1 /* 2 * Copyright (c) 2012, Microsoft Corporation. 3 * 4 * Author: 5 * K. Y. Srinivasan <kys@microsoft.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more 15 * details. 16 * 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/jiffies.h> 23 #include <linux/mman.h> 24 #include <linux/delay.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/kthread.h> 29 #include <linux/completion.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/memory.h> 32 #include <linux/notifier.h> 33 #include <linux/percpu_counter.h> 34 35 #include <linux/hyperv.h> 36 37 /* 38 * We begin with definitions supporting the Dynamic Memory protocol 39 * with the host. 40 * 41 * Begin protocol definitions. 42 */ 43 44 45 46 /* 47 * Protocol versions. The low word is the minor version, the high word the major 48 * version. 49 * 50 * History: 51 * Initial version 1.0 52 * Changed to 0.1 on 2009/03/25 53 * Changes to 0.2 on 2009/05/14 54 * Changes to 0.3 on 2009/12/03 55 * Changed to 1.0 on 2011/04/05 56 */ 57 58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 61 62 enum { 63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 65 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 66 67 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 68 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 69 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 70 71 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 72 }; 73 74 75 76 /* 77 * Message Types 78 */ 79 80 enum dm_message_type { 81 /* 82 * Version 0.3 83 */ 84 DM_ERROR = 0, 85 DM_VERSION_REQUEST = 1, 86 DM_VERSION_RESPONSE = 2, 87 DM_CAPABILITIES_REPORT = 3, 88 DM_CAPABILITIES_RESPONSE = 4, 89 DM_STATUS_REPORT = 5, 90 DM_BALLOON_REQUEST = 6, 91 DM_BALLOON_RESPONSE = 7, 92 DM_UNBALLOON_REQUEST = 8, 93 DM_UNBALLOON_RESPONSE = 9, 94 DM_MEM_HOT_ADD_REQUEST = 10, 95 DM_MEM_HOT_ADD_RESPONSE = 11, 96 DM_VERSION_03_MAX = 11, 97 /* 98 * Version 1.0. 99 */ 100 DM_INFO_MESSAGE = 12, 101 DM_VERSION_1_MAX = 12 102 }; 103 104 105 /* 106 * Structures defining the dynamic memory management 107 * protocol. 108 */ 109 110 union dm_version { 111 struct { 112 __u16 minor_version; 113 __u16 major_version; 114 }; 115 __u32 version; 116 } __packed; 117 118 119 union dm_caps { 120 struct { 121 __u64 balloon:1; 122 __u64 hot_add:1; 123 /* 124 * To support guests that may have alignment 125 * limitations on hot-add, the guest can specify 126 * its alignment requirements; a value of n 127 * represents an alignment of 2^n in mega bytes. 128 */ 129 __u64 hot_add_alignment:4; 130 __u64 reservedz:58; 131 } cap_bits; 132 __u64 caps; 133 } __packed; 134 135 union dm_mem_page_range { 136 struct { 137 /* 138 * The PFN number of the first page in the range. 139 * 40 bits is the architectural limit of a PFN 140 * number for AMD64. 141 */ 142 __u64 start_page:40; 143 /* 144 * The number of pages in the range. 145 */ 146 __u64 page_cnt:24; 147 } finfo; 148 __u64 page_range; 149 } __packed; 150 151 152 153 /* 154 * The header for all dynamic memory messages: 155 * 156 * type: Type of the message. 157 * size: Size of the message in bytes; including the header. 158 * trans_id: The guest is responsible for manufacturing this ID. 159 */ 160 161 struct dm_header { 162 __u16 type; 163 __u16 size; 164 __u32 trans_id; 165 } __packed; 166 167 /* 168 * A generic message format for dynamic memory. 169 * Specific message formats are defined later in the file. 170 */ 171 172 struct dm_message { 173 struct dm_header hdr; 174 __u8 data[]; /* enclosed message */ 175 } __packed; 176 177 178 /* 179 * Specific message types supporting the dynamic memory protocol. 180 */ 181 182 /* 183 * Version negotiation message. Sent from the guest to the host. 184 * The guest is free to try different versions until the host 185 * accepts the version. 186 * 187 * dm_version: The protocol version requested. 188 * is_last_attempt: If TRUE, this is the last version guest will request. 189 * reservedz: Reserved field, set to zero. 190 */ 191 192 struct dm_version_request { 193 struct dm_header hdr; 194 union dm_version version; 195 __u32 is_last_attempt:1; 196 __u32 reservedz:31; 197 } __packed; 198 199 /* 200 * Version response message; Host to Guest and indicates 201 * if the host has accepted the version sent by the guest. 