xref: /linux/drivers/hv/vmbus_drv.c (revision 03b2a320b19f1424e9ac9c21696be9c60b6d0d93)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/hyperv.h>
40 #include <asm/hypervisor.h>
41 #include <asm/mshyperv.h>
42 #include <linux/notifier.h>
43 #include <linux/ptrace.h>
44 #include <linux/screen_info.h>
45 #include <linux/kdebug.h>
46 #include <linux/efi.h>
47 #include <linux/random.h>
48 #include "hyperv_vmbus.h"
49 
50 struct vmbus_dynid {
51 	struct list_head node;
52 	struct hv_vmbus_device_id id;
53 };
54 
55 static struct acpi_device  *hv_acpi_dev;
56 
57 static struct completion probe_event;
58 
59 static int hyperv_cpuhp_online;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(struct vmbus_channel *channel,
121 			   struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 	return monitor_page->trigger_group[monitor_group].pending;
125 }
126 
127 static u32 channel_latency(struct vmbus_channel *channel,
128 			   struct hv_monitor_page *monitor_page)
129 {
130 	u8 monitor_group = channel_monitor_group(channel);
131 	u8 monitor_offset = channel_monitor_offset(channel);
132 	return monitor_page->latency[monitor_group][monitor_offset];
133 }
134 
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136 			   struct hv_monitor_page *monitor_page)
137 {
138 	u8 monitor_group = channel_monitor_group(channel);
139 	u8 monitor_offset = channel_monitor_offset(channel);
140 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141 }
142 
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144 		       char *buf)
145 {
146 	struct hv_device *hv_dev = device_to_hv_device(dev);
147 
148 	if (!hv_dev->channel)
149 		return -ENODEV;
150 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151 }
152 static DEVICE_ATTR_RO(id);
153 
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155 			  char *buf)
156 {
157 	struct hv_device *hv_dev = device_to_hv_device(dev);
158 
159 	if (!hv_dev->channel)
160 		return -ENODEV;
161 	return sprintf(buf, "%d\n", hv_dev->channel->state);
162 }
163 static DEVICE_ATTR_RO(state);
164 
165 static ssize_t monitor_id_show(struct device *dev,
166 			       struct device_attribute *dev_attr, char *buf)
167 {
168 	struct hv_device *hv_dev = device_to_hv_device(dev);
169 
170 	if (!hv_dev->channel)
171 		return -ENODEV;
172 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173 }
174 static DEVICE_ATTR_RO(monitor_id);
175 
176 static ssize_t class_id_show(struct device *dev,
177 			       struct device_attribute *dev_attr, char *buf)
178 {
179 	struct hv_device *hv_dev = device_to_hv_device(dev);
180 
181 	if (!hv_dev->channel)
182 		return -ENODEV;
183 	return sprintf(buf, "{%pUl}\n",
184 		       hv_dev->channel->offermsg.offer.if_type.b);
185 }
186 static DEVICE_ATTR_RO(class_id);
187 
188 static ssize_t device_id_show(struct device *dev,
189 			      struct device_attribute *dev_attr, char *buf)
190 {
191 	struct hv_device *hv_dev = device_to_hv_device(dev);
192 
193 	if (!hv_dev->channel)
194 		return -ENODEV;
195 	return sprintf(buf, "{%pUl}\n",
196 		       hv_dev->channel->offermsg.offer.if_instance.b);
197 }
198 static DEVICE_ATTR_RO(device_id);
199 
200 static ssize_t modalias_show(struct device *dev,
201 			     struct device_attribute *dev_attr, char *buf)
202 {
203 	struct hv_device *hv_dev = device_to_hv_device(dev);
204 	char alias_name[VMBUS_ALIAS_LEN + 1];
205 
206 	print_alias_name(hv_dev, alias_name);
207 	return sprintf(buf, "vmbus:%s\n", alias_name);
208 }
209 static DEVICE_ATTR_RO(modalias);
210 
211 static ssize_t server_monitor_pending_show(struct device *dev,
212 					   struct device_attribute *dev_attr,
213 					   char *buf)
214 {
215 	struct hv_device *hv_dev = device_to_hv_device(dev);
216 
217 	if (!hv_dev->channel)
218 		return -ENODEV;
219 	return sprintf(buf, "%d\n",
220 		       channel_pending(hv_dev->channel,
221 				       vmbus_connection.monitor_pages[1]));
222 }
223 static DEVICE_ATTR_RO(server_monitor_pending);
224 
225 static ssize_t client_monitor_pending_show(struct device *dev,
226 					   struct device_attribute *dev_attr,
227 					   char *buf)
228 {
229 	struct hv_device *hv_dev = device_to_hv_device(dev);
230 
231 	if (!hv_dev->channel)
232 		return -ENODEV;
233 	return sprintf(buf, "%d\n",
234 		       channel_pending(hv_dev->channel,
235 				       vmbus_connection.monitor_pages[1]));
236 }
237 static DEVICE_ATTR_RO(client_monitor_pending);
238 
239 static ssize_t server_monitor_latency_show(struct device *dev,
240 					   struct device_attribute *dev_attr,
241 					   char *buf)
242 {
243 	struct hv_device *hv_dev = device_to_hv_device(dev);
244 
245 	if (!hv_dev->channel)
246 		return -ENODEV;
247 	return sprintf(buf, "%d\n",
248 		       channel_latency(hv_dev->channel,
249 				       vmbus_connection.monitor_pages[0]));
250 }
251 static DEVICE_ATTR_RO(server_monitor_latency);
252 
253 static ssize_t client_monitor_latency_show(struct device *dev,
254 					   struct device_attribute *dev_attr,
255 					   char *buf)
256 {
257 	struct hv_device *hv_dev = device_to_hv_device(dev);
258 
259 	if (!hv_dev->channel)
260 		return -ENODEV;
261 	return sprintf(buf, "%d\n",
262 		       channel_latency(hv_dev->channel,
263 				       vmbus_connection.monitor_pages[1]));
264 }
265 static DEVICE_ATTR_RO(client_monitor_latency);
266 
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268 					   struct device_attribute *dev_attr,
269 					   char *buf)
270 {
271 	struct hv_device *hv_dev = device_to_hv_device(dev);
