xref: /linux/drivers/hv/hv_balloon.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34 
35 #include <linux/hyperv.h>
36 
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43 
44 
45 
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57 
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61 
62 enum {
63 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66 
67 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70 
71 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73 
74 
75 
76 /*
77  * Message Types
78  */
79 
80 enum dm_message_type {
81 	/*
82 	 * Version 0.3
83 	 */
84 	DM_ERROR			= 0,
85 	DM_VERSION_REQUEST		= 1,
86 	DM_VERSION_RESPONSE		= 2,
87 	DM_CAPABILITIES_REPORT		= 3,
88 	DM_CAPABILITIES_RESPONSE	= 4,
89 	DM_STATUS_REPORT		= 5,
90 	DM_BALLOON_REQUEST		= 6,
91 	DM_BALLOON_RESPONSE		= 7,
92 	DM_UNBALLOON_REQUEST		= 8,
93 	DM_UNBALLOON_RESPONSE		= 9,
94 	DM_MEM_HOT_ADD_REQUEST		= 10,
95 	DM_MEM_HOT_ADD_RESPONSE		= 11,
96 	DM_VERSION_03_MAX		= 11,
97 	/*
98 	 * Version 1.0.
99 	 */
100 	DM_INFO_MESSAGE			= 12,
101 	DM_VERSION_1_MAX		= 12
102 };
103 
104 
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109 
110 union dm_version {
111 	struct {
112 		__u16 minor_version;
113 		__u16 major_version;
114 	};
115 	__u32 version;
116 } __packed;
117 
118 
119 union dm_caps {
120 	struct {
121 		__u64 balloon:1;
122 		__u64 hot_add:1;
123 		/*
124 		 * To support guests that may have alignment
125 		 * limitations on hot-add, the guest can specify
126 		 * its alignment requirements; a value of n
127 		 * represents an alignment of 2^n in mega bytes.
128 		 */
129 		__u64 hot_add_alignment:4;
130 		__u64 reservedz:58;
131 	} cap_bits;
132 	__u64 caps;
133 } __packed;
134 
135 union dm_mem_page_range {
136 	struct  {
137 		/*
138 		 * The PFN number of the first page in the range.
139 		 * 40 bits is the architectural limit of a PFN
140 		 * number for AMD64.
141 		 */
142 		__u64 start_page:40;
143 		/*
144 		 * The number of pages in the range.
145 		 */
146 		__u64 page_cnt:24;
147 	} finfo;
148 	__u64  page_range;
149 } __packed;
150 
151 
152 
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160 
161 struct dm_header {
162 	__u16 type;
163 	__u16 size;
164 	__u32 trans_id;
165 } __packed;
166 
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171 
172 struct dm_message {
173 	struct dm_header hdr;
174 	__u8 data[]; /* enclosed message */
175 } __packed;
176 
177 
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181 
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191 
192 struct dm_version_request {
193 	struct dm_header hdr;
194 	union dm_version version;
195 	__u32 is_last_attempt:1;
196 	__u32 reservedz:31;
197 } __packed;
198 
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209 
210 struct dm_version_response {
211 	struct dm_header hdr;
212 	__u64 is_accepted:1;
213 	__u64 reservedz:63;
214 } __packed;
215 
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220 
221 struct dm_capabilities {
222 	struct dm_header hdr;
223 	union dm_caps caps;
224 	__u64 min_page_cnt;
225 	__u64 max_page_number;
226 } __packed;
227 
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237 
238 struct dm_capabilities_resp_msg {
239 	struct dm_header hdr;
240 	__u64 is_accepted:1;
241 	__u64 reservedz:63;
242 } __packed;
243 
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *		   in the system in pages.
253  * zero_free: The nunber of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *	    calculated as File Cache Page Fault Count - Page Read Count.
257  *	    This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263 
264 struct dm_status {
265 	struct dm_header hdr;
266 	__u64 num_avail;
267 	__u64 num_committed;
268 	__u64 page_file_size;
269 	__u64 zero_free;
270 	__u32 page_file_writes;
271 	__u32 io_diff;
272 } __packed;
273 
274 
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282 
283 struct dm_balloon {
284 	struct dm_header hdr;
285 	__u32 num_pages;
286 	__u32 reservedz;
287 } __packed;
288 
289 
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303 
304 struct dm_balloon_response {
305 	struct dm_header hdr;
306 	__u32 reservedz;
307 	__u32 more_pages:1;
308 	__u32 range_count:31;
309 	union dm_mem_page_range range_array[];
310 } __packed;
311 
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326 
327 struct dm_unballoon_request {
328 	struct dm_header hdr;
329 	__u32 more_pages:1;
330 	__u32 reservedz:31;
331 	__u32 range_count;
332 	union dm_mem_page_range range_array[];
333 } __packed;
334 
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340 
341 struct dm_unballoon_response {
342 	struct dm_header hdr;
343 } __packed;
344 
345 
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  * On Linux we currently don't support this since we cannot hot add
352  * arbitrary granularity of memory.
353  */
354 
355 struct dm_hot_add {
356 	struct dm_header hdr;
357 	union dm_mem_page_range range;
358 } __packed;
359 
360 /*
361  * Hot add response message.
362  * This message is sent by the guest to report the status of a hot add request.
363  * If page_count is less than the requested page count, then the host should
364  * assume all further hot add requests will fail, since this indicates that
365  * the guest has hit an upper physical memory barrier.
366  *
367  * Hot adds may also fail due to low resources; in this case, the guest must
368  * not complete this message until the hot add can succeed, and the host must
369  * not send a new hot add request until the response is sent.
370  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371  * times it fails the request.
372  *
373  *
374  * page_count: number of pages that were successfully hot added.
375  *
376  * result: result of the operation 1: success, 0: failure.
377  *
378  */
379 
380 struct dm_hot_add_response {
381 	struct dm_header hdr;
382 	__u32 page_count;
383 	__u32 result;
384 } __packed;
385 
386 /*
387  * Types of information sent from host to the guest.