202 * 203 * is_accepted: If TRUE, host has accepted the version and the guest 204 * should proceed to the next stage of the protocol. FALSE indicates that 205 * guest should re-try with a different version. 206 * 207 * reservedz: Reserved field, set to zero. 208 */ 209 210 struct dm_version_response { 211 struct dm_header hdr; 212 __u64 is_accepted:1; 213 __u64 reservedz:63; 214 } __packed; 215 216 /* 217 * Message reporting capabilities. This is sent from the guest to the 218 * host. 219 */ 220 221 struct dm_capabilities { 222 struct dm_header hdr; 223 union dm_caps caps; 224 __u64 min_page_cnt; 225 __u64 max_page_number; 226 } __packed; 227 228 /* 229 * Response to the capabilities message. This is sent from the host to the 230 * guest. This message notifies if the host has accepted the guest's 231 * capabilities. If the host has not accepted, the guest must shutdown 232 * the service. 233 * 234 * is_accepted: Indicates if the host has accepted guest's capabilities. 235 * reservedz: Must be 0. 236 */ 237 238 struct dm_capabilities_resp_msg { 239 struct dm_header hdr; 240 __u64 is_accepted:1; 241 __u64 reservedz:63; 242 } __packed; 243 244 /* 245 * This message is used to report memory pressure from the guest. 246 * This message is not part of any transaction and there is no 247 * response to this message. 248 * 249 * num_avail: Available memory in pages. 250 * num_committed: Committed memory in pages. 251 * page_file_size: The accumulated size of all page files 252 * in the system in pages. 253 * zero_free: The nunber of zero and free pages. 254 * page_file_writes: The writes to the page file in pages. 255 * io_diff: An indicator of file cache efficiency or page file activity, 256 * calculated as File Cache Page Fault Count - Page Read Count. 257 * This value is in pages. 258 * 259 * Some of these metrics are Windows specific and fortunately 260 * the algorithm on the host side that computes the guest memory 261 * pressure only uses num_committed value. 262 */ 263 264 struct dm_status { 265 struct dm_header hdr; 266 __u64 num_avail; 267 __u64 num_committed; 268 __u64 page_file_size; 269 __u64 zero_free; 270 __u32 page_file_writes; 271 __u32 io_diff; 272 } __packed; 273 274 275 /* 276 * Message to ask the guest to allocate memory - balloon up message. 277 * This message is sent from the host to the guest. The guest may not be 278 * able to allocate as much memory as requested. 279 * 280 * num_pages: number of pages to allocate. 281 */ 282 283 struct dm_balloon { 284 struct dm_header hdr; 285 __u32 num_pages; 286 __u32 reservedz; 287 } __packed; 288 289 290 /* 291 * Balloon response message; this message is sent from the guest 292 * to the host in response to the balloon message. 293 * 294 * reservedz: Reserved; must be set to zero. 295 * more_pages: If FALSE, this is the last message of the transaction. 296 * if TRUE there will atleast one more message from the guest. 297 * 298 * range_count: The number of ranges in the range array. 299 * 300 * range_array: An array of page ranges returned to the host. 301 * 302 */ 303 304 struct dm_balloon_response { 305 struct dm_header hdr; 306 __u32 reservedz; 307 __u32 more_pages:1; 308 __u32 range_count:31; 309 union dm_mem_page_range range_array[]; 310 } __packed; 311 312 /* 313 * Un-balloon message; this message is sent from the host 314 * to the guest to give guest more memory. 315 * 316 * more_pages: If FALSE, this is the last message of the transaction. 317 * if TRUE there will atleast one more message from the guest. 318 * 319 * reservedz: Reserved; must be set to zero. 320 * 321 * range_count: The number of ranges in the range array. 322 * 323 * range_array: An array of page ranges returned to the host. 324 * 325 */ 326 327 struct dm_unballoon_request { 328 struct dm_header hdr; 329 __u32 more_pages:1; 330 __u32 reservedz:31; 331 __u32 range_count; 332 union dm_mem_page_range range_array[]; 333 } __packed; 334 335 /* 336 * Un-balloon response message; this message is sent from the guest 337 * to the host in response to an unballoon request. 