272 
273 	if (!hv_dev->channel)
274 		return -ENODEV;
275 	return sprintf(buf, "%d\n",
276 		       channel_conn_id(hv_dev->channel,
277 				       vmbus_connection.monitor_pages[0]));
278 }
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
280 
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282 					   struct device_attribute *dev_attr,
283 					   char *buf)
284 {
285 	struct hv_device *hv_dev = device_to_hv_device(dev);
286 
287 	if (!hv_dev->channel)
288 		return -ENODEV;
289 	return sprintf(buf, "%d\n",
290 		       channel_conn_id(hv_dev->channel,
291 				       vmbus_connection.monitor_pages[1]));
292 }
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
294 
295 static ssize_t out_intr_mask_show(struct device *dev,
296 				  struct device_attribute *dev_attr, char *buf)
297 {
298 	struct hv_device *hv_dev = device_to_hv_device(dev);
299 	struct hv_ring_buffer_debug_info outbound;
300 
301 	if (!hv_dev->channel)
302 		return -ENODEV;
303 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
305 }
306 static DEVICE_ATTR_RO(out_intr_mask);
307 
308 static ssize_t out_read_index_show(struct device *dev,
309 				   struct device_attribute *dev_attr, char *buf)
310 {
311 	struct hv_device *hv_dev = device_to_hv_device(dev);
312 	struct hv_ring_buffer_debug_info outbound;
313 
314 	if (!hv_dev->channel)
315 		return -ENODEV;
316 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 	return sprintf(buf, "%d\n", outbound.current_read_index);
318 }
319 static DEVICE_ATTR_RO(out_read_index);
320 
321 static ssize_t out_write_index_show(struct device *dev,
322 				    struct device_attribute *dev_attr,
323 				    char *buf)
324 {
325 	struct hv_device *hv_dev = device_to_hv_device(dev);
326 	struct hv_ring_buffer_debug_info outbound;
327 
328 	if (!hv_dev->channel)
329 		return -ENODEV;
330 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 	return sprintf(buf, "%d\n", outbound.current_write_index);
332 }
333 static DEVICE_ATTR_RO(out_write_index);
334 
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336 					 struct device_attribute *dev_attr,
337 					 char *buf)
338 {
339 	struct hv_device *hv_dev = device_to_hv_device(dev);
340 	struct hv_ring_buffer_debug_info outbound;
341 
342 	if (!hv_dev->channel)
343 		return -ENODEV;
344 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
346 }
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
348 
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350 					  struct device_attribute *dev_attr,
351 					  char *buf)
352 {
353 	struct hv_device *hv_dev = device_to_hv_device(dev);
354 	struct hv_ring_buffer_debug_info outbound;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
360 }
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
362 
363 static ssize_t in_intr_mask_show(struct device *dev,
364 				 struct device_attribute *dev_attr, char *buf)
365 {
366 	struct hv_device *hv_dev = device_to_hv_device(dev);
367 	struct hv_ring_buffer_debug_info inbound;
368 
369 	if (!hv_dev->channel)
370 		return -ENODEV;
371 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
373 }
374 static DEVICE_ATTR_RO(in_intr_mask);
375 
376 static ssize_t in_read_index_show(struct device *dev,
377 				  struct device_attribute *dev_attr, char *buf)
378 {
379 	struct hv_device *hv_dev = device_to_hv_device(dev);
380 	struct hv_ring_buffer_debug_info inbound;
381 
382 	if (!hv_dev->channel)
383 		return -ENODEV;
384 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 	return sprintf(buf, "%d\n", inbound.current_read_index);
386 }
387 static DEVICE_ATTR_RO(in_read_index);
388 
389 static ssize_t in_write_index_show(struct device *dev,
390 				   struct device_attribute *dev_attr, char *buf)
391 {
392 	struct hv_device *hv_dev = device_to_hv_device(dev);
393 	struct hv_ring_buffer_debug_info inbound;
394 
395 	if (!hv_dev->channel)
396 		return -ENODEV;
397 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 	return sprintf(buf, "%d\n", inbound.current_write_index);
399 }
400 static DEVICE_ATTR_RO(in_write_index);
401 
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403 					struct device_attribute *dev_attr,
404 					char *buf)
405 {
406 	struct hv_device *hv_dev = device_to_hv_device(dev);
407 	struct hv_ring_buffer_debug_info inbound;
408 
409 	if (!hv_dev->channel)
410 		return -ENODEV;
411 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
413 }
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
415 
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417 					 struct device_attribute *dev_attr,
418 					 char *buf)
419 {
420 	struct hv_device *hv_dev = device_to_hv_device(dev);
421 	struct hv_ring_buffer_debug_info inbound;
422 
423 	if (!hv_dev->channel)
424 		return -ENODEV;
425 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
427 }
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
429 
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431 				       struct device_attribute *dev_attr,
432 				       char *buf)
433 {
434 	struct hv_device *hv_dev = device_to_hv_device(dev);
435 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436 	unsigned long flags;
437 	int buf_size = PAGE_SIZE, n_written, tot_written;
438 	struct list_head *cur;
439 
440 	if (!channel)
441 		return -ENODEV;
442 
443 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
444 		channel->offermsg.child_relid, channel->target_cpu);
445 
446 	spin_lock_irqsave(&channel->lock, flags);
447 
