1 /* 2 * 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/mm.h> 28 #include <linux/hyperv.h> 29 30 #include "hyperv_vmbus.h" 31 32 void hv_begin_read(struct hv_ring_buffer_info *rbi) 33 { 34 rbi->ring_buffer->interrupt_mask = 1; 35 smp_mb(); 36 } 37 38 u32 hv_end_read(struct hv_ring_buffer_info *rbi) 39 { 40 u32 read; 41 u32 write; 42 43 rbi->ring_buffer->interrupt_mask = 0; 44 smp_mb(); 45 46 /* 47 * Now check to see if the ring buffer is still empty. 48 * If it is not, we raced and we need to process new 49 * incoming messages. 50 */ 51 hv_get_ringbuffer_availbytes(rbi, &read, &write); 52 53 return read; 54 } 55 56 /* 57 * When we write to the ring buffer, check if the host needs to 58 * be signaled. Here is the details of this protocol: 59 * 60 * 1. The host guarantees that while it is draining the 61 * ring buffer, it will set the interrupt_mask to 62 * indicate it does not need to be interrupted when 63 * new data is placed. 64 * 65 * 2. The host guarantees that it will completely drain 66 * the ring buffer before exiting the read loop. Further, 67 * once the ring buffer is empty, it will clear the 68 * interrupt_mask and re-check to see if new data has 69 * arrived. 70 */ 71 72 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi) 73 { 74 if (rbi->ring_buffer->interrupt_mask) 75 return false; 76 77 /* 78 * This is the only case we need to signal when the 79 * ring transitions from being empty to non-empty. 80 */ 81 if (old_write == rbi->ring_buffer->read_index) 82 return true; 83 84 return false; 85 } 86 87 /* 88 * To optimize the flow management on the send-side, 89 * when the sender is blocked because of lack of 90 * sufficient space in the ring buffer, potential the 91 * consumer of the ring buffer can signal the producer. 92 * This is controlled by the following parameters: 93 * 94 * 1. pending_send_sz: This is the size in bytes that the 95 * producer is trying to send. 96 * 2. The feature bit feat_pending_send_sz set to indicate if 97 * the consumer of the ring will signal when the ring 98 * state transitions from being full to a state where 99 * there is room for the producer to send the pending packet. 100 */ 101 102 static bool hv_need_to_signal_on_read(u32 old_rd, 103 struct hv_ring_buffer_info *rbi) 104 { 105 u32 prev_write_sz; 106 u32 cur_write_sz; 107 u32 r_size; 108 u32 write_loc = rbi->ring_buffer->write_index; 109 u32 read_loc = rbi->ring_buffer->read_index; 110 u32 pending_sz = rbi->ring_buffer->pending_send_sz; 111 112 /* 113 * If the other end is not blocked on write don't bother. 114 */ 115 if (pending_sz == 0) 116 return false; 117 118 r_size = rbi->ring_datasize; 119 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) : 120 read_loc - write_loc; 121 122 prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) : 123 old_rd - write_loc; 124 125 126 if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz)) 127 return true; 128 129 return false; 130 } 131 132 /* 133 * hv_get_next_write_location() 134 * 135 * Get the next write location for the specified ring buffer 136 * 137 */ 138 static inline u32 139 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 140 { 141 u32 next = ring_info->ring_buffer->write_index; 142 143 return next; 144 } 145 146 /* 147 * hv_set_next_write_location() 148 * 149 * Set the next write location for the specified ring buffer 150 * 151 */ 152 static inline void 153 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 154 u32 next_write_location) 155 { 156 ring_info->ring_buffer->write_index = next_write_location; 157 } 158 159 /* 160 * hv_get_next_read_location() 161 * 162 * Get the next read location for the specified ring buffer 163 */ 164 static inline u32 165 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info) 166 { 167 u32 next = ring_info->ring_buffer->read_index; 168 169 return next; 170 } 171 172 /* 173 * hv_get_next_readlocation_withoffset() 174 * 175 * Get the next read location + offset for the specified ring buffer. 