338 * 339 */ 340 341 struct dm_unballoon_response { 342 struct dm_header hdr; 343 } __packed; 344 345 346 /* 347 * Hot add request message. Message sent from the host to the guest. 348 * 349 * mem_range: Memory range to hot add. 350 * 351 * On Linux we currently don't support this since we cannot hot add 352 * arbitrary granularity of memory. 353 */ 354 355 struct dm_hot_add { 356 struct dm_header hdr; 357 union dm_mem_page_range range; 358 } __packed; 359 360 /* 361 * Hot add response message. 362 * This message is sent by the guest to report the status of a hot add request. 363 * If page_count is less than the requested page count, then the host should 364 * assume all further hot add requests will fail, since this indicates that 365 * the guest has hit an upper physical memory barrier. 366 * 367 * Hot adds may also fail due to low resources; in this case, the guest must 368 * not complete this message until the hot add can succeed, and the host must 369 * not send a new hot add request until the response is sent. 370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 371 * times it fails the request. 372 * 373 * 374 * page_count: number of pages that were successfully hot added. 375 * 376 * result: result of the operation 1: success, 0: failure. 377 * 378 */ 379 380 struct dm_hot_add_response { 381 struct dm_header hdr; 382 __u32 page_count; 383 __u32 result; 384 } __packed; 385 386 /* 387 * Types of information sent from host to the guest. 388 */ 389 390 enum dm_info_type { 391 INFO_TYPE_MAX_PAGE_CNT = 0, 392 MAX_INFO_TYPE 393 }; 394 395 396 /* 397 * Header for the information message. 398 */ 399 400 struct dm_info_header { 401 enum dm_info_type type; 402 __u32 data_size; 403 } __packed; 404 405 /* 406 * This message is sent from the host to the guest to pass 407 * some relevant information (win8 addition). 408 * 409 * reserved: no used. 410 * info_size: size of the information blob. 411 * info: information blob. 412 */ 413 414 struct dm_info_msg { 415 struct dm_header hdr; 416 __u32 reserved; 417 __u32 info_size; 418 __u8 info[]; 419 }; 420 421 /* 422 * End protocol definitions. 423 */ 424 425 /* 426 * State to manage hot adding memory into the guest. 427 * The range start_pfn : end_pfn specifies the range 428 * that the host has asked us to hot add. The range 429 * start_pfn : ha_end_pfn specifies the range that we have 430 * currently hot added. We hot add in multiples of 128M 431 * chunks; it is possible that we may not be able to bring 432 * online all the pages in the region. The range 433 * covered_start_pfn:covered_end_pfn defines the pages that can 434 * be brough online. 435 */ 436 437 struct hv_hotadd_state { 438 struct list_head list; 439 unsigned long start_pfn; 440 unsigned long covered_start_pfn; 441 unsigned long covered_end_pfn; 442 unsigned long ha_end_pfn; 443 unsigned long end_pfn; 444 /* 445 * A list of gaps. 446 */ 447 struct list_head gap_list; 448 }; 449 450 struct hv_hotadd_gap { 451 struct list_head list; 452 unsigned long start_pfn; 453 unsigned long end_pfn; 454 }; 455 456 struct balloon_state { 457 __u32 num_pages; 458 struct work_struct wrk; 459 }; 460 461 struct hot_add_wrk { 462 union dm_mem_page_range ha_page_range; 463 union dm_mem_page_range ha_region_range; 464 struct work_struct wrk; 465 }; 466 467 static bool hot_add = true; 468 static bool do_hot_add; 469 /* 470 * Delay reporting memory pressure by 471 * the specified number of seconds. 472 */ 473 static uint pressure_report_delay = 45; 474 475 /* 476 * The last time we posted a pressure report to host. 477 */ 478 static unsigned long last_post_time; 479 480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 482 483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 485 static atomic_t trans_id = ATOMIC_INIT(0); 486 487 static int dm_ring_size = (5 * PAGE_SIZE); 488 489 /* 490 * Driver specific state. 