388  */
389 
390 enum dm_info_type {
391 	INFO_TYPE_MAX_PAGE_CNT = 0,
392 	MAX_INFO_TYPE
393 };
394 
395 
396 /*
397  * Header for the information message.
398  */
399 
400 struct dm_info_header {
401 	enum dm_info_type type;
402 	__u32 data_size;
403 } __packed;
404 
405 /*
406  * This message is sent from the host to the guest to pass
407  * some relevant information (win8 addition).
408  *
409  * reserved: no used.
410  * info_size: size of the information blob.
411  * info: information blob.
412  */
413 
414 struct dm_info_msg {
415 	struct dm_header hdr;
416 	__u32 reserved;
417 	__u32 info_size;
418 	__u8  info[];
419 };
420 
421 /*
422  * End protocol definitions.
423  */
424 
425 /*
426  * State to manage hot adding memory into the guest.
427  * The range start_pfn : end_pfn specifies the range
428  * that the host has asked us to hot add. The range
429  * start_pfn : ha_end_pfn specifies the range that we have
430  * currently hot added. We hot add in multiples of 128M
431  * chunks; it is possible that we may not be able to bring
432  * online all the pages in the region. The range
433  * covered_start_pfn:covered_end_pfn defines the pages that can
434  * be brough online.
435  */
436 
437 struct hv_hotadd_state {
438 	struct list_head list;
439 	unsigned long start_pfn;
440 	unsigned long covered_start_pfn;
441 	unsigned long covered_end_pfn;
442 	unsigned long ha_end_pfn;
443 	unsigned long end_pfn;
444 	/*
445 	 * A list of gaps.
446 	 */
447 	struct list_head gap_list;
448 };
449 
450 struct hv_hotadd_gap {
451 	struct list_head list;
452 	unsigned long start_pfn;
453 	unsigned long end_pfn;
454 };
455 
456 struct balloon_state {
457 	__u32 num_pages;
458 	struct work_struct wrk;
459 };
460 
461 struct hot_add_wrk {
462 	union dm_mem_page_range ha_page_range;
463 	union dm_mem_page_range ha_region_range;
464 	struct work_struct wrk;
465 };
466 
467 static bool hot_add = true;
468 static bool do_hot_add;
469 /*
470  * Delay reporting memory pressure by
471  * the specified number of seconds.
472  */
473 static uint pressure_report_delay = 45;
474 
475 /*
476  * The last time we posted a pressure report to host.
477  */
478 static unsigned long last_post_time;
479 
480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
482 
483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
485 static atomic_t trans_id = ATOMIC_INIT(0);
486 
487 static int dm_ring_size = (5 * PAGE_SIZE);
488 
489 /*
490  * Driver specific state.
491  */
492 
493 enum hv_dm_state {
494 	DM_INITIALIZING = 0,
495 	DM_INITIALIZED,
496 	DM_BALLOON_UP,
497 	DM_BALLOON_DOWN,
498 	DM_HOT_ADD,
499 	DM_INIT_ERROR
500 };
501 
502 
503 static __u8 recv_buffer[PAGE_SIZE];
504 static __u8 *send_buffer;
505 #define PAGES_IN_2M	512
506 #define HA_CHUNK (32 * 1024)
507 
508 struct hv_dynmem_device {
509 	struct hv_device *dev;
510 	enum hv_dm_state state;
511 	struct completion host_event;
512 	struct completion config_event;
513 
514 	/*
515 	 * Number of pages we have currently ballooned out.
516 	 */
517 	unsigned int num_pages_ballooned;
518 	unsigned int num_pages_onlined;
519 	unsigned int num_pages_added;
520 
521 	/*
522 	 * State to manage the ballooning (up) operation.
523 	 */
524 	struct balloon_state balloon_wrk;
525 
526 	/*
527 	 * State to execute the "hot-add" operation.
528 	 */
529 	struct hot_add_wrk ha_wrk;
530 
531 	/*
532 	 * This state tracks if the host has specified a hot-add
533 	 * region.
534 	 */
535 	bool host_specified_ha_region;
536 
537 	/*
538 	 * State to synchronize hot-add.
539 	 */
540 	struct completion  ol_waitevent;
541 	bool ha_waiting;
542 	/*
543 	 * This thread handles hot-add
544 	 * requests from the host as well as notifying
545 	 * the host with regards to memory pressure in
546 	 * the guest.
547 	 */
548 	struct task_struct *thread;
549 
550 	/*
551 	 * Protects ha_region_list, num_pages_onlined counter and individual
552 	 * regions from ha_region_list.
553 	 */
554 	spinlock_t ha_lock;
555 
556 	/*
557 	 * A list of hot-add regions.
558 	 */
559 	struct list_head ha_region_list;
560 
561 	/*
562 	 * We start with the highest version we can support
563 	 * and downgrade based on the host; we save here the
564 	 * next version to try.