448 	list_for_each(cur, &channel->sc_list) {
449 		if (tot_written >= buf_size - 1)
450 			break;
451 
452 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453 		n_written = scnprintf(buf + tot_written,
454 				     buf_size - tot_written,
455 				     "%u:%u\n",
456 				     cur_sc->offermsg.child_relid,
457 				     cur_sc->target_cpu);
458 		tot_written += n_written;
459 	}
460 
461 	spin_unlock_irqrestore(&channel->lock, flags);
462 
463 	return tot_written;
464 }
465 static DEVICE_ATTR_RO(channel_vp_mapping);
466 
467 static ssize_t vendor_show(struct device *dev,
468 			   struct device_attribute *dev_attr,
469 			   char *buf)
470 {
471 	struct hv_device *hv_dev = device_to_hv_device(dev);
472 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
473 }
474 static DEVICE_ATTR_RO(vendor);
475 
476 static ssize_t device_show(struct device *dev,
477 			   struct device_attribute *dev_attr,
478 			   char *buf)
479 {
480 	struct hv_device *hv_dev = device_to_hv_device(dev);
481 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
482 }
483 static DEVICE_ATTR_RO(device);
484 
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487 	&dev_attr_id.attr,
488 	&dev_attr_state.attr,
489 	&dev_attr_monitor_id.attr,
490 	&dev_attr_class_id.attr,
491 	&dev_attr_device_id.attr,
492 	&dev_attr_modalias.attr,
493 	&dev_attr_server_monitor_pending.attr,
494 	&dev_attr_client_monitor_pending.attr,
495 	&dev_attr_server_monitor_latency.attr,
496 	&dev_attr_client_monitor_latency.attr,
497 	&dev_attr_server_monitor_conn_id.attr,
498 	&dev_attr_client_monitor_conn_id.attr,
499 	&dev_attr_out_intr_mask.attr,
500 	&dev_attr_out_read_index.attr,
501 	&dev_attr_out_write_index.attr,
502 	&dev_attr_out_read_bytes_avail.attr,
503 	&dev_attr_out_write_bytes_avail.attr,
504 	&dev_attr_in_intr_mask.attr,
505 	&dev_attr_in_read_index.attr,
506 	&dev_attr_in_write_index.attr,
507 	&dev_attr_in_read_bytes_avail.attr,
508 	&dev_attr_in_write_bytes_avail.attr,
509 	&dev_attr_channel_vp_mapping.attr,
510 	&dev_attr_vendor.attr,
511 	&dev_attr_device.attr,
512 	NULL,
513 };
514 ATTRIBUTE_GROUPS(vmbus_dev);
515 
516 /*
517  * vmbus_uevent - add uevent for our device
518  *
519  * This routine is invoked when a device is added or removed on the vmbus to
520  * generate a uevent to udev in the userspace. The udev will then look at its
521  * rule and the uevent generated here to load the appropriate driver
522  *
523  * The alias string will be of the form vmbus:guid where guid is the string
524  * representation of the device guid (each byte of the guid will be
525  * represented with two hex characters.
526  */
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
528 {
529 	struct hv_device *dev = device_to_hv_device(device);
530 	int ret;
531 	char alias_name[VMBUS_ALIAS_LEN + 1];
532 
533 	print_alias_name(dev, alias_name);
534 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535 	return ret;
536 }
537 
538 static const uuid_le null_guid;
539 
540 static inline bool is_null_guid(const uuid_le *guid)
541 {
542 	if (uuid_le_cmp(*guid, null_guid))
543 		return false;
544 	return true;
545 }
546 
547 /*
548  * Return a matching hv_vmbus_device_id pointer.
549  * If there is no match, return NULL.
550  */
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552 					const uuid_le *guid)
553 {
554 	const struct hv_vmbus_device_id *id = NULL;
555 	struct vmbus_dynid *dynid;
556 
557 	/* Look at the dynamic ids first, before the static ones */
558 	spin_lock(&drv->dynids.lock);
559 	list_for_each_entry(dynid, &drv->dynids.list, node) {
560 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561 			id = &dynid->id;
562 			break;
563 		}
564 	}
565 	spin_unlock(&drv->dynids.lock);
566 
567 	if (id)
568 		return id;
569 
570 	id = drv->id_table;
571 	if (id == NULL)
572 		return NULL; /* empty device table */
573 
574 	for (; !is_null_guid(&id->guid); id++)
575 		if (!uuid_le_cmp(id->guid, *guid))
576 			return id;
577 
578 	return NULL;
579 }
580 
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
583 {
584 	struct vmbus_dynid *dynid;
585 
586 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587 	if (!dynid)
588 		return -ENOMEM;
589 
590 	dynid->id.guid = *guid;
591 
592 	spin_lock(&drv->dynids.lock);
593 	list_add_tail(&dynid->node, &drv->dynids.list);
594 	spin_unlock(&drv->dynids.lock);
595 
596 	return driver_attach(&drv->driver);
597 }
598 
599 static void vmbus_free_dynids(struct hv_driver *drv)
600 {
601 	struct vmbus_dynid *dynid, *n;
602 
603 	spin_lock(&drv->dynids.lock);
604 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605 		list_del(&dynid->node);
606 		kfree(dynid);
607 	}
608 	spin_unlock(&drv->dynids.lock);
609 }
610 
611 /*
612  * store_new_id - sysfs frontend to vmbus_add_dynid()
613  *
614  * Allow GUIDs to be added to an existing driver via sysfs.
615  */
616 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
617 			    size_t count)
618 {
619 	struct hv_driver *drv = drv_to_hv_drv(driver);
620 	uuid_le guid;
621 	ssize_t retval;
622 
623 	retval = uuid_le_to_bin(buf, &guid);
624 	if (retval)
625 		return retval;
626 
627 	if (hv_vmbus_get_id(drv, &guid))
628 		return -EEXIST;
629 
630 	retval = vmbus_add_dynid(drv, &guid);
631 	if (retval)
632 		return retval;
633 	return count;
634 }
635 static DRIVER_ATTR_WO(new_id);
636 
637 /*
638  * store_remove_id - remove a PCI device ID from this driver
639  *
640  * Removes a dynamic pci device ID to this driver.