491 */ 492 493 enum hv_dm_state { 494 DM_INITIALIZING = 0, 495 DM_INITIALIZED, 496 DM_BALLOON_UP, 497 DM_BALLOON_DOWN, 498 DM_HOT_ADD, 499 DM_INIT_ERROR 500 }; 501 502 503 static __u8 recv_buffer[PAGE_SIZE]; 504 static __u8 *send_buffer; 505 #define PAGES_IN_2M 512 506 #define HA_CHUNK (32 * 1024) 507 508 struct hv_dynmem_device { 509 struct hv_device *dev; 510 enum hv_dm_state state; 511 struct completion host_event; 512 struct completion config_event; 513 514 /* 515 * Number of pages we have currently ballooned out. 516 */ 517 unsigned int num_pages_ballooned; 518 unsigned int num_pages_onlined; 519 unsigned int num_pages_added; 520 521 /* 522 * State to manage the ballooning (up) operation. 523 */ 524 struct balloon_state balloon_wrk; 525 526 /* 527 * State to execute the "hot-add" operation. 528 */ 529 struct hot_add_wrk ha_wrk; 530 531 /* 532 * This state tracks if the host has specified a hot-add 533 * region. 534 */ 535 bool host_specified_ha_region; 536 537 /* 538 * State to synchronize hot-add. 539 */ 540 struct completion ol_waitevent; 541 bool ha_waiting; 542 /* 543 * This thread handles hot-add 544 * requests from the host as well as notifying 545 * the host with regards to memory pressure in 546 * the guest. 547 */ 548 struct task_struct *thread; 549 550 /* 551 * Protects ha_region_list, num_pages_onlined counter and individual 552 * regions from ha_region_list. 553 */ 554 spinlock_t ha_lock; 555 556 /* 557 * A list of hot-add regions. 558 */ 559 struct list_head ha_region_list; 560 561 /* 562 * We start with the highest version we can support 563 * and downgrade based on the host; we save here the 564 * next version to try. 565 */ 566 __u32 next_version; 567 }; 568 569 static struct hv_dynmem_device dm_device; 570 571 static void post_status(struct hv_dynmem_device *dm); 572 573 #ifdef CONFIG_MEMORY_HOTPLUG 574 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 575 void *v) 576 { 577 struct memory_notify *mem = (struct memory_notify *)v; 578 unsigned long flags; 579 580 switch (val) { 581 case MEM_ONLINE: 582 spin_lock_irqsave(&dm_device.ha_lock, flags); 583 dm_device.num_pages_onlined += mem->nr_pages; 584 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 585 case MEM_CANCEL_ONLINE: 586 if (dm_device.ha_waiting) { 587 dm_device.ha_waiting = false; 588 complete(&dm_device.ol_waitevent); 589 } 590 break; 591 592 case MEM_OFFLINE: 593 spin_lock_irqsave(&dm_device.ha_lock, flags); 594 dm_device.num_pages_onlined -= mem->nr_pages; 595 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 596 break; 597 case MEM_GOING_ONLINE: 598 case MEM_GOING_OFFLINE: 599 case MEM_CANCEL_OFFLINE: 600 break; 601 } 602 return NOTIFY_OK; 603 } 604 605 static struct notifier_block hv_memory_nb = { 606 .notifier_call = hv_memory_notifier, 607 .priority = 0 608 }; 609 610 /* Check if the particular page is backed and can be onlined and online it. */ 611 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 612 { 613 unsigned long cur_start_pgp; 614 unsigned long cur_end_pgp; 615 struct hv_hotadd_gap *gap; 616 617 cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn); 618 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn); 619 620 /* The page is not backed. */ 621 if (((unsigned long)pg < cur_start_pgp) || 622 ((unsigned long)pg >= cur_end_pgp)) 623 return; 624 625 /* Check for gaps. */ 626 list_for_each_entry(gap, &has->gap_list, list) { 627 cur_start_pgp = (unsigned long) 628 pfn_to_page(gap->start_pfn); 629 cur_end_pgp = (unsigned long) 630 pfn_to_page(gap->end_pfn); 631 if (((unsigned long)pg >= cur_start_pgp) && 632 ((unsigned long)pg < cur_end_pgp)) { 633 return; 634 } 635 } 636 637 /* This frame is currently backed; online the page. */ 638 __online_page_set_limits(pg); 639 __online_page_increment_counters(pg); 640 __online_page_free(pg); 641 } 642 643 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 644 unsigned long start_pfn, unsigned long size) 645 { 646 int i; 647 648 for (i = 0; i < size; i++) 649 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 650 } 651 652 static void hv_mem_hot_add(unsigned long start, unsigned long size, 653 unsigned long pfn_count, 654 struct hv_hotadd_state *has) 655 { 656 int ret = 0; 657 int i, nid; 658 unsigned long start_pfn; 659 unsigned long processed_pfn; 660 unsigned long total_pfn = pfn_count; 661 unsigned long flags; 662 663 for (i = 0; i < (size/HA_CHUNK); i++) { 664 start_pfn = start + (i * HA_CHUNK); 665 666 spin_lock_irqsave(&dm_device.ha_lock, flags); 667 has->ha_end_pfn += HA_CHUNK; 668 669 if (total_pfn > HA_CHUNK) { 670 processed_pfn = HA_CHUNK; 671 total_pfn -= HA_CHUNK; 672 } else { 673 processed_pfn = total_pfn; 674 total_pfn = 0; 675 } 676 677 has->covered_end_pfn += processed_pfn; 678 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 679 680 init_completion(&dm_device.ol_waitevent); 681 dm_device.ha_waiting = !memhp_auto_online; 682 683 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 684 ret = add_memory(nid, PFN_PHYS((start_pfn)), 685 (HA_CHUNK << PAGE_SHIFT)); 686 687 if (ret) { 688 pr_info("hot_add memory failed error is %d\n", ret); 689 if (ret == -EEXIST) { 690 /* 691 * This error indicates that the error 692 * is not a transient failure. This is the 693 * case where the guest's physical address map 694 * precludes hot adding memory. Stop all further 695 * memory hot-add. 696 */ 697 do_hot_add = false; 698 } 699 spin_lock_irqsave(&dm_device.ha_lock, flags); 700 has->ha_end_pfn -= HA_CHUNK; 701 has->covered_end_pfn -= processed_pfn; 702 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 703 break; 704 } 705 706 /* 707 * Wait for the memory block to be onlined when memory onlining 708 * is done outside of kernel (memhp_auto_online). Since the hot 709 * add has succeeded, it is ok to proceed even if the pages in 710 * the hot added region have not been "onlined" within the 711 * allowed time. 712 */ 713 if (dm_device.ha_waiting) 714 wait_for_completion_timeout(&dm_device.ol_waitevent, 715 5*HZ); 716 post_status(&dm_device); 717 } 718 719 return; 720 } 721 722 static void hv_online_page(struct page *pg) 723 { 724 struct hv_hotadd_state *has; 725 unsigned long cur_start_pgp; 726 unsigned long cur_end_pgp; 727 unsigned long flags; 728 729 spin_lock_irqsave(&dm_device.ha_lock, flags); 730 list_for_each_entry(has, &dm_device.ha_region_list, list) { 731 cur_start_pgp = (unsigned long) 732 pfn_to_page(has->start_pfn); 733 cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn); 734 735 /* The page belongs to a different HAS. */ 736 if (((unsigned long)pg < cur_start_pgp) || 737 ((unsigned long)pg >= cur_end_pgp)) 738 continue; 739 740 hv_page_online_one(has, pg); 741 break; 742 } 743 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 744 } 745 746 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 747 { 748 struct hv_hotadd_state *has; 749 struct hv_hotadd_gap *gap; 750 unsigned long residual, new_inc; 751 int ret = 0; 752 unsigned long flags; 753 754 spin_lock_irqsave(&dm_device.ha_lock, flags); 755 list_for_each_entry(has, &dm_device.ha_region_list, list) { 756 /* 757 * If the pfn range we are dealing with is not in the current 758 * "hot add block", move on. 759 */ 760 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 761 continue; 762 763 /* 764 * If the current start pfn is not where the covered_end 765 * is, create a gap and update covered_end_pfn. 766 */ 767 if (has->covered_end_pfn != start_pfn) { 768 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 769 if (!gap) { 770 ret = -ENOMEM; 771 break; 772 } 773 774 INIT_LIST_HEAD(&gap->list); 775 gap->start_pfn = has->covered_end_pfn; 776 gap->end_pfn = start_pfn; 777 list_add_tail(&gap->list, &has->gap_list); 778 779 has->covered_end_pfn = start_pfn; 780 } 781 782 /* 783 * If the current hot add-request extends beyond 784 * our current limit; extend it. 785 */ 786 if ((start_pfn + pfn_cnt) > has->end_pfn) { 787 residual = (start_pfn + pfn_cnt - has->end_pfn); 788 /* 789 * Extend the region by multiples of HA_CHUNK. 