xref: /linux/drivers/hv/hv_kvp.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * An implementation of key value pair (KVP) functionality for Linux.
3  *
4  *
5  * Copyright (C) 2010, Novell, Inc.
6  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  * NON INFRINGEMENT.  See the GNU General Public License for more
16  * details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/net.h>
26 #include <linux/nls.h>
27 #include <linux/connector.h>
28 #include <linux/workqueue.h>
29 #include <linux/hyperv.h>
30 
31 
32 
33 /*
34  * Global state maintained for transaction that is being processed.
35  * Note that only one transaction can be active at any point in time.
36  *
37  * This state is set when we receive a request from the host; we
38  * cleanup this state when the transaction is completed - when we respond
39  * to the host with the key value.
40  */
41 
42 static struct {
43 	bool active; /* transaction status - active or not */
44 	int recv_len; /* number of bytes received. */
45 	struct hv_kvp_msg  *kvp_msg; /* current message */
46 	struct vmbus_channel *recv_channel; /* chn we got the request */
47 	u64 recv_req_id; /* request ID. */
48 	void *kvp_context; /* for the channel callback */
49 } kvp_transaction;
50 
51 /*
52  * Before we can accept KVP messages from the host, we need
53  * to handshake with the user level daemon. This state tracks
54  * if we are in the handshake phase.
55  */
56 static bool in_hand_shake = true;
57 
58 /*
59  * This state maintains the version number registered by the daemon.
60  */
61 static int dm_reg_value;
62 
63 static void kvp_send_key(struct work_struct *dummy);
64 
65 
66 static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error);
67 static void kvp_work_func(struct work_struct *dummy);
68 static void kvp_register(int);
69 
70 static DECLARE_DELAYED_WORK(kvp_work, kvp_work_func);
71 static DECLARE_WORK(kvp_sendkey_work, kvp_send_key);
72 
73 static struct cb_id kvp_id = { CN_KVP_IDX, CN_KVP_VAL };
74 static const char kvp_name[] = "kvp_kernel_module";
75 static u8 *recv_buffer;
76 /*
77  * Register the kernel component with the user-level daemon.
78  * As part of this registration, pass the LIC version number.
79  */
80 
81 static void
82 kvp_register(int reg_value)
83 {
84 
85 	struct cn_msg *msg;
86 	struct hv_kvp_msg *kvp_msg;
87 	char *version;
88 
89 	msg = kzalloc(sizeof(*msg) + sizeof(struct hv_kvp_msg), GFP_ATOMIC);
90 
91 	if (msg) {
92 		kvp_msg = (struct hv_kvp_msg *)msg->data;
93 		version = kvp_msg->body.kvp_register.version;
94 		msg->id.idx =  CN_KVP_IDX;
95 		msg->id.val = CN_KVP_VAL;
96 
97 		kvp_msg->kvp_hdr.operation = reg_value;
98 		strcpy(version, HV_DRV_VERSION);
99 		msg->len = sizeof(struct hv_kvp_msg);
100 		cn_netlink_send(msg, 0, GFP_ATOMIC);
101 		kfree(msg);
102 	}
103 }
104 static void
105 kvp_work_func(struct work_struct *dummy)
106 {
107 	/*
108 	 * If the timer fires, the user-mode component has not responded;
109 	 * process the pending transaction.
110 	 */
111 	kvp_respond_to_host(NULL, HV_E_FAIL);
112 }
113 
114 static int kvp_handle_handshake(struct hv_kvp_msg *msg)
115 {
116 	int ret = 1;
117 
118 	switch (msg->kvp_hdr.operation) {
119 	case KVP_OP_REGISTER:
120 		dm_reg_value = KVP_OP_REGISTER;
121 		pr_info("KVP: IP injection functionality not available\n");
122 		pr_info("KVP: Upgrade the KVP daemon\n");
123 		break;
124 	case KVP_OP_REGISTER1:
125 		dm_reg_value = KVP_OP_REGISTER1;
126 		break;
127 	default:
128 		pr_info("KVP: incompatible daemon\n");
129 		pr_info("KVP: KVP version: %d, Daemon version: %d\n",
130 			KVP_OP_REGISTER1, msg->kvp_hdr.operation);
131 		ret = 0;
132 	}
133 
134 	if (ret) {
135 		/*
136 		 * We have a compatible daemon; complete the handshake.
