xref: /linux/drivers/hv/ring_buffer.c (revision 4461568aa4e565de2c336f4875ddf912f26da8a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 #include <linux/io.h>
21 #include <asm/mshyperv.h>
22 
23 #include "hyperv_vmbus.h"
24 
25 #define VMBUS_PKT_TRAILER	8
26 
27 /*
28  * When we write to the ring buffer, check if the host needs to
29  * be signaled. Here is the details of this protocol:
30  *
31  *	1. The host guarantees that while it is draining the
32  *	   ring buffer, it will set the interrupt_mask to
33  *	   indicate it does not need to be interrupted when
34  *	   new data is placed.
35  *
36  *	2. The host guarantees that it will completely drain
37  *	   the ring buffer before exiting the read loop. Further,
38  *	   once the ring buffer is empty, it will clear the
39  *	   interrupt_mask and re-check to see if new data has
40  *	   arrived.
41  *
42  * KYS: Oct. 30, 2016:
43  * It looks like Windows hosts have logic to deal with DOS attacks that
44  * can be triggered if it receives interrupts when it is not expecting
45  * the interrupt. The host expects interrupts only when the ring
46  * transitions from empty to non-empty (or full to non full on the guest
47  * to host ring).
48  * So, base the signaling decision solely on the ring state until the
49  * host logic is fixed.
50  */
51 
52 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
53 {
54 	struct hv_ring_buffer_info *rbi = &channel->outbound;
55 
56 	virt_mb();
57 	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
58 		return;
59 
60 	/* check interrupt_mask before read_index */
61 	virt_rmb();
62 	/*
63 	 * This is the only case we need to signal when the
64 	 * ring transitions from being empty to non-empty.
65 	 */
66 	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
67 		++channel->intr_out_empty;
68 		vmbus_setevent(channel);
69 	}
70 }
71 
72 /* Get the next write location for the specified ring buffer. */
73 static inline u32
74 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
75 {
76 	u32 next = ring_info->ring_buffer->write_index;
77 
78 	return next;
79 }
80 
81 /* Set the next write location for the specified ring buffer. */
82 static inline void
83 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
84 		     u32 next_write_location)
85 {
86 	ring_info->ring_buffer->write_index = next_write_location;
87 }
88 
89 /* Get the size of the ring buffer. */
90 static inline u32
91 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
92 {
93 	return ring_info->ring_datasize;
94 }
95 
96 /* Get the read and write indices as u64 of the specified ring buffer. */
97 static inline u64
98 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
99 {
100 	return (u64)ring_info->ring_buffer->write_index << 32;
101 }
102 
103 /*
104  * Helper routine to copy from source to ring buffer.
105  * Assume there is enough room. Handles wrap-around in dest case only!!
106  */
107 static u32 hv_copyto_ringbuffer(
108 	struct hv_ring_buffer_info	*ring_info,
109 	u32				start_write_offset,
110 	const void			*src,
111 	u32				srclen)
112 {
113 	void *ring_buffer = hv_get_ring_buffer(ring_info);
114 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
115 
116 	memcpy(ring_buffer + start_write_offset, src, srclen);
117 
118 	start_write_offset += srclen;
119 	if (start_write_offset >= ring_buffer_size)
120 		start_write_offset -= ring_buffer_size;
121 
122 	return start_write_offset;
123 }
124 
125 /*
126  *
127  * hv_get_ringbuffer_availbytes()
128  *
129  * Get number of bytes available to read and to write to
130  * for the specified ring buffer
131  */
132 static void
133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134 			     u32 *read, u32 *write)
135 {
136 	u32 read_loc, write_loc, dsize;
137 
138 	/* Capture the read/write indices before they changed */
139 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141 	dsize = rbi->ring_datasize;
142 
143 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144 		read_loc - write_loc;
145 	*read = dsize - *write;
146 }
147 
148 /* Get various debug metrics for the specified ring buffer. */
149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150 				struct hv_ring_buffer_debug_info *debug_info)
151 {
152 	u32 bytes_avail_towrite;
153 	u32 bytes_avail_toread;
154 
155 	mutex_lock(&ring_info->ring_buffer_mutex);
156 
157 	if (!ring_info->ring_buffer) {
158 		mutex_unlock(&ring_info->ring_buffer_mutex);
159 		return -EINVAL;
160 	}
161 
162 	hv_get_ringbuffer_availbytes(ring_info,
163 				     &bytes_avail_toread,
164 				     &bytes_avail_towrite);
165 	debug_info->bytes_avail_toread = bytes_avail_toread;
166 	debug_info->bytes_avail_towrite = bytes_avail_towrite;
167 	debug_info->current_read_index = ring_info->ring_buffer->read_index;
168 	debug_info->current_write_index = ring_info->ring_buffer->write_index;
169 	debug_info->current_interrupt_mask
170 		= ring_info->ring_buffer->interrupt_mask;
171 	mutex_unlock(&ring_info->ring_buffer_mutex);
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
176 
177 /* Initialize a channel's ring buffer info mutex locks */
178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179 {
180 	mutex_init(&channel->inbound.ring_buffer_mutex);
181 	mutex_init(&channel->outbound.ring_buffer_mutex);
182 }
183 
184 /* Initialize the ring buffer. */
185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186 		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
187 {
188 	struct page **pages_wraparound;
189 	unsigned long *pfns_wraparound;
190 	u64 pfn;
191 	int i;
192 
193 	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
194 
195 	/*
196 	 * First page holds struct hv_ring_buffer, do wraparound mapping for
197 	 * the rest.
