1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (c) 2009, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/hyperv.h> 16 #include <linux/uio.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/prefetch.h> 20 #include <linux/io.h> 21 #include <linux/export.h> 22 #include <asm/mshyperv.h> 23 24 #include "hyperv_vmbus.h" 25 26 #define VMBUS_PKT_TRAILER 8 27 28 /* 29 * When we write to the ring buffer, check if the host needs to 30 * be signaled. Here is the details of this protocol: 31 * 32 * 1. The host guarantees that while it is draining the 33 * ring buffer, it will set the interrupt_mask to 34 * indicate it does not need to be interrupted when 35 * new data is placed. 36 * 37 * 2. The host guarantees that it will completely drain 38 * the ring buffer before exiting the read loop. Further, 39 * once the ring buffer is empty, it will clear the 40 * interrupt_mask and re-check to see if new data has 41 * arrived. 42 * 43 * KYS: Oct. 30, 2016: 44 * It looks like Windows hosts have logic to deal with DOS attacks that 45 * can be triggered if it receives interrupts when it is not expecting 46 * the interrupt. The host expects interrupts only when the ring 47 * transitions from empty to non-empty (or full to non full on the guest 48 * to host ring). 49 * So, base the signaling decision solely on the ring state until the 50 * host logic is fixed. 51 */ 52 53 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 54 { 55 struct hv_ring_buffer_info *rbi = &channel->outbound; 56 57 virt_mb(); 58 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 59 return; 60 61 /* check interrupt_mask before read_index */ 62 virt_rmb(); 63 /* 64 * This is the only case we need to signal when the 65 * ring transitions from being empty to non-empty. 66 */ 67 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 68 ++channel->intr_out_empty; 69 vmbus_setevent(channel); 70 } 71 } 72 73 /* Get the next write location for the specified ring buffer. */ 74 static inline u32 75 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 76 { 77 u32 next = ring_info->ring_buffer->write_index; 78 79 return next; 80 } 81 82 /* Set the next write location for the specified ring buffer. */ 83 static inline void 84 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 85 u32 next_write_location) 86 { 87 ring_info->ring_buffer->write_index = next_write_location; 88 } 89 90 /* Get the size of the ring buffer. */ 91 static inline u32 92 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 93 { 94 return ring_info->ring_datasize; 95 } 96 97 /* Get the read and write indices as u64 of the specified ring buffer. */ 98 static inline u64 99 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 100 { 101 return (u64)ring_info->ring_buffer->write_index << 32; 102 } 103 104 /* 105 * Helper routine to copy from source to ring buffer. 106 * Assume there is enough room. Handles wrap-around in dest case only!! 107 */ 108 static u32 hv_copyto_ringbuffer( 109 struct hv_ring_buffer_info *ring_info, 110 u32 start_write_offset, 111 const void *src, 112 u32 srclen) 113 { 114 void *ring_buffer = hv_get_ring_buffer(ring_info); 115 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 116 117 memcpy(ring_buffer + start_write_offset, src, srclen); 118 119 start_write_offset += srclen; 120 if (start_write_offset >= ring_buffer_size) 121 start_write_offset -= ring_buffer_size; 122 123 return start_write_offset; 124 } 125 126 /* 127 * 128 * hv_get_ringbuffer_availbytes() 129 * 130 * Get number of bytes available to read and to write to 131 * for the specified ring buffer 132 */ 133 static void 134 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 135 u32 *read, u32 *write) 136 { 137 u32 read_loc, write_loc, dsize; 138 139 /* Capture the read/write indices before they changed */ 140 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 141 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 142 dsize = rbi->ring_datasize; 143 144 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 145 read_loc - write_loc; 146 *read = dsize - *write; 147 } 148 149 /* Get various debug metrics for the specified ring buffer. */ 