641  */
642 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
643 			       size_t count)
644 {
645 	struct hv_driver *drv = drv_to_hv_drv(driver);
646 	struct vmbus_dynid *dynid, *n;
647 	uuid_le guid;
648 	ssize_t retval;
649 
650 	retval = uuid_le_to_bin(buf, &guid);
651 	if (retval)
652 		return retval;
653 
654 	retval = -ENODEV;
655 	spin_lock(&drv->dynids.lock);
656 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
657 		struct hv_vmbus_device_id *id = &dynid->id;
658 
659 		if (!uuid_le_cmp(id->guid, guid)) {
660 			list_del(&dynid->node);
661 			kfree(dynid);
662 			retval = count;
663 			break;
664 		}
665 	}
666 	spin_unlock(&drv->dynids.lock);
667 
668 	return retval;
669 }
670 static DRIVER_ATTR_WO(remove_id);
671 
672 static struct attribute *vmbus_drv_attrs[] = {
673 	&driver_attr_new_id.attr,
674 	&driver_attr_remove_id.attr,
675 	NULL,
676 };
677 ATTRIBUTE_GROUPS(vmbus_drv);
678 
679 
680 /*
681  * vmbus_match - Attempt to match the specified device to the specified driver
682  */
683 static int vmbus_match(struct device *device, struct device_driver *driver)
684 {
685 	struct hv_driver *drv = drv_to_hv_drv(driver);
686 	struct hv_device *hv_dev = device_to_hv_device(device);
687 
688 	/* The hv_sock driver handles all hv_sock offers. */
689 	if (is_hvsock_channel(hv_dev->channel))
690 		return drv->hvsock;
691 
692 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
693 		return 1;
694 
695 	return 0;
696 }
697 
698 /*
699  * vmbus_probe - Add the new vmbus's child device
700  */
701 static int vmbus_probe(struct device *child_device)
702 {
703 	int ret = 0;
704 	struct hv_driver *drv =
705 			drv_to_hv_drv(child_device->driver);
706 	struct hv_device *dev = device_to_hv_device(child_device);
707 	const struct hv_vmbus_device_id *dev_id;
708 
709 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
710 	if (drv->probe) {
711 		ret = drv->probe(dev, dev_id);
712 		if (ret != 0)
713 			pr_err("probe failed for device %s (%d)\n",
714 			       dev_name(child_device), ret);
715 
716 	} else {
717 		pr_err("probe not set for driver %s\n",
718 		       dev_name(child_device));
719 		ret = -ENODEV;
720 	}
721 	return ret;
722 }
723 
724 /*
725  * vmbus_remove - Remove a vmbus device
726  */
727 static int vmbus_remove(struct device *child_device)
728 {
729 	struct hv_driver *drv;
730 	struct hv_device *dev = device_to_hv_device(child_device);
731 
732 	if (child_device->driver) {
733 		drv = drv_to_hv_drv(child_device->driver);
734 		if (drv->remove)
735 			drv->remove(dev);
736 	}
737 
738 	return 0;
739 }
740 
741 
742 /*
743  * vmbus_shutdown - Shutdown a vmbus device
744  */
745 static void vmbus_shutdown(struct device *child_device)
746 {
747 	struct hv_driver *drv;
748 	struct hv_device *dev = device_to_hv_device(child_device);
749 
750 
751 	/* The device may not be attached yet */
752 	if (!child_device->driver)
753 		return;
754 
755 	drv = drv_to_hv_drv(child_device->driver);
756 
757 	if (drv->shutdown)
758 		drv->shutdown(dev);
759 }
760 
761 
762 /*
763  * vmbus_device_release - Final callback release of the vmbus child device
764  */
765 static void vmbus_device_release(struct device *device)
766 {
767 	struct hv_device *hv_dev = device_to_hv_device(device);
768 	struct vmbus_channel *channel = hv_dev->channel;
769 
770 	mutex_lock(&vmbus_connection.channel_mutex);
771 	hv_process_channel_removal(channel->offermsg.child_relid);
772 	mutex_unlock(&vmbus_connection.channel_mutex);
773 	kfree(hv_dev);
774 
775 }
776 
777 /* The one and only one */
778 static struct bus_type  hv_bus = {
779 	.name =		"vmbus",
780 	.match =		vmbus_match,
781 	.shutdown =		vmbus_shutdown,
782 	.remove =		vmbus_remove,
783 	.probe =		vmbus_probe,
784 	.uevent =		vmbus_uevent,
785 	.dev_groups =		vmbus_dev_groups,
786 	.drv_groups =		vmbus_drv_groups,
787 };
788 
789 struct onmessage_work_context {
790 	struct work_struct work;
791 	struct hv_message msg;
792 };
793 
794 static void vmbus_onmessage_work(struct work_struct *work)
795 {
796 	struct onmessage_work_context *ctx;
797 
798 	/* Do not process messages if we're in DISCONNECTED state */
799 	if (vmbus_connection.conn_state == DISCONNECTED)
800 		return;
801 
802 	ctx = container_of(work, struct onmessage_work_context,
803 			   work);
804 	vmbus_onmessage(&ctx->msg);
805 	kfree(ctx);
806 }
807 
808 static void hv_process_timer_expiration(struct hv_message *msg,
809 					struct hv_per_cpu_context *hv_cpu)
810 {
811 	struct clock_event_device *dev = hv_cpu->clk_evt;
812 
813 	if (dev->event_handler)
814 		dev->event_handler(dev);
815 
816 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
817 }
818 
819 void vmbus_on_msg_dpc(unsigned long data)
820 {
821 	struct hv_per_cpu_context *hv_cpu = (void *)data;
822 	void *page_addr = hv_cpu->synic_message_page;
823 	struct hv_message *msg = (struct hv_message *)page_addr +
824 				  VMBUS_MESSAGE_SINT;
825 	struct vmbus_channel_message_header *hdr;
826 	const struct vmbus_channel_message_table_entry *entry;
827 	struct onmessage_work_context *ctx;
828 	u32 message_type = msg->header.message_type;
829 
830 	if (message_type == HVMSG_NONE)
831 		/* no msg */
832 		return;
833 
834 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
835 
836 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
837 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
838 		goto msg_handled;
839 	}
840 
841 	entry = &channel_message_table[hdr->msgtype];
842 	if (entry->handler_type	== VMHT_BLOCKING) {
843 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
844 		if (ctx == NULL)
845 			return;
846 
847 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
848 		memcpy(&ctx->msg, msg, sizeof(*msg));
849 
850 		/*
851 		 * The host can generate a rescind message while we
852 		 * may still be handling the original offer. We deal with
853 		 * this condition by ensuring the processing is done on the
854 		 * same CPU.
