xref: /linux/drivers/hv/ring_buffer.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 
31 #include "hyperv_vmbus.h"
32 
33 void hv_begin_read(struct hv_ring_buffer_info *rbi)
34 {
35 	rbi->ring_buffer->interrupt_mask = 1;
36 	mb();
37 }
38 
39 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
40 {
41 	u32 read;
42 	u32 write;
43 
44 	rbi->ring_buffer->interrupt_mask = 0;
45 	mb();
46 
47 	/*
48 	 * Now check to see if the ring buffer is still empty.
49 	 * If it is not, we raced and we need to process new
50 	 * incoming messages.
51 	 */
52 	hv_get_ringbuffer_availbytes(rbi, &read, &write);
53 
54 	return read;
55 }
56 
57 /*
58  * When we write to the ring buffer, check if the host needs to
59  * be signaled. Here is the details of this protocol:
60  *
61  *	1. The host guarantees that while it is draining the
62  *	   ring buffer, it will set the interrupt_mask to
63  *	   indicate it does not need to be interrupted when
64  *	   new data is placed.
65  *
66  *	2. The host guarantees that it will completely drain
67  *	   the ring buffer before exiting the read loop. Further,
68  *	   once the ring buffer is empty, it will clear the
69  *	   interrupt_mask and re-check to see if new data has
70  *	   arrived.
71  */
72 
73 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
74 {
75 	mb();
76 	if (rbi->ring_buffer->interrupt_mask)
77 		return false;
78 
79 	/* check interrupt_mask before read_index */
80 	rmb();
81 	/*
82 	 * This is the only case we need to signal when the
83 	 * ring transitions from being empty to non-empty.
84 	 */
85 	if (old_write == rbi->ring_buffer->read_index)
86 		return true;
87 
88 	return false;
89 }
90 
91 /*
92  * To optimize the flow management on the send-side,
93  * when the sender is blocked because of lack of
94  * sufficient space in the ring buffer, potential the
95  * consumer of the ring buffer can signal the producer.
96  * This is controlled by the following parameters:
97  *
98  * 1. pending_send_sz: This is the size in bytes that the
99  *    producer is trying to send.
100  * 2. The feature bit feat_pending_send_sz set to indicate if
101  *    the consumer of the ring will signal when the ring
102  *    state transitions from being full to a state where
103  *    there is room for the producer to send the pending packet.
104  */
105 
106 static bool hv_need_to_signal_on_read(u32 old_rd,
107 					 struct hv_ring_buffer_info *rbi)
108 {
109 	u32 prev_write_sz;
110 	u32 cur_write_sz;
111 	u32 r_size;
112 	u32 write_loc = rbi->ring_buffer->write_index;
113 	u32 read_loc = rbi->ring_buffer->read_index;
114 	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
115 
116 	/*
117 	 * If the other end is not blocked on write don't bother.
118 	 */
119 	if (pending_sz == 0)
120 		return false;
121 
122 	r_size = rbi->ring_datasize;
123 	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
124 			read_loc - write_loc;
125 
126 	prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
127 			old_rd - write_loc;
128 
129 
130 	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  * hv_get_next_write_location()
138  *
139  * Get the next write location for the specified ring buffer
140  *
141  */
142 static inline u32
143 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
144 {
145 	u32 next = ring_info->ring_buffer->write_index;
146 
147 	return next;
148 }
149 
150 /*
151  * hv_set_next_write_location()
152  *
153  * Set the next write location for the specified ring buffer
154  *
155  */
156 static inline void
157 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
158 		     u32 next_write_location)
159 {
160 	ring_info->ring_buffer->write_index = next_write_location;
161 }
162 
163 /*
164  * hv_get_next_read_location()
165  *
166  * Get the next read location for the specified ring buffer
167  */
168 static inline u32
169 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
170 {
171 	u32 next = ring_info->ring_buffer->read_index;
172 
173 	return next;
174 }
175 
176 /*
177  * hv_get_next_readlocation_withoffset()
178  *
179  * Get the next read location + offset for the specified ring buffer.
180  * This allows the caller to skip
181  */
182 static inline u32
183 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
184 				 u32 offset)
185 {
186 	u32 next = ring_info->ring_buffer->read_index;
187 
188 	next += offset;
189 	next %= ring_info->ring_datasize;
190 
191 	return next;
192 }
193 
194 /*
195  *
196  * hv_set_next_read_location()
197  *
198  * Set the next read location for the specified ring buffer
199  *
200  */
201 static inline void
202 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
203 		    u32 next_read_location)
204 {
205 	ring_info->ring_buffer->read_index = next_read_location;
206 }
207 
208 
209 /*
210  *
211  * hv_get_ring_buffer()
212  *
213  * Get the start of the ring buffer
214  */
215 static inline void *
216 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
217 {
218 	return (void *)ring_info->ring_buffer->buffer;
219 }
220 
221 
222 /*
223  *
224  * hv_get_ring_buffersize()
225  *
226  * Get the size of the ring buffer
227  */
228 static inline u32
229 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
230 {
231 	return ring_info->ring_datasize;
232 }
233 
234 /*
235  *
236  * hv_get_ring_bufferindices()
237  *
238  * Get the read and write indices as u64 of the specified ring buffer
239  *
240  */
241 static inline u64
242 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
243 {
244 	return (u64)ring_info->ring_buffer->write_index << 32;
245 }
246 
247 /*
248  *
249  * hv_copyfrom_ringbuffer()
250  *
251  * Helper routine to copy to source from ring buffer.
