1 /* 2 * 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/mm.h> 28 #include <linux/hyperv.h> 29 30 #include "hyperv_vmbus.h" 31 32 void hv_begin_read(struct hv_ring_buffer_info *rbi) 33 { 34 rbi->ring_buffer->interrupt_mask = 1; 35 mb(); 36 } 37 38 u32 hv_end_read(struct hv_ring_buffer_info *rbi) 39 { 40 u32 read; 41 u32 write; 42 43 rbi->ring_buffer->interrupt_mask = 0; 44 mb(); 45 46 /* 47 * Now check to see if the ring buffer is still empty. 48 * If it is not, we raced and we need to process new 49 * incoming messages. 50 */ 51 hv_get_ringbuffer_availbytes(rbi, &read, &write); 52 53 return read; 54 } 55 56 /* 57 * When we write to the ring buffer, check if the host needs to 58 * be signaled. Here is the details of this protocol: 59 * 60 * 1. The host guarantees that while it is draining the 61 * ring buffer, it will set the interrupt_mask to 62 * indicate it does not need to be interrupted when 63 * new data is placed. 64 * 65 * 2. The host guarantees that it will completely drain 66 * the ring buffer before exiting the read loop. Further, 67 * once the ring buffer is empty, it will clear the 68 * interrupt_mask and re-check to see if new data has 69 * arrived. 70 */ 71 72 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi) 73 { 74 mb(); 75 if (rbi->ring_buffer->interrupt_mask) 76 return false; 77 78 /* check interrupt_mask before read_index */ 79 rmb(); 80 /* 81 * This is the only case we need to signal when the 82 * ring transitions from being empty to non-empty. 83 */ 84 if (old_write == rbi->ring_buffer->read_index) 85 return true; 86 87 return false; 88 } 89 90 /* 91 * To optimize the flow management on the send-side, 92 * when the sender is blocked because of lack of 93 * sufficient space in the ring buffer, potential the 94 * consumer of the ring buffer can signal the producer. 95 * This is controlled by the following parameters: 96 * 97 * 1. pending_send_sz: This is the size in bytes that the 98 * producer is trying to send. 99 * 2. The feature bit feat_pending_send_sz set to indicate if 100 * the consumer of the ring will signal when the ring 101 * state transitions from being full to a state where 102 * there is room for the producer to send the pending packet. 103 */ 104 105 static bool hv_need_to_signal_on_read(u32 old_rd, 106 struct hv_ring_buffer_info *rbi) 107 { 108 u32 prev_write_sz; 109 u32 cur_write_sz; 110 u32 r_size; 111 u32 write_loc = rbi->ring_buffer->write_index; 112 u32 read_loc = rbi->ring_buffer->read_index; 113 u32 pending_sz = rbi->ring_buffer->pending_send_sz; 114 115 /* 116 * If the other end is not blocked on write don't bother. 117 */ 118 if (pending_sz == 0) 119 return false; 120 121 r_size = rbi->ring_datasize; 122 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) : 123 read_loc - write_loc; 124 125 prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) : 126 old_rd - write_loc; 127 128 129 if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz)) 130 return true; 131 132 return false; 133 } 134 135 /* 136 * hv_get_next_write_location() 137 * 138 * Get the next write location for the specified ring buffer 139 * 140 */ 141 static inline u32 142 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 143 { 144 u32 next = ring_info->ring_buffer->write_index; 145 146 return next; 147 } 148 149 /* 150 * hv_set_next_write_location() 151 * 152 * Set the next write location for the specified ring buffer 153 * 154 */ 155 static inline void 156 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 157 u32 next_write_location) 158 { 159 ring_info->ring_buffer->write_index = next_write_location; 160 } 161 162 /* 163 * hv_get_next_read_location() 164 * 165 * Get the next read location for the specified ring buffer 166 */ 167 static inline u32 168 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info) 169 { 170 u32 next = ring_info->ring_buffer->read_index; 171 172 return next; 173 } 174 175 /* 176 * hv_get_next_readlocation_withoffset() 177 * 178 * Get the next read location + offset for the specified ring buffer. 