set up channel sysfs files\n"); 1966 return ret; 1967 } 1968 1969 kobject_uevent(kobj, KOBJ_ADD); 1970 1971 return 0; 1972 } 1973 1974 /* 1975 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1976 */ 1977 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1978 { 1979 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1980 } 1981 1982 /* 1983 * vmbus_device_create - Creates and registers a new child device 1984 * on the vmbus. 1985 */ 1986 struct hv_device *vmbus_device_create(const guid_t *type, 1987 const guid_t *instance, 1988 struct vmbus_channel *channel) 1989 { 1990 struct hv_device *child_device_obj; 1991 1992 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1993 if (!child_device_obj) { 1994 pr_err("Unable to allocate device object for child device\n"); 1995 return NULL; 1996 } 1997 1998 child_device_obj->channel = channel; 1999 guid_copy(&child_device_obj->dev_type, type); 2000 guid_copy(&child_device_obj->dev_instance, instance); 2001 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 2002 2003 return child_device_obj; 2004 } 2005 2006 /* 2007 * vmbus_device_register - Register the child device 2008 */ 2009 int vmbus_device_register(struct hv_device *child_device_obj) 2010 { 2011 struct kobject *kobj = &child_device_obj->device.kobj; 2012 int ret; 2013 2014 dev_set_name(&child_device_obj->device, "%pUl", 2015 &child_device_obj->channel->offermsg.offer.if_instance); 2016 2017 child_device_obj->device.bus = &hv_bus; 2018 child_device_obj->device.parent = &hv_acpi_dev->dev; 2019 child_device_obj->device.release = vmbus_device_release; 2020 2021 /* 2022 * Register with the LDM. This will kick off the driver/device 2023 * binding...which will eventually call vmbus_match() and vmbus_probe() 2024 */ 2025 ret = device_register(&child_device_obj->device); 2026 if (ret) { 2027 pr_err("Unable to register child device\n"); 2028 return ret; 2029 } 2030 2031 child_device_obj->channels_kset = kset_create_and_add("channels", 2032 NULL, kobj); 2033 if (!child_device_obj->channels_kset) { 2034 ret = -ENOMEM; 2035 goto err_dev_unregister; 2036 } 2037 2038 ret = vmbus_add_channel_kobj(child_device_obj, 2039 child_device_obj->channel); 2040 if (ret) { 2041 pr_err("Unable to register primary channeln"); 2042 goto err_kset_unregister; 2043 } 2044 hv_debug_add_dev_dir(child_device_obj); 2045 2046 return 0; 2047 2048 err_kset_unregister: 2049 kset_unregister(child_device_obj->channels_kset); 2050 2051 err_dev_unregister: 2052 device_unregister(&child_device_obj->device); 2053 return ret; 2054 } 2055 2056 /* 2057 * vmbus_device_unregister - Remove the specified child device 2058 * from the vmbus. 2059 */ 2060 void vmbus_device_unregister(struct hv_device *device_obj) 2061 { 2062 pr_debug("child device %s unregistered\n", 2063 dev_name(&device_obj->device)); 2064 2065 kset_unregister(device_obj->channels_kset); 2066 2067 /* 2068 * Kick off the process of unregistering the device. 2069 * This will call vmbus_remove() and eventually vmbus_device_release() 2070 */ 2071 device_unregister(&device_obj->device); 2072 } 2073 2074 2075 /* 2076 * VMBUS is an acpi enumerated device. Get the information we 2077 * need from DSDT. 2078 */ 2079 #define VTPM_BASE_ADDRESS 0xfed40000 2080 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 2081 { 2082 resource_size_t start = 0; 2083 resource_size_t end = 0; 2084 struct resource *new_res; 2085 struct resource **old_res = &hyperv_mmio; 2086 struct resource **prev_res = NULL; 2087 struct resource r; 2088 2089 switch (res->type) { 2090 2091 /* 2092 * "Address" descriptors are for bus windows. Ignore 2093 * "memory" descriptors, which are for registers on 2094 * devices. 2095 */ 2096 case ACPI_RESOURCE_TYPE_ADDRESS32: 2097 start = res->data.address32.address.minimum; 2098 end = res->data.address32.address.maximum; 2099 break; 2100 2101 case ACPI_RESOURCE_TYPE_ADDRESS64: 2102 start = res->data.address64.address.minimum; 2103 end = res->data.address64.address.maximum; 2104 break; 2105 2106 /* 2107 * The IRQ information is needed only on ARM64, which Hyper-V 2108 * sets up in the extended format. IRQ information is present 2109 * on x86/x64 in the non-extended format but it is not used by 2110 * Linux. So don't bother checking for the non-extended format. 