252  * Assume there is enough room. Handles wrap-around in src case only!!
253  *
254  */
255 static u32 hv_copyfrom_ringbuffer(
256 	struct hv_ring_buffer_info	*ring_info,
257 	void				*dest,
258 	u32				destlen,
259 	u32				start_read_offset)
260 {
261 	void *ring_buffer = hv_get_ring_buffer(ring_info);
262 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
263 
264 	u32 frag_len;
265 
266 	/* wrap-around detected at the src */
267 	if (destlen > ring_buffer_size - start_read_offset) {
268 		frag_len = ring_buffer_size - start_read_offset;
269 
270 		memcpy(dest, ring_buffer + start_read_offset, frag_len);
271 		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
272 	} else
273 
274 		memcpy(dest, ring_buffer + start_read_offset, destlen);
275 
276 
277 	start_read_offset += destlen;
278 	start_read_offset %= ring_buffer_size;
279 
280 	return start_read_offset;
281 }
282 
283 
284 /*
285  *
286  * hv_copyto_ringbuffer()
287  *
288  * Helper routine to copy from source to ring buffer.
289  * Assume there is enough room. Handles wrap-around in dest case only!!
290  *
291  */
292 static u32 hv_copyto_ringbuffer(
293 	struct hv_ring_buffer_info	*ring_info,
294 	u32				start_write_offset,
295 	void				*src,
296 	u32				srclen)
297 {
298 	void *ring_buffer = hv_get_ring_buffer(ring_info);
299 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
300 	u32 frag_len;
301 
302 	/* wrap-around detected! */
303 	if (srclen > ring_buffer_size - start_write_offset) {
304 		frag_len = ring_buffer_size - start_write_offset;
305 		memcpy(ring_buffer + start_write_offset, src, frag_len);
306 		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
307 	} else
308 		memcpy(ring_buffer + start_write_offset, src, srclen);
309 
310 	start_write_offset += srclen;
311 	start_write_offset %= ring_buffer_size;
312 
313 	return start_write_offset;
314 }
315 
316 /*
317  *
318  * hv_ringbuffer_get_debuginfo()
319  *
320  * Get various debug metrics for the specified ring buffer
321  *
322  */
323 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
324 			    struct hv_ring_buffer_debug_info *debug_info)
325 {
326 	u32 bytes_avail_towrite;
327 	u32 bytes_avail_toread;
328 
329 	if (ring_info->ring_buffer) {
330 		hv_get_ringbuffer_availbytes(ring_info,
331 					&bytes_avail_toread,
332 					&bytes_avail_towrite);
333 
334 		debug_info->bytes_avail_toread = bytes_avail_toread;
335 		debug_info->bytes_avail_towrite = bytes_avail_towrite;
336 		debug_info->current_read_index =
337 			ring_info->ring_buffer->read_index;
338 		debug_info->current_write_index =
339 			ring_info->ring_buffer->write_index;
340 		debug_info->current_interrupt_mask =
341 			ring_info->ring_buffer->interrupt_mask;
342 	}
343 }
344 
345 /*
346  *
347  * hv_ringbuffer_init()
348  *
349  *Initialize the ring buffer
350  *
351  */
352 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
353 		   void *buffer, u32 buflen)
354 {
355 	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
356 		return -EINVAL;
357 
358 	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
359 
360 	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
361 	ring_info->ring_buffer->read_index =
362 		ring_info->ring_buffer->write_index = 0;
363 
364 	/*
365 	 * Set the feature bit for enabling flow control.
