xref: /linux/drivers/hv/ring_buffer.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 #include <linux/io.h>
21 #include <asm/mshyperv.h>
22 
23 #include "hyperv_vmbus.h"
24 
25 #define VMBUS_PKT_TRAILER	8
26 
27 /*
28  * When we write to the ring buffer, check if the host needs to
29  * be signaled. Here is the details of this protocol:
30  *
31  *	1. The host guarantees that while it is draining the
32  *	   ring buffer, it will set the interrupt_mask to
33  *	   indicate it does not need to be interrupted when
34  *	   new data is placed.
35  *
36  *	2. The host guarantees that it will completely drain
37  *	   the ring buffer before exiting the read loop. Further,
38  *	   once the ring buffer is empty, it will clear the
39  *	   interrupt_mask and re-check to see if new data has
40  *	   arrived.
41  *
42  * KYS: Oct. 30, 2016:
43  * It looks like Windows hosts have logic to deal with DOS attacks that
44  * can be triggered if it receives interrupts when it is not expecting
45  * the interrupt. The host expects interrupts only when the ring
46  * transitions from empty to non-empty (or full to non full on the guest
47  * to host ring).
48  * So, base the signaling decision solely on the ring state until the
49  * host logic is fixed.
50  */
51 
52 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
53 {
54 	struct hv_ring_buffer_info *rbi = &channel->outbound;
55 
56 	virt_mb();
57 	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
58 		return;
59 
60 	/* check interrupt_mask before read_index */
61 	virt_rmb();
62 	/*
63 	 * This is the only case we need to signal when the
64 	 * ring transitions from being empty to non-empty.
65 	 */
66 	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
67 		++channel->intr_out_empty;
68 		vmbus_setevent(channel);
69 	}
70 }
71 
72 /* Get the next write location for the specified ring buffer. */
73 static inline u32
74 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
75 {
76 	u32 next = ring_info->ring_buffer->write_index;
77 
78 	return next;
79 }
80 
81 /* Set the next write location for the specified ring buffer. */
82 static inline void
83 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
84 		     u32 next_write_location)
85 {
86 	ring_info->ring_buffer->write_index = next_write_location;
87 }
88 
89 /* Get the size of the ring buffer. */
90 static inline u32
91 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
92 {
93 	return ring_info->ring_datasize;
94 }
95 
96 /* Get the read and write indices as u64 of the specified ring buffer. */
97 static inline u64
98 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
99 {
100 	return (u64)ring_info->ring_buffer->write_index << 32;
101 }
102 
103 /*
104  * Helper routine to copy from source to ring buffer.
105  * Assume there is enough room. Handles wrap-around in dest case only!!
106  */
107 static u32 hv_copyto_ringbuffer(
108 	struct hv_ring_buffer_info	*ring_info,
109 	u32				start_write_offset,
110 	const void			*src,
111 	u32				srclen)
112 {
113 	void *ring_buffer = hv_get_ring_buffer(ring_info);
114 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
115 
116 	memcpy(ring_buffer + start_write_offset, src, srclen);
117 
118 	start_write_offset += srclen;
119 	if (start_write_offset >= ring_buffer_size)
120 		start_write_offset -= ring_buffer_size;
121 
122 	return start_write_offset;
123 }
124 
125 /*
126  *
127  * hv_get_ringbuffer_availbytes()
128  *
129  * Get number of bytes available to read and to write to
130  * for the specified ring buffer
131  */
132 static void
133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134 			     u32 *read, u32 *write)
135 {
136 	u32 read_loc, write_loc, dsize;
137 
138 	/* Capture the read/write indices before they changed */
139 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141 	dsize = rbi->ring_datasize;
142 
143 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144 		read_loc - write_loc;
145 	*read = dsize - *write;
146 }
147 
148 /* Get various debug metrics for the specified ring buffer. */
149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150 				struct hv_ring_buffer_debug_info *debug_info)
151 {
152 	u32 bytes_avail_towrite;
153 	u32 bytes_avail_toread;
154 
155 	mutex_lock(&ring_info->ring_buffer_mutex);
156 
157 	if (!ring_info->ring_buffer) {
158 		mutex_unlock(&ring_info->ring_buffer_mutex);
159 		return -EINVAL;
160 	}
161 
162 	hv_get_ringbuffer_availbytes(ring_info,
163 				     &bytes_avail_toread,
164 				     &bytes_avail_towrite);
165 	debug_info->bytes_avail_toread = bytes_avail_toread;
166 	debug_info->bytes_avail_towrite = bytes_avail_towrite;
167 	debug_info->current_read_index = ring_info->ring_buffer->read_index;
168 	debug_info->current_write_index = ring_info->ring_buffer->write_index;
169 	debug_info->current_interrupt_mask
170 		= ring_info->ring_buffer->interrupt_mask;
171 	mutex_unlock(&ring_info->ring_buffer_mutex);
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
176 
177 /* Initialize a channel's ring buffer info mutex locks */
178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179 {
180 	mutex_init(&channel->inbound.ring_buffer_mutex);
181 	mutex_init(&channel->outbound.ring_buffer_mutex);
182 }
183 
184 /* Initialize the ring buffer. */
185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186 		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
187 {
188 	struct page **pages_wraparound;
189 	int i;
190 
191 	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
192 
193 	/*
194 	 * First page holds struct hv_ring_buffer, do wraparound mapping for
195 	 * the rest.
