1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (c) 2009, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/hyperv.h> 16 #include <linux/uio.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/prefetch.h> 20 21 #include "hyperv_vmbus.h" 22 23 #define VMBUS_PKT_TRAILER 8 24 25 /* 26 * When we write to the ring buffer, check if the host needs to 27 * be signaled. Here is the details of this protocol: 28 * 29 * 1. The host guarantees that while it is draining the 30 * ring buffer, it will set the interrupt_mask to 31 * indicate it does not need to be interrupted when 32 * new data is placed. 33 * 34 * 2. The host guarantees that it will completely drain 35 * the ring buffer before exiting the read loop. Further, 36 * once the ring buffer is empty, it will clear the 37 * interrupt_mask and re-check to see if new data has 38 * arrived. 39 * 40 * KYS: Oct. 30, 2016: 41 * It looks like Windows hosts have logic to deal with DOS attacks that 42 * can be triggered if it receives interrupts when it is not expecting 43 * the interrupt. The host expects interrupts only when the ring 44 * transitions from empty to non-empty (or full to non full on the guest 45 * to host ring). 46 * So, base the signaling decision solely on the ring state until the 47 * host logic is fixed. 48 */ 49 50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 51 { 52 struct hv_ring_buffer_info *rbi = &channel->outbound; 53 54 virt_mb(); 55 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 56 return; 57 58 /* check interrupt_mask before read_index */ 59 virt_rmb(); 60 /* 61 * This is the only case we need to signal when the 62 * ring transitions from being empty to non-empty. 63 */ 64 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 65 ++channel->intr_out_empty; 66 vmbus_setevent(channel); 67 } 68 } 69 70 /* Get the next write location for the specified ring buffer. */ 71 static inline u32 72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 73 { 74 u32 next = ring_info->ring_buffer->write_index; 75 76 return next; 77 } 78 79 /* Set the next write location for the specified ring buffer. */ 80 static inline void 81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 82 u32 next_write_location) 83 { 84 ring_info->ring_buffer->write_index = next_write_location; 85 } 86 87 /* Get the size of the ring buffer. */ 88 static inline u32 89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 90 { 91 return ring_info->ring_datasize; 92 } 93 94 /* Get the read and write indices as u64 of the specified ring buffer. */ 95 static inline u64 96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 97 { 98 return (u64)ring_info->ring_buffer->write_index << 32; 99 } 100 101 /* 102 * Helper routine to copy from source to ring buffer. 103 * Assume there is enough room. Handles wrap-around in dest case only!! 104 */ 105 static u32 hv_copyto_ringbuffer( 106 struct hv_ring_buffer_info *ring_info, 107 u32 start_write_offset, 108 const void *src, 109 u32 srclen) 110 { 111 void *ring_buffer = hv_get_ring_buffer(ring_info); 112 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 113 114 memcpy(ring_buffer + start_write_offset, src, srclen); 115 116 start_write_offset += srclen; 117 if (start_write_offset >= ring_buffer_size) 118 start_write_offset -= ring_buffer_size; 119 120 return start_write_offset; 121 } 122 123 /* 124 * 125 * hv_get_ringbuffer_availbytes() 126 * 127 * Get number of bytes available to read and to write to 128 * for the specified ring buffer 129 */ 130 static void 131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 132 u32 *read, u32 *write) 133 { 134 u32 read_loc, write_loc, dsize; 135 136 /* Capture the read/write indices before they changed */ 137 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 138 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 139 dsize = rbi->ring_datasize; 140 141 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 142 read_loc - write_loc; 143 *read = dsize - *write; 144 } 145 146 /* Get various debug metrics for the specified ring buffer. */ 147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 148 struct hv_ring_buffer_debug_info *debug_info) 149 { 150 u32 bytes_avail_towrite; 151 u32 bytes_avail_toread; 152 153 mutex_lock(&ring_info->ring_buffer_mutex); 154 155 if (!ring_info->ring_buffer) { 156 mutex_unlock(&ring_info->ring_buffer_mutex); 157 return -EINVAL; 158 } 159 160 hv_get_ringbuffer_availbytes(ring_info, 161 &bytes_avail_toread, 162 &bytes_avail_towrite); 163 debug_info->bytes_avail_toread = bytes_avail_toread; 164 debug_info->bytes_avail_towrite = bytes_avail_towrite; 165 debug_info->current_read_index = ring_info->ring_buffer->read_index; 166 debug_info->current_write_index = ring_info->ring_buffer->write_index; 167 debug_info->current_interrupt_mask 168 = ring_info->ring_buffer->interrupt_mask; 169 mutex_unlock(&ring_info->ring_buffer_mutex); 