855 		 */
856 		switch (hdr->msgtype) {
857 		case CHANNELMSG_RESCIND_CHANNELOFFER:
858 			/*
859 			 * If we are handling the rescind message;
860 			 * schedule the work on the global work queue.
861 			 */
862 			schedule_work_on(vmbus_connection.connect_cpu,
863 					 &ctx->work);
864 			break;
865 
866 		case CHANNELMSG_OFFERCHANNEL:
867 			atomic_inc(&vmbus_connection.offer_in_progress);
868 			queue_work_on(vmbus_connection.connect_cpu,
869 				      vmbus_connection.work_queue,
870 				      &ctx->work);
871 			break;
872 
873 		default:
874 			queue_work(vmbus_connection.work_queue, &ctx->work);
875 		}
876 	} else
877 		entry->message_handler(hdr);
878 
879 msg_handled:
880 	vmbus_signal_eom(msg, message_type);
881 }
882 
883 
884 /*
885  * Direct callback for channels using other deferred processing
886  */
887 static void vmbus_channel_isr(struct vmbus_channel *channel)
888 {
889 	void (*callback_fn)(void *);
890 
891 	callback_fn = READ_ONCE(channel->onchannel_callback);
892 	if (likely(callback_fn != NULL))
893 		(*callback_fn)(channel->channel_callback_context);
894 }
895 
896 /*
897  * Schedule all channels with events pending
898  */
899 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
900 {
901 	unsigned long *recv_int_page;
902 	u32 maxbits, relid;
903 
904 	if (vmbus_proto_version < VERSION_WIN8) {
905 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
906 		recv_int_page = vmbus_connection.recv_int_page;
907 	} else {
908 		/*
909 		 * When the host is win8 and beyond, the event page
910 		 * can be directly checked to get the id of the channel
911 		 * that has the interrupt pending.
912 		 */
913 		void *page_addr = hv_cpu->synic_event_page;
914 		union hv_synic_event_flags *event
915 			= (union hv_synic_event_flags *)page_addr +
916 						 VMBUS_MESSAGE_SINT;
917 
918 		maxbits = HV_EVENT_FLAGS_COUNT;
919 		recv_int_page = event->flags;
920 	}
921 
922 	if (unlikely(!recv_int_page))
923 		return;
924 
925 	for_each_set_bit(relid, recv_int_page, maxbits) {
926 		struct vmbus_channel *channel;
927 
928 		if (!sync_test_and_clear_bit(relid, recv_int_page))
929 			continue;
930 
931 		/* Special case - vmbus channel protocol msg */
932 		if (relid == 0)
933 			continue;
934 
935 		rcu_read_lock();
936 
937 		/* Find channel based on relid */
938 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
939 			if (channel->offermsg.child_relid != relid)
940 				continue;
941 
942 			if (channel->rescind)
943 				continue;
944 
945 			switch (channel->callback_mode) {
946 			case HV_CALL_ISR:
947 				vmbus_channel_isr(channel);
948 				break;
949 
950 			case HV_CALL_BATCHED:
951 				hv_begin_read(&channel->inbound);
952 				/* fallthrough */
953 			case HV_CALL_DIRECT:
954 				tasklet_schedule(&channel->callback_event);
955 			}
956 		}
957 
958 		rcu_read_unlock();
959 	}
960 }
961 
962 static void vmbus_isr(void)
963 {
964 	struct hv_per_cpu_context *hv_cpu
965 		= this_cpu_ptr(hv_context.cpu_context);
966 	void *page_addr = hv_cpu->synic_event_page;
967 	struct hv_message *msg;
968 	union hv_synic_event_flags *event;
969 	bool handled = false;
970 
971 	if (unlikely(page_addr == NULL))
972 		return;
973 
974 	event = (union hv_synic_event_flags *)page_addr +
975 					 VMBUS_MESSAGE_SINT;
976 	/*
977 	 * Check for events before checking for messages. This is the order
978 	 * in which events and messages are checked in Windows guests on
979 	 * Hyper-V, and the Windows team suggested we do the same.
980 	 */
981 
982 	if ((vmbus_proto_version == VERSION_WS2008) ||
983 		(vmbus_proto_version == VERSION_WIN7)) {
984 
985 		/* Since we are a child, we only need to check bit 0 */
986 		if (sync_test_and_clear_bit(0, event->flags))
987 			handled = true;
988 	} else {
989 		/*
990 		 * Our host is win8 or above. The signaling mechanism
991 		 * has changed and we can directly look at the event page.
992 		 * If bit n is set then we have an interrup on the channel
993 		 * whose id is n.
994 		 */
995 		handled = true;
996 	}
997 
998 	if (handled)
999 		vmbus_chan_sched(hv_cpu);
1000 
1001 	page_addr = hv_cpu->synic_message_page;
1002 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1003 
1004 	/* Check if there are actual msgs to be processed */
1005 	if (msg->header.message_type != HVMSG_NONE) {
1006 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1007 			hv_process_timer_expiration(msg, hv_cpu);
1008 		else
1009 			tasklet_schedule(&hv_cpu->msg_dpc);
1010 	}
1011 
1012 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1013 }
1014 
1015 
1016 /*
1017  * vmbus_bus_init -Main vmbus driver initialization routine.