2111 */ 2112 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 2113 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 2114 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 2115 return AE_ERROR; 2116 } 2117 /* ARM64 INTID for VMbus */ 2118 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2119 /* Linux IRQ number */ 2120 vmbus_irq = r.start; 2121 return AE_OK; 2122 2123 default: 2124 /* Unused resource type */ 2125 return AE_OK; 2126 2127 } 2128 /* 2129 * Ignore ranges that are below 1MB, as they're not 2130 * necessary or useful here. 2131 */ 2132 if (end < 0x100000) 2133 return AE_OK; 2134 2135 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2136 if (!new_res) 2137 return AE_NO_MEMORY; 2138 2139 /* If this range overlaps the virtual TPM, truncate it. */ 2140 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2141 end = VTPM_BASE_ADDRESS; 2142 2143 new_res->name = "hyperv mmio"; 2144 new_res->flags = IORESOURCE_MEM; 2145 new_res->start = start; 2146 new_res->end = end; 2147 2148 /* 2149 * If two ranges are adjacent, merge them. 2150 */ 2151 do { 2152 if (!*old_res) { 2153 *old_res = new_res; 2154 break; 2155 } 2156 2157 if (((*old_res)->end + 1) == new_res->start) { 2158 (*old_res)->end = new_res->end; 2159 kfree(new_res); 2160 break; 2161 } 2162 2163 if ((*old_res)->start == new_res->end + 1) { 2164 (*old_res)->start = new_res->start; 2165 kfree(new_res); 2166 break; 2167 } 2168 2169 if ((*old_res)->start > new_res->end) { 2170 new_res->sibling = *old_res; 2171 if (prev_res) 2172 (*prev_res)->sibling = new_res; 2173 *old_res = new_res; 2174 break; 2175 } 2176 2177 prev_res = old_res; 2178 old_res = &(*old_res)->sibling; 2179 2180 } while (1); 2181 2182 return AE_OK; 2183 } 2184 2185 static int vmbus_acpi_remove(struct acpi_device *device) 2186 { 2187 struct resource *cur_res; 2188 struct resource *next_res; 2189 2190 if (hyperv_mmio) { 2191 if (fb_mmio) { 2192 __release_region(hyperv_mmio, fb_mmio->start, 2193 resource_size(fb_mmio)); 2194 fb_mmio = NULL; 2195 } 2196 2197 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2198 next_res = cur_res->sibling; 2199 kfree(cur_res); 2200 } 2201 } 2202 2203 return 0; 2204 } 2205 2206 static void vmbus_reserve_fb(void) 2207 { 2208 int size; 2209 /* 2210 * Make a claim for the frame buffer in the resource tree under the 2211 * first node, which will be the one below 4GB. The length seems to 2212 * be underreported, particularly in a Generation 1 VM. So start out 2213 * reserving a larger area and make it smaller until it succeeds. 2214 */ 2215 2216 if (screen_info.lfb_base) { 2217 if (efi_enabled(EFI_BOOT)) 2218 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2219 else 2220 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 2221 2222 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 2223 fb_mmio = __request_region(hyperv_mmio, 2224 screen_info.lfb_base, size, 2225 fb_mmio_name, 0); 2226 } 2227 } 2228 } 2229 2230 /** 2231 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2232 * @new: If successful, supplied a pointer to the 2233 * allocated MMIO space. 2234 * @device_obj: Identifies the caller 2235 * @min: Minimum guest physical address of the 2236 * allocation 2237 * @max: Maximum guest physical address 2238 * @size: Size of the range to be allocated 2239 * @align: Alignment of the range to be allocated 2240 * @fb_overlap_ok: Whether this allocation can be allowed 2241 * to overlap the video frame buffer. 2242 * 2243 * This function walks the resources granted to VMBus by the 2244 * _CRS object in the ACPI namespace underneath the parent 2245 * "bridge" whether that's a root PCI bus in the Generation 1 2246 * case or a Module Device in the Generation 2 case. It then 2247 * attempts to allocate from the global MMIO pool in a way that 2248 * matches the constraints supplied in these parameters and by 2249 * that _CRS. 2250 * 2251 * Return: 0 on success, -errno on failure 2252 */ 2253 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2254 resource_size_t min, resource_size_t max, 2255 resource_size_t size, resource_size_t align, 2256 bool fb_overlap_ok) 2257 { 2258 struct resource *iter, *shadow; 2259 resource_size_t range_min, range_max, start; 2260 const char *dev_n = dev_name(&device_obj->device); 2261 int retval; 2262 2263 retval = -ENXIO; 2264 mutex_lock(&hyperv_mmio_lock); 2265 2266 /* 2267 * If overlaps with frame buffers are allowed, then first attempt to 2268 * make the allocation from within the reserved region. Because it 2269 * is already reserved, no shadow allocation is necessary. 