xref: /linux/drivers/hv/ring_buffer.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 
31 #include "hyperv_vmbus.h"
32 
33 void hv_begin_read(struct hv_ring_buffer_info *rbi)
34 {
35 	rbi->ring_buffer->interrupt_mask = 1;
36 	mb();
37 }
38 
39 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
40 {
41 	u32 read;
42 	u32 write;
43 
44 	rbi->ring_buffer->interrupt_mask = 0;
45 	mb();
46 
47 	/*
48 	 * Now check to see if the ring buffer is still empty.
49 	 * If it is not, we raced and we need to process new
50 	 * incoming messages.
51 	 */
52 	hv_get_ringbuffer_availbytes(rbi, &read, &write);
53 
54 	return read;
55 }
56 
57 /*
58  * When we write to the ring buffer, check if the host needs to
59  * be signaled. Here is the details of this protocol:
60  *
61  *	1. The host guarantees that while it is draining the
62  *	   ring buffer, it will set the interrupt_mask to
63  *	   indicate it does not need to be interrupted when
64  *	   new data is placed.
65  *
66  *	2. The host guarantees that it will completely drain
67  *	   the ring buffer before exiting the read loop. Further,
68  *	   once the ring buffer is empty, it will clear the
69  *	   interrupt_mask and re-check to see if new data has
70  *	   arrived.
71  */
72 
73 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
74 {
75 	mb();
76 	if (rbi->ring_buffer->interrupt_mask)
77 		return false;
78 
79 	/* check interrupt_mask before read_index */
80 	rmb();
81 	/*
82 	 * This is the only case we need to signal when the
83 	 * ring transitions from being empty to non-empty.
84 	 */
85 	if (old_write == rbi->ring_buffer->read_index)
86 		return true;
87 
88 	return false;
89 }
90 
91 /*
92  * To optimize the flow management on the send-side,
93  * when the sender is blocked because of lack of
94  * sufficient space in the ring buffer, potential the
95  * consumer of the ring buffer can signal the producer.
96  * This is controlled by the following parameters:
97  *
98  * 1. pending_send_sz: This is the size in bytes that the
99  *    producer is trying to send.
100  * 2. The feature bit feat_pending_send_sz set to indicate if
101  *    the consumer of the ring will signal when the ring
102  *    state transitions from being full to a state where
103  *    there is room for the producer to send the pending packet.
104  */
105 
106 static bool hv_need_to_signal_on_read(u32 prev_write_sz,
107 				      struct hv_ring_buffer_info *rbi)
108 {
109 	u32 cur_write_sz;
110 	u32 r_size;
111 	u32 write_loc = rbi->ring_buffer->write_index;
112 	u32 read_loc = rbi->ring_buffer->read_index;
113 	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
114 
115 	/*
116 	 * If the other end is not blocked on write don't bother.
117 	 */
118 	if (pending_sz == 0)
119 		return false;
120 
121 	r_size = rbi->ring_datasize;
122 	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
123 			read_loc - write_loc;
124 
125 	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
126 		return true;
127 
128 	return false;
129 }
130 
131 /*
132  * hv_get_next_write_location()
133  *
134  * Get the next write location for the specified ring buffer
135  *
136  */
137 static inline u32
138 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
139 {
140 	u32 next = ring_info->ring_buffer->write_index;
141 
142 	return next;
143 }
144 
145 /*
146  * hv_set_next_write_location()
147  *
148  * Set the next write location for the specified ring buffer
149  *
150  */
151 static inline void
152 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
153 		     u32 next_write_location)
154 {
155 	ring_info->ring_buffer->write_index = next_write_location;
156 }
157 
158 /*
159  * hv_get_next_read_location()
160  *
161  * Get the next read location for the specified ring buffer
162  */
163 static inline u32
164 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
165 {
166 	u32 next = ring_info->ring_buffer->read_index;
167 
168 	return next;
169 }
170 
171 /*
172  * hv_get_next_readlocation_withoffset()
173  *
174  * Get the next read location + offset for the specified ring buffer.
175  * This allows the caller to skip
176  */
177 static inline u32
178 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
179 				 u32 offset)
180 {
181 	u32 next = ring_info->ring_buffer->read_index;
182 
183 	next += offset;
184 	next %= ring_info->ring_datasize;
185 
186 	return next;
187 }
188 
189 /*
190  *
191  * hv_set_next_read_location()
192  *
193  * Set the next read location for the specified ring buffer
194  *
195  */
196 static inline void
197 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
198 		    u32 next_read_location)
199 {
200 	ring_info->ring_buffer->read_index = next_read_location;
201 }
202 
203 
204 /*
205  *
206  * hv_get_ring_buffer()
207  *
208  * Get the start of the ring buffer
209  */
210 static inline void *
211 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
212 {
213 	return (void *)ring_info->ring_buffer->buffer;
214 }
215 
216 
217 /*
218  *
219  * hv_get_ring_buffersize()
220  *
221  * Get the size of the ring buffer
222  */
223 static inline u32
224 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
225 {
226 	return ring_info->ring_datasize;
227 }
228 
229 /*
230  *
231  * hv_get_ring_bufferindices()
232  *
233  * Get the read and write indices as u64 of the specified ring buffer
234  *
235  */
236 static inline u64
237 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
238 {
239 	return (u64)ring_info->ring_buffer->write_index << 32;
240 }
241 
242 /*
243  *
244  * hv_copyfrom_ringbuffer()
245  *
246  * Helper routine to copy to source from ring buffer.