196 	 */
197 	pages_wraparound = kcalloc(page_cnt * 2 - 1,
198 				   sizeof(struct page *),
199 				   GFP_KERNEL);
200 	if (!pages_wraparound)
201 		return -ENOMEM;
202 
203 	pages_wraparound[0] = pages;
204 	for (i = 0; i < 2 * (page_cnt - 1); i++)
205 		pages_wraparound[i + 1] =
206 			&pages[i % (page_cnt - 1) + 1];
207 
208 	ring_info->ring_buffer = (struct hv_ring_buffer *)
209 		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
210 			pgprot_decrypted(PAGE_KERNEL));
211 
212 	kfree(pages_wraparound);
213 	if (!ring_info->ring_buffer)
214 		return -ENOMEM;
215 
216 	/*
217 	 * Ensure the header page is zero'ed since
218 	 * encryption status may have changed.
219 	 */
220 	memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE);
221 
222 	ring_info->ring_buffer->read_index =
223 		ring_info->ring_buffer->write_index = 0;
224 
225 	/* Set the feature bit for enabling flow control. */
226 	ring_info->ring_buffer->feature_bits.value = 1;
227 
228 	ring_info->ring_size = page_cnt << PAGE_SHIFT;
229 	ring_info->ring_size_div10_reciprocal =
230 		reciprocal_value(ring_info->ring_size / 10);
231 	ring_info->ring_datasize = ring_info->ring_size -
232 		sizeof(struct hv_ring_buffer);
233 	ring_info->priv_read_index = 0;
234 
235 	/* Initialize buffer that holds copies of incoming packets */
236 	if (max_pkt_size) {
237 		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
238 		if (!ring_info->pkt_buffer)
239 			return -ENOMEM;
240 		ring_info->pkt_buffer_size = max_pkt_size;
241 	}
242 
243 	spin_lock_init(&ring_info->ring_lock);
244 
245 	return 0;
246 }
247 
248 /* Cleanup the ring buffer. */
249 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
250 {
251 	mutex_lock(&ring_info->ring_buffer_mutex);
252 	vunmap(ring_info->ring_buffer);
253 	ring_info->ring_buffer = NULL;
254 	mutex_unlock(&ring_info->ring_buffer_mutex);
255 
256 	kfree(ring_info->pkt_buffer);
257 	ring_info->pkt_buffer = NULL;
258 	ring_info->pkt_buffer_size = 0;
259 }
260 
261 /*
262  * Check if the ring buffer spinlock is available to take or not; used on
263  * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
264  */
265 
266 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
267 {
268 	struct hv_ring_buffer_info *rinfo = &channel->outbound;
269 
270 	return spin_is_locked(&rinfo->ring_lock);
271 }
272 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
273 
274 /* Write to the ring buffer. */
275 int hv_ringbuffer_write(struct vmbus_channel *channel,
276 			const struct kvec *kv_list, u32 kv_count,
277 			u64 requestid, u64 *trans_id)
278 {
279 	int i;
280 	u32 bytes_avail_towrite;
281 	u32 totalbytes_towrite = sizeof(u64);
282 	u32 next_write_location;
283 	u32 old_write;
284 	u64 prev_indices;
285 	unsigned long flags;
286 	struct hv_ring_buffer_info *outring_info = &channel->outbound;
287 	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
288 	u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
289 
290 	if (channel->rescind)
291 		return -ENODEV;
292 
293 	for (i = 0; i < kv_count; i++)
294 		totalbytes_towrite += kv_list[i].iov_len;
295 
296 	spin_lock_irqsave(&outring_info->ring_lock, flags);
297 
298 	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
299 
300 	/*
301 	 * If there is only room for the packet, assume it is full.