137 		 */
138 		pr_info("KVP: user-mode registering done.\n");
139 		kvp_register(dm_reg_value);
140 		kvp_transaction.active = false;
141 		if (kvp_transaction.kvp_context)
142 			hv_kvp_onchannelcallback(kvp_transaction.kvp_context);
143 	}
144 	return ret;
145 }
146 
147 
148 /*
149  * Callback when data is received from user mode.
150  */
151 
152 static void
153 kvp_cn_callback(struct cn_msg *msg, struct netlink_skb_parms *nsp)
154 {
155 	struct hv_kvp_msg *message;
156 	struct hv_kvp_msg_enumerate *data;
157 	int	error = 0;
158 
159 	message = (struct hv_kvp_msg *)msg->data;
160 
161 	/*
162 	 * If we are negotiating the version information
163 	 * with the daemon; handle that first.
164 	 */
165 
166 	if (in_hand_shake) {
167 		if (kvp_handle_handshake(message))
168 			in_hand_shake = false;
169 		return;
170 	}
171 
172 	/*
173 	 * Based on the version of the daemon, we propagate errors from the
174 	 * daemon differently.
175 	 */
176 
177 	data = &message->body.kvp_enum_data;
178 
179 	switch (dm_reg_value) {
180 	case KVP_OP_REGISTER:
181 		/*
182 		 * Null string is used to pass back error condition.
183 		 */
184 		if (data->data.key[0] == 0)
185 			error = HV_S_CONT;
186 		break;
187 
188 	case KVP_OP_REGISTER1:
189 		/*
190 		 * We use the message header information from
191 		 * the user level daemon to transmit errors.
192 		 */
193 		error = message->error;
194 		break;
195 	}
196 
197 	/*
198 	 * Complete the transaction by forwarding the key value
199 	 * to the host. But first, cancel the timeout.
200 	 */
201 	if (cancel_delayed_work_sync(&kvp_work))
202 		kvp_respond_to_host(message, error);
203 }
204 
205 
206 static int process_ob_ipinfo(void *in_msg, void *out_msg, int op)
207 {
208 	struct hv_kvp_msg *in = in_msg;
209 	struct hv_kvp_ip_msg *out = out_msg;
210 	int len;
211 
212 	switch (op) {
213 	case KVP_OP_GET_IP_INFO:
214 		/*
215 		 * Transform all parameters into utf16 encoding.
216 		 */
217 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr,
218 				strlen((char *)in->body.kvp_ip_val.ip_addr),
219 				UTF16_HOST_ENDIAN,
220 				(wchar_t *)out->kvp_ip_val.ip_addr,
221 				MAX_IP_ADDR_SIZE);
222 		if (len < 0)
223 			return len;
224 
225 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net,
226 				strlen((char *)in->body.kvp_ip_val.sub_net),
227 				UTF16_HOST_ENDIAN,
228 				(wchar_t *)out->kvp_ip_val.sub_net,
229 				MAX_IP_ADDR_SIZE);
230 		if (len < 0)
231 			return len;
232 
233 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way,
234 				strlen((char *)in->body.kvp_ip_val.gate_way),
235 				UTF16_HOST_ENDIAN,
236 				(wchar_t *)out->kvp_ip_val.gate_way,
237 				MAX_GATEWAY_SIZE);
238 		if (len < 0)
239 			return len;
240 
241 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr,
242 				strlen((char *)in->body.kvp_ip_val.dns_addr),
243 				UTF16_HOST_ENDIAN,
244 				(wchar_t *)out->kvp_ip_val.dns_addr,
245 				MAX_IP_ADDR_SIZE);
246 		if (len < 0)
247 			return len;
248 
249 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id,
250 				strlen((char *)in->body.kvp_ip_val.adapter_id),
251 				UTF16_HOST_ENDIAN,
252 				(wchar_t *)out->kvp_ip_val.adapter_id,
253 				MAX_IP_ADDR_SIZE);
254 		if (len < 0)
255 			return len;
256 
257 		out->kvp_ip_val.dhcp_enabled =
258 			in->body.kvp_ip_val.dhcp_enabled;
259 		out->kvp_ip_val.addr_family =
260 			in->body.kvp_ip_val.addr_family;
261 	}
262 
263 	return 0;
264 }
265 
266 static void process_ib_ipinfo(void *in_msg, void *out_msg, int op)
267 {
268 	struct hv_kvp_ip_msg *in = in_msg;
269 	struct hv_kvp_msg *out = out_msg;
270 
271 	switch (op) {
272 	case KVP_OP_SET_IP_INFO:
273 		/*
274 		 * Transform all parameters into utf8 encoding.
