xref: /linux/drivers/hv/ring_buffer.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 
21 #include "hyperv_vmbus.h"
22 
23 #define VMBUS_PKT_TRAILER	8
24 
25 /*
26  * When we write to the ring buffer, check if the host needs to
27  * be signaled. Here is the details of this protocol:
28  *
29  *	1. The host guarantees that while it is draining the
30  *	   ring buffer, it will set the interrupt_mask to
31  *	   indicate it does not need to be interrupted when
32  *	   new data is placed.
33  *
34  *	2. The host guarantees that it will completely drain
35  *	   the ring buffer before exiting the read loop. Further,
36  *	   once the ring buffer is empty, it will clear the
37  *	   interrupt_mask and re-check to see if new data has
38  *	   arrived.
39  *
40  * KYS: Oct. 30, 2016:
41  * It looks like Windows hosts have logic to deal with DOS attacks that
42  * can be triggered if it receives interrupts when it is not expecting
43  * the interrupt. The host expects interrupts only when the ring
44  * transitions from empty to non-empty (or full to non full on the guest
45  * to host ring).
46  * So, base the signaling decision solely on the ring state until the
47  * host logic is fixed.
48  */
49 
50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52 	struct hv_ring_buffer_info *rbi = &channel->outbound;
53 
54 	virt_mb();
55 	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56 		return;
57 
58 	/* check interrupt_mask before read_index */
59 	virt_rmb();
60 	/*
61 	 * This is the only case we need to signal when the
62 	 * ring transitions from being empty to non-empty.
63 	 */
64 	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65 		++channel->intr_out_empty;
66 		vmbus_setevent(channel);
67 	}
68 }
69 
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74 	u32 next = ring_info->ring_buffer->write_index;
75 
76 	return next;
77 }
78 
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82 		     u32 next_write_location)
83 {
84 	ring_info->ring_buffer->write_index = next_write_location;
85 }
86 
87 /* Get the size of the ring buffer. */
88 static inline u32
89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
90 {
91 	return ring_info->ring_datasize;
92 }
93 
94 /* Get the read and write indices as u64 of the specified ring buffer. */
95 static inline u64
96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
97 {
98 	return (u64)ring_info->ring_buffer->write_index << 32;
99 }
100 
101 /*
102  * Helper routine to copy from source to ring buffer.
103  * Assume there is enough room. Handles wrap-around in dest case only!!
104  */
105 static u32 hv_copyto_ringbuffer(
106 	struct hv_ring_buffer_info	*ring_info,
107 	u32				start_write_offset,
108 	const void			*src,
109 	u32				srclen)
110 {
111 	void *ring_buffer = hv_get_ring_buffer(ring_info);
112 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
113 
114 	memcpy(ring_buffer + start_write_offset, src, srclen);
115 
116 	start_write_offset += srclen;
117 	if (start_write_offset >= ring_buffer_size)
118 		start_write_offset -= ring_buffer_size;
119 
120 	return start_write_offset;
121 }
122 
123 /*
124  *
125  * hv_get_ringbuffer_availbytes()
126  *
127  * Get number of bytes available to read and to write to
128  * for the specified ring buffer
129  */
130 static void
131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
132 			     u32 *read, u32 *write)
133 {
134 	u32 read_loc, write_loc, dsize;
135 
136 	/* Capture the read/write indices before they changed */
137 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
138 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
139 	dsize = rbi->ring_datasize;
140 
141 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
142 		read_loc - write_loc;
143 	*read = dsize - *write;
144 }
145 
146 /* Get various debug metrics for the specified ring buffer. */
147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
148 				struct hv_ring_buffer_debug_info *debug_info)
149 {
150 	u32 bytes_avail_towrite;
151 	u32 bytes_avail_toread;
152 
153 	mutex_lock(&ring_info->ring_buffer_mutex);
154 
155 	if (!ring_info->ring_buffer) {
156 		mutex_unlock(&ring_info->ring_buffer_mutex);
157 		return -EINVAL;
158 	}
159 
160 	hv_get_ringbuffer_availbytes(ring_info,
161 				     &bytes_avail_toread,
162 				     &bytes_avail_towrite);
163 	debug_info->bytes_avail_toread = bytes_avail_toread;
164 	debug_info->bytes_avail_towrite = bytes_avail_towrite;
165 	debug_info->current_read_index = ring_info->ring_buffer->read_index;
166 	debug_info->current_write_index = ring_info->ring_buffer->write_index;
167 	debug_info->current_interrupt_mask
168 		= ring_info->ring_buffer->interrupt_mask;
169 	mutex_unlock(&ring_info->ring_buffer_mutex);
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
174 
175 /* Initialize a channel's ring buffer info mutex locks */
176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
177 {
178 	mutex_init(&channel->inbound.ring_buffer_mutex);
179 	mutex_init(&channel->outbound.ring_buffer_mutex);
180 }
181 
182 /* Initialize the ring buffer. */
183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
184 		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
185 {
186 	int i;
187 	struct page **pages_wraparound;
188 
189 	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
190 
191 	/*
192 	 * First page holds struct hv_ring_buffer, do wraparound mapping for
193 	 * the rest.