302 	 * Otherwise, the next time around, we think the ring buffer
303 	 * is empty since the read index == write index.
304 	 */
305 	if (bytes_avail_towrite <= totalbytes_towrite) {
306 		++channel->out_full_total;
307 
308 		if (!channel->out_full_flag) {
309 			++channel->out_full_first;
310 			channel->out_full_flag = true;
311 		}
312 
313 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
314 		return -EAGAIN;
315 	}
316 
317 	channel->out_full_flag = false;
318 
319 	/* Write to the ring buffer */
320 	next_write_location = hv_get_next_write_location(outring_info);
321 
322 	old_write = next_write_location;
323 
324 	for (i = 0; i < kv_count; i++) {
325 		next_write_location = hv_copyto_ringbuffer(outring_info,
326 						     next_write_location,
327 						     kv_list[i].iov_base,
328 						     kv_list[i].iov_len);
329 	}
330 
331 	/*
332 	 * Allocate the request ID after the data has been copied into the
333 	 * ring buffer.  Once this request ID is allocated, the completion
334 	 * path could find the data and free it.
335 	 */
336 
337 	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
338 		if (channel->next_request_id_callback != NULL) {
339 			rqst_id = channel->next_request_id_callback(channel, requestid);
340 			if (rqst_id == VMBUS_RQST_ERROR) {
341 				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
342 				return -EAGAIN;
343 			}
344 		}
345 	}
346 	desc = hv_get_ring_buffer(outring_info) + old_write;
347 	__trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
348 	/*
349 	 * Ensure the compiler doesn't generate code that reads the value of
350 	 * the transaction ID from the ring buffer, which is shared with the
351 	 * Hyper-V host and subject to being changed at any time.
352 	 */
353 	WRITE_ONCE(desc->trans_id, __trans_id);
354 	if (trans_id)
355 		*trans_id = __trans_id;
356 
357 	/* Set previous packet start */
358 	prev_indices = hv_get_ring_bufferindices(outring_info);
359 
360 	next_write_location = hv_copyto_ringbuffer(outring_info,
361 					     next_write_location,
362 					     &prev_indices,
363 					     sizeof(u64));
364 
365 	/* Issue a full memory barrier before updating the write index */
366 	virt_mb();
367 
368 	/* Now, update the write location */
369 	hv_set_next_write_location(outring_info, next_write_location);
370 
371 
372 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
373 
374 	hv_signal_on_write(old_write, channel);
375 
376 	if (channel->rescind) {
377 		if (rqst_id != VMBUS_NO_RQSTOR) {
378 			/* Reclaim request ID to avoid leak of IDs */
379 			if (channel->request_addr_callback != NULL)
380 				channel->request_addr_callback(channel, rqst_id);
381 		}
382 		return -ENODEV;
383 	}
384 
385 	return 0;
386 }
387 
388 int hv_ringbuffer_read(struct vmbus_channel *channel,
389 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
390 		       u64 *requestid, bool raw)
391 {
392 	struct vmpacket_descriptor *desc;
393 	u32 packetlen, offset;
394 
395 	if (unlikely(buflen == 0))
396 		return -EINVAL;
397 
398 	*buffer_actual_len = 0;
399 	*requestid = 0;
400 
401 	/* Make sure there is something to read */
402 	desc = hv_pkt_iter_first(channel);
403 	if (desc == NULL) {
404 		/*
405 		 * No error is set when there is even no header, drivers are
406 		 * supposed to analyze buffer_actual_len.