1018  *
1019  * Here, we
1020  *	- initialize the vmbus driver context
1021  *	- invoke the vmbus hv main init routine
1022  *	- retrieve the channel offers
1023  */
1024 static int vmbus_bus_init(void)
1025 {
1026 	int ret;
1027 
1028 	/* Hypervisor initialization...setup hypercall page..etc */
1029 	ret = hv_init();
1030 	if (ret != 0) {
1031 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1032 		return ret;
1033 	}
1034 
1035 	ret = bus_register(&hv_bus);
1036 	if (ret)
1037 		return ret;
1038 
1039 	hv_setup_vmbus_irq(vmbus_isr);
1040 
1041 	ret = hv_synic_alloc();
1042 	if (ret)
1043 		goto err_alloc;
1044 	/*
1045 	 * Initialize the per-cpu interrupt state and
1046 	 * connect to the host.
1047 	 */
1048 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1049 				hv_synic_init, hv_synic_cleanup);
1050 	if (ret < 0)
1051 		goto err_alloc;
1052 	hyperv_cpuhp_online = ret;
1053 
1054 	ret = vmbus_connect();
1055 	if (ret)
1056 		goto err_connect;
1057 
1058 	/*
1059 	 * Only register if the crash MSRs are available
1060 	 */
1061 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1062 		register_die_notifier(&hyperv_die_block);
1063 		atomic_notifier_chain_register(&panic_notifier_list,
1064 					       &hyperv_panic_block);
1065 	}
1066 
1067 	vmbus_request_offers();
1068 
1069 	return 0;
1070 
1071 err_connect:
1072 	cpuhp_remove_state(hyperv_cpuhp_online);
1073 err_alloc:
1074 	hv_synic_free();
1075 	hv_remove_vmbus_irq();
1076 
1077 	bus_unregister(&hv_bus);
1078 
1079 	return ret;
1080 }
1081 
1082 /**
1083  * __vmbus_child_driver_register() - Register a vmbus's driver
1084  * @hv_driver: Pointer to driver structure you want to register
1085  * @owner: owner module of the drv
1086  * @mod_name: module name string
1087  *
1088  * Registers the given driver with Linux through the 'driver_register()' call
1089  * and sets up the hyper-v vmbus handling for this driver.
1090  * It will return the state of the 'driver_register()' call.
1091  *
1092  */
1093 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1094 {
1095 	int ret;
1096 
1097 	pr_info("registering driver %s\n", hv_driver->name);
1098 
1099 	ret = vmbus_exists();
1100 	if (ret < 0)
1101 		return ret;
1102 
1103 	hv_driver->driver.name = hv_driver->name;
1104 	hv_driver->driver.owner = owner;
1105 	hv_driver->driver.mod_name = mod_name;
1106 	hv_driver->driver.bus = &hv_bus;
1107 
1108 	spin_lock_init(&hv_driver->dynids.lock);
1109 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1110 
1111 	ret = driver_register(&hv_driver->driver);
1112 
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1116 
1117 /**
1118  * vmbus_driver_unregister() - Unregister a vmbus's driver
1119  * @hv_driver: Pointer to driver structure you want to
1120  *             un-register
1121  *
1122  * Un-register the given driver that was previous registered with a call to
1123  * vmbus_driver_register()
1124  */
1125 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1126 {
1127 	pr_info("unregistering driver %s\n", hv_driver->name);
1128 
1129 	if (!vmbus_exists()) {
1130 		driver_unregister(&hv_driver->driver);
1131 		vmbus_free_dynids(hv_driver);
1132 	}
1133 }
1134 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1135 
1136 /*
1137  * vmbus_device_create - Creates and registers a new child device
1138  * on the vmbus.
1139  */
1140 struct hv_device *vmbus_device_create(const uuid_le *type,
1141 				      const uuid_le *instance,
1142 				      struct vmbus_channel *channel)
1143 {
1144 	struct hv_device *child_device_obj;
1145 
1146 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1147 	if (!child_device_obj) {
1148 		pr_err("Unable to allocate device object for child device\n");
1149 		return NULL;
1150 	}
1151 
1152 	child_device_obj->channel = channel;
1153 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1154 	memcpy(&child_device_obj->dev_instance, instance,
1155 	       sizeof(uuid_le));
1156 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1157 
1158 
1159 	return child_device_obj;
1160 }
1161 
1162 /*
1163  * vmbus_device_register - Register the child device
1164  */
1165 int vmbus_device_register(struct hv_device *child_device_obj)
1166 {
1167 	int ret = 0;
1168 
1169 	dev_set_name(&child_device_obj->device, "%pUl",
1170 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1171 
1172 	child_device_obj->device.bus = &hv_bus;
1173 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1174 	child_device_obj->device.release = vmbus_device_release;
1175 
1176 	/*
1177 	 * Register with the LDM. This will kick off the driver/device
1178 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1179 	 */
1180 	ret = device_register(&child_device_obj->device);
1181 
1182 	if (ret)
1183 		pr_err("Unable to register child device\n");
1184 	else
1185 		pr_debug("child device %s registered\n",
1186 			dev_name(&child_device_obj->device));
1187 
1188 	return ret;
1189 }
1190 
1191 /*
1192  * vmbus_device_unregister - Remove the specified child device
1193  * from the vmbus.
1194  */
1195 void vmbus_device_unregister(struct hv_device *device_obj)
1196 {
1197 	pr_debug("child device %s unregistered\n",
1198 		dev_name(&device_obj->device));
1199 
1200 	/*
1201 	 * Kick off the process of unregistering the device.
1202 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1203 	 */
1204 	device_unregister(&device_obj->device);
1205 }
1206 
1207 
1208 /*
1209  * VMBUS is an acpi enumerated device. Get the information we
1210  * need from DSDT.