194 	 */
195 	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
196 				   GFP_KERNEL);
197 	if (!pages_wraparound)
198 		return -ENOMEM;
199 
200 	pages_wraparound[0] = pages;
201 	for (i = 0; i < 2 * (page_cnt - 1); i++)
202 		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
203 
204 	ring_info->ring_buffer = (struct hv_ring_buffer *)
205 		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
206 
207 	kfree(pages_wraparound);
208 
209 
210 	if (!ring_info->ring_buffer)
211 		return -ENOMEM;
212 
213 	ring_info->ring_buffer->read_index =
214 		ring_info->ring_buffer->write_index = 0;
215 
216 	/* Set the feature bit for enabling flow control. */
217 	ring_info->ring_buffer->feature_bits.value = 1;
218 
219 	ring_info->ring_size = page_cnt << PAGE_SHIFT;
220 	ring_info->ring_size_div10_reciprocal =
221 		reciprocal_value(ring_info->ring_size / 10);
222 	ring_info->ring_datasize = ring_info->ring_size -
223 		sizeof(struct hv_ring_buffer);
224 	ring_info->priv_read_index = 0;
225 
226 	/* Initialize buffer that holds copies of incoming packets */
227 	if (max_pkt_size) {
228 		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
229 		if (!ring_info->pkt_buffer)
230 			return -ENOMEM;
231 		ring_info->pkt_buffer_size = max_pkt_size;
232 	}
233 
234 	spin_lock_init(&ring_info->ring_lock);
235 
236 	return 0;
237 }
238 
239 /* Cleanup the ring buffer. */
240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
241 {
242 	mutex_lock(&ring_info->ring_buffer_mutex);
243 	vunmap(ring_info->ring_buffer);
244 	ring_info->ring_buffer = NULL;
245 	mutex_unlock(&ring_info->ring_buffer_mutex);
246 
247 	kfree(ring_info->pkt_buffer);
248 	ring_info->pkt_buffer_size = 0;
249 }
250 
251 /* Write to the ring buffer. */
252 int hv_ringbuffer_write(struct vmbus_channel *channel,
253 			const struct kvec *kv_list, u32 kv_count,
254 			u64 requestid)
255 {
256 	int i;
257 	u32 bytes_avail_towrite;
258 	u32 totalbytes_towrite = sizeof(u64);
259 	u32 next_write_location;
260 	u32 old_write;
261 	u64 prev_indices;
262 	unsigned long flags;
263 	struct hv_ring_buffer_info *outring_info = &channel->outbound;
264 	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
265 	u64 rqst_id = VMBUS_NO_RQSTOR;
266 
267 	if (channel->rescind)
268 		return -ENODEV;
269 
270 	for (i = 0; i < kv_count; i++)
271 		totalbytes_towrite += kv_list[i].iov_len;
272 
273 	spin_lock_irqsave(&outring_info->ring_lock, flags);
274 
275 	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
276 
277 	/*
278 	 * If there is only room for the packet, assume it is full.
