xref: /linux/drivers/hv/ring_buffer.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 
30 #include "hyperv_vmbus.h"
31 
32 void hv_begin_read(struct hv_ring_buffer_info *rbi)
33 {
34 	rbi->ring_buffer->interrupt_mask = 1;
35 	smp_mb();
36 }
37 
38 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
39 {
40 	u32 read;
41 	u32 write;
42 
43 	rbi->ring_buffer->interrupt_mask = 0;
44 	smp_mb();
45 
46 	/*
47 	 * Now check to see if the ring buffer is still empty.
48 	 * If it is not, we raced and we need to process new
49 	 * incoming messages.
50 	 */
51 	hv_get_ringbuffer_availbytes(rbi, &read, &write);
52 
53 	return read;
54 }
55 
56 /*
57  * When we write to the ring buffer, check if the host needs to
58  * be signaled. Here is the details of this protocol:
59  *
60  *	1. The host guarantees that while it is draining the
61  *	   ring buffer, it will set the interrupt_mask to
62  *	   indicate it does not need to be interrupted when
63  *	   new data is placed.
64  *
65  *	2. The host guarantees that it will completely drain
66  *	   the ring buffer before exiting the read loop. Further,
67  *	   once the ring buffer is empty, it will clear the
68  *	   interrupt_mask and re-check to see if new data has
69  *	   arrived.
70  */
71 
72 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
73 {
74 	if (rbi->ring_buffer->interrupt_mask)
75 		return false;
76 
77 	/*
78 	 * This is the only case we need to signal when the
79 	 * ring transitions from being empty to non-empty.
80 	 */
81 	if (old_write == rbi->ring_buffer->read_index)
82 		return true;
83 
84 	return false;
85 }
86 
87 /*
88  * To optimize the flow management on the send-side,
89  * when the sender is blocked because of lack of
90  * sufficient space in the ring buffer, potential the
91  * consumer of the ring buffer can signal the producer.
92  * This is controlled by the following parameters:
93  *
94  * 1. pending_send_sz: This is the size in bytes that the
95  *    producer is trying to send.
96  * 2. The feature bit feat_pending_send_sz set to indicate if
97  *    the consumer of the ring will signal when the ring
98  *    state transitions from being full to a state where
99  *    there is room for the producer to send the pending packet.
100  */
101 
102 static bool hv_need_to_signal_on_read(u32 old_rd,
103 					 struct hv_ring_buffer_info *rbi)
104 {
105 	u32 prev_write_sz;
106 	u32 cur_write_sz;
107 	u32 r_size;
108 	u32 write_loc = rbi->ring_buffer->write_index;
109 	u32 read_loc = rbi->ring_buffer->read_index;
110 	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
111 
112 	/*
113 	 * If the other end is not blocked on write don't bother.
114 	 */
115 	if (pending_sz == 0)
116 		return false;
117 
118 	r_size = rbi->ring_datasize;
119 	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
120 			read_loc - write_loc;
121 
122 	prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
123 			old_rd - write_loc;
124 
125 
126 	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  * hv_get_next_write_location()
134  *
135  * Get the next write location for the specified ring buffer
136  *
137  */
138 static inline u32
139 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
140 {
141 	u32 next = ring_info->ring_buffer->write_index;
142 
143 	return next;
144 }
145 
146 /*
147  * hv_set_next_write_location()
148  *
149  * Set the next write location for the specified ring buffer
150  *
151  */
152 static inline void
153 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
154 		     u32 next_write_location)
155 {
156 	ring_info->ring_buffer->write_index = next_write_location;
157 }
158 
159 /*
160  * hv_get_next_read_location()
161  *
162  * Get the next read location for the specified ring buffer
163  */
164 static inline u32
165 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
166 {
167 	u32 next = ring_info->ring_buffer->read_index;
168 
169 	return next;
170 }
171 
172 /*
173  * hv_get_next_readlocation_withoffset()
174  *
175  * Get the next read location + offset for the specified ring buffer.
176  * This allows the caller to skip
177  */
178 static inline u32
179 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
180 				 u32 offset)
181 {
182 	u32 next = ring_info->ring_buffer->read_index;
183 
184 	next += offset;
185 	next %= ring_info->ring_datasize;
186 
187 	return next;
188 }
189 
190 /*
191  *
192  * hv_set_next_read_location()
193  *
194  * Set the next read location for the specified ring buffer
195  *
196  */
197 static inline void
198 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
199 		    u32 next_read_location)
200 {
201 	ring_info->ring_buffer->read_index = next_read_location;
202 }
203 
204 
205 /*
206  *
207  * hv_get_ring_buffer()
208  *
209  * Get the start of the ring buffer
210  */
211 static inline void *
212 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
213 {
214 	return (void *)ring_info->ring_buffer->buffer;
215 }
216 
217 
218 /*
219  *
220  * hv_get_ring_buffersize()
221  *
222  * Get the size of the ring buffer
223  */
224 static inline u32
225 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
226 {
227 	return ring_info->ring_datasize;
228 }
229 
230 /*
231  *
232  * hv_get_ring_bufferindices()
233  *
234  * Get the read and write indices as u64 of the specified ring buffer
235  *
236  */
237 static inline u64
238 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
239 {
240 	return (u64)ring_info->ring_buffer->write_index << 32;
241 }
242 
243 /*
244  *
245  * hv_copyfrom_ringbuffer()
246  *
247  * Helper routine to copy to source from ring buffer.