790 */ 791 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 792 if (residual % HA_CHUNK) 793 new_inc += HA_CHUNK; 794 795 has->end_pfn += new_inc; 796 } 797 798 ret = 1; 799 break; 800 } 801 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 802 803 return ret; 804 } 805 806 static unsigned long handle_pg_range(unsigned long pg_start, 807 unsigned long pg_count) 808 { 809 unsigned long start_pfn = pg_start; 810 unsigned long pfn_cnt = pg_count; 811 unsigned long size; 812 struct hv_hotadd_state *has; 813 unsigned long pgs_ol = 0; 814 unsigned long old_covered_state; 815 unsigned long res = 0, flags; 816 817 spin_lock_irqsave(&dm_device.ha_lock, flags); 818 list_for_each_entry(has, &dm_device.ha_region_list, list) { 819 /* 820 * If the pfn range we are dealing with is not in the current 821 * "hot add block", move on. 822 */ 823 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 824 continue; 825 826 old_covered_state = has->covered_end_pfn; 827 828 if (start_pfn < has->ha_end_pfn) { 829 /* 830 * This is the case where we are backing pages 831 * in an already hot added region. Bring 832 * these pages online first. 833 */ 834 pgs_ol = has->ha_end_pfn - start_pfn; 835 if (pgs_ol > pfn_cnt) 836 pgs_ol = pfn_cnt; 837 838 has->covered_end_pfn += pgs_ol; 839 pfn_cnt -= pgs_ol; 840 /* 841 * Check if the corresponding memory block is already 842 * online by checking its last previously backed page. 843 * In case it is we need to bring rest (which was not 844 * backed previously) online too. 845 */ 846 if (start_pfn > has->start_pfn && 847 !PageReserved(pfn_to_page(start_pfn - 1))) 848 hv_bring_pgs_online(has, start_pfn, pgs_ol); 849 850 } 851 852 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 853 /* 854 * We have some residual hot add range 855 * that needs to be hot added; hot add 856 * it now. Hot add a multiple of 857 * of HA_CHUNK that fully covers the pages 858 * we have. 859 */ 860 size = (has->end_pfn - has->ha_end_pfn); 861 if (pfn_cnt <= size) { 862 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 863 if (pfn_cnt % HA_CHUNK) 864 size += HA_CHUNK; 865 } else { 866 pfn_cnt = size; 867 } 868 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 869 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 870 spin_lock_irqsave(&dm_device.ha_lock, flags); 871 } 872 /* 873 * If we managed to online any pages that were given to us, 874 * we declare success. 875 */ 876 res = has->covered_end_pfn - old_covered_state; 877 break; 878 } 879 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 880 881 return res; 882 } 883 884 static unsigned long process_hot_add(unsigned long pg_start, 885 unsigned long pfn_cnt, 886 unsigned long rg_start, 887 unsigned long rg_size) 888 { 889 struct hv_hotadd_state *ha_region = NULL; 890 int covered; 891 unsigned long flags; 892 893 if (pfn_cnt == 0) 894 return 0; 895 896 if (!dm_device.host_specified_ha_region) { 897 covered = pfn_covered(pg_start, pfn_cnt); 898 if (covered < 0) 899 return 0; 900 901 if (covered) 902 goto do_pg_range; 903 } 904 905 /* 906 * If the host has specified a hot-add range; deal with it first. 907 */ 908 909 if (rg_size != 0) { 910 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 911 if (!ha_region) 912 return 0; 913 914 INIT_LIST_HEAD(&ha_region->list); 915 INIT_LIST_HEAD(&ha_region->gap_list); 916 917 ha_region->start_pfn = rg_start; 918 ha_region->ha_end_pfn = rg_start; 919 ha_region->covered_start_pfn = pg_start; 920 ha_region->covered_end_pfn = pg_start; 921 ha_region->end_pfn = rg_start + rg_size; 922 923 spin_lock_irqsave(&dm_device.ha_lock, flags); 924 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 925 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 926 } 927 928 do_pg_range: 929 /* 930 * Process the page range specified; bringing them 931 * online if possible. 932 */ 933 return handle_pg_range(pg_start, pfn_cnt); 934 } 935 936 #endif 937 938 static void hot_add_req(struct work_struct *dummy) 939 { 940 struct dm_hot_add_response resp; 941 #ifdef CONFIG_MEMORY_HOTPLUG 942 unsigned long pg_start, pfn_cnt; 943 unsigned long rg_start, rg_sz; 944 #endif 945 struct hv_dynmem_device *dm = &dm_device; 946 947 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 948 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 949 resp.hdr.size = sizeof(struct dm_hot_add_response); 950 951 #ifdef CONFIG_MEMORY_HOTPLUG 952 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 953 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 954 955 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 956 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 957 958 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 959 unsigned long region_size; 960 unsigned long region_start; 961 962 /* 963 * The host has not specified the hot-add region. 