279 	 * Otherwise, the next time around, we think the ring buffer
280 	 * is empty since the read index == write index.
281 	 */
282 	if (bytes_avail_towrite <= totalbytes_towrite) {
283 		++channel->out_full_total;
284 
285 		if (!channel->out_full_flag) {
286 			++channel->out_full_first;
287 			channel->out_full_flag = true;
288 		}
289 
290 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
291 		return -EAGAIN;
292 	}
293 
294 	channel->out_full_flag = false;
295 
296 	/* Write to the ring buffer */
297 	next_write_location = hv_get_next_write_location(outring_info);
298 
299 	old_write = next_write_location;
300 
301 	for (i = 0; i < kv_count; i++) {
302 		next_write_location = hv_copyto_ringbuffer(outring_info,
303 						     next_write_location,
304 						     kv_list[i].iov_base,
305 						     kv_list[i].iov_len);
306 	}
307 
308 	/*
309 	 * Allocate the request ID after the data has been copied into the
310 	 * ring buffer.  Once this request ID is allocated, the completion
311 	 * path could find the data and free it.
312 	 */
313 
314 	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
315 		if (channel->next_request_id_callback != NULL) {
316 			rqst_id = channel->next_request_id_callback(channel, requestid);
317 			if (rqst_id == VMBUS_RQST_ERROR) {
318 				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
319 				return -EAGAIN;
320 			}
321 		}
322 	}
323 	desc = hv_get_ring_buffer(outring_info) + old_write;
324 	desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
325 
326 	/* Set previous packet start */
327 	prev_indices = hv_get_ring_bufferindices(outring_info);
328 
329 	next_write_location = hv_copyto_ringbuffer(outring_info,
330 					     next_write_location,
331 					     &prev_indices,
332 					     sizeof(u64));
333 
334 	/* Issue a full memory barrier before updating the write index */
335 	virt_mb();
336 
337 	/* Now, update the write location */
338 	hv_set_next_write_location(outring_info, next_write_location);
339 
340 
341 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
342 
343 	hv_signal_on_write(old_write, channel);
344 
345 	if (channel->rescind) {
346 		if (rqst_id != VMBUS_NO_RQSTOR) {
347 			/* Reclaim request ID to avoid leak of IDs */
348 			if (channel->request_addr_callback != NULL)
349 				channel->request_addr_callback(channel, rqst_id);
350 		}
351 		return -ENODEV;
352 	}
353 
354 	return 0;
355 }
356 
357 int hv_ringbuffer_read(struct vmbus_channel *channel,
358 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
359 		       u64 *requestid, bool raw)
360 {
361 	struct vmpacket_descriptor *desc;
362 	u32 packetlen, offset;
363 
364 	if (unlikely(buflen == 0))
365 		return -EINVAL;
366 
367 	*buffer_actual_len = 0;
368 	*requestid = 0;
369 
370 	/* Make sure there is something to read */
371 	desc = hv_pkt_iter_first(channel);
372 	if (desc == NULL) {
373 		/*
374 		 * No error is set when there is even no header, drivers are
375 		 * supposed to analyze buffer_actual_len.
376 		 */
377 		return 0;
378 	}
379 
380 	offset = raw ? 0 : (desc->offset8 << 3);
381 	packetlen = (desc->len8 << 3) - offset;
382 	*buffer_actual_len = packetlen;
383 	*requestid = desc->trans_id;
384 
385 	if (unlikely(packetlen > buflen))
386 		return -ENOBUFS;
387 
388 	/* since ring is double mapped, only one copy is necessary */
389 	memcpy(buffer, (const char *)desc + offset, packetlen);
390 
391 	/* Advance ring index to next packet descriptor */
392 	__hv_pkt_iter_next(channel, desc, true);
393 
394 	/* Notify host of update */
395 	hv_pkt_iter_close(channel);
396 
397 	return 0;
398 }
399 
400 /*
401  * Determine number of bytes available in ring buffer after
402  * the current iterator (priv_read_index) location.