1211  */
1212 #define VTPM_BASE_ADDRESS 0xfed40000
1213 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1214 {
1215 	resource_size_t start = 0;
1216 	resource_size_t end = 0;
1217 	struct resource *new_res;
1218 	struct resource **old_res = &hyperv_mmio;
1219 	struct resource **prev_res = NULL;
1220 
1221 	switch (res->type) {
1222 
1223 	/*
1224 	 * "Address" descriptors are for bus windows. Ignore
1225 	 * "memory" descriptors, which are for registers on
1226 	 * devices.
1227 	 */
1228 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1229 		start = res->data.address32.address.minimum;
1230 		end = res->data.address32.address.maximum;
1231 		break;
1232 
1233 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1234 		start = res->data.address64.address.minimum;
1235 		end = res->data.address64.address.maximum;
1236 		break;
1237 
1238 	default:
1239 		/* Unused resource type */
1240 		return AE_OK;
1241 
1242 	}
1243 	/*
1244 	 * Ignore ranges that are below 1MB, as they're not
1245 	 * necessary or useful here.
1246 	 */
1247 	if (end < 0x100000)
1248 		return AE_OK;
1249 
1250 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1251 	if (!new_res)
1252 		return AE_NO_MEMORY;
1253 
1254 	/* If this range overlaps the virtual TPM, truncate it. */
1255 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1256 		end = VTPM_BASE_ADDRESS;
1257 
1258 	new_res->name = "hyperv mmio";
1259 	new_res->flags = IORESOURCE_MEM;
1260 	new_res->start = start;
1261 	new_res->end = end;
1262 
1263 	/*
1264 	 * If two ranges are adjacent, merge them.
1265 	 */
1266 	do {
1267 		if (!*old_res) {
1268 			*old_res = new_res;
1269 			break;
1270 		}
1271 
1272 		if (((*old_res)->end + 1) == new_res->start) {
1273 			(*old_res)->end = new_res->end;
1274 			kfree(new_res);
1275 			break;
1276 		}
1277 
1278 		if ((*old_res)->start == new_res->end + 1) {
1279 			(*old_res)->start = new_res->start;
1280 			kfree(new_res);
1281 			break;
1282 		}
1283 
1284 		if ((*old_res)->start > new_res->end) {
1285 			new_res->sibling = *old_res;
1286 			if (prev_res)
1287 				(*prev_res)->sibling = new_res;
1288 			*old_res = new_res;
1289 			break;
1290 		}
1291 
1292 		prev_res = old_res;
1293 		old_res = &(*old_res)->sibling;
1294 
1295 	} while (1);
1296 
1297 	return AE_OK;
1298 }
1299 
1300 static int vmbus_acpi_remove(struct acpi_device *device)
1301 {
1302 	struct resource *cur_res;
1303 	struct resource *next_res;
1304 
1305 	if (hyperv_mmio) {
1306 		if (fb_mmio) {
1307 			__release_region(hyperv_mmio, fb_mmio->start,
1308 					 resource_size(fb_mmio));
1309 			fb_mmio = NULL;
1310 		}
1311 
1312 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1313 			next_res = cur_res->sibling;
1314 			kfree(cur_res);
1315 		}
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static void vmbus_reserve_fb(void)
1322 {
1323 	int size;
1324 	/*
1325 	 * Make a claim for the frame buffer in the resource tree under the
1326 	 * first node, which will be the one below 4GB.  The length seems to
1327 	 * be underreported, particularly in a Generation 1 VM.  So start out
1328 	 * reserving a larger area and make it smaller until it succeeds.
1329 	 */
1330 
1331 	if (screen_info.lfb_base) {
1332 		if (efi_enabled(EFI_BOOT))
1333 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1334 		else
1335 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1336 
1337 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1338 			fb_mmio = __request_region(hyperv_mmio,
1339 						   screen_info.lfb_base, size,
1340 						   fb_mmio_name, 0);
1341 		}
1342 	}
1343 }
1344 
1345 /**
1346  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1347  * @new:		If successful, supplied a pointer to the
1348  *			allocated MMIO space.
1349  * @device_obj:		Identifies the caller
1350  * @min:		Minimum guest physical address of the
1351  *			allocation
1352  * @max:		Maximum guest physical address
1353  * @size:		Size of the range to be allocated
1354  * @align:		Alignment of the range to be allocated
1355  * @fb_overlap_ok:	Whether this allocation can be allowed
1356  *			to overlap the video frame buffer.
1357  *
1358  * This function walks the resources granted to VMBus by the
1359  * _CRS object in the ACPI namespace underneath the parent
1360  * "bridge" whether that's a root PCI bus in the Generation 1
1361  * case or a Module Device in the Generation 2 case.  It then
1362  * attempts to allocate from the global MMIO pool in a way that
1363  * matches the constraints supplied in these parameters and by
1364  * that _CRS.
1365  *
1366  * Return: 0 on success, -errno on failure
1367  */
1368 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1369 			resource_size_t min, resource_size_t max,
1370 			resource_size_t size, resource_size_t align,
1371 			bool fb_overlap_ok)
1372 {
1373 	struct resource *iter, *shadow;
1374 	resource_size_t range_min, range_max, start;
1375 	const char *dev_n = dev_name(&device_obj->device);
1376 	int retval;
1377 
1378 	retval = -ENXIO;
1379 	down(&hyperv_mmio_lock);
1380 
1381 	/*
1382 	 * If overlaps with frame buffers are allowed, then first attempt to
1383 	 * make the allocation from within the reserved region.  Because it
1384 	 * is already reserved, no shadow allocation is necessary.