150 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 151 struct hv_ring_buffer_debug_info *debug_info) 152 { 153 u32 bytes_avail_towrite; 154 u32 bytes_avail_toread; 155 156 mutex_lock(&ring_info->ring_buffer_mutex); 157 158 if (!ring_info->ring_buffer) { 159 mutex_unlock(&ring_info->ring_buffer_mutex); 160 return -EINVAL; 161 } 162 163 hv_get_ringbuffer_availbytes(ring_info, 164 &bytes_avail_toread, 165 &bytes_avail_towrite); 166 debug_info->bytes_avail_toread = bytes_avail_toread; 167 debug_info->bytes_avail_towrite = bytes_avail_towrite; 168 debug_info->current_read_index = ring_info->ring_buffer->read_index; 169 debug_info->current_write_index = ring_info->ring_buffer->write_index; 170 debug_info->current_interrupt_mask 171 = ring_info->ring_buffer->interrupt_mask; 172 mutex_unlock(&ring_info->ring_buffer_mutex); 173 174 return 0; 175 } 176 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 177 178 /* Initialize a channel's ring buffer info mutex locks */ 179 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 180 { 181 mutex_init(&channel->inbound.ring_buffer_mutex); 182 mutex_init(&channel->outbound.ring_buffer_mutex); 183 } 184 185 /* Initialize the ring buffer. */ 186 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 187 struct page *pages, u32 page_cnt, u32 max_pkt_size, 188 bool confidential) 189 { 190 struct page **pages_wraparound; 191 int i; 192 193 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 194 195 /* 196 * First page holds struct hv_ring_buffer, do wraparound mapping for 197 * the rest. 198 */ 199 pages_wraparound = kcalloc(page_cnt * 2 - 1, 200 sizeof(struct page *), 201 GFP_KERNEL); 202 if (!pages_wraparound) 203 return -ENOMEM; 204 205 pages_wraparound[0] = pages; 206 for (i = 0; i < 2 * (page_cnt - 1); i++) 207 pages_wraparound[i + 1] = 208 &pages[i % (page_cnt - 1) + 1]; 209 210 ring_info->ring_buffer = (struct hv_ring_buffer *) 211 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, 212 confidential ? PAGE_KERNEL : pgprot_decrypted(PAGE_KERNEL)); 213 214 kfree(pages_wraparound); 215 if (!ring_info->ring_buffer) 216 return -ENOMEM; 217 218 /* 219 * Ensure the header page is zero'ed since 220 * encryption status may have changed. 221 */ 222 memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE); 223 224 ring_info->ring_buffer->read_index = 225 ring_info->ring_buffer->write_index = 0; 226 227 /* Set the feature bit for enabling flow control. */ 228 ring_info->ring_buffer->feature_bits.value = 1; 229 230 ring_info->ring_size = page_cnt << PAGE_SHIFT; 231 ring_info->ring_size_div10_reciprocal = 232 reciprocal_value(ring_info->ring_size / 10); 233 ring_info->ring_datasize = ring_info->ring_size - 234 sizeof(struct hv_ring_buffer); 235 ring_info->priv_read_index = 0; 236 237 /* Initialize buffer that holds copies of incoming packets */ 238 if (max_pkt_size) { 239 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); 240 if (!ring_info->pkt_buffer) 241 return -ENOMEM; 242 ring_info->pkt_buffer_size = max_pkt_size; 243 } 244 245 spin_lock_init(&ring_info->ring_lock); 246 247 return 0; 248 } 249 250 /* Cleanup the ring buffer. */ 251 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 252 { 253 mutex_lock(&ring_info->ring_buffer_mutex); 254 vunmap(ring_info->ring_buffer); 255 ring_info->ring_buffer = NULL; 256 mutex_unlock(&ring_info->ring_buffer_mutex); 257 258 kfree(ring_info->pkt_buffer); 259 ring_info->pkt_buffer = NULL; 260 ring_info->pkt_buffer_size = 0; 261 } 262 263 /* 264 * Check if the ring buffer spinlock is available to take or not; used on 265 * atomic contexts, like panic path (see the Hyper-V framebuffer driver). 