366 	 */
367 	ring_info->ring_buffer->feature_bits.value = 1;
368 
369 	ring_info->ring_size = buflen;
370 	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
371 
372 	spin_lock_init(&ring_info->ring_lock);
373 
374 	return 0;
375 }
376 
377 /*
378  *
379  * hv_ringbuffer_cleanup()
380  *
381  * Cleanup the ring buffer
382  *
383  */
384 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
385 {
386 }
387 
388 /*
389  *
390  * hv_ringbuffer_write()
391  *
392  * Write to the ring buffer
393  *
394  */
395 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
396 		    struct kvec *kv_list, u32 kv_count, bool *signal)
397 {
398 	int i = 0;
399 	u32 bytes_avail_towrite;
400 	u32 bytes_avail_toread;
401 	u32 totalbytes_towrite = 0;
402 
403 	u32 next_write_location;
404 	u32 old_write;
405 	u64 prev_indices = 0;
406 	unsigned long flags;
407 
408 	for (i = 0; i < kv_count; i++)
409 		totalbytes_towrite += kv_list[i].iov_len;
410 
411 	totalbytes_towrite += sizeof(u64);
412 
413 	spin_lock_irqsave(&outring_info->ring_lock, flags);
414 
415 	hv_get_ringbuffer_availbytes(outring_info,
416 				&bytes_avail_toread,
417 				&bytes_avail_towrite);
418 
419 
420 	/* If there is only room for the packet, assume it is full. */
421 	/* Otherwise, the next time around, we think the ring buffer */
422 	/* is empty since the read index == write index */
423 	if (bytes_avail_towrite <= totalbytes_towrite) {
424 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
425 		return -EAGAIN;
426 	}
427 
428 	/* Write to the ring buffer */
429 	next_write_location = hv_get_next_write_location(outring_info);
430 
431 	old_write = next_write_location;
432 
433 	for (i = 0; i < kv_count; i++) {
434 		next_write_location = hv_copyto_ringbuffer(outring_info,
435 						     next_write_location,
436 						     kv_list[i].iov_base,
437 						     kv_list[i].iov_len);
438 	}
439 
440 	/* Set previous packet start */
441 	prev_indices = hv_get_ring_bufferindices(outring_info);
442 
443 	next_write_location = hv_copyto_ringbuffer(outring_info,
444 					     next_write_location,
445 					     &prev_indices,
446 					     sizeof(u64));
447 
448 	/* Issue a full memory barrier before updating the write index */
449 	mb();
450 
451 	/* Now, update the write location */
452 	hv_set_next_write_location(outring_info, next_write_location);
453 
454 
455 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
456 
457 	*signal = hv_need_to_signal(old_write, outring_info);
458 	return 0;
459 }
460 
461 
462 /*
463  *
464  * hv_ringbuffer_peek()
465  *
466  * Read without advancing the read index
467  *
468  */
469 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
470 		   void *Buffer, u32 buflen)
471 {
472 	u32 bytes_avail_towrite;
473 	u32 bytes_avail_toread;
474 	u32 next_read_location = 0;
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(&Inring_info->ring_lock, flags);
478 
479 	hv_get_ringbuffer_availbytes(Inring_info,
480 				&bytes_avail_toread,
481 				&bytes_avail_towrite);
482 
483 	/* Make sure there is something to read */
484 	if (bytes_avail_toread < buflen) {
485 
486 		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
487 
488 		return -EAGAIN;
489 	}
490 
491 	/* Convert to byte offset */
492 	next_read_location = hv_get_next_read_location(Inring_info);
493 
494 	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
495 						Buffer,
496 						buflen,
497 						next_read_location);
498 
499 	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
500 
501 	return 0;
502 }
503 
504 
505 /*
506  *
507  * hv_ringbuffer_read()
508  *
509  * Read and advance the read index
510  *
511  */
512 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
513 		   u32 buflen, u32 offset, bool *signal)
514 {
515 	u32 bytes_avail_towrite;
516 	u32 bytes_avail_toread;
517 	u32 next_read_location = 0;
518 	u64 prev_indices = 0;
519 	unsigned long flags;
520 	u32 old_read;
521 
522 	if (buflen <= 0)
523 		return -EINVAL;
524 
525 	spin_lock_irqsave(&inring_info->ring_lock, flags);
526 
527 	hv_get_ringbuffer_availbytes(inring_info,
528 				&bytes_avail_toread,
529 				&bytes_avail_towrite);
530 
531 	old_read = bytes_avail_toread;
532 
533 	/* Make sure there is something to read */
534 	if (bytes_avail_toread < buflen) {
535 		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
536 
537 		return -EAGAIN;
538 	}
539 
540 	next_read_location =
541 		hv_get_next_readlocation_withoffset(inring_info, offset);
542 
543 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
544 						buffer,
545 						buflen,
546 						next_read_location);
547 
548 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
549 						&prev_indices,
550 						sizeof(u64),
551 						next_read_location);
552 
553 	/* Make sure all reads are done before we update the read index since */
554 	/* the writer may start writing to the read area once the read index */
555 	/*is updated */
556 	mb();
557 
558 	/* Update the read index */
559 	hv_set_next_read_location(inring_info, next_read_location);
560 
561 	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
562 
563 	*signal = hv_need_to_signal_on_read(old_read, inring_info);
564 
565 	return 0;
566 }
567