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 174 175 /* Initialize a channel's ring buffer info mutex locks */ 176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 177 { 178 mutex_init(&channel->inbound.ring_buffer_mutex); 179 mutex_init(&channel->outbound.ring_buffer_mutex); 180 } 181 182 /* Initialize the ring buffer. */ 183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 184 struct page *pages, u32 page_cnt, u32 max_pkt_size) 185 { 186 int i; 187 struct page **pages_wraparound; 188 189 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 190 191 /* 192 * First page holds struct hv_ring_buffer, do wraparound mapping for 193 * the rest. 194 */ 195 pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *), 196 GFP_KERNEL); 197 if (!pages_wraparound) 198 return -ENOMEM; 199 200 pages_wraparound[0] = pages; 201 for (i = 0; i < 2 * (page_cnt - 1); i++) 202 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1]; 203 204 ring_info->ring_buffer = (struct hv_ring_buffer *) 205 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL); 206 207 kfree(pages_wraparound); 208 209 210 if (!ring_info->ring_buffer) 211 return -ENOMEM; 212 213 ring_info->ring_buffer->read_index = 214 ring_info->ring_buffer->write_index = 0; 215 216 /* Set the feature bit for enabling flow control. */ 217 ring_info->ring_buffer->feature_bits.value = 1; 218 219 ring_info->ring_size = page_cnt << PAGE_SHIFT; 220 ring_info->ring_size_div10_reciprocal = 221 reciprocal_value(ring_info->ring_size / 10); 222 ring_info->ring_datasize = ring_info->ring_size - 223 sizeof(struct hv_ring_buffer); 224 ring_info->priv_read_index = 0; 225 226 /* Initialize buffer that holds copies of incoming packets */ 227 if (max_pkt_size) { 228 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); 229 if (!ring_info->pkt_buffer) 230 return -ENOMEM; 231 ring_info->pkt_buffer_size = max_pkt_size; 232 } 233 234 spin_lock_init(&ring_info->ring_lock); 235 236 return 0; 237 } 238 239 /* Cleanup the ring buffer. */ 240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 241 { 242 mutex_lock(&ring_info->ring_buffer_mutex); 243 vunmap(ring_info->ring_buffer); 244 ring_info->ring_buffer = NULL; 245 mutex_unlock(&ring_info->ring_buffer_mutex); 246 247 kfree(ring_info->pkt_buffer); 248 ring_info->pkt_buffer_size = 0; 249 } 250 251 /* Write to the ring buffer. */ 252 int hv_ringbuffer_write(struct vmbus_channel *channel, 253 const struct kvec *kv_list, u32 kv_count, 254 u64 requestid) 255 { 256 int i; 257 u32 bytes_avail_towrite; 258 u32 totalbytes_towrite = sizeof(u64); 259 u32 next_write_location; 260 u32 old_write; 261 u64 prev_indices; 262 unsigned long flags; 263 struct hv_ring_buffer_info *outring_info = &channel->outbound; 264 struct vmpacket_descriptor *desc = kv_list[0].iov_base; 265 u64 rqst_id = VMBUS_NO_RQSTOR; 266 267 if (channel->rescind) 268 return -ENODEV; 269 270 for (i = 0; i < kv_count; i++) 271 totalbytes_towrite += kv_list[i].iov_len; 272 273 spin_lock_irqsave(&outring_info->ring_lock, flags); 274 275 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 276 277 /* 278 * If there is only room for the packet, assume it is full. 279 * Otherwise, the next time around, we think the ring buffer 280 * is empty since the read index == write index. 281 */ 282 if (bytes_avail_towrite <= totalbytes_towrite) { 283 ++channel->out_full_total; 284 285 if (!channel->out_full_flag) { 286 ++channel->out_full_first; 287 channel->out_full_flag = true; 288 } 289 290 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 291 return -EAGAIN; 292 } 293 294 channel->out_full_flag = false; 295 296 /* Write to the ring buffer */ 297 next_write_location = hv_get_next_write_location(outring_info); 298 299 old_write = next_write_location; 300 301 for (i = 0; i < kv_count; i++) { 302 next_write_location = hv_copyto_ringbuffer(outring_info, 303 next_write_location, 304 kv_list[i].iov_base, 305 kv_list[i].iov_len); 306 } 307 308 /* 309 * Allocate the request ID after the data has been copied into the 310 * ring buffer. Once this request ID is allocated, the completion 311 * path could find the data and free it. 312 */ 313 314 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { 315 if (channel->next_request_id_callback != NULL) { 316 rqst_id = channel->next_request_id_callback(channel, requestid); 317 if (rqst_id == VMBUS_RQST_ERROR) { 318 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 319 return -EAGAIN; 320 } 321 } 322 } 323 desc = hv_get_ring_buffer(outring_info) + old_write; 324 desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; 325 326 /* Set previous packet start */ 327 prev_indices = hv_get_ring_bufferindices(outring_info); 328 329 next_write_location = hv_copyto_ringbuffer(outring_info, 330 next_write_location, 331 &prev_indices, 332 sizeof(u64)); 333 334 /* Issue a full memory barrier before updating the write index */ 335 virt_mb(); 