2270 */ 2271 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2272 !(max < fb_mmio->start)) { 2273 2274 range_min = fb_mmio->start; 2275 range_max = fb_mmio->end; 2276 start = (range_min + align - 1) & ~(align - 1); 2277 for (; start + size - 1 <= range_max; start += align) { 2278 *new = request_mem_region_exclusive(start, size, dev_n); 2279 if (*new) { 2280 retval = 0; 2281 goto exit; 2282 } 2283 } 2284 } 2285 2286 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2287 if ((iter->start >= max) || (iter->end <= min)) 2288 continue; 2289 2290 range_min = iter->start; 2291 range_max = iter->end; 2292 start = (range_min + align - 1) & ~(align - 1); 2293 for (; start + size - 1 <= range_max; start += align) { 2294 shadow = __request_region(iter, start, size, NULL, 2295 IORESOURCE_BUSY); 2296 if (!shadow) 2297 continue; 2298 2299 *new = request_mem_region_exclusive(start, size, dev_n); 2300 if (*new) { 2301 shadow->name = (char *)*new; 2302 retval = 0; 2303 goto exit; 2304 } 2305 2306 __release_region(iter, start, size); 2307 } 2308 } 2309 2310 exit: 2311 mutex_unlock(&hyperv_mmio_lock); 2312 return retval; 2313 } 2314 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2315 2316 /** 2317 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2318 * @start: Base address of region to release. 2319 * @size: Size of the range to be allocated 2320 * 2321 * This function releases anything requested by 2322 * vmbus_mmio_allocate(). 2323 */ 2324 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2325 { 2326 struct resource *iter; 2327 2328 mutex_lock(&hyperv_mmio_lock); 2329 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2330 if ((iter->start >= start + size) || (iter->end <= start)) 2331 continue; 2332 2333 __release_region(iter, start, size); 2334 } 2335 release_mem_region(start, size); 2336 mutex_unlock(&hyperv_mmio_lock); 2337 2338 } 2339 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2340 2341 static int vmbus_acpi_add(struct acpi_device *device) 2342 { 2343 acpi_status result; 2344 int ret_val = -ENODEV; 2345 struct acpi_device *ancestor; 2346 2347 hv_acpi_dev = device; 2348 2349 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2350 vmbus_walk_resources, NULL); 2351 2352 if (ACPI_FAILURE(result)) 2353 goto acpi_walk_err; 2354 /* 2355 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2356 * firmware) is the VMOD that has the mmio ranges. Get that. 2357 */ 2358 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2359 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2360 vmbus_walk_resources, NULL); 2361 2362 if (ACPI_FAILURE(result)) 2363 continue; 2364 if (hyperv_mmio) { 2365 vmbus_reserve_fb(); 2366 break; 2367 } 2368 } 2369 ret_val = 0; 2370 2371 acpi_walk_err: 2372 complete(&probe_event); 2373 if (ret_val) 2374 vmbus_acpi_remove(device); 2375 return ret_val; 2376 } 2377 2378 #ifdef CONFIG_PM_SLEEP 2379 static int vmbus_bus_suspend(struct device *dev) 2380 { 2381 struct vmbus_channel *channel, *sc; 2382 2383 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2384 /* 2385 * We wait here until the completion of any channel 2386 * offers that are currently in progress. 2387 */ 2388 usleep_range(1000, 2000); 2389 } 2390 2391 mutex_lock(&vmbus_connection.channel_mutex); 2392 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2393 if (!is_hvsock_channel(channel)) 2394 continue; 2395 2396 vmbus_force_channel_rescinded(channel); 2397 } 2398 mutex_unlock(&vmbus_connection.channel_mutex); 2399 2400 /* 2401 * Wait until all the sub-channels and hv_sock channels have been 2402 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2403 * they would conflict with the new sub-channels that will be created 2404 * in the resume path. hv_sock channels should also be destroyed, but 2405 * a hv_sock channel of an established hv_sock connection can not be 2406 * really destroyed since it may still be referenced by the userspace 2407 * application, so we just force the hv_sock channel to be rescinded 2408 * by vmbus_force_channel_rescinded(), and the userspace application 2409 * will thoroughly destroy the channel after hibernation. 