198 	 */
199 	if (hv_isolation_type_snp()) {
200 		pfn = page_to_pfn(pages) +
201 			PFN_DOWN(ms_hyperv.shared_gpa_boundary);
202 
203 		pfns_wraparound = kcalloc(page_cnt * 2 - 1,
204 			sizeof(unsigned long), GFP_KERNEL);
205 		if (!pfns_wraparound)
206 			return -ENOMEM;
207 
208 		pfns_wraparound[0] = pfn;
209 		for (i = 0; i < 2 * (page_cnt - 1); i++)
210 			pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1;
211 
212 		ring_info->ring_buffer = (struct hv_ring_buffer *)
213 			vmap_pfn(pfns_wraparound, page_cnt * 2 - 1,
214 				 PAGE_KERNEL);
215 		kfree(pfns_wraparound);
216 
217 		if (!ring_info->ring_buffer)
218 			return -ENOMEM;
219 
220 		/* Zero ring buffer after setting memory host visibility. */
221 		memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt);
222 	} else {
223 		pages_wraparound = kcalloc(page_cnt * 2 - 1,
224 					   sizeof(struct page *),
225 					   GFP_KERNEL);
226 		if (!pages_wraparound)
227 			return -ENOMEM;
228 
229 		pages_wraparound[0] = pages;
230 		for (i = 0; i < 2 * (page_cnt - 1); i++)
231 			pages_wraparound[i + 1] =
232 				&pages[i % (page_cnt - 1) + 1];
233 
234 		ring_info->ring_buffer = (struct hv_ring_buffer *)
235 			vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
236 				PAGE_KERNEL);
237 
238 		kfree(pages_wraparound);
239 		if (!ring_info->ring_buffer)
240 			return -ENOMEM;
241 	}
242 
243 
244 	ring_info->ring_buffer->read_index =
245 		ring_info->ring_buffer->write_index = 0;
246 
247 	/* Set the feature bit for enabling flow control. */
248 	ring_info->ring_buffer->feature_bits.value = 1;
249 
250 	ring_info->ring_size = page_cnt << PAGE_SHIFT;
251 	ring_info->ring_size_div10_reciprocal =
252 		reciprocal_value(ring_info->ring_size / 10);
253 	ring_info->ring_datasize = ring_info->ring_size -
254 		sizeof(struct hv_ring_buffer);
255 	ring_info->priv_read_index = 0;
256 
257 	/* Initialize buffer that holds copies of incoming packets */
258 	if (max_pkt_size) {
259 		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
260 		if (!ring_info->pkt_buffer)
261 			return -ENOMEM;
262 		ring_info->pkt_buffer_size = max_pkt_size;
263 	}
264 
265 	spin_lock_init(&ring_info->ring_lock);
266 
267 	return 0;
268 }
269 
270 /* Cleanup the ring buffer. */
271 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
272 {
273 	mutex_lock(&ring_info->ring_buffer_mutex);
274 	vunmap(ring_info->ring_buffer);
275 	ring_info->ring_buffer = NULL;
276 	mutex_unlock(&ring_info->ring_buffer_mutex);
277 
278 	kfree(ring_info->pkt_buffer);
279 	ring_info->pkt_buffer = NULL;
280 	ring_info->pkt_buffer_size = 0;
281 }
282 
283 /* Write to the ring buffer. */
284 int hv_ringbuffer_write(struct vmbus_channel *channel,
285 			const struct kvec *kv_list, u32 kv_count,
286 			u64 requestid, u64 *trans_id)
287 {
288 	int i;
289 	u32 bytes_avail_towrite;
290 	u32 totalbytes_towrite = sizeof(u64);
291 	u32 next_write_location;
292 	u32 old_write;
293 	u64 prev_indices;
294 	unsigned long flags;
295 	struct hv_ring_buffer_info *outring_info = &channel->outbound;
296 	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
297 	u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
298 
299 	if (channel->rescind)
300 		return -ENODEV;
301 
302 	for (i = 0; i < kv_count; i++)
303 		totalbytes_towrite += kv_list[i].iov_len;
304 
305 	spin_lock_irqsave(&outring_info->ring_lock, flags);
306 
307 	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
308 
309 	/*
310 	 * If there is only room for the packet, assume it is full.