964 * Based on the hot-add page range being specified, 965 * compute a hot-add region that can cover the pages 966 * that need to be hot-added while ensuring the alignment 967 * and size requirements of Linux as it relates to hot-add. 968 */ 969 region_start = pg_start; 970 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 971 if (pfn_cnt % HA_CHUNK) 972 region_size += HA_CHUNK; 973 974 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 975 976 rg_start = region_start; 977 rg_sz = region_size; 978 } 979 980 if (do_hot_add) 981 resp.page_count = process_hot_add(pg_start, pfn_cnt, 982 rg_start, rg_sz); 983 984 dm->num_pages_added += resp.page_count; 985 #endif 986 /* 987 * The result field of the response structure has the 988 * following semantics: 989 * 990 * 1. If all or some pages hot-added: Guest should return success. 991 * 992 * 2. If no pages could be hot-added: 993 * 994 * If the guest returns success, then the host 995 * will not attempt any further hot-add operations. This 996 * signifies a permanent failure. 997 * 998 * If the guest returns failure, then this failure will be 999 * treated as a transient failure and the host may retry the 1000 * hot-add operation after some delay. 1001 */ 1002 if (resp.page_count > 0) 1003 resp.result = 1; 1004 else if (!do_hot_add) 1005 resp.result = 1; 1006 else 1007 resp.result = 0; 1008 1009 if (!do_hot_add || (resp.page_count == 0)) 1010 pr_info("Memory hot add failed\n"); 1011 1012 dm->state = DM_INITIALIZED; 1013 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1014 vmbus_sendpacket(dm->dev->channel, &resp, 1015 sizeof(struct dm_hot_add_response), 1016 (unsigned long)NULL, 1017 VM_PKT_DATA_INBAND, 0); 1018 } 1019 1020 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1021 { 1022 struct dm_info_header *info_hdr; 1023 1024 info_hdr = (struct dm_info_header *)msg->info; 1025 1026 switch (info_hdr->type) { 1027 case INFO_TYPE_MAX_PAGE_CNT: 1028 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n"); 1029 pr_info("Data Size is %d\n", info_hdr->data_size); 1030 break; 1031 default: 1032 pr_info("Received Unknown type: %d\n", info_hdr->type); 1033 } 1034 } 1035 1036 static unsigned long compute_balloon_floor(void) 1037 { 1038 unsigned long min_pages; 1039 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1040 /* Simple continuous piecewiese linear function: 1041 * max MiB -> min MiB gradient 1042 * 0 0 1043 * 16 16 1044 * 32 24 1045 * 128 72 (1/2) 1046 * 512 168 (1/4) 1047 * 2048 360 (1/8) 1048 * 8192 744 (1/16) 1049 * 32768 1512 (1/32) 1050 */ 1051 if (totalram_pages < MB2PAGES(128)) 1052 min_pages = MB2PAGES(8) + (totalram_pages >> 1); 1053 else if (totalram_pages < MB2PAGES(512)) 1054 min_pages = MB2PAGES(40) + (totalram_pages >> 2); 1055 else if (totalram_pages < MB2PAGES(2048)) 1056 min_pages = MB2PAGES(104) + (totalram_pages >> 3); 1057 else if (totalram_pages < MB2PAGES(8192)) 1058 min_pages = MB2PAGES(232) + (totalram_pages >> 4); 1059 else 1060 min_pages = MB2PAGES(488) + (totalram_pages >> 5); 1061 #undef MB2PAGES 1062 return min_pages; 1063 } 1064 1065 /* 1066 * Post our status as it relates memory pressure to the 1067 * host. Host expects the guests to post this status 1068 * periodically at 1 second intervals. 1069 * 1070 * The metrics specified in this protocol are very Windows 1071 * specific and so we cook up numbers here to convey our memory 1072 * pressure. 