248  * Assume there is enough room. Handles wrap-around in src case only!!
249  *
250  */
251 static u32 hv_copyfrom_ringbuffer(
252 	struct hv_ring_buffer_info	*ring_info,
253 	void				*dest,
254 	u32				destlen,
255 	u32				start_read_offset)
256 {
257 	void *ring_buffer = hv_get_ring_buffer(ring_info);
258 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
259 
260 	u32 frag_len;
261 
262 	/* wrap-around detected at the src */
263 	if (destlen > ring_buffer_size - start_read_offset) {
264 		frag_len = ring_buffer_size - start_read_offset;
265 
266 		memcpy(dest, ring_buffer + start_read_offset, frag_len);
267 		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
268 	} else
269 
270 		memcpy(dest, ring_buffer + start_read_offset, destlen);
271 
272 
273 	start_read_offset += destlen;
274 	start_read_offset %= ring_buffer_size;
275 
276 	return start_read_offset;
277 }
278 
279 
280 /*
281  *
282  * hv_copyto_ringbuffer()
283  *
284  * Helper routine to copy from source to ring buffer.
285  * Assume there is enough room. Handles wrap-around in dest case only!!
286  *
287  */
288 static u32 hv_copyto_ringbuffer(
289 	struct hv_ring_buffer_info	*ring_info,
290 	u32				start_write_offset,
291 	void				*src,
292 	u32				srclen)
293 {
294 	void *ring_buffer = hv_get_ring_buffer(ring_info);
295 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
296 	u32 frag_len;
297 
298 	/* wrap-around detected! */
299 	if (srclen > ring_buffer_size - start_write_offset) {
300 		frag_len = ring_buffer_size - start_write_offset;
301 		memcpy(ring_buffer + start_write_offset, src, frag_len);
302 		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
303 	} else
304 		memcpy(ring_buffer + start_write_offset, src, srclen);
305 
306 	start_write_offset += srclen;
307 	start_write_offset %= ring_buffer_size;
308 
309 	return start_write_offset;
310 }
311 
312 /*
313  *
314  * hv_ringbuffer_get_debuginfo()
315  *
316  * Get various debug metrics for the specified ring buffer
317  *
318  */
319 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
320 			    struct hv_ring_buffer_debug_info *debug_info)
321 {
322 	u32 bytes_avail_towrite;
323 	u32 bytes_avail_toread;
324 
325 	if (ring_info->ring_buffer) {
326 		hv_get_ringbuffer_availbytes(ring_info,
327 					&bytes_avail_toread,
328 					&bytes_avail_towrite);
329 
330 		debug_info->bytes_avail_toread = bytes_avail_toread;
331 		debug_info->bytes_avail_towrite = bytes_avail_towrite;
332 		debug_info->current_read_index =
333 			ring_info->ring_buffer->read_index;
334 		debug_info->current_write_index =
335 			ring_info->ring_buffer->write_index;
336 		debug_info->current_interrupt_mask =
337 			ring_info->ring_buffer->interrupt_mask;
338 	}
339 }
340 
341 /*
342  *
343  * hv_ringbuffer_init()
344  *
345  *Initialize the ring buffer
346  *
347  */
348 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
349 		   void *buffer, u32 buflen)
350 {
351 	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
352 		return -EINVAL;
353 
354 	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
355 
356 	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
357 	ring_info->ring_buffer->read_index =
358 		ring_info->ring_buffer->write_index = 0;
359 
360 	ring_info->ring_size = buflen;
361 	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
362 
363 	spin_lock_init(&ring_info->ring_lock);
364 
365 	return 0;
366 }
367 
368 /*
369  *
370  * hv_ringbuffer_cleanup()
371  *
372  * Cleanup the ring buffer
373  *
374  */
375 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
376 {
377 }
378 
379 /*
380  *
381  * hv_ringbuffer_write()
382  *
383  * Write to the ring buffer
384  *
385  */
386 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
387 		    struct scatterlist *sglist, u32 sgcount, bool *signal)
388 {
389 	int i = 0;
390 	u32 bytes_avail_towrite;
391 	u32 bytes_avail_toread;
392 	u32 totalbytes_towrite = 0;
393 
394 	struct scatterlist *sg;
395 	u32 next_write_location;
396 	u32 old_write;
397 	u64 prev_indices = 0;
398 	unsigned long flags;
399 
400 	for_each_sg(sglist, sg, sgcount, i)
401 	{
402 		totalbytes_towrite += sg->length;
403 	}
404 
405 	totalbytes_towrite += sizeof(u64);