565 	 */
566 	__u32 next_version;
567 };
568 
569 static struct hv_dynmem_device dm_device;
570 
571 static void post_status(struct hv_dynmem_device *dm);
572 
573 #ifdef CONFIG_MEMORY_HOTPLUG
574 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
575 			      void *v)
576 {
577 	struct memory_notify *mem = (struct memory_notify *)v;
578 	unsigned long flags;
579 
580 	switch (val) {
581 	case MEM_ONLINE:
582 		spin_lock_irqsave(&dm_device.ha_lock, flags);
583 		dm_device.num_pages_onlined += mem->nr_pages;
584 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
585 	case MEM_CANCEL_ONLINE:
586 		if (dm_device.ha_waiting) {
587 			dm_device.ha_waiting = false;
588 			complete(&dm_device.ol_waitevent);
589 		}
590 		break;
591 
592 	case MEM_OFFLINE:
593 		spin_lock_irqsave(&dm_device.ha_lock, flags);
594 		dm_device.num_pages_onlined -= mem->nr_pages;
595 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
596 		break;
597 	case MEM_GOING_ONLINE:
598 	case MEM_GOING_OFFLINE:
599 	case MEM_CANCEL_OFFLINE:
600 		break;
601 	}
602 	return NOTIFY_OK;
603 }
604 
605 static struct notifier_block hv_memory_nb = {
606 	.notifier_call = hv_memory_notifier,
607 	.priority = 0
608 };
609 
610 /* Check if the particular page is backed and can be onlined and online it. */
611 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
612 {
613 	unsigned long cur_start_pgp;
614 	unsigned long cur_end_pgp;
615 	struct hv_hotadd_gap *gap;
616 
617 	cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
618 	cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
619 
620 	/* The page is not backed. */
621 	if (((unsigned long)pg < cur_start_pgp) ||
622 	    ((unsigned long)pg >= cur_end_pgp))
623 		return;
624 
625 	/* Check for gaps. */
626 	list_for_each_entry(gap, &has->gap_list, list) {
627 		cur_start_pgp = (unsigned long)
628 			pfn_to_page(gap->start_pfn);
629 		cur_end_pgp = (unsigned long)
630 			pfn_to_page(gap->end_pfn);
631 		if (((unsigned long)pg >= cur_start_pgp) &&
632 		    ((unsigned long)pg < cur_end_pgp)) {
633 			return;
634 		}
635 	}
636 
637 	/* This frame is currently backed; online the page. */
638 	__online_page_set_limits(pg);
639 	__online_page_increment_counters(pg);
640 	__online_page_free(pg);
641 }
642 
643 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
644 				unsigned long start_pfn, unsigned long size)
645 {
646 	int i;
647 
648 	for (i = 0; i < size; i++)
649 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
650 }
651 
652 static void hv_mem_hot_add(unsigned long start, unsigned long size,
653 				unsigned long pfn_count,
654 				struct hv_hotadd_state *has)
655 {
656 	int ret = 0;
657 	int i, nid;
658 	unsigned long start_pfn;
659 	unsigned long processed_pfn;
660 	unsigned long total_pfn = pfn_count;
661 	unsigned long flags;
662 
663 	for (i = 0; i < (size/HA_CHUNK); i++) {
664 		start_pfn = start + (i * HA_CHUNK);
665 
666 		spin_lock_irqsave(&dm_device.ha_lock, flags);
667 		has->ha_end_pfn +=  HA_CHUNK;
668 
669 		if (total_pfn > HA_CHUNK) {
670 			processed_pfn = HA_CHUNK;
671 			total_pfn -= HA_CHUNK;
672 		} else {
673 			processed_pfn = total_pfn;
674 			total_pfn = 0;
675 		}
676 
677 		has->covered_end_pfn +=  processed_pfn;
678 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
679 
680 		init_completion(&dm_device.ol_waitevent);
681 		dm_device.ha_waiting = !memhp_auto_online;
682 
683 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
684 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
685 				(HA_CHUNK << PAGE_SHIFT));
686 
687 		if (ret) {
688 			pr_info("hot_add memory failed error is %d\n", ret);
689 			if (ret == -EEXIST) {
690 				/*
691 				 * This error indicates that the error
692 				 * is not a transient failure. This is the
693 				 * case where the guest's physical address map
694 				 * precludes hot adding memory. Stop all further
695 				 * memory hot-add.
696 				 */
697 				do_hot_add = false;
698 			}
699 			spin_lock_irqsave(&dm_device.ha_lock, flags);
700 			has->ha_end_pfn -= HA_CHUNK;
701 			has->covered_end_pfn -=  processed_pfn;
702 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
703 			break;
704 		}
705 
706 		/*
707 		 * Wait for the memory block to be onlined when memory onlining
708 		 * is done outside of kernel (memhp_auto_online). Since the hot
709 		 * add has succeeded, it is ok to proceed even if the pages in
710 		 * the hot added region have not been "onlined" within the
711 		 * allowed time.
712 		 */
713 		if (dm_device.ha_waiting)
714 			wait_for_completion_timeout(&dm_device.ol_waitevent,
715 						    5*HZ);
716 		post_status(&dm_device);
717 	}
718 
719 	return;
720 }
721 
722 static void hv_online_page(struct page *pg)
723 {
724 	struct hv_hotadd_state *has;
725 	unsigned long cur_start_pgp;
726 	unsigned long cur_end_pgp;
727 	unsigned long flags;
728 
729 	spin_lock_irqsave(&dm_device.ha_lock, flags);
730 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
731 		cur_start_pgp = (unsigned long)
732 			pfn_to_page(has->start_pfn);
733 		cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
734 
735 		/* The page belongs to a different HAS. */
736 		if (((unsigned long)pg < cur_start_pgp) ||
737 		    ((unsigned long)pg >= cur_end_pgp))
738 			continue;
739 
740 		hv_page_online_one(has, pg);
741 		break;
742 	}
743 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
744 }
745 
746 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
747 {
748 	struct hv_hotadd_state *has;
749 	struct hv_hotadd_gap *gap;
750 	unsigned long residual, new_inc;
751 	int ret = 0;
752 	unsigned long flags;
753 
754 	spin_lock_irqsave(&dm_device.ha_lock, flags);
755 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
756 		/*
757 		 * If the pfn range we are dealing with is not in the current
758 		 * "hot add block", move on.
759 		 */
760 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
761 			continue;
762 
763 		/*
764 		 * If the current start pfn is not where the covered_end
765 		 * is, create a gap and update covered_end_pfn.
766 		 */
767 		if (has->covered_end_pfn != start_pfn) {
768 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
769 			if (!gap) {
770 				ret = -ENOMEM;
771 				break;
772 			}
773 
774 			INIT_LIST_HEAD(&gap->list);
775 			gap->start_pfn = has->covered_end_pfn;
776 			gap->end_pfn = start_pfn;
777 			list_add_tail(&gap->list, &has->gap_list);
778 
779 			has->covered_end_pfn = start_pfn;
780 		}
781 
782 		/*
783 		 * If the current hot add-request extends beyond
784 		 * our current limit; extend it.