311 	 * Otherwise, the next time around, we think the ring buffer
312 	 * is empty since the read index == write index.
313 	 */
314 	if (bytes_avail_towrite <= totalbytes_towrite) {
315 		++channel->out_full_total;
316 
317 		if (!channel->out_full_flag) {
318 			++channel->out_full_first;
319 			channel->out_full_flag = true;
320 		}
321 
322 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
323 		return -EAGAIN;
324 	}
325 
326 	channel->out_full_flag = false;
327 
328 	/* Write to the ring buffer */
329 	next_write_location = hv_get_next_write_location(outring_info);
330 
331 	old_write = next_write_location;
332 
333 	for (i = 0; i < kv_count; i++) {
334 		next_write_location = hv_copyto_ringbuffer(outring_info,
335 						     next_write_location,
336 						     kv_list[i].iov_base,
337 						     kv_list[i].iov_len);
338 	}
339 
340 	/*
341 	 * Allocate the request ID after the data has been copied into the
342 	 * ring buffer.  Once this request ID is allocated, the completion
343 	 * path could find the data and free it.
344 	 */
345 
346 	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
347 		if (channel->next_request_id_callback != NULL) {
348 			rqst_id = channel->next_request_id_callback(channel, requestid);
349 			if (rqst_id == VMBUS_RQST_ERROR) {
350 				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
351 				return -EAGAIN;
352 			}
353 		}
354 	}
355 	desc = hv_get_ring_buffer(outring_info) + old_write;
356 	__trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
357 	/*
358 	 * Ensure the compiler doesn't generate code that reads the value of
359 	 * the transaction ID from the ring buffer, which is shared with the
360 	 * Hyper-V host and subject to being changed at any time.
361 	 */
362 	WRITE_ONCE(desc->trans_id, __trans_id);
363 	if (trans_id)
364 		*trans_id = __trans_id;
365 
366 	/* Set previous packet start */
367 	prev_indices = hv_get_ring_bufferindices(outring_info);
368 
369 	next_write_location = hv_copyto_ringbuffer(outring_info,
370 					     next_write_location,
371 					     &prev_indices,
372 					     sizeof(u64));
373 
374 	/* Issue a full memory barrier before updating the write index */
375 	virt_mb();
376 
377 	/* Now, update the write location */
378 	hv_set_next_write_location(outring_info, next_write_location);
379 
380 
381 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
382 
383 	hv_signal_on_write(old_write, channel);
384 
385 	if (channel->rescind) {
386 		if (rqst_id != VMBUS_NO_RQSTOR) {
387 			/* Reclaim request ID to avoid leak of IDs */
388 			if (channel->request_addr_callback != NULL)
389 				channel->request_addr_callback(channel, rqst_id);
390 		}
391 		return -ENODEV;
392 	}
393 
394 	return 0;
395 }
396 
397 int hv_ringbuffer_read(struct vmbus_channel *channel,
398 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
399 		       u64 *requestid, bool raw)
400 {
401 	struct vmpacket_descriptor *desc;
402 	u32 packetlen, offset;
403 
404 	if (unlikely(buflen == 0))
405 		return -EINVAL;
406 
407 	*buffer_actual_len = 0;
408 	*requestid = 0;
409 
410 	/* Make sure there is something to read */
411 	desc = hv_pkt_iter_first(channel);
412 	if (desc == NULL) {
413 		/*
414 		 * No error is set when there is even no header, drivers are
415 		 * supposed to analyze buffer_actual_len.