247  * Assume there is enough room. Handles wrap-around in src case only!!
248  *
249  */
250 static u32 hv_copyfrom_ringbuffer(
251 	struct hv_ring_buffer_info	*ring_info,
252 	void				*dest,
253 	u32				destlen,
254 	u32				start_read_offset)
255 {
256 	void *ring_buffer = hv_get_ring_buffer(ring_info);
257 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
258 
259 	u32 frag_len;
260 
261 	/* wrap-around detected at the src */
262 	if (destlen > ring_buffer_size - start_read_offset) {
263 		frag_len = ring_buffer_size - start_read_offset;
264 
265 		memcpy(dest, ring_buffer + start_read_offset, frag_len);
266 		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
267 	} else
268 
269 		memcpy(dest, ring_buffer + start_read_offset, destlen);
270 
271 
272 	start_read_offset += destlen;
273 	start_read_offset %= ring_buffer_size;
274 
275 	return start_read_offset;
276 }
277 
278 
279 /*
280  *
281  * hv_copyto_ringbuffer()
282  *
283  * Helper routine to copy from source to ring buffer.
284  * Assume there is enough room. Handles wrap-around in dest case only!!
285  *
286  */
287 static u32 hv_copyto_ringbuffer(
288 	struct hv_ring_buffer_info	*ring_info,
289 	u32				start_write_offset,
290 	void				*src,
291 	u32				srclen)
292 {
293 	void *ring_buffer = hv_get_ring_buffer(ring_info);
294 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
295 	u32 frag_len;
296 
297 	/* wrap-around detected! */
298 	if (srclen > ring_buffer_size - start_write_offset) {
299 		frag_len = ring_buffer_size - start_write_offset;
300 		memcpy(ring_buffer + start_write_offset, src, frag_len);
301 		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
302 	} else
303 		memcpy(ring_buffer + start_write_offset, src, srclen);
304 
305 	start_write_offset += srclen;
306 	start_write_offset %= ring_buffer_size;
307 
308 	return start_write_offset;
309 }
310 
311 /*
312  *
313  * hv_ringbuffer_get_debuginfo()
314  *
315  * Get various debug metrics for the specified ring buffer
316  *
317  */
318 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
319 			    struct hv_ring_buffer_debug_info *debug_info)
320 {
321 	u32 bytes_avail_towrite;
322 	u32 bytes_avail_toread;
323 
324 	if (ring_info->ring_buffer) {
325 		hv_get_ringbuffer_availbytes(ring_info,
326 					&bytes_avail_toread,
327 					&bytes_avail_towrite);
328 
329 		debug_info->bytes_avail_toread = bytes_avail_toread;
330 		debug_info->bytes_avail_towrite = bytes_avail_towrite;
331 		debug_info->current_read_index =
332 			ring_info->ring_buffer->read_index;
333 		debug_info->current_write_index =
334 			ring_info->ring_buffer->write_index;
335 		debug_info->current_interrupt_mask =
336 			ring_info->ring_buffer->interrupt_mask;
337 	}
338 }
339 
340 /*
341  *
342  * hv_ringbuffer_init()
343  *
344  *Initialize the ring buffer
345  *
346  */
347 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
348 		   void *buffer, u32 buflen)
349 {
350 	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
351 		return -EINVAL;
352 
353 	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
354 
355 	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
356 	ring_info->ring_buffer->read_index =
357 		ring_info->ring_buffer->write_index = 0;
358 
359 	/*
360 	 * Set the feature bit for enabling flow control.