275 		 */
276 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr,
277 				MAX_IP_ADDR_SIZE,
278 				UTF16_LITTLE_ENDIAN,
279 				(__u8 *)out->body.kvp_ip_val.ip_addr,
280 				MAX_IP_ADDR_SIZE);
281 
282 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net,
283 				MAX_IP_ADDR_SIZE,
284 				UTF16_LITTLE_ENDIAN,
285 				(__u8 *)out->body.kvp_ip_val.sub_net,
286 				MAX_IP_ADDR_SIZE);
287 
288 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way,
289 				MAX_GATEWAY_SIZE,
290 				UTF16_LITTLE_ENDIAN,
291 				(__u8 *)out->body.kvp_ip_val.gate_way,
292 				MAX_GATEWAY_SIZE);
293 
294 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr,
295 				MAX_IP_ADDR_SIZE,
296 				UTF16_LITTLE_ENDIAN,
297 				(__u8 *)out->body.kvp_ip_val.dns_addr,
298 				MAX_IP_ADDR_SIZE);
299 
300 		out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled;
301 
302 	default:
303 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id,
304 				MAX_ADAPTER_ID_SIZE,
305 				UTF16_LITTLE_ENDIAN,
306 				(__u8 *)out->body.kvp_ip_val.adapter_id,
307 				MAX_ADAPTER_ID_SIZE);
308 
309 		out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family;
310 	}
311 }
312 
313 
314 
315 
316 static void
317 kvp_send_key(struct work_struct *dummy)
318 {
319 	struct cn_msg *msg;
320 	struct hv_kvp_msg *message;
321 	struct hv_kvp_msg *in_msg;
322 	__u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation;
323 	__u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool;
324 	__u32 val32;
325 	__u64 val64;
326 
327 	msg = kzalloc(sizeof(*msg) + sizeof(struct hv_kvp_msg) , GFP_ATOMIC);
328 	if (!msg)
329 		return;
330 
331 	msg->id.idx =  CN_KVP_IDX;
332 	msg->id.val = CN_KVP_VAL;
333 
334 	message = (struct hv_kvp_msg *)msg->data;
335 	message->kvp_hdr.operation = operation;
336 	message->kvp_hdr.pool = pool;
337 	in_msg = kvp_transaction.kvp_msg;
338 
339 	/*
340 	 * The key/value strings sent from the host are encoded in
341 	 * in utf16; convert it to utf8 strings.
342 	 * The host assures us that the utf16 strings will not exceed
343 	 * the max lengths specified. We will however, reserve room
344 	 * for the string terminating character - in the utf16s_utf8s()
345 	 * function we limit the size of the buffer where the converted
346 	 * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to gaurantee
347 	 * that the strings can be properly terminated!
348 	 */
349 
350 	switch (message->kvp_hdr.operation) {
351 	case KVP_OP_SET_IP_INFO:
352 		process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO);
353 		break;
354 	case KVP_OP_GET_IP_INFO:
355 		process_ib_ipinfo(in_msg, message, KVP_OP_GET_IP_INFO);
356 		break;
357 	case KVP_OP_SET:
358 		switch (in_msg->body.kvp_set.data.value_type) {
359 		case REG_SZ:
360 			/*
361 			 * The value is a string - utf16 encoding.
362 			 */
363 			message->body.kvp_set.data.value_size =
364 				utf16s_to_utf8s(
365 				(wchar_t *)in_msg->body.kvp_set.data.value,
366 				in_msg->body.kvp_set.data.value_size,
367 				UTF16_LITTLE_ENDIAN,
368 				message->body.kvp_set.data.value,
369 				HV_KVP_EXCHANGE_MAX_VALUE_SIZE - 1) + 1;
370 				break;
371 
372 		case REG_U32:
373 			/*
374 			 * The value is a 32 bit scalar.
375 			 * We save this as a utf8 string.
376 			 */
377 			val32 = in_msg->body.kvp_set.data.value_u32;
378 			message->body.kvp_set.data.value_size =
379 				sprintf(message->body.kvp_set.data.value,
380 					"%d", val32) + 1;
381 			break;
382 
383 		case REG_U64:
384 			/*
385 			 * The value is a 64 bit scalar.
386 			 * We save this as a utf8 string.