785 		 */
786 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
787 			residual = (start_pfn + pfn_cnt - has->end_pfn);
788 			/*
789 			 * Extend the region by multiples of HA_CHUNK.
790 			 */
791 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
792 			if (residual % HA_CHUNK)
793 				new_inc += HA_CHUNK;
794 
795 			has->end_pfn += new_inc;
796 		}
797 
798 		ret = 1;
799 		break;
800 	}
801 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
802 
803 	return ret;
804 }
805 
806 static unsigned long handle_pg_range(unsigned long pg_start,
807 					unsigned long pg_count)
808 {
809 	unsigned long start_pfn = pg_start;
810 	unsigned long pfn_cnt = pg_count;
811 	unsigned long size;
812 	struct hv_hotadd_state *has;
813 	unsigned long pgs_ol = 0;
814 	unsigned long old_covered_state;
815 	unsigned long res = 0, flags;
816 
817 	spin_lock_irqsave(&dm_device.ha_lock, flags);
818 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
819 		/*
820 		 * If the pfn range we are dealing with is not in the current
821 		 * "hot add block", move on.
822 		 */
823 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
824 			continue;
825 
826 		old_covered_state = has->covered_end_pfn;
827 
828 		if (start_pfn < has->ha_end_pfn) {
829 			/*
830 			 * This is the case where we are backing pages
831 			 * in an already hot added region. Bring
832 			 * these pages online first.
833 			 */
834 			pgs_ol = has->ha_end_pfn - start_pfn;
835 			if (pgs_ol > pfn_cnt)
836 				pgs_ol = pfn_cnt;
837 
838 			has->covered_end_pfn +=  pgs_ol;
839 			pfn_cnt -= pgs_ol;
840 			/*
841 			 * Check if the corresponding memory block is already
842 			 * online by checking its last previously backed page.
843 			 * In case it is we need to bring rest (which was not
844 			 * backed previously) online too.
845 			 */
846 			if (start_pfn > has->start_pfn &&
847 			    !PageReserved(pfn_to_page(start_pfn - 1)))
848 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
849 
850 		}
851 
852 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
853 			/*
854 			 * We have some residual hot add range
855 			 * that needs to be hot added; hot add
856 			 * it now. Hot add a multiple of
857 			 * of HA_CHUNK that fully covers the pages
858 			 * we have.
859 			 */
860 			size = (has->end_pfn - has->ha_end_pfn);
861 			if (pfn_cnt <= size) {
862 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
863 				if (pfn_cnt % HA_CHUNK)
864 					size += HA_CHUNK;
865 			} else {
866 				pfn_cnt = size;
867 			}
868 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
869 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
870 			spin_lock_irqsave(&dm_device.ha_lock, flags);
871 		}
872 		/*
873 		 * If we managed to online any pages that were given to us,
874 		 * we declare success.
875 		 */
876 		res = has->covered_end_pfn - old_covered_state;
877 		break;
878 	}
879 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
880 
881 	return res;
882 }
883 
884 static unsigned long process_hot_add(unsigned long pg_start,
885 					unsigned long pfn_cnt,
886 					unsigned long rg_start,
887 					unsigned long rg_size)
888 {
889 	struct hv_hotadd_state *ha_region = NULL;
890 	int covered;
891 	unsigned long flags;
892 
893 	if (pfn_cnt == 0)
894 		return 0;
895 
896 	if (!dm_device.host_specified_ha_region) {
897 		covered = pfn_covered(pg_start, pfn_cnt);
898 		if (covered < 0)
899 			return 0;
900 
901 		if (covered)
902 			goto do_pg_range;
903 	}
904 
905 	/*
906 	 * If the host has specified a hot-add range; deal with it first.
907 	 */
908 
909 	if (rg_size != 0) {
910 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
911 		if (!ha_region)
912 			return 0;
913 
914 		INIT_LIST_HEAD(&ha_region->list);
915 		INIT_LIST_HEAD(&ha_region->gap_list);
916 
917 		ha_region->start_pfn = rg_start;
918 		ha_region->ha_end_pfn = rg_start;
919 		ha_region->covered_start_pfn = pg_start;
920 		ha_region->covered_end_pfn = pg_start;
921 		ha_region->end_pfn = rg_start + rg_size;
922 
923 		spin_lock_irqsave(&dm_device.ha_lock, flags);
924 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
925 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
926 	}
927 
928 do_pg_range:
929 	/*
930 	 * Process the page range specified; bringing them
931 	 * online if possible.
932 	 */
933 	return handle_pg_range(pg_start, pfn_cnt);
934 }
935 
936 #endif
937 
938 static void hot_add_req(struct work_struct *dummy)
939 {
940 	struct dm_hot_add_response resp;
941 #ifdef CONFIG_MEMORY_HOTPLUG
942 	unsigned long pg_start, pfn_cnt;
943 	unsigned long rg_start, rg_sz;
944 #endif
945 	struct hv_dynmem_device *dm = &dm_device;
946 
947 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
948 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
949 	resp.hdr.size = sizeof(struct dm_hot_add_response);
950 
951 #ifdef CONFIG_MEMORY_HOTPLUG
952 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
953 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
954 
955 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
956 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
957 
958 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
959 		unsigned long region_size;
960 		unsigned long region_start;
961 
962 		/*
963 		 * The host has not specified the hot-add region.
964 		 * Based on the hot-add page range being specified,
965 		 * compute a hot-add region that can cover the pages
966 		 * that need to be hot-added while ensuring the alignment
967 		 * and size requirements of Linux as it relates to hot-add.