1385 	 */
1386 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1387 	    !(max < fb_mmio->start)) {
1388 
1389 		range_min = fb_mmio->start;
1390 		range_max = fb_mmio->end;
1391 		start = (range_min + align - 1) & ~(align - 1);
1392 		for (; start + size - 1 <= range_max; start += align) {
1393 			*new = request_mem_region_exclusive(start, size, dev_n);
1394 			if (*new) {
1395 				retval = 0;
1396 				goto exit;
1397 			}
1398 		}
1399 	}
1400 
1401 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1402 		if ((iter->start >= max) || (iter->end <= min))
1403 			continue;
1404 
1405 		range_min = iter->start;
1406 		range_max = iter->end;
1407 		start = (range_min + align - 1) & ~(align - 1);
1408 		for (; start + size - 1 <= range_max; start += align) {
1409 			shadow = __request_region(iter, start, size, NULL,
1410 						  IORESOURCE_BUSY);
1411 			if (!shadow)
1412 				continue;
1413 
1414 			*new = request_mem_region_exclusive(start, size, dev_n);
1415 			if (*new) {
1416 				shadow->name = (char *)*new;
1417 				retval = 0;
1418 				goto exit;
1419 			}
1420 
1421 			__release_region(iter, start, size);
1422 		}
1423 	}
1424 
1425 exit:
1426 	up(&hyperv_mmio_lock);
1427 	return retval;
1428 }
1429 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1430 
1431 /**
1432  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1433  * @start:		Base address of region to release.
1434  * @size:		Size of the range to be allocated
1435  *
1436  * This function releases anything requested by
1437  * vmbus_mmio_allocate().
1438  */
1439 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1440 {
1441 	struct resource *iter;
1442 
1443 	down(&hyperv_mmio_lock);
1444 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1445 		if ((iter->start >= start + size) || (iter->end <= start))
1446 			continue;
1447 
1448 		__release_region(iter, start, size);
1449 	}
1450 	release_mem_region(start, size);
1451 	up(&hyperv_mmio_lock);
1452 
1453 }
1454 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1455 
1456 static int vmbus_acpi_add(struct acpi_device *device)
1457 {
1458 	acpi_status result;
1459 	int ret_val = -ENODEV;
1460 	struct acpi_device *ancestor;
1461 
1462 	hv_acpi_dev = device;
1463 
1464 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1465 					vmbus_walk_resources, NULL);
1466 
1467 	if (ACPI_FAILURE(result))
1468 		goto acpi_walk_err;
1469 	/*
1470 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1471 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1472 	 */
1473 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1474 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1475 					     vmbus_walk_resources, NULL);
1476 
1477 		if (ACPI_FAILURE(result))
1478 			continue;
1479 		if (hyperv_mmio) {
1480 			vmbus_reserve_fb();
1481 			break;
1482 		}
1483 	}
1484 	ret_val = 0;
1485 
1486 acpi_walk_err:
1487 	complete(&probe_event);
1488 	if (ret_val)
1489 		vmbus_acpi_remove(device);
1490 	return ret_val;
1491 }
1492 
1493 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1494 	{"VMBUS", 0},
1495 	{"VMBus", 0},
1496 	{"", 0},
1497 };
1498 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1499 
1500 static struct acpi_driver vmbus_acpi_driver = {
1501 	.name = "vmbus",
1502 	.ids = vmbus_acpi_device_ids,
1503 	.ops = {
1504 		.add = vmbus_acpi_add,
1505 		.remove = vmbus_acpi_remove,
1506 	},
1507 };
1508 
1509 static void hv_kexec_handler(void)
1510 {
1511 	hv_synic_clockevents_cleanup();
1512 	vmbus_initiate_unload(false);
1513 	vmbus_connection.conn_state = DISCONNECTED;
1514 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
1515 	mb();
1516 	cpuhp_remove_state(hyperv_cpuhp_online);
1517 	hyperv_cleanup();
1518 };
1519 
1520 static void hv_crash_handler(struct pt_regs *regs)
1521 {
1522 	vmbus_initiate_unload(true);
1523 	/*
1524 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1525 	 * doing the cleanup for current CPU only. This should be sufficient
1526 	 * for kdump.
1527 	 */
1528 	vmbus_connection.conn_state = DISCONNECTED;
1529 	hv_synic_cleanup(smp_processor_id());
1530 	hyperv_cleanup();
1531 };
1532 
1533 static int __init hv_acpi_init(void)
1534 {
1535 	int ret, t;
1536 
1537 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
1538 		return -ENODEV;
1539 
1540 	init_completion(&probe_event);
1541 
1542 	/*
1543 	 * Get ACPI resources first.
1544 	 */
1545 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1546 
1547 	if (ret)
1548 		return ret;
1549 
1550 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1551 	if (t == 0) {
1552 		ret = -ETIMEDOUT;
1553 		goto cleanup;
1554 	}
1555 
1556 	ret = vmbus_bus_init();
1557 	if (ret)
1558 		goto cleanup;
1559 
1560 	hv_setup_kexec_handler(hv_kexec_handler);
1561 	hv_setup_crash_handler(hv_crash_handler);
1562 
1563 	return 0;
1564 
1565 cleanup:
1566 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1567 	hv_acpi_dev = NULL;
1568 	return ret;
1569 }
1570 
1571 static void __exit vmbus_exit(void)
1572 {
1573 	int cpu;
1574 
1575 	hv_remove_kexec_handler();
1576 	hv_remove_crash_handler();
1577 	vmbus_connection.conn_state = DISCONNECTED;
1578 	hv_synic_clockevents_cleanup();
1579 	vmbus_disconnect();
1580 	hv_remove_vmbus_irq();
1581 	for_each_online_cpu(cpu) {
1582 		struct hv_per_cpu_context *hv_cpu
1583 			= per_cpu_ptr(hv_context.cpu_context, cpu);
1584 
1585 		tasklet_kill(&hv_cpu->msg_dpc);
1586 	}
1587 	vmbus_free_channels();
1588 
1589 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1590 		unregister_die_notifier(&hyperv_die_block);
1591 		atomic_notifier_chain_unregister(&panic_notifier_list,
1592 						 &hyperv_panic_block);
1593 	}
1594 	bus_unregister(&hv_bus);
1595 
1596 	cpuhp_remove_state(hyperv_cpuhp_online);
1597 	hv_synic_free();
1598 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1599 }
1600 
1601 
1602 MODULE_LICENSE("GPL");
1603 
1604 subsys_initcall(hv_acpi_init);
1605 module_exit(vmbus_exit);
1606