387 			 */
388 			val64 = in_msg->body.kvp_set.data.value_u64;
389 			message->body.kvp_set.data.value_size =
390 				sprintf(message->body.kvp_set.data.value,
391 					"%llu", val64) + 1;
392 			break;
393 
394 		}
395 	case KVP_OP_GET:
396 		message->body.kvp_set.data.key_size =
397 			utf16s_to_utf8s(
398 			(wchar_t *)in_msg->body.kvp_set.data.key,
399 			in_msg->body.kvp_set.data.key_size,
400 			UTF16_LITTLE_ENDIAN,
401 			message->body.kvp_set.data.key,
402 			HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1;
403 			break;
404 
405 	case KVP_OP_DELETE:
406 		message->body.kvp_delete.key_size =
407 			utf16s_to_utf8s(
408 			(wchar_t *)in_msg->body.kvp_delete.key,
409 			in_msg->body.kvp_delete.key_size,
410 			UTF16_LITTLE_ENDIAN,
411 			message->body.kvp_delete.key,
412 			HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1;
413 			break;
414 
415 	case KVP_OP_ENUMERATE:
416 		message->body.kvp_enum_data.index =
417 			in_msg->body.kvp_enum_data.index;
418 			break;
419 	}
420 
421 	msg->len = sizeof(struct hv_kvp_msg);
422 	cn_netlink_send(msg, 0, GFP_ATOMIC);
423 	kfree(msg);
424 
425 	return;
426 }
427 
428 /*
429  * Send a response back to the host.
430  */
431 
432 static void
433 kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error)
434 {
435 	struct hv_kvp_msg  *kvp_msg;
436 	struct hv_kvp_exchg_msg_value  *kvp_data;
437 	char	*key_name;
438 	char	*value;
439 	struct icmsg_hdr *icmsghdrp;
440 	int	keylen = 0;
441 	int	valuelen = 0;
442 	u32	buf_len;
443 	struct vmbus_channel *channel;
444 	u64	req_id;
445 	int ret;
446 
447 	/*
448 	 * If a transaction is not active; log and return.
449 	 */
450 
451 	if (!kvp_transaction.active) {
452 		/*
453 		 * This is a spurious call!
454 		 */
455 		pr_warn("KVP: Transaction not active\n");
456 		return;
457 	}
458 	/*
459 	 * Copy the global state for completing the transaction. Note that
460 	 * only one transaction can be active at a time.
461 	 */
462 
463 	buf_len = kvp_transaction.recv_len;
464 	channel = kvp_transaction.recv_channel;
465 	req_id = kvp_transaction.recv_req_id;
466 
467 	kvp_transaction.active = false;
468 
469 	icmsghdrp = (struct icmsg_hdr *)
470 			&recv_buffer[sizeof(struct vmbuspipe_hdr)];
471 
472 	if (channel->onchannel_callback == NULL)
473 		/*
474 		 * We have raced with util driver being unloaded;
475 		 * silently return.
476 		 */
477 		return;
478 
479 	icmsghdrp->status = error;
480 
481 	/*
482 	 * If the error parameter is set, terminate the host's enumeration
483 	 * on this pool.
484 	 */
485 	if (error) {
486 		/*
487 		 * Something failed or we have timedout;
488 		 * terminate the current host-side iteration.
489 		 */
490 		goto response_done;
491 	}
492 
493 	kvp_msg = (struct hv_kvp_msg *)
494 			&recv_buffer[sizeof(struct vmbuspipe_hdr) +
495 			sizeof(struct icmsg_hdr)];
496 
497 	switch (kvp_transaction.kvp_msg->kvp_hdr.operation) {
498 	case KVP_OP_GET_IP_INFO:
499 		ret = process_ob_ipinfo(msg_to_host,
500 				 (struct hv_kvp_ip_msg *)kvp_msg,
501 				 KVP_OP_GET_IP_INFO);
502 		if (ret < 0)
503 			icmsghdrp->status = HV_E_FAIL;
504 
505 		goto response_done;
506 	case KVP_OP_SET_IP_INFO:
507 		goto response_done;
508 	case KVP_OP_GET:
509 		kvp_data = &kvp_msg->body.kvp_get.data;
510 		goto copy_value;
511 
512 	case KVP_OP_SET:
513 	case KVP_OP_DELETE:
514 		goto response_done;
515 
516 	default:
517 		break;
518 	}
519 
520 	kvp_data = &kvp_msg->body.kvp_enum_data.data;
521 	key_name = msg_to_host->body.kvp_enum_data.data.key;
522 
523 	/*
524 	 * The windows host expects the key/value pair to be encoded
525 	 * in utf16. Ensure that the key/value size reported to the host
526 	 * will be less than or equal to the MAX size (including the
527 	 * terminating character).
