1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (c) 2009, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/hyperv.h> 16 #include <linux/uio.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/prefetch.h> 20 #include <linux/io.h> 21 #include <asm/mshyperv.h> 22 23 #include "hyperv_vmbus.h" 24 25 #define VMBUS_PKT_TRAILER 8 26 27 /* 28 * When we write to the ring buffer, check if the host needs to 29 * be signaled. Here is the details of this protocol: 30 * 31 * 1. The host guarantees that while it is draining the 32 * ring buffer, it will set the interrupt_mask to 33 * indicate it does not need to be interrupted when 34 * new data is placed. 35 * 36 * 2. The host guarantees that it will completely drain 37 * the ring buffer before exiting the read loop. Further, 38 * once the ring buffer is empty, it will clear the 39 * interrupt_mask and re-check to see if new data has 40 * arrived. 41 * 42 * KYS: Oct. 30, 2016: 43 * It looks like Windows hosts have logic to deal with DOS attacks that 44 * can be triggered if it receives interrupts when it is not expecting 45 * the interrupt. The host expects interrupts only when the ring 46 * transitions from empty to non-empty (or full to non full on the guest 47 * to host ring). 48 * So, base the signaling decision solely on the ring state until the 49 * host logic is fixed. 50 */ 51 52 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 53 { 54 struct hv_ring_buffer_info *rbi = &channel->outbound; 55 56 virt_mb(); 57 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 58 return; 59 60 /* check interrupt_mask before read_index */ 61 virt_rmb(); 62 /* 63 * This is the only case we need to signal when the 64 * ring transitions from being empty to non-empty. 65 */ 66 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 67 ++channel->intr_out_empty; 68 vmbus_setevent(channel); 69 } 70 } 71 72 /* Get the next write location for the specified ring buffer. */ 73 static inline u32 74 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 75 { 76 u32 next = ring_info->ring_buffer->write_index; 77 78 return next; 79 } 80 81 /* Set the next write location for the specified ring buffer. */ 82 static inline void 83 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 84 u32 next_write_location) 85 { 86 ring_info->ring_buffer->write_index = next_write_location; 87 } 88 89 /* Get the size of the ring buffer. */ 90 static inline u32 91 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 92 { 93 return ring_info->ring_datasize; 94 } 95 96 /* Get the read and write indices as u64 of the specified ring buffer. */ 97 static inline u64 98 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 99 { 100 return (u64)ring_info->ring_buffer->write_index << 32; 101 } 102 103 /* 104 * Helper routine to copy from source to ring buffer. 105 * Assume there is enough room. Handles wrap-around in dest case only!! 106 */ 107 static u32 hv_copyto_ringbuffer( 108 struct hv_ring_buffer_info *ring_info, 109 u32 start_write_offset, 110 const void *src, 111 u32 srclen) 112 { 113 void *ring_buffer = hv_get_ring_buffer(ring_info); 114 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 115 116 memcpy(ring_buffer + start_write_offset, src, srclen); 117 118 start_write_offset += srclen; 119 if (start_write_offset >= ring_buffer_size) 120 start_write_offset -= ring_buffer_size; 121 122 return start_write_offset; 123 } 124 125 /* 126 * 127 * hv_get_ringbuffer_availbytes() 128 * 129 * Get number of bytes available to read and to write to 130 * for the specified ring buffer 131 */ 132 static void 133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 134 u32 *read, u32 *write) 135 { 136 u32 read_loc, write_loc, dsize; 137 138 /* Capture the read/write indices before they changed */ 139 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 140 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 141 dsize = rbi->ring_datasize; 142 143 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 144 read_loc - write_loc; 145 *read = dsize - *write; 146 } 147 148 /* Get various debug metrics for the specified ring buffer. */ 149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 