2410 * 2411 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2412 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2413 */ 2414 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2415 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2416 2417 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2418 pr_err("Can not suspend due to a previous failed resuming\n"); 2419 return -EBUSY; 2420 } 2421 2422 mutex_lock(&vmbus_connection.channel_mutex); 2423 2424 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2425 /* 2426 * Remove the channel from the array of channels and invalidate 2427 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2428 * up the relid (and other fields, if necessary) and add the 2429 * channel back to the array. 2430 */ 2431 vmbus_channel_unmap_relid(channel); 2432 channel->offermsg.child_relid = INVALID_RELID; 2433 2434 if (is_hvsock_channel(channel)) { 2435 if (!channel->rescind) { 2436 pr_err("hv_sock channel not rescinded!\n"); 2437 WARN_ON_ONCE(1); 2438 } 2439 continue; 2440 } 2441 2442 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2443 pr_err("Sub-channel not deleted!\n"); 2444 WARN_ON_ONCE(1); 2445 } 2446 2447 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2448 } 2449 2450 mutex_unlock(&vmbus_connection.channel_mutex); 2451 2452 vmbus_initiate_unload(false); 2453 2454 /* Reset the event for the next resume. */ 2455 reinit_completion(&vmbus_connection.ready_for_resume_event); 2456 2457 return 0; 2458 } 2459 2460 static int vmbus_bus_resume(struct device *dev) 2461 { 2462 struct vmbus_channel_msginfo *msginfo; 2463 size_t msgsize; 2464 int ret; 2465 2466 /* 2467 * We only use the 'vmbus_proto_version', which was in use before 2468 * hibernation, to re-negotiate with the host. 2469 */ 2470 if (!vmbus_proto_version) { 2471 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2472 return -EINVAL; 2473 } 2474 2475 msgsize = sizeof(*msginfo) + 2476 sizeof(struct vmbus_channel_initiate_contact); 2477 2478 msginfo = kzalloc(msgsize, GFP_KERNEL); 2479 2480 if (msginfo == NULL) 2481 return -ENOMEM; 2482 2483 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2484 2485 kfree(msginfo); 2486 2487 if (ret != 0) 2488 return ret; 2489 2490 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2491 2492 vmbus_request_offers(); 2493 2494 if (wait_for_completion_timeout( 2495 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2496 pr_err("Some vmbus device is missing after suspending?\n"); 2497 2498 /* Reset the event for the next suspend. */ 2499 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2500 2501 return 0; 2502 } 2503 #else 2504 #define vmbus_bus_suspend NULL 2505 #define vmbus_bus_resume NULL 2506 #endif /* CONFIG_PM_SLEEP */ 2507 2508 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2509 {"VMBUS", 0}, 2510 {"VMBus", 0}, 2511 {"", 0}, 2512 }; 2513 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2514 2515 /* 2516 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2517 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2518 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2519 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2520 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2521 * resume callback must also run via the "noirq" ops. 2522 * 2523 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2524 * earlier in this file before vmbus_pm. 2525 */ 2526 2527 static const struct dev_pm_ops vmbus_bus_pm = { 2528 .suspend_noirq = NULL, 2529 .resume_noirq = NULL, 2530 .freeze_noirq = vmbus_bus_suspend, 2531 .thaw_noirq = vmbus_bus_resume, 2532 .poweroff_noirq = vmbus_bus_suspend, 2533 .restore_noirq = vmbus_bus_resume 2534 }; 2535 2536 static struct acpi_driver vmbus_acpi_driver = { 2537 .name = "vmbus", 2538 .ids = vmbus_acpi_device_ids, 2539 .ops = { 2540 .add = vmbus_acpi_add, 2541 .remove = vmbus_acpi_remove, 2542 }, 2543 .drv.pm = &vmbus_bus_pm, 2544 }; 2545 2546 static void hv_kexec_handler(void) 2547 { 2548 hv_stimer_global_cleanup(); 2549 vmbus_initiate_unload(false); 2550 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2551 mb(); 2552 cpuhp_remove_state(hyperv_cpuhp_online); 2553 hyperv_cleanup(); 2554 }; 2555 2556 static void hv_crash_handler(struct pt_regs *regs) 2557 { 2558 int cpu; 2559 2560 vmbus_initiate_unload(true); 2561 /* 2562 * In crash handler we can't schedule synic cleanup for all CPUs, 2563 * doing the cleanup for current CPU only. This should be sufficient 2564 * for kdump. 