336 337 /* Now, update the write location */ 338 hv_set_next_write_location(outring_info, next_write_location); 339 340 341 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 342 343 hv_signal_on_write(old_write, channel); 344 345 if (channel->rescind) { 346 if (rqst_id != VMBUS_NO_RQSTOR) { 347 /* Reclaim request ID to avoid leak of IDs */ 348 if (channel->request_addr_callback != NULL) 349 channel->request_addr_callback(channel, rqst_id); 350 } 351 return -ENODEV; 352 } 353 354 return 0; 355 } 356 357 int hv_ringbuffer_read(struct vmbus_channel *channel, 358 void *buffer, u32 buflen, u32 *buffer_actual_len, 359 u64 *requestid, bool raw) 360 { 361 struct vmpacket_descriptor *desc; 362 u32 packetlen, offset; 363 364 if (unlikely(buflen == 0)) 365 return -EINVAL; 366 367 *buffer_actual_len = 0; 368 *requestid = 0; 369 370 /* Make sure there is something to read */ 371 desc = hv_pkt_iter_first(channel); 372 if (desc == NULL) { 373 /* 374 * No error is set when there is even no header, drivers are 375 * supposed to analyze buffer_actual_len. 376 */ 377 return 0; 378 } 379 380 offset = raw ? 0 : (desc->offset8 << 3); 381 packetlen = (desc->len8 << 3) - offset; 382 *buffer_actual_len = packetlen; 383 *requestid = desc->trans_id; 384 385 if (unlikely(packetlen > buflen)) 386 return -ENOBUFS; 387 388 /* since ring is double mapped, only one copy is necessary */ 389 memcpy(buffer, (const char *)desc + offset, packetlen); 390 391 /* Advance ring index to next packet descriptor */ 392 __hv_pkt_iter_next(channel, desc, true); 393 394 /* Notify host of update */ 395 hv_pkt_iter_close(channel); 396 397 return 0; 398 } 399 400 /* 401 * Determine number of bytes available in ring buffer after 402 * the current iterator (priv_read_index) location. 403 * 404 * This is similar to hv_get_bytes_to_read but with private 405 * read index instead. 406 */ 407 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 408 { 409 u32 priv_read_loc = rbi->priv_read_index; 410 u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 411 412 if (write_loc >= priv_read_loc) 413 return write_loc - priv_read_loc; 414 else 415 return (rbi->ring_datasize - priv_read_loc) + write_loc; 416 } 417 418 /* 419 * Get first vmbus packet without copying it out of the ring buffer 420 */ 421 struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel) 422 { 423 struct hv_ring_buffer_info *rbi = &channel->inbound; 424 425 hv_debug_delay_test(channel, MESSAGE_DELAY); 426 427 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor)) 428 return NULL; 429 430 return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 431 } 432 EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw); 433 434 /* 435 * Get first vmbus packet from ring buffer after read_index 436 * 437 * If ring buffer is empty, returns NULL and no other action needed. 438 */ 439 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 440 { 441 struct hv_ring_buffer_info *rbi = &channel->inbound; 442 struct vmpacket_descriptor *desc, *desc_copy; 443 u32 bytes_avail, pkt_len, pkt_offset; 444 445 desc = hv_pkt_iter_first_raw(channel); 446 if (!desc) 447 return NULL; 448 449 bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi)); 450 451 /* 452 * Ensure the compiler does not use references to incoming Hyper-V values (which 453 * could change at any moment) when reading local variables later in the code 454 */ 455 pkt_len = READ_ONCE(desc->len8) << 3; 456 pkt_offset = READ_ONCE(desc->offset8) << 3; 457 458 /* 459 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and 460 * rbi->pkt_buffer_size 461 */ 462 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) 463 pkt_len = bytes_avail; 464 465 /* 466 * If pkt_offset is invalid, arbitrarily set it to 467 * the size of vmpacket_descriptor 468 */ 469 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) 470 pkt_offset = sizeof(struct vmpacket_descriptor); 471 472 /* Copy the Hyper-V packet out of the ring buffer */ 473 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; 474 memcpy(desc_copy, desc, pkt_len); 475 476 /* 477 * Hyper-V could still change len8 and offset8 after the earlier read. 478 * Ensure that desc_copy has legal values for len8 and offset8 that 479 * are consistent with the copy we just made 480 */ 481 desc_copy->len8 = pkt_len >> 3; 482 desc_copy->offset8 = pkt_offset >> 3; 483 484 return desc_copy; 485 } 486 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 487 488 /* 489 * Get next vmbus packet from ring buffer. 