968 		 */
969 		region_start = pg_start;
970 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
971 		if (pfn_cnt % HA_CHUNK)
972 			region_size += HA_CHUNK;
973 
974 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
975 
976 		rg_start = region_start;
977 		rg_sz = region_size;
978 	}
979 
980 	if (do_hot_add)
981 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
982 						rg_start, rg_sz);
983 
984 	dm->num_pages_added += resp.page_count;
985 #endif
986 	/*
987 	 * The result field of the response structure has the
988 	 * following semantics:
989 	 *
990 	 * 1. If all or some pages hot-added: Guest should return success.
991 	 *
992 	 * 2. If no pages could be hot-added:
993 	 *
994 	 * If the guest returns success, then the host
995 	 * will not attempt any further hot-add operations. This
996 	 * signifies a permanent failure.
997 	 *
998 	 * If the guest returns failure, then this failure will be
999 	 * treated as a transient failure and the host may retry the
1000 	 * hot-add operation after some delay.
1001 	 */
1002 	if (resp.page_count > 0)
1003 		resp.result = 1;
1004 	else if (!do_hot_add)
1005 		resp.result = 1;
1006 	else
1007 		resp.result = 0;
1008 
1009 	if (!do_hot_add || (resp.page_count == 0))
1010 		pr_info("Memory hot add failed\n");
1011 
1012 	dm->state = DM_INITIALIZED;
1013 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1014 	vmbus_sendpacket(dm->dev->channel, &resp,
1015 			sizeof(struct dm_hot_add_response),
1016 			(unsigned long)NULL,
1017 			VM_PKT_DATA_INBAND, 0);
1018 }
1019 
1020 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1021 {
1022 	struct dm_info_header *info_hdr;
1023 
1024 	info_hdr = (struct dm_info_header *)msg->info;
1025 
1026 	switch (info_hdr->type) {
1027 	case INFO_TYPE_MAX_PAGE_CNT:
1028 		pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
1029 		pr_info("Data Size is %d\n", info_hdr->data_size);
1030 		break;
1031 	default:
1032 		pr_info("Received Unknown type: %d\n", info_hdr->type);
1033 	}
1034 }
1035 
1036 static unsigned long compute_balloon_floor(void)
1037 {
1038 	unsigned long min_pages;
1039 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1040 	/* Simple continuous piecewiese linear function:
1041 	 *  max MiB -> min MiB  gradient
1042 	 *       0         0
1043 	 *      16        16
1044 	 *      32        24
1045 	 *     128        72    (1/2)
1046 	 *     512       168    (1/4)
1047 	 *    2048       360    (1/8)
1048 	 *    8192       744    (1/16)
1049 	 *   32768      1512	(1/32)
1050 	 */
1051 	if (totalram_pages < MB2PAGES(128))
1052 		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1053 	else if (totalram_pages < MB2PAGES(512))
1054 		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1055 	else if (totalram_pages < MB2PAGES(2048))
1056 		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1057 	else if (totalram_pages < MB2PAGES(8192))
1058 		min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1059 	else
1060 		min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1061 #undef MB2PAGES
1062 	return min_pages;
1063 }
1064 
1065 /*
1066  * Post our status as it relates memory pressure to the
1067  * host. Host expects the guests to post this status
1068  * periodically at 1 second intervals.
1069  *
1070  * The metrics specified in this protocol are very Windows
1071  * specific and so we cook up numbers here to convey our memory
1072  * pressure.
1073  */
1074 
1075 static void post_status(struct hv_dynmem_device *dm)
1076 {
1077 	struct dm_status status;
1078 	unsigned long now = jiffies;
1079 	unsigned long last_post = last_post_time;
1080 
1081 	if (pressure_report_delay > 0) {
1082 		--pressure_report_delay;
1083 		return;
1084 	}
1085 
1086 	if (!time_after(now, (last_post_time + HZ)))
1087 		return;
1088 
1089 	memset(&status, 0, sizeof(struct dm_status));
1090 	status.hdr.type = DM_STATUS_REPORT;
1091 	status.hdr.size = sizeof(struct dm_status);
1092 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1093 
1094 	/*
1095 	 * The host expects the guest to report free and committed memory.
1096 	 * Furthermore, the host expects the pressure information to include
1097 	 * the ballooned out pages. For a given amount of memory that we are
1098 	 * managing we need to compute a floor below which we should not
1099 	 * balloon. Compute this and add it to the pressure report.
1100 	 * We also need to report all offline pages (num_pages_added -
1101 	 * num_pages_onlined) as committed to the host, otherwise it can try
1102 	 * asking us to balloon them out.
1103 	 */
1104 	status.num_avail = si_mem_available();
1105 	status.num_committed = vm_memory_committed() +
1106 		dm->num_pages_ballooned +
1107 		(dm->num_pages_added > dm->num_pages_onlined ?
1108 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1109 		compute_balloon_floor();
1110 
1111 	/*
1112 	 * If our transaction ID is no longer current, just don't
1113 	 * send the status. This can happen if we were interrupted
1114 	 * after we picked our transaction ID.
1115 	 */
1116 	if (status.hdr.trans_id != atomic_read(&trans_id))
1117 		return;
1118 
1119 	/*
1120 	 * If the last post time that we sampled has changed,
1121 	 * we have raced, don't post the status.
1122 	 */
1123 	if (last_post != last_post_time)
1124 		return;
1125 
1126 	last_post_time = jiffies;
1127 	vmbus_sendpacket(dm->dev->channel, &status,
1128 				sizeof(struct dm_status),
1129 				(unsigned long)NULL,
1130 				VM_PKT_DATA_INBAND, 0);
1131 
1132 }
1133 
1134 static void free_balloon_pages(struct hv_dynmem_device *dm,
1135 			 union dm_mem_page_range *range_array)
1136 {
1137 	int num_pages = range_array->finfo.page_cnt;
1138 	__u64 start_frame = range_array->finfo.start_page;
1139 	struct page *pg;
1140 	int i;
1141 
1142 	for (i = 0; i < num_pages; i++) {
1143 		pg = pfn_to_page(i + start_frame);
1144 		__free_page(pg);
1145 		dm->num_pages_ballooned--;
1146 	}
1147 }
1148 
1149 
1150 
1151 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1152 					unsigned int num_pages,
1153 					struct dm_balloon_response *bl_resp,
1154 					int alloc_unit)
1155 {
1156 	unsigned int i = 0;
1157 	struct page *pg;
1158 
1159 	if (num_pages < alloc_unit)
1160 		return 0;
1161 
1162 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1163 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1164 			PAGE_SIZE)
1165 			return i * alloc_unit;
1166 
1167 		/*
1168 		 * We execute this code in a thread context. Furthermore,
1169 		 * we don't want the kernel to try too hard.