403  *
404  * This is similar to hv_get_bytes_to_read but with private
405  * read index instead.
406  */
407 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
408 {
409 	u32 priv_read_loc = rbi->priv_read_index;
410 	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
411 
412 	if (write_loc >= priv_read_loc)
413 		return write_loc - priv_read_loc;
414 	else
415 		return (rbi->ring_datasize - priv_read_loc) + write_loc;
416 }
417 
418 /*
419  * Get first vmbus packet without copying it out of the ring buffer
420  */
421 struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
422 {
423 	struct hv_ring_buffer_info *rbi = &channel->inbound;
424 
425 	hv_debug_delay_test(channel, MESSAGE_DELAY);
426 
427 	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
428 		return NULL;
429 
430 	return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
431 }
432 EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
433 
434 /*
435  * Get first vmbus packet from ring buffer after read_index
436  *
437  * If ring buffer is empty, returns NULL and no other action needed.
438  */
439 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
440 {
441 	struct hv_ring_buffer_info *rbi = &channel->inbound;
442 	struct vmpacket_descriptor *desc, *desc_copy;
443 	u32 bytes_avail, pkt_len, pkt_offset;
444 
445 	desc = hv_pkt_iter_first_raw(channel);
446 	if (!desc)
447 		return NULL;
448 
449 	bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
450 
451 	/*
452 	 * Ensure the compiler does not use references to incoming Hyper-V values (which
453 	 * could change at any moment) when reading local variables later in the code
454 	 */
455 	pkt_len = READ_ONCE(desc->len8) << 3;
456 	pkt_offset = READ_ONCE(desc->offset8) << 3;
457 
458 	/*
459 	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
460 	 * rbi->pkt_buffer_size
461 	 */
462 	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
463 		pkt_len = bytes_avail;
464 
465 	/*
466 	 * If pkt_offset is invalid, arbitrarily set it to
467 	 * the size of vmpacket_descriptor
468 	 */
469 	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
470 		pkt_offset = sizeof(struct vmpacket_descriptor);
471 
472 	/* Copy the Hyper-V packet out of the ring buffer */
473 	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
474 	memcpy(desc_copy, desc, pkt_len);
475 
476 	/*
477 	 * Hyper-V could still change len8 and offset8 after the earlier read.
478 	 * Ensure that desc_copy has legal values for len8 and offset8 that
479 	 * are consistent with the copy we just made
480 	 */
481 	desc_copy->len8 = pkt_len >> 3;
482 	desc_copy->offset8 = pkt_offset >> 3;
483 
484 	return desc_copy;
485 }
486 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
487 
488 /*
489  * Get next vmbus packet from ring buffer.
490  *
491  * Advances the current location (priv_read_index) and checks for more
492  * data. If the end of the ring buffer is reached, then return NULL.
493  */
494 struct vmpacket_descriptor *
495 __hv_pkt_iter_next(struct vmbus_channel *channel,
496 		   const struct vmpacket_descriptor *desc,
497 		   bool copy)
498 {
499 	struct hv_ring_buffer_info *rbi = &channel->inbound;
500 	u32 packetlen = desc->len8 << 3;
501 	u32 dsize = rbi->ring_datasize;
502 
503 	hv_debug_delay_test(channel, MESSAGE_DELAY);
504 	/* bump offset to next potential packet */
505 	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
506 	if (rbi->priv_read_index >= dsize)
507 		rbi->priv_read_index -= dsize;
508 
509 	/* more data? */
510 	return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
511 }
512 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
513 
514 /* How many bytes were read in this iterator cycle */
515 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
516 					u32 start_read_index)
517 {
518 	if (rbi->priv_read_index >= start_read_index)
519 		return rbi->priv_read_index - start_read_index;
520 	else
521 		return rbi->ring_datasize - start_read_index +
522 			rbi->priv_read_index;
523 }
524 
525 /*
526  * Update host ring buffer after iterating over packets. If the host has
527  * stopped queuing new entries because it found the ring buffer full, and
528  * sufficient space is being freed up, signal the host. But be careful to
529  * only signal the host when necessary, both for performance reasons and
530  * because Hyper-V protects itself by throttling guests that signal
531  * inappropriately.
