xref: /linux/drivers/hv/ring_buffer.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 
30 #include "hyperv_vmbus.h"
31 
32 void hv_begin_read(struct hv_ring_buffer_info *rbi)
33 {
34 	rbi->ring_buffer->interrupt_mask = 1;
35 	mb();
36 }
37 
38 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
39 {
40 	u32 read;
41 	u32 write;
42 
43 	rbi->ring_buffer->interrupt_mask = 0;
44 	mb();
45 
46 	/*
47 	 * Now check to see if the ring buffer is still empty.
48 	 * If it is not, we raced and we need to process new
49 	 * incoming messages.
50 	 */
51 	hv_get_ringbuffer_availbytes(rbi, &read, &write);
52 
53 	return read;
54 }
55 
56 /*
57  * When we write to the ring buffer, check if the host needs to
58  * be signaled. Here is the details of this protocol:
59  *
60  *	1. The host guarantees that while it is draining the
61  *	   ring buffer, it will set the interrupt_mask to
62  *	   indicate it does not need to be interrupted when
63  *	   new data is placed.
64  *
65  *	2. The host guarantees that it will completely drain
66  *	   the ring buffer before exiting the read loop. Further,
67  *	   once the ring buffer is empty, it will clear the
68  *	   interrupt_mask and re-check to see if new data has
69  *	   arrived.
70  */
71 
72 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
73 {
74 	mb();
75 	if (rbi->ring_buffer->interrupt_mask)
76 		return false;
77 
78 	/* check interrupt_mask before read_index */
79 	rmb();
80 	/*
81 	 * This is the only case we need to signal when the
82 	 * ring transitions from being empty to non-empty.
83 	 */
84 	if (old_write == rbi->ring_buffer->read_index)
85 		return true;
86 
87 	return false;
88 }
89 
90 /*
91  * To optimize the flow management on the send-side,
92  * when the sender is blocked because of lack of
93  * sufficient space in the ring buffer, potential the
94  * consumer of the ring buffer can signal the producer.
95  * This is controlled by the following parameters:
96  *
97  * 1. pending_send_sz: This is the size in bytes that the
98  *    producer is trying to send.
99  * 2. The feature bit feat_pending_send_sz set to indicate if
100  *    the consumer of the ring will signal when the ring
101  *    state transitions from being full to a state where
102  *    there is room for the producer to send the pending packet.
103  */
104 
105 static bool hv_need_to_signal_on_read(u32 old_rd,
106 					 struct hv_ring_buffer_info *rbi)
107 {
108 	u32 prev_write_sz;
109 	u32 cur_write_sz;
110 	u32 r_size;
111 	u32 write_loc = rbi->ring_buffer->write_index;
112 	u32 read_loc = rbi->ring_buffer->read_index;
113 	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
114 
115 	/*
116 	 * If the other end is not blocked on write don't bother.
117 	 */
118 	if (pending_sz == 0)
119 		return false;
120 
121 	r_size = rbi->ring_datasize;
122 	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
123 			read_loc - write_loc;
124 
125 	prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
126 			old_rd - write_loc;
127 
128 
129 	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
130 		return true;
131 
132 	return false;
133 }
134 
135 /*
136  * hv_get_next_write_location()
137  *
138  * Get the next write location for the specified ring buffer
139  *
140  */
141 static inline u32
142 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
143 {
144 	u32 next = ring_info->ring_buffer->write_index;
145 
146 	return next;
147 }
148 
149 /*
150  * hv_set_next_write_location()
151  *
152  * Set the next write location for the specified ring buffer
153  *
154  */
155 static inline void
156 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
157 		     u32 next_write_location)
158 {
159 	ring_info->ring_buffer->write_index = next_write_location;
160 }
161 
162 /*
163  * hv_get_next_read_location()
164  *
165  * Get the next read location for the specified ring buffer
166  */
167 static inline u32
168 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
169 {
170 	u32 next = ring_info->ring_buffer->read_index;
171 
172 	return next;
173 }
174 
175 /*
176  * hv_get_next_readlocation_withoffset()
177  *
178  * Get the next read location + offset for the specified ring buffer.