266 */ 267 268 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel) 269 { 270 struct hv_ring_buffer_info *rinfo = &channel->outbound; 271 272 return spin_is_locked(&rinfo->ring_lock); 273 } 274 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy); 275 276 /* Write to the ring buffer. */ 277 int hv_ringbuffer_write(struct vmbus_channel *channel, 278 const struct kvec *kv_list, u32 kv_count, 279 u64 requestid, u64 *trans_id) 280 { 281 int i; 282 u32 bytes_avail_towrite; 283 u32 totalbytes_towrite = sizeof(u64); 284 u32 next_write_location; 285 u32 old_write; 286 u64 prev_indices; 287 unsigned long flags; 288 struct hv_ring_buffer_info *outring_info = &channel->outbound; 289 struct vmpacket_descriptor *desc = kv_list[0].iov_base; 290 u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR; 291 292 if (channel->rescind) 293 return -ENODEV; 294 295 for (i = 0; i < kv_count; i++) 296 totalbytes_towrite += kv_list[i].iov_len; 297 298 spin_lock_irqsave(&outring_info->ring_lock, flags); 299 300 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 301 302 /* 303 * If there is only room for the packet, assume it is full. 304 * Otherwise, the next time around, we think the ring buffer 305 * is empty since the read index == write index. 306 */ 307 if (bytes_avail_towrite <= totalbytes_towrite) { 308 ++channel->out_full_total; 309 310 if (!channel->out_full_flag) { 311 ++channel->out_full_first; 312 channel->out_full_flag = true; 313 } 314 315 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 316 return -EAGAIN; 317 } 318 319 channel->out_full_flag = false; 320 321 /* Write to the ring buffer */ 322 next_write_location = hv_get_next_write_location(outring_info); 323 324 old_write = next_write_location; 325 326 for (i = 0; i < kv_count; i++) { 327 next_write_location = hv_copyto_ringbuffer(outring_info, 328 next_write_location, 329 kv_list[i].iov_base, 330 kv_list[i].iov_len); 331 } 332 333 /* 334 * Allocate the request ID after the data has been copied into the 335 * ring buffer. Once this request ID is allocated, the completion 336 * path could find the data and free it. 337 */ 338 339 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { 340 if (channel->next_request_id_callback != NULL) { 341 rqst_id = channel->next_request_id_callback(channel, requestid); 342 if (rqst_id == VMBUS_RQST_ERROR) { 343 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 344 return -EAGAIN; 345 } 346 } 347 } 348 desc = hv_get_ring_buffer(outring_info) + old_write; 349 __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; 350 /* 351 * Ensure the compiler doesn't generate code that reads the value of 352 * the transaction ID from the ring buffer, which is shared with the 353 * Hyper-V host and subject to being changed at any time. 354 */ 355 WRITE_ONCE(desc->trans_id, __trans_id); 356 if (trans_id) 357 *trans_id = __trans_id; 358 359 /* Set previous packet start */ 360 prev_indices = hv_get_ring_bufferindices(outring_info); 361 362 next_write_location = hv_copyto_ringbuffer(outring_info, 363 next_write_location, 364 &prev_indices, 365 sizeof(u64)); 366 367 /* Issue a full memory barrier before updating the write index */ 368 virt_mb(); 369 370 /* Now, update the write location */ 371 hv_set_next_write_location(outring_info, next_write_location); 372 373 374 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 375 376 hv_signal_on_write(old_write, channel); 377 378 if (channel->rescind) { 379 if (rqst_id != VMBUS_NO_RQSTOR) { 380 /* Reclaim request ID to avoid leak of IDs */ 381 if (channel->request_addr_callback != NULL) 382 channel->request_addr_callback(channel, rqst_id); 383 } 384 return -ENODEV; 385 } 386 387 return 0; 388 } 389 390 int hv_ringbuffer_read(struct vmbus_channel *channel, 391 void *buffer, u32 buflen, u32 *buffer_actual_len, 392 u64 *requestid, bool raw) 393 { 394 struct vmpacket_descriptor *desc; 395 u32 packetlen, offset; 396 397 if (unlikely(buflen == 0)) 398 return -EINVAL; 399 400 *buffer_actual_len = 0; 401 *requestid = 0; 402 403 /* Make sure there is something to read */ 404 desc = hv_pkt_iter_first(channel); 405 if (desc == NULL) { 406 /* 407 * No error is set when there is even no header, drivers are 408 * supposed to analyze buffer_actual_len. 409 */ 410 return 0; 411 } 412 413 offset = raw ? 0 : (desc->offset8 << 3); 414 packetlen = (desc->len8 << 3) - offset; 415 *buffer_actual_len = packetlen; 416 *requestid = desc->trans_id; 417 418 if (unlikely(packetlen > buflen)) 419 return -ENOBUFS; 420 421 /* since ring is double mapped, only one copy is necessary */ 422 memcpy(buffer, (const char *)desc + offset, packetlen); 423 424 /* Advance ring index to next packet descriptor */ 425 __hv_pkt_iter_next(channel, desc); 426 427 /* Notify host of update */ 428 hv_pkt_iter_close(channel); 429 430 return 0; 431 } 432 433 /* 434 * Determine number of bytes available in ring buffer after 435 * the current iterator (priv_read_index) location. 