490 * 491 * Advances the current location (priv_read_index) and checks for more 492 * data. If the end of the ring buffer is reached, then return NULL. 493 */ 494 struct vmpacket_descriptor * 495 __hv_pkt_iter_next(struct vmbus_channel *channel, 496 const struct vmpacket_descriptor *desc, 497 bool copy) 498 { 499 struct hv_ring_buffer_info *rbi = &channel->inbound; 500 u32 packetlen = desc->len8 << 3; 501 u32 dsize = rbi->ring_datasize; 502 503 hv_debug_delay_test(channel, MESSAGE_DELAY); 504 /* bump offset to next potential packet */ 505 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 506 if (rbi->priv_read_index >= dsize) 507 rbi->priv_read_index -= dsize; 508 509 /* more data? */ 510 return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel); 511 } 512 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 513 514 /* How many bytes were read in this iterator cycle */ 515 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 516 u32 start_read_index) 517 { 518 if (rbi->priv_read_index >= start_read_index) 519 return rbi->priv_read_index - start_read_index; 520 else 521 return rbi->ring_datasize - start_read_index + 522 rbi->priv_read_index; 523 } 524 525 /* 526 * Update host ring buffer after iterating over packets. If the host has 527 * stopped queuing new entries because it found the ring buffer full, and 528 * sufficient space is being freed up, signal the host. But be careful to 529 * only signal the host when necessary, both for performance reasons and 530 * because Hyper-V protects itself by throttling guests that signal 531 * inappropriately. 532 * 533 * Determining when to signal is tricky. There are three key data inputs 534 * that must be handled in this order to avoid race conditions: 535 * 536 * 1. Update the read_index 537 * 2. Read the pending_send_sz 538 * 3. Read the current write_index 539 * 540 * The interrupt_mask is not used to determine when to signal. The 541 * interrupt_mask is used only on the guest->host ring buffer when 542 * sending requests to the host. The host does not use it on the host-> 543 * guest ring buffer to indicate whether it should be signaled. 544 */ 545 void hv_pkt_iter_close(struct vmbus_channel *channel) 546 { 547 struct hv_ring_buffer_info *rbi = &channel->inbound; 548 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 549 550 /* 551 * Make sure all reads are done before we update the read index since 552 * the writer may start writing to the read area once the read index 553 * is updated. 554 */ 555 virt_rmb(); 556 start_read_index = rbi->ring_buffer->read_index; 557 rbi->ring_buffer->read_index = rbi->priv_read_index; 558 559 /* 560 * Older versions of Hyper-V (before WS2102 and Win8) do not 561 * implement pending_send_sz and simply poll if the host->guest 562 * ring buffer is full. No signaling is needed or expected. 563 */ 564 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 565 return; 566 567 /* 568 * Issue a full memory barrier before making the signaling decision. 569 * If reading pending_send_sz were to be reordered and happen 570 * before we commit the new read_index, a race could occur. If the 571 * host were to set the pending_send_sz after we have sampled 572 * pending_send_sz, and the ring buffer blocks before we commit the 573 * read index, we could miss sending the interrupt. Issue a full 574 * memory barrier to address this. 575 */ 576 virt_mb(); 577 578 /* 579 * If the pending_send_sz is zero, then the ring buffer is not 580 * blocked and there is no need to signal. This is far by the 581 * most common case, so exit quickly for best performance. 582 */ 583 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 584 if (!pending_sz) 585 return; 586 587 /* 588 * Ensure the read of write_index in hv_get_bytes_to_write() 589 * happens after the read of pending_send_sz. 590 */ 591 virt_rmb(); 592 curr_write_sz = hv_get_bytes_to_write(rbi); 593 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 594 595 /* 596 * We want to signal the host only if we're transitioning 597 * from a "not enough free space" state to a "enough free 598 * space" state. For example, it's possible that this function 599 * could run and free up enough space to signal the host, and then 600 * run again and free up additional space before the host has a 601 * chance to clear the pending_send_sz. The 2nd invocation would 602 * be a null transition from "enough free space" to "enough free 603 * space", which doesn't warrant a signal. 604 * 605 * Exactly filling the ring buffer is treated as "not enough 606 * space". The ring buffer always must have at least one byte 607 * empty so the empty and full conditions are distinguishable. 608 * hv_get_bytes_to_write() doesn't fully tell the truth in 609 * this regard. 610 * 611 * So first check if we were in the "enough free space" state 612 * before we began the iteration. If so, the host was not 613 * blocked, and there's no need to signal. 614 */ 615 if (curr_write_sz - bytes_read > pending_sz) 616 return; 617 618 /* 619 * Similarly, if the new state is "not enough space", then 620 * there's no need to signal. 621 */ 622 if (curr_write_sz <= pending_sz) 623 return; 624 625 ++channel->intr_in_full; 626 vmbus_setevent(channel); 627 } 628 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 629