1170 		 */
1171 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1172 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1173 				get_order(alloc_unit << PAGE_SHIFT));
1174 
1175 		if (!pg)
1176 			return i * alloc_unit;
1177 
1178 		dm->num_pages_ballooned += alloc_unit;
1179 
1180 		/*
1181 		 * If we allocatted 2M pages; split them so we
1182 		 * can free them in any order we get.
1183 		 */
1184 
1185 		if (alloc_unit != 1)
1186 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1187 
1188 		bl_resp->range_count++;
1189 		bl_resp->range_array[i].finfo.start_page =
1190 			page_to_pfn(pg);
1191 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1192 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1193 
1194 	}
1195 
1196 	return num_pages;
1197 }
1198 
1199 
1200 
1201 static void balloon_up(struct work_struct *dummy)
1202 {
1203 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1204 	unsigned int num_ballooned = 0;
1205 	struct dm_balloon_response *bl_resp;
1206 	int alloc_unit;
1207 	int ret;
1208 	bool done = false;
1209 	int i;
1210 	long avail_pages;
1211 	unsigned long floor;
1212 
1213 	/* The host balloons pages in 2M granularity. */
1214 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1215 
1216 	/*
1217 	 * We will attempt 2M allocations. However, if we fail to
1218 	 * allocate 2M chunks, we will go back to 4k allocations.
1219 	 */
1220 	alloc_unit = 512;
1221 
1222 	avail_pages = si_mem_available();
1223 	floor = compute_balloon_floor();
1224 
1225 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1226 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1227 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1228 		num_pages -= num_pages % PAGES_IN_2M;
1229 	}
1230 
1231 	while (!done) {
1232 		bl_resp = (struct dm_balloon_response *)send_buffer;
1233 		memset(send_buffer, 0, PAGE_SIZE);
1234 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1235 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1236 		bl_resp->more_pages = 1;
1237 
1238 		num_pages -= num_ballooned;
1239 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1240 						    bl_resp, alloc_unit);
1241 
1242 		if (alloc_unit != 1 && num_ballooned == 0) {
1243 			alloc_unit = 1;
1244 			continue;
1245 		}
1246 
1247 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1248 			bl_resp->more_pages = 0;
1249 			done = true;
1250 			dm_device.state = DM_INITIALIZED;
1251 		}
1252 
1253 		/*
1254 		 * We are pushing a lot of data through the channel;
1255 		 * deal with transient failures caused because of the
1256 		 * lack of space in the ring buffer.
1257 		 */
1258 
1259 		do {
1260 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1261 			ret = vmbus_sendpacket(dm_device.dev->channel,
1262 						bl_resp,
1263 						bl_resp->hdr.size,
1264 						(unsigned long)NULL,
1265 						VM_PKT_DATA_INBAND, 0);
1266 
1267 			if (ret == -EAGAIN)
1268 				msleep(20);
1269 			post_status(&dm_device);
1270 		} while (ret == -EAGAIN);
1271 
1272 		if (ret) {
1273 			/*
1274 			 * Free up the memory we allocatted.
1275 			 */
1276 			pr_info("Balloon response failed\n");
1277 
1278 			for (i = 0; i < bl_resp->range_count; i++)
1279 				free_balloon_pages(&dm_device,
1280 						 &bl_resp->range_array[i]);
1281 
1282 			done = true;
1283 		}
1284 	}
1285 
1286 }
1287 
1288 static void balloon_down(struct hv_dynmem_device *dm,
1289 			struct dm_unballoon_request *req)
1290 {
1291 	union dm_mem_page_range *range_array = req->range_array;
1292 	int range_count = req->range_count;
1293 	struct dm_unballoon_response resp;
1294 	int i;
1295 
1296 	for (i = 0; i < range_count; i++) {
1297 		free_balloon_pages(dm, &range_array[i]);
1298 		complete(&dm_device.config_event);
1299 	}
1300 
1301 	if (req->more_pages == 1)
1302 		return;
1303 
1304 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1305 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1306 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1307 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1308 
1309 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1310 				sizeof(struct dm_unballoon_response),
1311 				(unsigned long)NULL,
1312 				VM_PKT_DATA_INBAND, 0);
1313 
1314 	dm->state = DM_INITIALIZED;
1315 }
1316 
1317 static void balloon_onchannelcallback(void *context);
1318 
1319 static int dm_thread_func(void *dm_dev)
1320 {
1321 	struct hv_dynmem_device *dm = dm_dev;
1322 
1323 	while (!kthread_should_stop()) {
1324 		wait_for_completion_interruptible_timeout(
1325 						&dm_device.config_event, 1*HZ);
1326 		/*
1327 		 * The host expects us to post information on the memory
1328 		 * pressure every second.
1329 		 */
1330 		reinit_completion(&dm_device.config_event);
1331 		post_status(dm);
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 
1338 static void version_resp(struct hv_dynmem_device *dm,
1339 			struct dm_version_response *vresp)
1340 {
1341 	struct dm_version_request version_req;
1342 	int ret;
1343 
1344 	if (vresp->is_accepted) {
1345 		/*
1346 		 * We are done; wakeup the
1347 		 * context waiting for version
1348 		 * negotiation.