532  *
533  * Determining when to signal is tricky. There are three key data inputs
534  * that must be handled in this order to avoid race conditions:
535  *
536  * 1. Update the read_index
537  * 2. Read the pending_send_sz
538  * 3. Read the current write_index
539  *
540  * The interrupt_mask is not used to determine when to signal. The
541  * interrupt_mask is used only on the guest->host ring buffer when
542  * sending requests to the host. The host does not use it on the host->
543  * guest ring buffer to indicate whether it should be signaled.
544  */
545 void hv_pkt_iter_close(struct vmbus_channel *channel)
546 {
547 	struct hv_ring_buffer_info *rbi = &channel->inbound;
548 	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
549 
550 	/*
551 	 * Make sure all reads are done before we update the read index since
552 	 * the writer may start writing to the read area once the read index
553 	 * is updated.
554 	 */
555 	virt_rmb();
556 	start_read_index = rbi->ring_buffer->read_index;
557 	rbi->ring_buffer->read_index = rbi->priv_read_index;
558 
559 	/*
560 	 * Older versions of Hyper-V (before WS2102 and Win8) do not
561 	 * implement pending_send_sz and simply poll if the host->guest
562 	 * ring buffer is full.  No signaling is needed or expected.
563 	 */
564 	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
565 		return;
566 
567 	/*
568 	 * Issue a full memory barrier before making the signaling decision.
569 	 * If reading pending_send_sz were to be reordered and happen
570 	 * before we commit the new read_index, a race could occur.  If the
571 	 * host were to set the pending_send_sz after we have sampled
572 	 * pending_send_sz, and the ring buffer blocks before we commit the
573 	 * read index, we could miss sending the interrupt. Issue a full
574 	 * memory barrier to address this.
575 	 */
576 	virt_mb();
577 
578 	/*
579 	 * If the pending_send_sz is zero, then the ring buffer is not
580 	 * blocked and there is no need to signal.  This is far by the
581 	 * most common case, so exit quickly for best performance.
582 	 */
583 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
584 	if (!pending_sz)
585 		return;
586 
587 	/*
588 	 * Ensure the read of write_index in hv_get_bytes_to_write()
589 	 * happens after the read of pending_send_sz.
590 	 */
591 	virt_rmb();
592 	curr_write_sz = hv_get_bytes_to_write(rbi);
593 	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
594 
595 	/*
596 	 * We want to signal the host only if we're transitioning
597 	 * from a "not enough free space" state to a "enough free
598 	 * space" state.  For example, it's possible that this function
599 	 * could run and free up enough space to signal the host, and then
600 	 * run again and free up additional space before the host has a
601 	 * chance to clear the pending_send_sz.  The 2nd invocation would
602 	 * be a null transition from "enough free space" to "enough free
603 	 * space", which doesn't warrant a signal.
604 	 *
605 	 * Exactly filling the ring buffer is treated as "not enough
606 	 * space". The ring buffer always must have at least one byte
607 	 * empty so the empty and full conditions are distinguishable.
608 	 * hv_get_bytes_to_write() doesn't fully tell the truth in
609 	 * this regard.
610 	 *
611 	 * So first check if we were in the "enough free space" state
612 	 * before we began the iteration. If so, the host was not
613 	 * blocked, and there's no need to signal.
614 	 */
615 	if (curr_write_sz - bytes_read > pending_sz)
616 		return;
617 
618 	/*
619 	 * Similarly, if the new state is "not enough space", then
620 	 * there's no need to signal.
621 	 */
622 	if (curr_write_sz <= pending_sz)
623 		return;
624 
625 	++channel->intr_in_full;
626 	vmbus_setevent(channel);
627 }
628 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
629