416 		 */
417 		return 0;
418 	}
419 
420 	offset = raw ? 0 : (desc->offset8 << 3);
421 	packetlen = (desc->len8 << 3) - offset;
422 	*buffer_actual_len = packetlen;
423 	*requestid = desc->trans_id;
424 
425 	if (unlikely(packetlen > buflen))
426 		return -ENOBUFS;
427 
428 	/* since ring is double mapped, only one copy is necessary */
429 	memcpy(buffer, (const char *)desc + offset, packetlen);
430 
431 	/* Advance ring index to next packet descriptor */
432 	__hv_pkt_iter_next(channel, desc);
433 
434 	/* Notify host of update */
435 	hv_pkt_iter_close(channel);
436 
437 	return 0;
438 }
439 
440 /*
441  * Determine number of bytes available in ring buffer after
442  * the current iterator (priv_read_index) location.
443  *
444  * This is similar to hv_get_bytes_to_read but with private
445  * read index instead.
446  */
447 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
448 {
449 	u32 priv_read_loc = rbi->priv_read_index;
450 	u32 write_loc;
451 
452 	/*
453 	 * The Hyper-V host writes the packet data, then uses
454 	 * store_release() to update the write_index.  Use load_acquire()
455 	 * here to prevent loads of the packet data from being re-ordered
456 	 * before the read of the write_index and potentially getting
457 	 * stale data.
458 	 */
459 	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
460 
461 	if (write_loc >= priv_read_loc)
462 		return write_loc - priv_read_loc;
463 	else
464 		return (rbi->ring_datasize - priv_read_loc) + write_loc;
465 }
466 
467 /*
468  * Get first vmbus packet from ring buffer after read_index
469  *
470  * If ring buffer is empty, returns NULL and no other action needed.
471  */
472 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
473 {
474 	struct hv_ring_buffer_info *rbi = &channel->inbound;
475 	struct vmpacket_descriptor *desc, *desc_copy;
476 	u32 bytes_avail, pkt_len, pkt_offset;
477 
478 	hv_debug_delay_test(channel, MESSAGE_DELAY);
479 
480 	bytes_avail = hv_pkt_iter_avail(rbi);
481 	if (bytes_avail < sizeof(struct vmpacket_descriptor))
482 		return NULL;
483 	bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
484 
485 	desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
486 
487 	/*
488 	 * Ensure the compiler does not use references to incoming Hyper-V values (which
489 	 * could change at any moment) when reading local variables later in the code
490 	 */
491 	pkt_len = READ_ONCE(desc->len8) << 3;
492 	pkt_offset = READ_ONCE(desc->offset8) << 3;
493 
494 	/*
495 	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
496 	 * rbi->pkt_buffer_size
497 	 */
498 	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
499 		pkt_len = bytes_avail;
500 
501 	/*
502 	 * If pkt_offset is invalid, arbitrarily set it to
503 	 * the size of vmpacket_descriptor
504 	 */
505 	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
506 		pkt_offset = sizeof(struct vmpacket_descriptor);
507 
508 	/* Copy the Hyper-V packet out of the ring buffer */
509 	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
510 	memcpy(desc_copy, desc, pkt_len);
511 
512 	/*
513 	 * Hyper-V could still change len8 and offset8 after the earlier read.
514 	 * Ensure that desc_copy has legal values for len8 and offset8 that
515 	 * are consistent with the copy we just made
516 	 */
517 	desc_copy->len8 = pkt_len >> 3;
518 	desc_copy->offset8 = pkt_offset >> 3;
519 
520 	return desc_copy;
521 }
522 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
523 
524 /*
525  * Get next vmbus packet from ring buffer.
526  *
527  * Advances the current location (priv_read_index) and checks for more
528  * data. If the end of the ring buffer is reached, then return NULL.