361 	 */
362 	ring_info->ring_buffer->feature_bits.value = 1;
363 
364 	ring_info->ring_size = buflen;
365 	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
366 
367 	spin_lock_init(&ring_info->ring_lock);
368 
369 	return 0;
370 }
371 
372 /*
373  *
374  * hv_ringbuffer_cleanup()
375  *
376  * Cleanup the ring buffer
377  *
378  */
379 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
380 {
381 }
382 
383 /*
384  *
385  * hv_ringbuffer_write()
386  *
387  * Write to the ring buffer
388  *
389  */
390 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
391 		    struct kvec *kv_list, u32 kv_count, bool *signal)
392 {
393 	int i = 0;
394 	u32 bytes_avail_towrite;
395 	u32 bytes_avail_toread;
396 	u32 totalbytes_towrite = 0;
397 
398 	u32 next_write_location;
399 	u32 old_write;
400 	u64 prev_indices = 0;
401 	unsigned long flags;
402 
403 	for (i = 0; i < kv_count; i++)
404 		totalbytes_towrite += kv_list[i].iov_len;
405 
406 	totalbytes_towrite += sizeof(u64);
407 
408 	spin_lock_irqsave(&outring_info->ring_lock, flags);
409 
410 	hv_get_ringbuffer_availbytes(outring_info,
411 				&bytes_avail_toread,
412 				&bytes_avail_towrite);
413 
414 
415 	/* If there is only room for the packet, assume it is full. */
416 	/* Otherwise, the next time around, we think the ring buffer */
417 	/* is empty since the read index == write index */
418 	if (bytes_avail_towrite <= totalbytes_towrite) {
419 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
420 		return -EAGAIN;
421 	}
422 
423 	/* Write to the ring buffer */
424 	next_write_location = hv_get_next_write_location(outring_info);
425 
426 	old_write = next_write_location;
427 
428 	for (i = 0; i < kv_count; i++) {
429 		next_write_location = hv_copyto_ringbuffer(outring_info,
430 						     next_write_location,
431 						     kv_list[i].iov_base,
432 						     kv_list[i].iov_len);
433 	}
434 
435 	/* Set previous packet start */
436 	prev_indices = hv_get_ring_bufferindices(outring_info);
437 
438 	next_write_location = hv_copyto_ringbuffer(outring_info,
439 					     next_write_location,
440 					     &prev_indices,
441 					     sizeof(u64));
442 
443 	/* Issue a full memory barrier before updating the write index */
444 	mb();
445 
446 	/* Now, update the write location */
447 	hv_set_next_write_location(outring_info, next_write_location);
448 
449 
450 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
451 
452 	*signal = hv_need_to_signal(old_write, outring_info);
453 	return 0;
454 }
455 
456 
457 /*
458  *
459  * hv_ringbuffer_peek()
460  *
461  * Read without advancing the read index
462  *
463  */
464 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
465 		   void *Buffer, u32 buflen)
466 {
467 	u32 bytes_avail_towrite;
468 	u32 bytes_avail_toread;
469 	u32 next_read_location = 0;
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(&Inring_info->ring_lock, flags);
473 
474 	hv_get_ringbuffer_availbytes(Inring_info,
475 				&bytes_avail_toread,
476 				&bytes_avail_towrite);
477 
478 	/* Make sure there is something to read */
479 	if (bytes_avail_toread < buflen) {
480 
481 		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
482 
483 		return -EAGAIN;
484 	}
485 
486 	/* Convert to byte offset */
487 	next_read_location = hv_get_next_read_location(Inring_info);
488 
489 	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
490 						Buffer,
491 						buflen,
492 						next_read_location);
493 
494 	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
495 
496 	return 0;
497 }
498 
499 
500 /*
501  *
502  * hv_ringbuffer_read()
503  *
504  * Read and advance the read index
505  *
506  */
507 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
508 		   u32 buflen, u32 offset, bool *signal)
509 {
510 	u32 bytes_avail_towrite;
511 	u32 bytes_avail_toread;
512 	u32 next_read_location = 0;
513 	u64 prev_indices = 0;
514 	unsigned long flags;
515 
516 	if (buflen <= 0)
517 		return -EINVAL;
518 
519 	spin_lock_irqsave(&inring_info->ring_lock, flags);
520 
521 	hv_get_ringbuffer_availbytes(inring_info,
522 				&bytes_avail_toread,
523 				&bytes_avail_towrite);
524 
525 	/* Make sure there is something to read */
526 	if (bytes_avail_toread < buflen) {
527 		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
528 
529 		return -EAGAIN;
530 	}
531 
532 	next_read_location =
533 		hv_get_next_readlocation_withoffset(inring_info, offset);
534 
535 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
536 						buffer,
537 						buflen,
538 						next_read_location);
539 
540 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
541 						&prev_indices,
542 						sizeof(u64),
543 						next_read_location);
544 
545 	/* Make sure all reads are done before we update the read index since */
546 	/* the writer may start writing to the read area once the read index */
547 	/*is updated */
548 	mb();
549 
550 	/* Update the read index */
551 	hv_set_next_read_location(inring_info, next_read_location);
552 
553 	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
554 
555 	*signal = hv_need_to_signal_on_read(bytes_avail_towrite, inring_info);
556 
557 	return 0;
558 }
559