436 * 437 * This is similar to hv_get_bytes_to_read but with private 438 * read index instead. 439 */ 440 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 441 { 442 u32 priv_read_loc = rbi->priv_read_index; 443 u32 write_loc; 444 445 /* 446 * The Hyper-V host writes the packet data, then uses 447 * store_release() to update the write_index. Use load_acquire() 448 * here to prevent loads of the packet data from being re-ordered 449 * before the read of the write_index and potentially getting 450 * stale data. 451 */ 452 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index); 453 454 if (write_loc >= priv_read_loc) 455 return write_loc - priv_read_loc; 456 else 457 return (rbi->ring_datasize - priv_read_loc) + write_loc; 458 } 459 460 /* 461 * Get first vmbus packet from ring buffer after read_index 462 * 463 * If ring buffer is empty, returns NULL and no other action needed. 464 */ 465 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 466 { 467 struct hv_ring_buffer_info *rbi = &channel->inbound; 468 struct vmpacket_descriptor *desc, *desc_copy; 469 u32 bytes_avail, pkt_len, pkt_offset; 470 471 hv_debug_delay_test(channel, MESSAGE_DELAY); 472 473 bytes_avail = hv_pkt_iter_avail(rbi); 474 if (bytes_avail < sizeof(struct vmpacket_descriptor)) 475 return NULL; 476 bytes_avail = min(rbi->pkt_buffer_size, bytes_avail); 477 478 desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 479 480 /* 481 * Ensure the compiler does not use references to incoming Hyper-V values (which 482 * could change at any moment) when reading local variables later in the code 483 */ 484 pkt_len = READ_ONCE(desc->len8) << 3; 485 pkt_offset = READ_ONCE(desc->offset8) << 3; 486 487 /* 488 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and 489 * rbi->pkt_buffer_size 490 */ 491 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) 492 pkt_len = bytes_avail; 493 494 /* 495 * If pkt_offset is invalid, arbitrarily set it to 496 * the size of vmpacket_descriptor 497 */ 498 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) 499 pkt_offset = sizeof(struct vmpacket_descriptor); 500 501 /* Copy the Hyper-V packet out of the ring buffer */ 502 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; 503 memcpy(desc_copy, desc, pkt_len); 504 505 /* 506 * Hyper-V could still change len8 and offset8 after the earlier read. 507 * Ensure that desc_copy has legal values for len8 and offset8 that 508 * are consistent with the copy we just made 509 */ 510 desc_copy->len8 = pkt_len >> 3; 511 desc_copy->offset8 = pkt_offset >> 3; 512 513 return desc_copy; 514 } 515 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 516 517 /* 518 * Get next vmbus packet from ring buffer. 519 * 520 * Advances the current location (priv_read_index) and checks for more 521 * data. If the end of the ring buffer is reached, then return NULL. 522 */ 523 struct vmpacket_descriptor * 524 __hv_pkt_iter_next(struct vmbus_channel *channel, 525 const struct vmpacket_descriptor *desc) 526 { 527 struct hv_ring_buffer_info *rbi = &channel->inbound; 528 u32 packetlen = desc->len8 << 3; 529 u32 dsize = rbi->ring_datasize; 530 531 hv_debug_delay_test(channel, MESSAGE_DELAY); 532 /* bump offset to next potential packet */ 533 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 534 if (rbi->priv_read_index >= dsize) 535 rbi->priv_read_index -= dsize; 536 537 /* more data? */ 538 return hv_pkt_iter_first(channel); 539 } 540 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 541 542 /* How many bytes were read in this iterator cycle */ 543 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 544 u32 start_read_index) 545 { 546 if (rbi->priv_read_index >= start_read_index) 547 return rbi->priv_read_index - start_read_index; 548 else 549 return rbi->ring_datasize - start_read_index + 550 rbi->priv_read_index; 551 } 552 553 /* 554 * Update host ring buffer after iterating over packets. If the host has 555 * stopped queuing new entries because it found the ring buffer full, and 556 * sufficient space is being freed up, signal the host. But be careful to 557 * only signal the host when necessary, both for performance reasons and 558 * because Hyper-V protects itself by throttling guests that signal 559 * inappropriately. 