1349 		 */
1350 		complete(&dm->host_event);
1351 		return;
1352 	}
1353 	/*
1354 	 * If there are more versions to try, continue
1355 	 * with negotiations; if not
1356 	 * shutdown the service since we are not able
1357 	 * to negotiate a suitable version number
1358 	 * with the host.
1359 	 */
1360 	if (dm->next_version == 0)
1361 		goto version_error;
1362 
1363 	memset(&version_req, 0, sizeof(struct dm_version_request));
1364 	version_req.hdr.type = DM_VERSION_REQUEST;
1365 	version_req.hdr.size = sizeof(struct dm_version_request);
1366 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1367 	version_req.version.version = dm->next_version;
1368 
1369 	/*
1370 	 * Set the next version to try in case current version fails.
1371 	 * Win7 protocol ought to be the last one to try.
1372 	 */
1373 	switch (version_req.version.version) {
1374 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1375 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1376 		version_req.is_last_attempt = 0;
1377 		break;
1378 	default:
1379 		dm->next_version = 0;
1380 		version_req.is_last_attempt = 1;
1381 	}
1382 
1383 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1384 				sizeof(struct dm_version_request),
1385 				(unsigned long)NULL,
1386 				VM_PKT_DATA_INBAND, 0);
1387 
1388 	if (ret)
1389 		goto version_error;
1390 
1391 	return;
1392 
1393 version_error:
1394 	dm->state = DM_INIT_ERROR;
1395 	complete(&dm->host_event);
1396 }
1397 
1398 static void cap_resp(struct hv_dynmem_device *dm,
1399 			struct dm_capabilities_resp_msg *cap_resp)
1400 {
1401 	if (!cap_resp->is_accepted) {
1402 		pr_info("Capabilities not accepted by host\n");
1403 		dm->state = DM_INIT_ERROR;
1404 	}
1405 	complete(&dm->host_event);
1406 }
1407 
1408 static void balloon_onchannelcallback(void *context)
1409 {
1410 	struct hv_device *dev = context;
1411 	u32 recvlen;
1412 	u64 requestid;
1413 	struct dm_message *dm_msg;
1414 	struct dm_header *dm_hdr;
1415 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1416 	struct dm_balloon *bal_msg;
1417 	struct dm_hot_add *ha_msg;
1418 	union dm_mem_page_range *ha_pg_range;
1419 	union dm_mem_page_range *ha_region;
1420 
1421 	memset(recv_buffer, 0, sizeof(recv_buffer));
1422 	vmbus_recvpacket(dev->channel, recv_buffer,
1423 			 PAGE_SIZE, &recvlen, &requestid);
1424 
1425 	if (recvlen > 0) {
1426 		dm_msg = (struct dm_message *)recv_buffer;
1427 		dm_hdr = &dm_msg->hdr;
1428 
1429 		switch (dm_hdr->type) {
1430 		case DM_VERSION_RESPONSE:
1431 			version_resp(dm,
1432 				 (struct dm_version_response *)dm_msg);
1433 			break;
1434 
1435 		case DM_CAPABILITIES_RESPONSE:
1436 			cap_resp(dm,
1437 				 (struct dm_capabilities_resp_msg *)dm_msg);
1438 			break;
1439 
1440 		case DM_BALLOON_REQUEST:
1441 			if (dm->state == DM_BALLOON_UP)
1442 				pr_warn("Currently ballooning\n");
1443 			bal_msg = (struct dm_balloon *)recv_buffer;
1444 			dm->state = DM_BALLOON_UP;
1445 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1446 			schedule_work(&dm_device.balloon_wrk.wrk);
1447 			break;
1448 
1449 		case DM_UNBALLOON_REQUEST:
1450 			dm->state = DM_BALLOON_DOWN;
1451 			balloon_down(dm,
1452 				 (struct dm_unballoon_request *)recv_buffer);
1453 			break;
1454 
1455 		case DM_MEM_HOT_ADD_REQUEST:
1456 			if (dm->state == DM_HOT_ADD)
1457 				pr_warn("Currently hot-adding\n");
1458 			dm->state = DM_HOT_ADD;
1459 			ha_msg = (struct dm_hot_add *)recv_buffer;
1460 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1461 				/*
1462 				 * This is a normal hot-add request specifying
1463 				 * hot-add memory.
1464 				 */
1465 				dm->host_specified_ha_region = false;
1466 				ha_pg_range = &ha_msg->range;
1467 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1468 				dm->ha_wrk.ha_region_range.page_range = 0;
1469 			} else {
1470 				/*
1471 				 * Host is specifying that we first hot-add
1472 				 * a region and then partially populate this
1473 				 * region.
1474 				 */
1475 				dm->host_specified_ha_region = true;
1476 				ha_pg_range = &ha_msg->range;
1477 				ha_region = &ha_pg_range[1];
1478 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1479 				dm->ha_wrk.ha_region_range = *ha_region;
1480 			}
1481 			schedule_work(&dm_device.ha_wrk.wrk);
1482 			break;
1483 
1484 		case DM_INFO_MESSAGE:
1485 			process_info(dm, (struct dm_info_msg *)dm_msg);
1486 			break;
1487 
1488 		default:
1489 			pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1490 
1491 		}
1492 	}
1493 
1494 }
1495 
1496 static int balloon_probe(struct hv_device *dev,
1497 			const struct hv_vmbus_device_id *dev_id)
1498 {
1499 	int ret;
1500 	unsigned long t;
1501 	struct dm_version_request version_req;
1502 	struct dm_capabilities cap_msg;
1503 
1504 	do_hot_add = hot_add;
1505 
1506 	/*
1507 	 * First allocate a send buffer.