407 		 */
408 		return 0;
409 	}
410 
411 	offset = raw ? 0 : (desc->offset8 << 3);
412 	packetlen = (desc->len8 << 3) - offset;
413 	*buffer_actual_len = packetlen;
414 	*requestid = desc->trans_id;
415 
416 	if (unlikely(packetlen > buflen))
417 		return -ENOBUFS;
418 
419 	/* since ring is double mapped, only one copy is necessary */
420 	memcpy(buffer, (const char *)desc + offset, packetlen);
421 
422 	/* Advance ring index to next packet descriptor */
423 	__hv_pkt_iter_next(channel, desc);
424 
425 	/* Notify host of update */
426 	hv_pkt_iter_close(channel);
427 
428 	return 0;
429 }
430 
431 /*
432  * Determine number of bytes available in ring buffer after
433  * the current iterator (priv_read_index) location.
434  *
435  * This is similar to hv_get_bytes_to_read but with private
436  * read index instead.
437  */
438 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
439 {
440 	u32 priv_read_loc = rbi->priv_read_index;
441 	u32 write_loc;
442 
443 	/*
444 	 * The Hyper-V host writes the packet data, then uses
445 	 * store_release() to update the write_index.  Use load_acquire()
446 	 * here to prevent loads of the packet data from being re-ordered
447 	 * before the read of the write_index and potentially getting
448 	 * stale data.
449 	 */
450 	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
451 
452 	if (write_loc >= priv_read_loc)
453 		return write_loc - priv_read_loc;
454 	else
455 		return (rbi->ring_datasize - priv_read_loc) + write_loc;
456 }
457 
458 /*
459  * Get first vmbus packet from ring buffer after read_index
460  *
461  * If ring buffer is empty, returns NULL and no other action needed.
462  */
463 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
464 {
465 	struct hv_ring_buffer_info *rbi = &channel->inbound;
466 	struct vmpacket_descriptor *desc, *desc_copy;
467 	u32 bytes_avail, pkt_len, pkt_offset;
468 
469 	hv_debug_delay_test(channel, MESSAGE_DELAY);
470 
471 	bytes_avail = hv_pkt_iter_avail(rbi);
472 	if (bytes_avail < sizeof(struct vmpacket_descriptor))
473 		return NULL;
474 	bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
475 
476 	desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
477 
478 	/*
479 	 * Ensure the compiler does not use references to incoming Hyper-V values (which
480 	 * could change at any moment) when reading local variables later in the code
481 	 */
482 	pkt_len = READ_ONCE(desc->len8) << 3;
483 	pkt_offset = READ_ONCE(desc->offset8) << 3;
484 
485 	/*
486 	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
487 	 * rbi->pkt_buffer_size
488 	 */
489 	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
490 		pkt_len = bytes_avail;
491 
492 	/*
493 	 * If pkt_offset is invalid, arbitrarily set it to
494 	 * the size of vmpacket_descriptor
495 	 */
496 	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
497 		pkt_offset = sizeof(struct vmpacket_descriptor);
498 
499 	/* Copy the Hyper-V packet out of the ring buffer */
500 	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
501 	memcpy(desc_copy, desc, pkt_len);
502 
503 	/*
504 	 * Hyper-V could still change len8 and offset8 after the earlier read.
505 	 * Ensure that desc_copy has legal values for len8 and offset8 that
506 	 * are consistent with the copy we just made
507 	 */
508 	desc_copy->len8 = pkt_len >> 3;
509 	desc_copy->offset8 = pkt_offset >> 3;
510 
511 	return desc_copy;
512 }
513 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
514 
515 /*
516  * Get next vmbus packet from ring buffer.
517  *
518  * Advances the current location (priv_read_index) and checks for more
519  * data. If the end of the ring buffer is reached, then return NULL.
520  */
521 struct vmpacket_descriptor *
522 __hv_pkt_iter_next(struct vmbus_channel *channel,
523 		   const struct vmpacket_descriptor *desc)
524 {
525 	struct hv_ring_buffer_info *rbi = &channel->inbound;
526 	u32 packetlen = desc->len8 << 3;
527 	u32 dsize = rbi->ring_datasize;
528 
529 	hv_debug_delay_test(channel, MESSAGE_DELAY);
530 	/* bump offset to next potential packet */
531 	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
532 	if (rbi->priv_read_index >= dsize)
533 		rbi->priv_read_index -= dsize;
534 
535 	/* more data? */
536 	return hv_pkt_iter_first(channel);
537 }
538 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
539 
540 /* How many bytes were read in this iterator cycle */
541 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
542 					u32 start_read_index)
543 {
544 	if (rbi->priv_read_index >= start_read_index)
545 		return rbi->priv_read_index - start_read_index;
546 	else
547 		return rbi->ring_datasize - start_read_index +
548 			rbi->priv_read_index;
549 }
550 
551 /*
552  * Update host ring buffer after iterating over packets. If the host has
553  * stopped queuing new entries because it found the ring buffer full, and
554  * sufficient space is being freed up, signal the host. But be careful to
555  * only signal the host when necessary, both for performance reasons and
556  * because Hyper-V protects itself by throttling guests that signal
557  * inappropriately.