150 struct hv_ring_buffer_debug_info *debug_info) 151 { 152 u32 bytes_avail_towrite; 153 u32 bytes_avail_toread; 154 155 mutex_lock(&ring_info->ring_buffer_mutex); 156 157 if (!ring_info->ring_buffer) { 158 mutex_unlock(&ring_info->ring_buffer_mutex); 159 return -EINVAL; 160 } 161 162 hv_get_ringbuffer_availbytes(ring_info, 163 &bytes_avail_toread, 164 &bytes_avail_towrite); 165 debug_info->bytes_avail_toread = bytes_avail_toread; 166 debug_info->bytes_avail_towrite = bytes_avail_towrite; 167 debug_info->current_read_index = ring_info->ring_buffer->read_index; 168 debug_info->current_write_index = ring_info->ring_buffer->write_index; 169 debug_info->current_interrupt_mask 170 = ring_info->ring_buffer->interrupt_mask; 171 mutex_unlock(&ring_info->ring_buffer_mutex); 172 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 176 177 /* Initialize a channel's ring buffer info mutex locks */ 178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 179 { 180 mutex_init(&channel->inbound.ring_buffer_mutex); 181 mutex_init(&channel->outbound.ring_buffer_mutex); 182 } 183 184 /* Initialize the ring buffer. */ 185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 186 struct page *pages, u32 page_cnt, u32 max_pkt_size) 187 { 188 struct page **pages_wraparound; 189 unsigned long *pfns_wraparound; 190 u64 pfn; 191 int i; 192 193 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 194 195 /* 196 * First page holds struct hv_ring_buffer, do wraparound mapping for 197 * the rest. 198 */ 199 if (hv_isolation_type_snp()) { 200 pfn = page_to_pfn(pages) + 201 PFN_DOWN(ms_hyperv.shared_gpa_boundary); 202 203 pfns_wraparound = kcalloc(page_cnt * 2 - 1, 204 sizeof(unsigned long), GFP_KERNEL); 205 if (!pfns_wraparound) 206 return -ENOMEM; 207 208 pfns_wraparound[0] = pfn; 209 for (i = 0; i < 2 * (page_cnt - 1); i++) 210 pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1; 211 212 ring_info->ring_buffer = (struct hv_ring_buffer *) 213 vmap_pfn(pfns_wraparound, page_cnt * 2 - 1, 214 PAGE_KERNEL); 215 kfree(pfns_wraparound); 216 217 if (!ring_info->ring_buffer) 218 return -ENOMEM; 219 220 /* Zero ring buffer after setting memory host visibility. */ 221 memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt); 222 } else { 223 pages_wraparound = kcalloc(page_cnt * 2 - 1, 224 sizeof(struct page *), 225 GFP_KERNEL); 226 if (!pages_wraparound) 227 return -ENOMEM; 228 229 pages_wraparound[0] = pages; 230 for (i = 0; i < 2 * (page_cnt - 1); i++) 231 pages_wraparound[i + 1] = 232 &pages[i % (page_cnt - 1) + 1]; 233 234 ring_info->ring_buffer = (struct hv_ring_buffer *) 235 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, 236 PAGE_KERNEL); 237 238 kfree(pages_wraparound); 239 if (!ring_info->ring_buffer) 240 return -ENOMEM; 241 } 242 243 244 ring_info->ring_buffer->read_index = 245 ring_info->ring_buffer->write_index = 0; 246 247 /* Set the feature bit for enabling flow control. */ 248 ring_info->ring_buffer->feature_bits.value = 1; 249 250 ring_info->ring_size = page_cnt << PAGE_SHIFT; 251 ring_info->ring_size_div10_reciprocal = 252 reciprocal_value(ring_info->ring_size / 10); 253 ring_info->ring_datasize = ring_info->ring_size - 254 sizeof(struct hv_ring_buffer); 255 ring_info->priv_read_index = 0; 256 257 /* Initialize buffer that holds copies of incoming packets */ 258 if (max_pkt_size) { 259 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); 260 if (!ring_info->pkt_buffer) 261 return -ENOMEM; 262 ring_info->pkt_buffer_size = max_pkt_size; 263 } 264 265 spin_lock_init(&ring_info->ring_lock); 266 267 return 0; 268 } 269 270 /* Cleanup the ring buffer. */ 271 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 272 { 273 mutex_lock(&ring_info->ring_buffer_mutex); 274 vunmap(ring_info->ring_buffer); 275 ring_info->ring_buffer = NULL; 276 mutex_unlock(&ring_info->ring_buffer_mutex); 277 278 kfree(ring_info->pkt_buffer); 279 ring_info->pkt_buffer = NULL; 280 ring_info->pkt_buffer_size = 0; 281 } 282 283 /* Write to the ring buffer. */ 284 int hv_ringbuffer_write(struct vmbus_channel *channel, 285 const struct kvec *kv_list, u32 kv_count, 286 u64 requestid, u64 *trans_id) 