2565 */ 2566 cpu = smp_processor_id(); 2567 hv_stimer_cleanup(cpu); 2568 hv_synic_disable_regs(cpu); 2569 hyperv_cleanup(); 2570 }; 2571 2572 static int hv_synic_suspend(void) 2573 { 2574 /* 2575 * When we reach here, all the non-boot CPUs have been offlined. 2576 * If we're in a legacy configuration where stimer Direct Mode is 2577 * not enabled, the stimers on the non-boot CPUs have been unbound 2578 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2579 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2580 * 2581 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2582 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2583 * 1) it's unnecessary as interrupts remain disabled between 2584 * syscore_suspend() and syscore_resume(): see create_image() and 2585 * resume_target_kernel() 2586 * 2) the stimer on CPU0 is automatically disabled later by 2587 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2588 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2589 * 3) a warning would be triggered if we call 2590 * clockevents_unbind_device(), which may sleep, in an 2591 * interrupts-disabled context. 2592 */ 2593 2594 hv_synic_disable_regs(0); 2595 2596 return 0; 2597 } 2598 2599 static void hv_synic_resume(void) 2600 { 2601 hv_synic_enable_regs(0); 2602 2603 /* 2604 * Note: we don't need to call hv_stimer_init(0), because the timer 2605 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2606 * automatically re-enabled in timekeeping_resume(). 2607 */ 2608 } 2609 2610 /* The callbacks run only on CPU0, with irqs_disabled. */ 2611 static struct syscore_ops hv_synic_syscore_ops = { 2612 .suspend = hv_synic_suspend, 2613 .resume = hv_synic_resume, 2614 }; 2615 2616 static int __init hv_acpi_init(void) 2617 { 2618 int ret, t; 2619 2620 if (!hv_is_hyperv_initialized()) 2621 return -ENODEV; 2622 2623 init_completion(&probe_event); 2624 2625 /* 2626 * Get ACPI resources first. 2627 */ 2628 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2629 2630 if (ret) 2631 return ret; 2632 2633 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2634 if (t == 0) { 2635 ret = -ETIMEDOUT; 2636 goto cleanup; 2637 } 2638 hv_debug_init(); 2639 2640 ret = vmbus_bus_init(); 2641 if (ret) 2642 goto cleanup; 2643 2644 hv_setup_kexec_handler(hv_kexec_handler); 2645 hv_setup_crash_handler(hv_crash_handler); 2646 2647 register_syscore_ops(&hv_synic_syscore_ops); 2648 2649 return 0; 2650 2651 cleanup: 2652 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2653 hv_acpi_dev = NULL; 2654 return ret; 2655 } 2656 2657 static void __exit vmbus_exit(void) 2658 { 2659 int cpu; 2660 2661 unregister_syscore_ops(&hv_synic_syscore_ops); 2662 2663 hv_remove_kexec_handler(); 2664 hv_remove_crash_handler(); 2665 vmbus_connection.conn_state = DISCONNECTED; 2666 hv_stimer_global_cleanup(); 2667 vmbus_disconnect(); 2668 hv_remove_vmbus_irq(); 2669 for_each_online_cpu(cpu) { 2670 struct hv_per_cpu_context *hv_cpu 2671 = per_cpu_ptr(hv_context.cpu_context, cpu); 2672 2673 tasklet_kill(&hv_cpu->msg_dpc); 2674 } 2675 hv_debug_rm_all_dir(); 2676 2677 vmbus_free_channels(); 2678 kfree(vmbus_connection.channels); 2679 2680 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2681 kmsg_dump_unregister(&hv_kmsg_dumper); 2682 unregister_die_notifier(&hyperv_die_block); 2683 atomic_notifier_chain_unregister(&panic_notifier_list, 2684 &hyperv_panic_block); 2685 } 2686 2687 free_page((unsigned long)hv_panic_page); 2688 unregister_sysctl_table(hv_ctl_table_hdr); 2689 hv_ctl_table_hdr = NULL; 2690 bus_unregister(&hv_bus); 2691 2692 cpuhp_remove_state(hyperv_cpuhp_online); 2693 hv_synic_free(); 2694 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2695 } 2696 2697 2698 MODULE_LICENSE("GPL"); 2699 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2700 2701 subsys_initcall(hv_acpi_init); 2702 module_exit(vmbus_exit); 2703