1508 	 */
1509 
1510 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1511 	if (!send_buffer)
1512 		return -ENOMEM;
1513 
1514 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1515 			balloon_onchannelcallback, dev);
1516 
1517 	if (ret)
1518 		goto probe_error0;
1519 
1520 	dm_device.dev = dev;
1521 	dm_device.state = DM_INITIALIZING;
1522 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1523 	init_completion(&dm_device.host_event);
1524 	init_completion(&dm_device.config_event);
1525 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1526 	spin_lock_init(&dm_device.ha_lock);
1527 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1528 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1529 	dm_device.host_specified_ha_region = false;
1530 
1531 	dm_device.thread =
1532 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1533 	if (IS_ERR(dm_device.thread)) {
1534 		ret = PTR_ERR(dm_device.thread);
1535 		goto probe_error1;
1536 	}
1537 
1538 #ifdef CONFIG_MEMORY_HOTPLUG
1539 	set_online_page_callback(&hv_online_page);
1540 	register_memory_notifier(&hv_memory_nb);
1541 #endif
1542 
1543 	hv_set_drvdata(dev, &dm_device);
1544 	/*
1545 	 * Initiate the hand shake with the host and negotiate
1546 	 * a version that the host can support. We start with the
1547 	 * highest version number and go down if the host cannot
1548 	 * support it.
1549 	 */
1550 	memset(&version_req, 0, sizeof(struct dm_version_request));
1551 	version_req.hdr.type = DM_VERSION_REQUEST;
1552 	version_req.hdr.size = sizeof(struct dm_version_request);
1553 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1554 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1555 	version_req.is_last_attempt = 0;
1556 
1557 	ret = vmbus_sendpacket(dev->channel, &version_req,
1558 				sizeof(struct dm_version_request),
1559 				(unsigned long)NULL,
1560 				VM_PKT_DATA_INBAND, 0);
1561 	if (ret)
1562 		goto probe_error2;
1563 
1564 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1565 	if (t == 0) {
1566 		ret = -ETIMEDOUT;
1567 		goto probe_error2;
1568 	}
1569 
1570 	/*
1571 	 * If we could not negotiate a compatible version with the host
1572 	 * fail the probe function.
1573 	 */
1574 	if (dm_device.state == DM_INIT_ERROR) {
1575 		ret = -ETIMEDOUT;
1576 		goto probe_error2;
1577 	}
1578 	/*
1579 	 * Now submit our capabilities to the host.
1580 	 */
1581 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1582 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1583 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1584 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1585 
1586 	cap_msg.caps.cap_bits.balloon = 1;
1587 	cap_msg.caps.cap_bits.hot_add = 1;
1588 
1589 	/*
1590 	 * Specify our alignment requirements as it relates
1591 	 * memory hot-add. Specify 128MB alignment.
1592 	 */
1593 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1594 
1595 	/*
1596 	 * Currently the host does not use these
1597 	 * values and we set them to what is done in the
1598 	 * Windows driver.
1599 	 */
1600 	cap_msg.min_page_cnt = 0;
1601 	cap_msg.max_page_number = -1;
1602 
1603 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1604 				sizeof(struct dm_capabilities),
1605 				(unsigned long)NULL,
1606 				VM_PKT_DATA_INBAND, 0);
1607 	if (ret)
1608 		goto probe_error2;
1609 
1610 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1611 	if (t == 0) {
1612 		ret = -ETIMEDOUT;
1613 		goto probe_error2;
1614 	}
1615 
1616 	/*
1617 	 * If the host does not like our capabilities,
1618 	 * fail the probe function.
1619 	 */
1620 	if (dm_device.state == DM_INIT_ERROR) {
1621 		ret = -ETIMEDOUT;
1622 		goto probe_error2;
1623 	}
1624 
1625 	dm_device.state = DM_INITIALIZED;
1626 
1627 	return 0;
1628 
1629 probe_error2:
1630 #ifdef CONFIG_MEMORY_HOTPLUG
1631 	restore_online_page_callback(&hv_online_page);
1632 #endif
1633 	kthread_stop(dm_device.thread);
1634 
1635 probe_error1:
1636 	vmbus_close(dev->channel);
1637 probe_error0:
1638 	kfree(send_buffer);
1639 	return ret;
1640 }
1641 
1642 static int balloon_remove(struct hv_device *dev)
1643 {
1644 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1645 	struct hv_hotadd_state *has, *tmp;
1646 	struct hv_hotadd_gap *gap, *tmp_gap;
1647 	unsigned long flags;
1648 
1649 	if (dm->num_pages_ballooned != 0)
1650 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1651 
1652 	cancel_work_sync(&dm->balloon_wrk.wrk);
1653 	cancel_work_sync(&dm->ha_wrk.wrk);
1654 
1655 	vmbus_close(dev->channel);
1656 	kthread_stop(dm->thread);
1657 	kfree(send_buffer);
1658 #ifdef CONFIG_MEMORY_HOTPLUG
1659 	restore_online_page_callback(&hv_online_page);
1660 	unregister_memory_notifier(&hv_memory_nb);
1661 #endif
1662 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1663 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1664 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1665 			list_del(&gap->list);
1666 			kfree(gap);
1667 		}
1668 		list_del(&has->list);
1669 		kfree(has);
1670 	}
1671 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1672 
1673 	return 0;
1674 }
1675 
1676 static const struct hv_vmbus_device_id id_table[] = {
1677 	/* Dynamic Memory Class ID */
1678 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1679 	{ HV_DM_GUID, },
1680 	{ },
1681 };
1682 
1683 MODULE_DEVICE_TABLE(vmbus, id_table);
1684 
1685 static  struct hv_driver balloon_drv = {
1686 	.name = "hv_balloon",
1687 	.id_table = id_table,
1688 	.probe =  balloon_probe,
1689 	.remove =  balloon_remove,
1690 };
1691 
1692 static int __init init_balloon_drv(void)
1693 {
1694 
1695 	return vmbus_driver_register(&balloon_drv);
1696 }
1697 
1698 module_init(init_balloon_drv);
1699 
1700 MODULE_DESCRIPTION("Hyper-V Balloon");
1701 MODULE_LICENSE("GPL");
1702