287 { 288 int i; 289 u32 bytes_avail_towrite; 290 u32 totalbytes_towrite = sizeof(u64); 291 u32 next_write_location; 292 u32 old_write; 293 u64 prev_indices; 294 unsigned long flags; 295 struct hv_ring_buffer_info *outring_info = &channel->outbound; 296 struct vmpacket_descriptor *desc = kv_list[0].iov_base; 297 u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR; 298 299 if (channel->rescind) 300 return -ENODEV; 301 302 for (i = 0; i < kv_count; i++) 303 totalbytes_towrite += kv_list[i].iov_len; 304 305 spin_lock_irqsave(&outring_info->ring_lock, flags); 306 307 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 308 309 /* 310 * If there is only room for the packet, assume it is full. 311 * Otherwise, the next time around, we think the ring buffer 312 * is empty since the read index == write index. 313 */ 314 if (bytes_avail_towrite <= totalbytes_towrite) { 315 ++channel->out_full_total; 316 317 if (!channel->out_full_flag) { 318 ++channel->out_full_first; 319 channel->out_full_flag = true; 320 } 321 322 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 323 return -EAGAIN; 324 } 325 326 channel->out_full_flag = false; 327 328 /* Write to the ring buffer */ 329 next_write_location = hv_get_next_write_location(outring_info); 330 331 old_write = next_write_location; 332 333 for (i = 0; i < kv_count; i++) { 334 next_write_location = hv_copyto_ringbuffer(outring_info, 335 next_write_location, 336 kv_list[i].iov_base, 337 kv_list[i].iov_len); 338 } 339 340 /* 341 * Allocate the request ID after the data has been copied into the 342 * ring buffer. Once this request ID is allocated, the completion 343 * path could find the data and free it. 344 */ 345 346 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { 347 if (channel->next_request_id_callback != NULL) { 348 rqst_id = channel->next_request_id_callback(channel, requestid); 349 if (rqst_id == VMBUS_RQST_ERROR) { 350 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 351 return -EAGAIN; 352 } 353 } 354 } 355 desc = hv_get_ring_buffer(outring_info) + old_write; 356 __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; 357 /* 358 * Ensure the compiler doesn't generate code that reads the value of 359 * the transaction ID from the ring buffer, which is shared with the 360 * Hyper-V host and subject to being changed at any time. 361 */ 362 WRITE_ONCE(desc->trans_id, __trans_id); 363 if (trans_id) 364 *trans_id = __trans_id; 365 366 /* Set previous packet start */ 367 prev_indices = hv_get_ring_bufferindices(outring_info); 368 369 next_write_location = hv_copyto_ringbuffer(outring_info, 370 next_write_location, 371 &prev_indices, 372 sizeof(u64)); 373 374 /* Issue a full memory barrier before updating the write index */ 375 virt_mb(); 376 377 /* Now, update the write location */ 378 hv_set_next_write_location(outring_info, next_write_location); 379 380 381 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 382 383 hv_signal_on_write(old_write, channel); 384 385 if (channel->rescind) { 386 if (rqst_id != VMBUS_NO_RQSTOR) { 387 /* Reclaim request ID to avoid leak of IDs */ 388 if (channel->request_addr_callback != NULL) 389 channel->request_addr_callback(channel, rqst_id); 390 } 391 return -ENODEV; 392 } 393 394 return 0; 395 } 396 397 int hv_ringbuffer_read(struct vmbus_channel *channel, 398 void *buffer, u32 buflen, u32 *buffer_actual_len, 399 u64 *requestid, bool raw) 400 { 401 struct vmpacket_descriptor *desc; 402 u32 packetlen, offset; 403 404 if (unlikely(buflen == 0)) 405 return -EINVAL; 406 407 *buffer_actual_len = 0; 408 *requestid = 0; 409 410 /* Make sure there is something to read */ 411 desc = hv_pkt_iter_first(channel); 412 if (desc == NULL) { 413 /* 414 * No error is set when there is even no header, drivers are 415 * supposed to analyze buffer_actual_len. 416 */ 417 return 0; 418 } 419 420 offset = raw ? 