179 * This allows the caller to skip 180 */ 181 static inline u32 182 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info, 183 u32 offset) 184 { 185 u32 next = ring_info->ring_buffer->read_index; 186 187 next += offset; 188 next %= ring_info->ring_datasize; 189 190 return next; 191 } 192 193 /* 194 * 195 * hv_set_next_read_location() 196 * 197 * Set the next read location for the specified ring buffer 198 * 199 */ 200 static inline void 201 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, 202 u32 next_read_location) 203 { 204 ring_info->ring_buffer->read_index = next_read_location; 205 } 206 207 208 /* 209 * 210 * hv_get_ring_buffer() 211 * 212 * Get the start of the ring buffer 213 */ 214 static inline void * 215 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 216 { 217 return (void *)ring_info->ring_buffer->buffer; 218 } 219 220 221 /* 222 * 223 * hv_get_ring_buffersize() 224 * 225 * Get the size of the ring buffer 226 */ 227 static inline u32 228 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info) 229 { 230 return ring_info->ring_datasize; 231 } 232 233 /* 234 * 235 * hv_get_ring_bufferindices() 236 * 237 * Get the read and write indices as u64 of the specified ring buffer 238 * 239 */ 240 static inline u64 241 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 242 { 243 return (u64)ring_info->ring_buffer->write_index << 32; 244 } 245 246 /* 247 * 248 * hv_copyfrom_ringbuffer() 249 * 250 * Helper routine to copy to source from ring buffer. 251 * Assume there is enough room. Handles wrap-around in src case only!! 252 * 253 */ 254 static u32 hv_copyfrom_ringbuffer( 255 struct hv_ring_buffer_info *ring_info, 256 void *dest, 257 u32 destlen, 258 u32 start_read_offset) 259 { 260 void *ring_buffer = hv_get_ring_buffer(ring_info); 261 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 262 263 u32 frag_len; 264 265 /* wrap-around detected at the src */ 266 if (destlen > ring_buffer_size - start_read_offset) { 267 frag_len = ring_buffer_size - start_read_offset; 268 269 memcpy(dest, ring_buffer + start_read_offset, frag_len); 270 memcpy(dest + frag_len, ring_buffer, destlen - frag_len); 271 } else 272 273 memcpy(dest, ring_buffer + start_read_offset, destlen); 274 275 276 start_read_offset += destlen; 277 start_read_offset %= ring_buffer_size; 278 279 return start_read_offset; 280 } 281 282 283 /* 284 * 285 * hv_copyto_ringbuffer() 286 * 287 * Helper routine to copy from source to ring buffer. 288 * Assume there is enough room. Handles wrap-around in dest case only!! 289 * 290 */ 291 static u32 hv_copyto_ringbuffer( 292 struct hv_ring_buffer_info *ring_info, 293 u32 start_write_offset, 294 void *src, 295 u32 srclen) 296 { 297 void *ring_buffer = hv_get_ring_buffer(ring_info); 298 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 299 u32 frag_len; 300 301 /* wrap-around detected! */ 302 if (srclen > ring_buffer_size - start_write_offset) { 303 frag_len = ring_buffer_size - start_write_offset; 304 memcpy(ring_buffer + start_write_offset, src, frag_len); 305 memcpy(ring_buffer, src + frag_len, srclen - frag_len); 306 } else 307 memcpy(ring_buffer + start_write_offset, src, srclen); 308 309 start_write_offset += srclen; 310 start_write_offset %= ring_buffer_size; 311 312 return start_write_offset; 313 } 314 315 /* 316 * 317 * hv_ringbuffer_get_debuginfo() 318 * 319 * Get various debug metrics for the specified ring buffer 320 * 321 */ 322 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 323 struct hv_ring_buffer_debug_info *debug_info) 324 { 325 u32 bytes_avail_towrite; 326 u32 bytes_avail_toread; 327 328 if (ring_info->ring_buffer) { 329 hv_get_ringbuffer_availbytes(ring_info, 330 &bytes_avail_toread, 331 &bytes_avail_towrite); 332 333 debug_info->bytes_avail_toread = bytes_avail_toread; 334 debug_info->bytes_avail_towrite = bytes_avail_towrite; 335 debug_info->current_read_index = 336 ring_info->ring_buffer->read_index; 337 debug_info->current_write_index = 338 ring_info->ring_buffer->write_index; 339 debug_info->current_interrupt_mask = 340 ring_info->ring_buffer->interrupt_mask; 341 } 342 } 343 344 /* 345 * 346 * hv_ringbuffer_init() 347 * 348 *Initialize the ring buffer 349 * 350 */ 351 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 352 void *buffer, u32 buflen) 353 { 354 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE) 355 return -EINVAL; 356 357 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info)); 358 359 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer; 360 ring_info->ring_buffer->read_index = 361 ring_info->ring_buffer->write_index = 0; 362 363 ring_info->ring_size = buflen; 364 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer); 365 366 spin_lock_init(&ring_info->ring_lock); 367 368 return 0; 369 } 370 371 /* 372 * 373 * hv_ringbuffer_cleanup() 374 * 375 * Cleanup the ring buffer 376 * 377 */ 378 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 379 { 380 } 381 382 /* 383 * 384 * hv_ringbuffer_write() 385 * 386 * Write to the ring buffer 387 * 388 */ 389 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info, 390 struct scatterlist *sglist, u32 sgcount, bool *signal) 391 { 392 int i = 0; 393 u32 bytes_avail_towrite; 394 u32 bytes_avail_toread; 395 u32 totalbytes_towrite = 0; 396 397 struct scatterlist *sg; 398 u32 next_write_location; 399 u32 old_write; 400 u64 prev_indices = 0; 401 unsigned long flags; 402 403 for_each_sg(sglist, sg, sgcount, i) 404 { 405 totalbytes_towrite += sg->length; 406 } 407 408 totalbytes_towrite += sizeof(u64); 409 410 spin_lock_irqsave(&outring_info->ring_lock, flags); 411 412 hv_get_ringbuffer_availbytes(outring_info, 413 &bytes_avail_toread, 414 &bytes_avail_towrite); 415 416 417 /* If there is only room for the packet, assume it is full. */ 418 /* Otherwise, the next time around, we think the ring buffer */ 419 /* is empty since the read index == write index */ 420 if (bytes_avail_towrite <= totalbytes_towrite) { 421 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 422 return -EAGAIN; 423 } 424 425 /* Write to the ring buffer */ 426 next_write_location = hv_get_next_write_location(outring_info); 427 428 old_write = next_write_location; 429 430 for_each_sg(sglist, sg, sgcount, i) 431 { 432 next_write_location = hv_copyto_ringbuffer(outring_info, 433 next_write_location, 434 sg_virt(sg), 435 sg->length); 436 } 437 438 /* Set previous packet start */ 439 prev_indices = hv_get_ring_bufferindices(outring_info); 440 441 next_write_location = hv_copyto_ringbuffer(outring_info, 442 next_write_location, 443 &prev_indices, 444 sizeof(u64)); 445 446 /* Issue a full memory barrier before updating the write index */ 447 mb(); 448 449 /* Now, update the write location */ 450 hv_set_next_write_location(outring_info, next_write_location); 451 452 453 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 454 455 *signal = hv_need_to_signal(old_write, outring_info); 456 return 0; 457 } 458 459 460 /* 461 * 462 * hv_ringbuffer_peek() 463 * 464 * Read without advancing the read index 465 * 466 */ 467 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info, 468 void *Buffer, u32 buflen) 469 { 470 u32 bytes_avail_towrite; 471 u32 bytes_avail_toread; 472 u32 next_read_location = 0; 473 unsigned long flags; 474 475 spin_lock_irqsave(&Inring_info->ring_lock, flags); 476 477 hv_get_ringbuffer_availbytes(Inring_info, 478 &bytes_avail_toread, 479 &bytes_avail_towrite); 480 481 /* Make sure there is something to read */ 482 if (bytes_avail_toread < buflen) { 483 484 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 485 486 return -EAGAIN; 487 } 488 489 /* Convert to byte offset */ 490 next_read_location = hv_get_next_read_location(Inring_info); 491 492 next_read_location = hv_copyfrom_ringbuffer(Inring_info, 493 Buffer, 494 buflen, 495 next_read_location); 496 497 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 498 499 return 0; 500 } 501 502 503 /* 504 * 505 * hv_ringbuffer_read() 506 * 507 * Read and advance the read index 508 * 509 */ 510 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer, 511 u32 buflen, u32 offset, bool *signal) 512 { 513 u32 bytes_avail_towrite; 514 u32 bytes_avail_toread; 515 u32 next_read_location = 0; 516 u64 prev_indices = 0; 517 unsigned long flags; 518 u32 old_read; 519 520 if (buflen <= 0) 521 return -EINVAL; 522 523 spin_lock_irqsave(&inring_info->ring_lock, flags); 524 525 hv_get_ringbuffer_availbytes(inring_info, 526 &bytes_avail_toread, 527 &bytes_avail_towrite); 528 529 old_read = bytes_avail_toread; 530 531 /* Make sure there is something to read */ 532 if (bytes_avail_toread < buflen) { 533 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 534 535 return -EAGAIN; 536 } 537 538 next_read_location = 539 hv_get_next_readlocation_withoffset(inring_info, offset); 540 541 next_read_location = hv_copyfrom_ringbuffer(inring_info, 542 buffer, 543 buflen, 544 next_read_location); 545 546 next_read_location = hv_copyfrom_ringbuffer(inring_info, 547 &prev_indices, 548 sizeof(u64), 549 next_read_location); 550 551 /* Make sure all reads are done before we update the read index since */ 552 /* the writer may start writing to the read area once the read index */ 553 /*is updated */ 554 mb(); 555 556 /* Update the read index */ 557 hv_set_next_read_location(inring_info, next_read_location); 558 559 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 560 561 *signal = hv_need_to_signal_on_read(old_read, inring_info); 562 563 return 0; 564 } 565