558  *
559  * Determining when to signal is tricky. There are three key data inputs
560  * that must be handled in this order to avoid race conditions:
561  *
562  * 1. Update the read_index
563  * 2. Read the pending_send_sz
564  * 3. Read the current write_index
565  *
566  * The interrupt_mask is not used to determine when to signal. The
567  * interrupt_mask is used only on the guest->host ring buffer when
568  * sending requests to the host. The host does not use it on the host->
569  * guest ring buffer to indicate whether it should be signaled.
570  */
571 void hv_pkt_iter_close(struct vmbus_channel *channel)
572 {
573 	struct hv_ring_buffer_info *rbi = &channel->inbound;
574 	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
575 
576 	/*
577 	 * Make sure all reads are done before we update the read index since
578 	 * the writer may start writing to the read area once the read index
579 	 * is updated.
580 	 */
581 	virt_rmb();
582 	start_read_index = rbi->ring_buffer->read_index;
583 	rbi->ring_buffer->read_index = rbi->priv_read_index;
584 
585 	/*
586 	 * Older versions of Hyper-V (before WS2102 and Win8) do not
587 	 * implement pending_send_sz and simply poll if the host->guest
588 	 * ring buffer is full.  No signaling is needed or expected.
589 	 */
590 	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
591 		return;
592 
593 	/*
594 	 * Issue a full memory barrier before making the signaling decision.
595 	 * If reading pending_send_sz were to be reordered and happen
596 	 * before we commit the new read_index, a race could occur.  If the
597 	 * host were to set the pending_send_sz after we have sampled
598 	 * pending_send_sz, and the ring buffer blocks before we commit the
599 	 * read index, we could miss sending the interrupt. Issue a full
600 	 * memory barrier to address this.
601 	 */
602 	virt_mb();
603 
604 	/*
605 	 * If the pending_send_sz is zero, then the ring buffer is not
606 	 * blocked and there is no need to signal.  This is far by the
607 	 * most common case, so exit quickly for best performance.
608 	 */
609 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
610 	if (!pending_sz)
611 		return;
612 
613 	/*
614 	 * Ensure the read of write_index in hv_get_bytes_to_write()
615 	 * happens after the read of pending_send_sz.
616 	 */
617 	virt_rmb();
618 	curr_write_sz = hv_get_bytes_to_write(rbi);
619 	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
620 
621 	/*
622 	 * We want to signal the host only if we're transitioning
623 	 * from a "not enough free space" state to a "enough free
624 	 * space" state.  For example, it's possible that this function
625 	 * could run and free up enough space to signal the host, and then
626 	 * run again and free up additional space before the host has a
627 	 * chance to clear the pending_send_sz.  The 2nd invocation would
628 	 * be a null transition from "enough free space" to "enough free
629 	 * space", which doesn't warrant a signal.
630 	 *
631 	 * Exactly filling the ring buffer is treated as "not enough
632 	 * space". The ring buffer always must have at least one byte
633 	 * empty so the empty and full conditions are distinguishable.
634 	 * hv_get_bytes_to_write() doesn't fully tell the truth in
635 	 * this regard.
636 	 *
637 	 * So first check if we were in the "enough free space" state
638 	 * before we began the iteration. If so, the host was not
639 	 * blocked, and there's no need to signal.
640 	 */
641 	if (curr_write_sz - bytes_read > pending_sz)
642 		return;
643 
644 	/*
645 	 * Similarly, if the new state is "not enough space", then
646 	 * there's no need to signal.
647 	 */
648 	if (curr_write_sz <= pending_sz)
649 		return;
650 
651 	++channel->intr_in_full;
652 	vmbus_setevent(channel);
653 }
654 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
655