0 : (desc->offset8 << 3); 421 packetlen = (desc->len8 << 3) - offset; 422 *buffer_actual_len = packetlen; 423 *requestid = desc->trans_id; 424 425 if (unlikely(packetlen > buflen)) 426 return -ENOBUFS; 427 428 /* since ring is double mapped, only one copy is necessary */ 429 memcpy(buffer, (const char *)desc + offset, packetlen); 430 431 /* Advance ring index to next packet descriptor */ 432 __hv_pkt_iter_next(channel, desc); 433 434 /* Notify host of update */ 435 hv_pkt_iter_close(channel); 436 437 return 0; 438 } 439 440 /* 441 * Determine number of bytes available in ring buffer after 442 * the current iterator (priv_read_index) location. 443 * 444 * This is similar to hv_get_bytes_to_read but with private 445 * read index instead. 446 */ 447 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 448 { 449 u32 priv_read_loc = rbi->priv_read_index; 450 u32 write_loc; 451 452 /* 453 * The Hyper-V host writes the packet data, then uses 454 * store_release() to update the write_index. Use load_acquire() 455 * here to prevent loads of the packet data from being re-ordered 456 * before the read of the write_index and potentially getting 457 * stale data. 458 */ 459 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index); 460 461 if (write_loc >= priv_read_loc) 462 return write_loc - priv_read_loc; 463 else 464 return (rbi->ring_datasize - priv_read_loc) + write_loc; 465 } 466 467 /* 468 * Get first vmbus packet from ring buffer after read_index 469 * 470 * If ring buffer is empty, returns NULL and no other action needed. 471 */ 472 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 473 { 474 struct hv_ring_buffer_info *rbi = &channel->inbound; 475 struct vmpacket_descriptor *desc, *desc_copy; 476 u32 bytes_avail, pkt_len, pkt_offset; 477 478 hv_debug_delay_test(channel, MESSAGE_DELAY); 479 480 bytes_avail = hv_pkt_iter_avail(rbi); 481 if (bytes_avail < sizeof(struct vmpacket_descriptor)) 482 return NULL; 483 bytes_avail = min(rbi->pkt_buffer_size, bytes_avail); 484 485 desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 486 487 /* 488 * Ensure the compiler does not use references to incoming Hyper-V values (which 489 * could change at any moment) when reading local variables later in the code 490 */ 491 pkt_len = READ_ONCE(desc->len8) << 3; 492 pkt_offset = READ_ONCE(desc->offset8) << 3; 493 494 /* 495 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and 496 * rbi->pkt_buffer_size 497 */ 498 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) 499 pkt_len = bytes_avail; 500 501 /* 502 * If pkt_offset is invalid, arbitrarily set it to 503 * the size of vmpacket_descriptor 504 */ 505 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) 506 pkt_offset = sizeof(struct vmpacket_descriptor); 507 508 /* Copy the Hyper-V packet out of the ring buffer */ 509 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; 510 memcpy(desc_copy, desc, pkt_len); 511 512 /* 513 * Hyper-V could still change len8 and offset8 after the earlier read. 514 * Ensure that desc_copy has legal values for len8 and offset8 that 515 * are consistent with the copy we just made 516 */ 517 desc_copy->len8 = pkt_len >> 3; 518 desc_copy->offset8 = pkt_offset >> 3; 519 520 return desc_copy; 521 } 522 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 523 524 /* 525 * Get next vmbus packet from ring buffer. 526 * 527 * Advances the current location (priv_read_index) and checks for more 528 * data. If the end of the ring buffer is reached, then return NULL. 529 */ 530 struct vmpacket_descriptor * 531 __hv_pkt_iter_next(struct vmbus_channel *channel, 532 const struct vmpacket_descriptor *desc) 533 { 534 struct hv_ring_buffer_info *rbi = &channel->inbound; 535 u32 packetlen = desc->len8 << 3; 536 u32 dsize = rbi->ring_datasize; 537 538 hv_debug_delay_test(channel, MESSAGE_DELAY); 539 /* bump offset to next potential packet */ 540 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 541 if (rbi->priv_read_index >= dsize) 542 rbi->priv_read_index -= dsize; 543 544 /* more data? */ 545 return hv_pkt_iter_first(channel); 546 } 547 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 548 549 /* How many bytes were read in this iterator cycle */ 550 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 551 u32 start_read_index) 552 { 553 if (rbi->priv_read_index >= start_read_index) 554 return rbi->priv_read_index - start_read_index; 555 else 556 return rbi->ring_datasize - start_read_index + 557 rbi->priv_read_index; 558 } 559 560 /* 561 * Update host ring buffer after iterating over packets. If the host has 562 * stopped queuing new entries because it found the ring buffer full, and 563 * sufficient space is being freed up, signal the host. But be careful to 564 * only signal the host when necessary, both for performance reasons and 565 * because Hyper-V protects itself by throttling guests that signal 566 * inappropriately. 