406 
407 	spin_lock_irqsave(&outring_info->ring_lock, flags);
408 
409 	hv_get_ringbuffer_availbytes(outring_info,
410 				&bytes_avail_toread,
411 				&bytes_avail_towrite);
412 
413 
414 	/* If there is only room for the packet, assume it is full. */
415 	/* Otherwise, the next time around, we think the ring buffer */
416 	/* is empty since the read index == write index */
417 	if (bytes_avail_towrite <= totalbytes_towrite) {
418 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
419 		return -EAGAIN;
420 	}
421 
422 	/* Write to the ring buffer */
423 	next_write_location = hv_get_next_write_location(outring_info);
424 
425 	old_write = next_write_location;
426 
427 	for_each_sg(sglist, sg, sgcount, i)
428 	{
429 		next_write_location = hv_copyto_ringbuffer(outring_info,
430 						     next_write_location,
431 						     sg_virt(sg),
432 						     sg->length);
433 	}
434 
435 	/* Set previous packet start */
436 	prev_indices = hv_get_ring_bufferindices(outring_info);
437 
438 	next_write_location = hv_copyto_ringbuffer(outring_info,
439 					     next_write_location,
440 					     &prev_indices,
441 					     sizeof(u64));
442 
443 	/* Issue a full memory barrier before updating the write index */
444 	smp_mb();
445 
446 	/* Now, update the write location */
447 	hv_set_next_write_location(outring_info, next_write_location);
448 
449 
450 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
451 
452 	*signal = hv_need_to_signal(old_write, outring_info);
453 	return 0;
454 }
455 
456 
457 /*
458  *
459  * hv_ringbuffer_peek()
460  *
461  * Read without advancing the read index
462  *
463  */
464 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
465 		   void *Buffer, u32 buflen)
466 {
467 	u32 bytes_avail_towrite;
468 	u32 bytes_avail_toread;
469 	u32 next_read_location = 0;
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(&Inring_info->ring_lock, flags);
473 
474 	hv_get_ringbuffer_availbytes(Inring_info,
475 				&bytes_avail_toread,
476 				&bytes_avail_towrite);
477 
478 	/* Make sure there is something to read */
479 	if (bytes_avail_toread < buflen) {
480 
481 		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
482 
483 		return -EAGAIN;
484 	}
485 
486 	/* Convert to byte offset */
487 	next_read_location = hv_get_next_read_location(Inring_info);
488 
489 	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
490 						Buffer,
491 						buflen,
492 						next_read_location);
493 
494 	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
495 
496 	return 0;
497 }
498 
499 
500 /*
501  *
502  * hv_ringbuffer_read()
503  *
504  * Read and advance the read index
505  *
506  */
507 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
508 		   u32 buflen, u32 offset, bool *signal)
509 {
510 	u32 bytes_avail_towrite;
511 	u32 bytes_avail_toread;
512 	u32 next_read_location = 0;
513 	u64 prev_indices = 0;
514 	unsigned long flags;
515 	u32 old_read;
516 
517 	if (buflen <= 0)
518 		return -EINVAL;
519 
520 	spin_lock_irqsave(&inring_info->ring_lock, flags);
521 
522 	hv_get_ringbuffer_availbytes(inring_info,
523 				&bytes_avail_toread,
524 				&bytes_avail_towrite);
525 
526 	old_read = bytes_avail_toread;
527 
528 	/* Make sure there is something to read */
529 	if (bytes_avail_toread < buflen) {
530 		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
531 
532 		return -EAGAIN;
533 	}
534 
535 	next_read_location =
536 		hv_get_next_readlocation_withoffset(inring_info, offset);
537 
538 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
539 						buffer,
540 						buflen,
541 						next_read_location);
542 
543 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
544 						&prev_indices,
545 						sizeof(u64),
546 						next_read_location);
547 
548 	/* Make sure all reads are done before we update the read index since */
549 	/* the writer may start writing to the read area once the read index */
550 	/*is updated */
551 	smp_mb();
552 
553 	/* Update the read index */
554 	hv_set_next_read_location(inring_info, next_read_location);
555 
556 	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
557 
558 	*signal = hv_need_to_signal_on_read(old_read, inring_info);
559 
560 	return 0;
561 }
562