560 * 561 * Determining when to signal is tricky. There are three key data inputs 562 * that must be handled in this order to avoid race conditions: 563 * 564 * 1. Update the read_index 565 * 2. Read the pending_send_sz 566 * 3. Read the current write_index 567 * 568 * The interrupt_mask is not used to determine when to signal. The 569 * interrupt_mask is used only on the guest->host ring buffer when 570 * sending requests to the host. The host does not use it on the host-> 571 * guest ring buffer to indicate whether it should be signaled. 572 */ 573 void hv_pkt_iter_close(struct vmbus_channel *channel) 574 { 575 struct hv_ring_buffer_info *rbi = &channel->inbound; 576 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 577 578 /* 579 * Make sure all reads are done before we update the read index since 580 * the writer may start writing to the read area once the read index 581 * is updated. 582 */ 583 virt_rmb(); 584 start_read_index = rbi->ring_buffer->read_index; 585 rbi->ring_buffer->read_index = rbi->priv_read_index; 586 587 /* 588 * Older versions of Hyper-V (before WS2102 and Win8) do not 589 * implement pending_send_sz and simply poll if the host->guest 590 * ring buffer is full. No signaling is needed or expected. 591 */ 592 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 593 return; 594 595 /* 596 * Issue a full memory barrier before making the signaling decision. 597 * If reading pending_send_sz were to be reordered and happen 598 * before we commit the new read_index, a race could occur. If the 599 * host were to set the pending_send_sz after we have sampled 600 * pending_send_sz, and the ring buffer blocks before we commit the 601 * read index, we could miss sending the interrupt. Issue a full 602 * memory barrier to address this. 603 */ 604 virt_mb(); 605 606 /* 607 * If the pending_send_sz is zero, then the ring buffer is not 608 * blocked and there is no need to signal. This is far by the 609 * most common case, so exit quickly for best performance. 610 */ 611 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 612 if (!pending_sz) 613 return; 614 615 /* 616 * Ensure the read of write_index in hv_get_bytes_to_write() 617 * happens after the read of pending_send_sz. 618 */ 619 virt_rmb(); 620 curr_write_sz = hv_get_bytes_to_write(rbi); 621 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 622 623 /* 624 * We want to signal the host only if we're transitioning 625 * from a "not enough free space" state to a "enough free 626 * space" state. For example, it's possible that this function 627 * could run and free up enough space to signal the host, and then 628 * run again and free up additional space before the host has a 629 * chance to clear the pending_send_sz. The 2nd invocation would 630 * be a null transition from "enough free space" to "enough free 631 * space", which doesn't warrant a signal. 632 * 633 * Exactly filling the ring buffer is treated as "not enough 634 * space". The ring buffer always must have at least one byte 635 * empty so the empty and full conditions are distinguishable. 636 * hv_get_bytes_to_write() doesn't fully tell the truth in 637 * this regard. 638 * 639 * So first check if we were in the "enough free space" state 640 * before we began the iteration. If so, the host was not 641 * blocked, and there's no need to signal. 642 */ 643 if (curr_write_sz - bytes_read > pending_sz) 644 return; 645 646 /* 647 * Similarly, if the new state is "not enough space", then 648 * there's no need to signal. 649 */ 650 if (curr_write_sz <= pending_sz) 651 return; 652 653 ++channel->intr_in_full; 654 vmbus_setevent(channel); 655 } 656 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 657