179  * This allows the caller to skip
180  */
181 static inline u32
182 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
183 				 u32 offset)
184 {
185 	u32 next = ring_info->ring_buffer->read_index;
186 
187 	next += offset;
188 	next %= ring_info->ring_datasize;
189 
190 	return next;
191 }
192 
193 /*
194  *
195  * hv_set_next_read_location()
196  *
197  * Set the next read location for the specified ring buffer
198  *
199  */
200 static inline void
201 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
202 		    u32 next_read_location)
203 {
204 	ring_info->ring_buffer->read_index = next_read_location;
205 }
206 
207 
208 /*
209  *
210  * hv_get_ring_buffer()
211  *
212  * Get the start of the ring buffer
213  */
214 static inline void *
215 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
216 {
217 	return (void *)ring_info->ring_buffer->buffer;
218 }
219 
220 
221 /*
222  *
223  * hv_get_ring_buffersize()
224  *
225  * Get the size of the ring buffer
226  */
227 static inline u32
228 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
229 {
230 	return ring_info->ring_datasize;
231 }
232 
233 /*
234  *
235  * hv_get_ring_bufferindices()
236  *
237  * Get the read and write indices as u64 of the specified ring buffer
238  *
239  */
240 static inline u64
241 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
242 {
243 	return (u64)ring_info->ring_buffer->write_index << 32;
244 }
245 
246 /*
247  *
248  * hv_copyfrom_ringbuffer()
249  *
250  * Helper routine to copy to source from ring buffer.
251  * Assume there is enough room. Handles wrap-around in src case only!!
252  *
253  */
254 static u32 hv_copyfrom_ringbuffer(
255 	struct hv_ring_buffer_info	*ring_info,
256 	void				*dest,
257 	u32				destlen,
258 	u32				start_read_offset)
259 {
260 	void *ring_buffer = hv_get_ring_buffer(ring_info);
261 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
262 
263 	u32 frag_len;
264 
265 	/* wrap-around detected at the src */
266 	if (destlen > ring_buffer_size - start_read_offset) {
267 		frag_len = ring_buffer_size - start_read_offset;
268 
269 		memcpy(dest, ring_buffer + start_read_offset, frag_len);
270 		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
271 	} else
272 
273 		memcpy(dest, ring_buffer + start_read_offset, destlen);
274 
275 
276 	start_read_offset += destlen;
277 	start_read_offset %= ring_buffer_size;
278 
279 	return start_read_offset;
280 }
281 
282 
283 /*
284  *
285  * hv_copyto_ringbuffer()
286  *
287  * Helper routine to copy from source to ring buffer.
288  * Assume there is enough room. Handles wrap-around in dest case only!!
289  *
290  */
291 static u32 hv_copyto_ringbuffer(
292 	struct hv_ring_buffer_info	*ring_info,
293 	u32				start_write_offset,
294 	void				*src,
295 	u32				srclen)
296 {
297 	void *ring_buffer = hv_get_ring_buffer(ring_info);
298 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
299 	u32 frag_len;
300 
301 	/* wrap-around detected! */
302 	if (srclen > ring_buffer_size - start_write_offset) {
303 		frag_len = ring_buffer_size - start_write_offset;
304 		memcpy(ring_buffer + start_write_offset, src, frag_len);
305 		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
306 	} else
307 		memcpy(ring_buffer + start_write_offset, src, srclen);
308 
309 	start_write_offset += srclen;
310 	start_write_offset %= ring_buffer_size;
311 
312 	return start_write_offset;
313 }
314 
315 /*
316  *
317  * hv_ringbuffer_get_debuginfo()
318  *
319  * Get various debug metrics for the specified ring buffer
320  *
321  */
322 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
323 			    struct hv_ring_buffer_debug_info *debug_info)
324 {
325 	u32 bytes_avail_towrite;
326 	u32 bytes_avail_toread;
327 
328 	if (ring_info->ring_buffer) {
329 		hv_get_ringbuffer_availbytes(ring_info,
330 					&bytes_avail_toread,
331 					&bytes_avail_towrite);
332 
333 		debug_info->bytes_avail_toread = bytes_avail_toread;
334 		debug_info->bytes_avail_towrite = bytes_avail_towrite;
335 		debug_info->current_read_index =
336 			ring_info->ring_buffer->read_index;
337 		debug_info->current_write_index =
338 			ring_info->ring_buffer->write_index;
339 		debug_info->current_interrupt_mask =
340 			ring_info->ring_buffer->interrupt_mask;
341 	}
342 }
343 
344 /*
345  *
346  * hv_ringbuffer_init()
347  *
348  *Initialize the ring buffer
349  *
350  */
351 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
352 		   void *buffer, u32 buflen)
353 {
354 	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
355 		return -EINVAL;
356 
357 	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
358 
359 	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
360 	ring_info->ring_buffer->read_index =
361 		ring_info->ring_buffer->write_index = 0;
362 
363 	ring_info->ring_size = buflen;
364 	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
365 
366 	spin_lock_init(&ring_info->ring_lock);
367 
368 	return 0;
369 }
370 
371 /*
372  *