567 * 568 * Determining when to signal is tricky. There are three key data inputs 569 * that must be handled in this order to avoid race conditions: 570 * 571 * 1. Update the read_index 572 * 2. Read the pending_send_sz 573 * 3. Read the current write_index 574 * 575 * The interrupt_mask is not used to determine when to signal. The 576 * interrupt_mask is used only on the guest->host ring buffer when 577 * sending requests to the host. The host does not use it on the host-> 578 * guest ring buffer to indicate whether it should be signaled. 579 */ 580 void hv_pkt_iter_close(struct vmbus_channel *channel) 581 { 582 struct hv_ring_buffer_info *rbi = &channel->inbound; 583 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 584 585 /* 586 * Make sure all reads are done before we update the read index since 587 * the writer may start writing to the read area once the read index 588 * is updated. 589 */ 590 virt_rmb(); 591 start_read_index = rbi->ring_buffer->read_index; 592 rbi->ring_buffer->read_index = rbi->priv_read_index; 593 594 /* 595 * Older versions of Hyper-V (before WS2102 and Win8) do not 596 * implement pending_send_sz and simply poll if the host->guest 597 * ring buffer is full. No signaling is needed or expected. 598 */ 599 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 600 return; 601 602 /* 603 * Issue a full memory barrier before making the signaling decision. 604 * If reading pending_send_sz were to be reordered and happen 605 * before we commit the new read_index, a race could occur. If the 606 * host were to set the pending_send_sz after we have sampled 607 * pending_send_sz, and the ring buffer blocks before we commit the 608 * read index, we could miss sending the interrupt. Issue a full 609 * memory barrier to address this. 610 */ 611 virt_mb(); 612 613 /* 614 * If the pending_send_sz is zero, then the ring buffer is not 615 * blocked and there is no need to signal. This is far by the 616 * most common case, so exit quickly for best performance. 617 */ 618 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 619 if (!pending_sz) 620 return; 621 622 /* 623 * Ensure the read of write_index in hv_get_bytes_to_write() 624 * happens after the read of pending_send_sz. 625 */ 626 virt_rmb(); 627 curr_write_sz = hv_get_bytes_to_write(rbi); 628 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 629 630 /* 631 * We want to signal the host only if we're transitioning 632 * from a "not enough free space" state to a "enough free 633 * space" state. For example, it's possible that this function 634 * could run and free up enough space to signal the host, and then 635 * run again and free up additional space before the host has a 636 * chance to clear the pending_send_sz. The 2nd invocation would 637 * be a null transition from "enough free space" to "enough free 638 * space", which doesn't warrant a signal. 639 * 640 * Exactly filling the ring buffer is treated as "not enough 641 * space". The ring buffer always must have at least one byte 642 * empty so the empty and full conditions are distinguishable. 643 * hv_get_bytes_to_write() doesn't fully tell the truth in 644 * this regard. 645 * 646 * So first check if we were in the "enough free space" state 647 * before we began the iteration. If so, the host was not 648 * blocked, and there's no need to signal. 649 */ 650 if (curr_write_sz - bytes_read > pending_sz) 651 return; 652 653 /* 654 * Similarly, if the new state is "not enough space", then 655 * there's no need to signal. 656 */ 657 if (curr_write_sz <= pending_sz) 658 return; 659 660 ++channel->intr_in_full; 661 vmbus_setevent(channel); 662 } 663 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 664