529  */
530 struct vmpacket_descriptor *
531 __hv_pkt_iter_next(struct vmbus_channel *channel,
532 		   const struct vmpacket_descriptor *desc)
533 {
534 	struct hv_ring_buffer_info *rbi = &channel->inbound;
535 	u32 packetlen = desc->len8 << 3;
536 	u32 dsize = rbi->ring_datasize;
537 
538 	hv_debug_delay_test(channel, MESSAGE_DELAY);
539 	/* bump offset to next potential packet */
540 	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
541 	if (rbi->priv_read_index >= dsize)
542 		rbi->priv_read_index -= dsize;
543 
544 	/* more data? */
545 	return hv_pkt_iter_first(channel);
546 }
547 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
548 
549 /* How many bytes were read in this iterator cycle */
550 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
551 					u32 start_read_index)
552 {
553 	if (rbi->priv_read_index >= start_read_index)
554 		return rbi->priv_read_index - start_read_index;
555 	else
556 		return rbi->ring_datasize - start_read_index +
557 			rbi->priv_read_index;
558 }
559 
560 /*
561  * Update host ring buffer after iterating over packets. If the host has
562  * stopped queuing new entries because it found the ring buffer full, and
563  * sufficient space is being freed up, signal the host. But be careful to
564  * only signal the host when necessary, both for performance reasons and
565  * because Hyper-V protects itself by throttling guests that signal
566  * inappropriately.
567  *
568  * Determining when to signal is tricky. There are three key data inputs
569  * that must be handled in this order to avoid race conditions:
570  *
571  * 1. Update the read_index
572  * 2. Read the pending_send_sz
573  * 3. Read the current write_index
574  *
575  * The interrupt_mask is not used to determine when to signal. The
576  * interrupt_mask is used only on the guest->host ring buffer when
577  * sending requests to the host. The host does not use it on the host->
578  * guest ring buffer to indicate whether it should be signaled.
579  */
580 void hv_pkt_iter_close(struct vmbus_channel *channel)
581 {
582 	struct hv_ring_buffer_info *rbi = &channel->inbound;
583 	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
584 
585 	/*
586 	 * Make sure all reads are done before we update the read index since
587 	 * the writer may start writing to the read area once the read index
588 	 * is updated.
589 	 */
590 	virt_rmb();
591 	start_read_index = rbi->ring_buffer->read_index;
592 	rbi->ring_buffer->read_index = rbi->priv_read_index;
593 
594 	/*
595 	 * Older versions of Hyper-V (before WS2102 and Win8) do not
596 	 * implement pending_send_sz and simply poll if the host->guest
597 	 * ring buffer is full.  No signaling is needed or expected.
598 	 */
599 	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
600 		return;
601 
602 	/*
603 	 * Issue a full memory barrier before making the signaling decision.
604 	 * If reading pending_send_sz were to be reordered and happen
605 	 * before we commit the new read_index, a race could occur.  If the
606 	 * host were to set the pending_send_sz after we have sampled
607 	 * pending_send_sz, and the ring buffer blocks before we commit the
608 	 * read index, we could miss sending the interrupt. Issue a full
609 	 * memory barrier to address this.
610 	 */
611 	virt_mb();
612 
613 	/*
614 	 * If the pending_send_sz is zero, then the ring buffer is not
615 	 * blocked and there is no need to signal.  This is far by the
616 	 * most common case, so exit quickly for best performance.
617 	 */
618 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
619 	if (!pending_sz)
620 		return;
621 
622 	/*
623 	 * Ensure the read of write_index in hv_get_bytes_to_write()
624 	 * happens after the read of pending_send_sz.
625 	 */
626 	virt_rmb();
627 	curr_write_sz = hv_get_bytes_to_write(rbi);
628 	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
629 
630 	/*
631 	 * We want to signal the host only if we're transitioning
632 	 * from a "not enough free space" state to a "enough free
633 	 * space" state.  For example, it's possible that this function
634 	 * could run and free up enough space to signal the host, and then
635 	 * run again and free up additional space before the host has a
636 	 * chance to clear the pending_send_sz.  The 2nd invocation would
637 	 * be a null transition from "enough free space" to "enough free
638 	 * space", which doesn't warrant a signal.
639 	 *
640 	 * Exactly filling the ring buffer is treated as "not enough
641 	 * space". The ring buffer always must have at least one byte
642 	 * empty so the empty and full conditions are distinguishable.
643 	 * hv_get_bytes_to_write() doesn't fully tell the truth in
644 	 * this regard.
645 	 *
646 	 * So first check if we were in the "enough free space" state
647 	 * before we began the iteration. If so, the host was not
648 	 * blocked, and there's no need to signal.
649 	 */
650 	if (curr_write_sz - bytes_read > pending_sz)
651 		return;
652 
653 	/*
654 	 * Similarly, if the new state is "not enough space", then
655 	 * there's no need to signal.
656 	 */
657 	if (curr_write_sz <= pending_sz)
658 		return;
659 
660 	++channel->intr_in_full;
661 	vmbus_setevent(channel);
662 }
663 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
664