373  * hv_ringbuffer_cleanup()
374  *
375  * Cleanup the ring buffer
376  *
377  */
378 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
379 {
380 }
381 
382 /*
383  *
384  * hv_ringbuffer_write()
385  *
386  * Write to the ring buffer
387  *
388  */
389 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
390 		    struct scatterlist *sglist, u32 sgcount, bool *signal)
391 {
392 	int i = 0;
393 	u32 bytes_avail_towrite;
394 	u32 bytes_avail_toread;
395 	u32 totalbytes_towrite = 0;
396 
397 	struct scatterlist *sg;
398 	u32 next_write_location;
399 	u32 old_write;
400 	u64 prev_indices = 0;
401 	unsigned long flags;
402 
403 	for_each_sg(sglist, sg, sgcount, i)
404 	{
405 		totalbytes_towrite += sg->length;
406 	}
407 
408 	totalbytes_towrite += sizeof(u64);
409 
410 	spin_lock_irqsave(&outring_info->ring_lock, flags);
411 
412 	hv_get_ringbuffer_availbytes(outring_info,
413 				&bytes_avail_toread,
414 				&bytes_avail_towrite);
415 
416 
417 	/* If there is only room for the packet, assume it is full. */
418 	/* Otherwise, the next time around, we think the ring buffer */
419 	/* is empty since the read index == write index */
420 	if (bytes_avail_towrite <= totalbytes_towrite) {
421 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
422 		return -EAGAIN;
423 	}
424 
425 	/* Write to the ring buffer */
426 	next_write_location = hv_get_next_write_location(outring_info);
427 
428 	old_write = next_write_location;
429 
430 	for_each_sg(sglist, sg, sgcount, i)
431 	{
432 		next_write_location = hv_copyto_ringbuffer(outring_info,
433 						     next_write_location,
434 						     sg_virt(sg),
435 						     sg->length);
436 	}
437 
438 	/* Set previous packet start */
439 	prev_indices = hv_get_ring_bufferindices(outring_info);
440 
441 	next_write_location = hv_copyto_ringbuffer(outring_info,
442 					     next_write_location,
443 					     &prev_indices,
444 					     sizeof(u64));
445 
446 	/* Issue a full memory barrier before updating the write index */
447 	mb();
448 
449 	/* Now, update the write location */
450 	hv_set_next_write_location(outring_info, next_write_location);
451 
452 
453 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
454 
455 	*signal = hv_need_to_signal(old_write, outring_info);
456 	return 0;
457 }
458 
459 
460 /*
461  *
462  * hv_ringbuffer_peek()
463  *
464  * Read without advancing the read index
465  *
466  */
467 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
468 		   void *Buffer, u32 buflen)
469 {
470 	u32 bytes_avail_towrite;
471 	u32 bytes_avail_toread;
472 	u32 next_read_location = 0;
473 	unsigned long flags;
474 
475 	spin_lock_irqsave(&Inring_info->ring_lock, flags);
476 
477 	hv_get_ringbuffer_availbytes(Inring_info,
478 				&bytes_avail_toread,
479 				&bytes_avail_towrite);
480 
481 	/* Make sure there is something to read */
482 	if (bytes_avail_toread < buflen) {
483 
484 		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
485 
486 		return -EAGAIN;
487 	}
488 
489 	/* Convert to byte offset */
490 	next_read_location = hv_get_next_read_location(Inring_info);
491 
492 	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
493 						Buffer,
494 						buflen,
495 						next_read_location);
496 
497 	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
498 
499 	return 0;
500 }
501 
502 
503 /*
504  *
505  * hv_ringbuffer_read()
506  *
507  * Read and advance the read index
508  *
509  */
510 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
511 		   u32 buflen, u32 offset, bool *signal)
512 {
513 	u32 bytes_avail_towrite;
514 	u32 bytes_avail_toread;
515 	u32 next_read_location = 0;
516 	u64 prev_indices = 0;
517 	unsigned long flags;
518 	u32 old_read;
519 
520 	if (buflen <= 0)
521 		return -EINVAL;
522 
523 	spin_lock_irqsave(&inring_info->ring_lock, flags);
524 
525 	hv_get_ringbuffer_availbytes(inring_info,
526 				&bytes_avail_toread,
527 				&bytes_avail_towrite);
528 
529 	old_read = bytes_avail_toread;
530 
531 	/* Make sure there is something to read */
532 	if (bytes_avail_toread < buflen) {
533 		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
534 
535 		return -EAGAIN;
536 	}
537 
538 	next_read_location =
539 		hv_get_next_readlocation_withoffset(inring_info, offset);
540 
541 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
542 						buffer,
543 						buflen,
544 						next_read_location);
545 
546 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
547 						&prev_indices,
548 						sizeof(u64),
549 						next_read_location);
550 
551 	/* Make sure all reads are done before we update the read index since */
552 	/* the writer may start writing to the read area once the read index */
553 	/*is updated */
554 	mb();
555 
556 	/* Update the read index */
557 	hv_set_next_read_location(inring_info, next_read_location);
558 
559 	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
560 
561 	*signal = hv_need_to_signal_on_read(old_read, inring_info);
562 
563 	return 0;
564 }
565