528 	 */
529 	keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN,
530 				(wchar_t *) kvp_data->key,
531 				(HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2);
532 	kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */
533 
534 copy_value:
535 	value = msg_to_host->body.kvp_enum_data.data.value;
536 	valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN,
537 				(wchar_t *) kvp_data->value,
538 				(HV_KVP_EXCHANGE_MAX_VALUE_SIZE / 2) - 2);
539 	kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */
540 
541 	/*
542 	 * If the utf8s to utf16s conversion failed; notify host
543 	 * of the error.
544 	 */
545 	if ((keylen < 0) || (valuelen < 0))
546 		icmsghdrp->status = HV_E_FAIL;
547 
548 	kvp_data->value_type = REG_SZ; /* all our values are strings */
549 
550 response_done:
551 	icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE;
552 
553 	vmbus_sendpacket(channel, recv_buffer, buf_len, req_id,
554 				VM_PKT_DATA_INBAND, 0);
555 
556 }
557 
558 /*
559  * This callback is invoked when we get a KVP message from the host.
560  * The host ensures that only one KVP transaction can be active at a time.
561  * KVP implementation in Linux needs to forward the key to a user-mde
562  * component to retrive the corresponding value. Consequently, we cannot
563  * respond to the host in the conext of this callback. Since the host
564  * guarantees that at most only one transaction can be active at a time,
565  * we stash away the transaction state in a set of global variables.
566  */
567 
568 void hv_kvp_onchannelcallback(void *context)
569 {
570 	struct vmbus_channel *channel = context;
571 	u32 recvlen;
572 	u64 requestid;
573 
574 	struct hv_kvp_msg *kvp_msg;
575 
576 	struct icmsg_hdr *icmsghdrp;
577 	struct icmsg_negotiate *negop = NULL;
578 
579 	if (kvp_transaction.active) {
580 		/*
581 		 * We will defer processing this callback once
582 		 * the current transaction is complete.
583 		 */
584 		kvp_transaction.kvp_context = context;
585 		return;
586 	}
587 
588 	vmbus_recvpacket(channel, recv_buffer, PAGE_SIZE * 2, &recvlen,
589 			 &requestid);
590 
591 	if (recvlen > 0) {
592 		icmsghdrp = (struct icmsg_hdr *)&recv_buffer[
593 			sizeof(struct vmbuspipe_hdr)];
594 
595 		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
596 			vmbus_prep_negotiate_resp(icmsghdrp, negop,
597 				 recv_buffer, MAX_SRV_VER, MAX_SRV_VER);
598 		} else {
599 			kvp_msg = (struct hv_kvp_msg *)&recv_buffer[
600 				sizeof(struct vmbuspipe_hdr) +
601 				sizeof(struct icmsg_hdr)];
602 
603 			/*
604 			 * Stash away this global state for completing the
605 			 * transaction; note transactions are serialized.
606 			 */
607 
608 			kvp_transaction.recv_len = recvlen;
609 			kvp_transaction.recv_channel = channel;
610 			kvp_transaction.recv_req_id = requestid;
611 			kvp_transaction.active = true;
612 			kvp_transaction.kvp_msg = kvp_msg;
613 
614 			/*
615 			 * Get the information from the
616 			 * user-mode component.
617 			 * component. This transaction will be
618 			 * completed when we get the value from
619 			 * the user-mode component.
620 			 * Set a timeout to deal with
621 			 * user-mode not responding.
622 			 */
623 			schedule_work(&kvp_sendkey_work);
624 			schedule_delayed_work(&kvp_work, 5*HZ);
625 
626 			return;
627 
628 		}
629 
630 		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
631 			| ICMSGHDRFLAG_RESPONSE;
632 
633 		vmbus_sendpacket(channel, recv_buffer,
634 				       recvlen, requestid,
635 				       VM_PKT_DATA_INBAND, 0);
636 	}
637 
638 }
639 
640 int
641 hv_kvp_init(struct hv_util_service *srv)
642 {
643 	int err;
644 
645 	err = cn_add_callback(&kvp_id, kvp_name, kvp_cn_callback);
646 	if (err)
647 		return err;
648 	recv_buffer = srv->recv_buffer;
649 
650 	/*
651 	 * When this driver loads, the user level daemon that
652 	 * processes the host requests may not yet be running.
653 	 * Defer processing channel callbacks until the daemon
654 	 * has registered.
655 	 */
656 	kvp_transaction.active = true;
657 
658 	return 0;
659 }
660 
661 void hv_kvp_deinit(void)
662 {
663 	cn_del_callback(&kvp_id);
664 	cancel_delayed_work_sync(&kvp_work);
665 	cancel_work_sync(&kvp_sendkey_work);
666 }
667