176 * This allows the caller to skip 177 */ 178 static inline u32 179 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info, 180 u32 offset) 181 { 182 u32 next = ring_info->ring_buffer->read_index; 183 184 next += offset; 185 next %= ring_info->ring_datasize; 186 187 return next; 188 } 189 190 /* 191 * 192 * hv_set_next_read_location() 193 * 194 * Set the next read location for the specified ring buffer 195 * 196 */ 197 static inline void 198 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, 199 u32 next_read_location) 200 { 201 ring_info->ring_buffer->read_index = next_read_location; 202 } 203 204 205 /* 206 * 207 * hv_get_ring_buffer() 208 * 209 * Get the start of the ring buffer 210 */ 211 static inline void * 212 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 213 { 214 return (void *)ring_info->ring_buffer->buffer; 215 } 216 217 218 /* 219 * 220 * hv_get_ring_buffersize() 221 * 222 * Get the size of the ring buffer 223 */ 224 static inline u32 225 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info) 226 { 227 return ring_info->ring_datasize; 228 } 229 230 /* 231 * 232 * hv_get_ring_bufferindices() 233 * 234 * Get the read and write indices as u64 of the specified ring buffer 235 * 236 */ 237 static inline u64 238 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 239 { 240 return (u64)ring_info->ring_buffer->write_index << 32; 241 } 242 243 /* 244 * 245 * hv_copyfrom_ringbuffer() 246 * 247 * Helper routine to copy to source from ring buffer. 248 * Assume there is enough room. Handles wrap-around in src case only!! 249 * 250 */ 251 static u32 hv_copyfrom_ringbuffer( 252 struct hv_ring_buffer_info *ring_info, 253 void *dest, 254 u32 destlen, 255 u32 start_read_offset) 256 { 257 void *ring_buffer = hv_get_ring_buffer(ring_info); 258 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 259 260 u32 frag_len; 261 262 /* wrap-around detected at the src */ 263 if (destlen > ring_buffer_size - start_read_offset) { 264 frag_len = ring_buffer_size - start_read_offset; 265 266 memcpy(dest, ring_buffer + start_read_offset, frag_len); 267 memcpy(dest + frag_len, ring_buffer, destlen - frag_len); 268 } else 269 270 memcpy(dest, ring_buffer + start_read_offset, destlen); 271 272 273 start_read_offset += destlen; 274 start_read_offset %= ring_buffer_size; 275 276 return start_read_offset; 277 } 278 279 280 /* 281 * 282 * hv_copyto_ringbuffer() 283 * 284 * Helper routine to copy from source to ring buffer. 285 * Assume there is enough room. Handles wrap-around in dest case only!! 286 * 287 */ 288 static u32 hv_copyto_ringbuffer( 289 struct hv_ring_buffer_info *ring_info, 290 u32 start_write_offset, 291 void *src, 292 u32 srclen) 293 { 294 void *ring_buffer = hv_get_ring_buffer(ring_info); 295 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 296 u32 frag_len; 297 298 /* wrap-around detected! */ 299 if (srclen > ring_buffer_size - start_write_offset) { 300 frag_len = ring_buffer_size - start_write_offset; 301 memcpy(ring_buffer + start_write_offset, src, frag_len); 302 memcpy(ring_buffer, src + frag_len, srclen - frag_len); 303 } else 304 memcpy(ring_buffer + start_write_offset, src, srclen); 305 306 start_write_offset += srclen; 307 start_write_offset %= ring_buffer_size; 308 309 return start_write_offset; 310 } 311 312 /* 313 * 314 * hv_ringbuffer_get_debuginfo() 315 * 316 * Get various debug metrics for the specified ring buffer 317 * 318 */ 319 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 320 struct hv_ring_buffer_debug_info *debug_info) 321 { 322 u32 bytes_avail_towrite; 323 u32 bytes_avail_toread; 324 325 if (ring_info->ring_buffer) { 326 hv_get_ringbuffer_availbytes(ring_info, 327 &bytes_avail_toread, 328 &bytes_avail_towrite); 329 330 debug_info->bytes_avail_toread = bytes_avail_toread; 331 debug_info->bytes_avail_towrite = bytes_avail_towrite; 332 debug_info->current_read_index = 333 ring_info->ring_buffer->read_index; 334 debug_info->current_write_index = 335 ring_info->ring_buffer->write_index; 336 debug_info->current_interrupt_mask = 337 ring_info->ring_buffer->interrupt_mask; 338 } 339 } 340 341 /* 342 * 343 * hv_ringbuffer_init() 344 * 345 *Initialize the ring buffer 346 * 347 */ 348 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 349 void *buffer, u32 buflen) 350 { 351 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE) 352 return -EINVAL; 353 354 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info)); 355 356 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer; 357 ring_info->ring_buffer->read_index = 358 ring_info->ring_buffer->write_index = 0; 359 360 ring_info->ring_size = buflen; 361 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer); 362 363 spin_lock_init(&ring_info->ring_lock); 364 365 return 0; 366 } 367 368 /* 369 * 370 * hv_ringbuffer_cleanup() 371 * 372 * Cleanup the ring buffer 373 * 374 */ 375 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 376 { 377 } 378 379 /* 380 * 381 * hv_ringbuffer_write() 382 * 383 * Write to the ring buffer 384 * 385 */ 386 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info, 387 struct scatterlist *sglist, u32 sgcount, bool *signal) 388 { 389 int i = 0; 390 u32 bytes_avail_towrite; 391 u32 bytes_avail_toread; 392 u32 totalbytes_towrite = 0; 393 394 struct scatterlist *sg; 395 u32 next_write_location; 396 u32 old_write; 397 u64 prev_indices = 0; 398 unsigned long flags; 399 400 for_each_sg(sglist, sg, sgcount, i) 401 { 402 totalbytes_towrite += sg->length; 403 } 404 405 totalbytes_towrite += sizeof(u64); 406 407 spin_lock_irqsave(&outring_info->ring_lock, flags); 408 409 hv_get_ringbuffer_availbytes(outring_info, 410 &bytes_avail_toread, 411 &bytes_avail_towrite); 412 413 414 /* If there is only room for the packet, assume it is full. */ 415 /* Otherwise, the next time around, we think the ring buffer */ 416 /* is empty since the read index == write index */ 417 if (bytes_avail_towrite <= totalbytes_towrite) { 418 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 419 return -EAGAIN; 420 } 421 422 /* Write to the ring buffer */ 423 next_write_location = hv_get_next_write_location(outring_info); 424 425 old_write = next_write_location; 426 427 for_each_sg(sglist, sg, sgcount, i) 428 { 429 next_write_location = hv_copyto_ringbuffer(outring_info, 430 next_write_location, 431 sg_virt(sg), 432 sg->length); 433 } 434 435 /* Set previous packet start */ 436 prev_indices = hv_get_ring_bufferindices(outring_info); 437 438 next_write_location = hv_copyto_ringbuffer(outring_info, 439 next_write_location, 440 &prev_indices, 441 sizeof(u64)); 442 443 /* Issue a full memory barrier before updating the write index */ 444 smp_mb(); 445 446 /* Now, update the write location */ 447 hv_set_next_write_location(outring_info, next_write_location); 448 449 450 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 451 452 *signal = hv_need_to_signal(old_write, outring_info); 453 return 0; 454 } 455 456 457 /* 458 * 459 * hv_ringbuffer_peek() 460 * 461 * Read without advancing the read index 462 * 463 */ 464 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info, 465 void *Buffer, u32 buflen) 466 { 467 u32 bytes_avail_towrite; 468 u32 bytes_avail_toread; 469 u32 next_read_location = 0; 470 unsigned long flags; 471 472 spin_lock_irqsave(&Inring_info->ring_lock, flags); 473 474 hv_get_ringbuffer_availbytes(Inring_info, 475 &bytes_avail_toread, 476 &bytes_avail_towrite); 477 478 /* Make sure there is something to read */ 479 if (bytes_avail_toread < buflen) { 480 481 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 482 483 return -EAGAIN; 484 } 485 486 /* Convert to byte offset */ 487 next_read_location = hv_get_next_read_location(Inring_info); 488 489 next_read_location = hv_copyfrom_ringbuffer(Inring_info, 490 Buffer, 491 buflen, 492 next_read_location); 493 494 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 495 496 return 0; 497 } 498 499 500 /* 501 * 502 * hv_ringbuffer_read() 503 * 504 * Read and advance the read index 505 * 506 */ 507 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer, 508 u32 buflen, u32 offset, bool *signal) 509 { 510 u32 bytes_avail_towrite; 511 u32 bytes_avail_toread; 512 u32 next_read_location = 0; 513 u64 prev_indices = 0; 514 unsigned long flags; 515 u32 old_read; 516 517 if (buflen <= 0) 518 return -EINVAL; 519 520 spin_lock_irqsave(&inring_info->ring_lock, flags); 521 522 hv_get_ringbuffer_availbytes(inring_info, 523 &bytes_avail_toread, 524 &bytes_avail_towrite); 525 526 old_read = bytes_avail_toread; 527 528 /* Make sure there is something to read */ 529 if (bytes_avail_toread < buflen) { 530 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 531 532 return -EAGAIN; 533 } 534 535 next_read_location = 536 hv_get_next_readlocation_withoffset(inring_info, offset); 537 538 next_read_location = hv_copyfrom_ringbuffer(inring_info, 539 buffer, 540 buflen, 541 next_read_location); 542 543 next_read_location = hv_copyfrom_ringbuffer(inring_info, 544 &prev_indices, 545 sizeof(u64), 546 next_read_location); 547 548 /* Make sure all reads are done before we update the read index since */ 549 /* the writer may start writing to the read area once the read index */ 550 /*is updated */ 551 smp_mb(); 552 553 /* Update the read index */ 554 hv_set_next_read_location(inring_info, next_read_location); 555 556 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 557 558 *signal = hv_need_to_signal_on_read(old_read, inring_info); 559 560 return 0; 561 } 562