1073 */ 1074 1075 static void post_status(struct hv_dynmem_device *dm) 1076 { 1077 struct dm_status status; 1078 unsigned long now = jiffies; 1079 unsigned long last_post = last_post_time; 1080 1081 if (pressure_report_delay > 0) { 1082 --pressure_report_delay; 1083 return; 1084 } 1085 1086 if (!time_after(now, (last_post_time + HZ))) 1087 return; 1088 1089 memset(&status, 0, sizeof(struct dm_status)); 1090 status.hdr.type = DM_STATUS_REPORT; 1091 status.hdr.size = sizeof(struct dm_status); 1092 status.hdr.trans_id = atomic_inc_return(&trans_id); 1093 1094 /* 1095 * The host expects the guest to report free and committed memory. 1096 * Furthermore, the host expects the pressure information to include 1097 * the ballooned out pages. For a given amount of memory that we are 1098 * managing we need to compute a floor below which we should not 1099 * balloon. Compute this and add it to the pressure report. 1100 * We also need to report all offline pages (num_pages_added - 1101 * num_pages_onlined) as committed to the host, otherwise it can try 1102 * asking us to balloon them out. 1103 */ 1104 status.num_avail = si_mem_available(); 1105 status.num_committed = vm_memory_committed() + 1106 dm->num_pages_ballooned + 1107 (dm->num_pages_added > dm->num_pages_onlined ? 1108 dm->num_pages_added - dm->num_pages_onlined : 0) + 1109 compute_balloon_floor(); 1110 1111 /* 1112 * If our transaction ID is no longer current, just don't 1113 * send the status. This can happen if we were interrupted 1114 * after we picked our transaction ID. 1115 */ 1116 if (status.hdr.trans_id != atomic_read(&trans_id)) 1117 return; 1118 1119 /* 1120 * If the last post time that we sampled has changed, 1121 * we have raced, don't post the status. 1122 */ 1123 if (last_post != last_post_time) 1124 return; 1125 1126 last_post_time = jiffies; 1127 vmbus_sendpacket(dm->dev->channel, &status, 1128 sizeof(struct dm_status), 1129 (unsigned long)NULL, 1130 VM_PKT_DATA_INBAND, 0); 1131 1132 } 1133 1134 static void free_balloon_pages(struct hv_dynmem_device *dm, 1135 union dm_mem_page_range *range_array) 1136 { 1137 int num_pages = range_array->finfo.page_cnt; 1138 __u64 start_frame = range_array->finfo.start_page; 1139 struct page *pg; 1140 int i; 1141 1142 for (i = 0; i < num_pages; i++) { 1143 pg = pfn_to_page(i + start_frame); 1144 __free_page(pg); 1145 dm->num_pages_ballooned--; 1146 } 1147 } 1148 1149 1150 1151 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1152 unsigned int num_pages, 1153 struct dm_balloon_response *bl_resp, 1154 int alloc_unit) 1155 { 1156 unsigned int i = 0; 1157 struct page *pg; 1158 1159 if (num_pages < alloc_unit) 1160 return 0; 1161 1162 for (i = 0; (i * alloc_unit) < num_pages; i++) { 1163 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1164 PAGE_SIZE) 1165 return i * alloc_unit; 1166 1167 /* 1168 * We execute this code in a thread context. Furthermore, 1169 * we don't want the kernel to try too hard. 1170 */ 1171 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1172 __GFP_NOMEMALLOC | __GFP_NOWARN, 1173 get_order(alloc_unit << PAGE_SHIFT)); 1174 1175 if (!pg) 1176 return i * alloc_unit; 1177 1178 dm->num_pages_ballooned += alloc_unit; 1179 1180 /* 1181 * If we allocatted 2M pages; split them so we 1182 * can free them in any order we get. 1183 */ 1184 1185 if (alloc_unit != 1) 1186 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1187 1188 bl_resp->range_count++; 1189 bl_resp->range_array[i].finfo.start_page = 1190 page_to_pfn(pg); 1191 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1192 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1193 1194 } 1195 1196 return num_pages; 1197 } 1198 1199 1200 1201 static void balloon_up(struct work_struct *dummy) 1202 { 1203 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1204 unsigned int num_ballooned = 0; 1205 struct dm_balloon_response *bl_resp; 1206 int alloc_unit; 1207 int ret; 1208 bool done = false; 1209 int i; 1210 long avail_pages; 1211 unsigned long floor; 1212 1213 /* The host balloons pages in 2M granularity. */ 1214 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0); 1215 1216 /* 1217 * We will attempt 2M allocations. However, if we fail to 1218 * allocate 2M chunks, we will go back to 4k allocations. 1219 */ 1220 alloc_unit = 512; 1221 1222 avail_pages = si_mem_available(); 1223 floor = compute_balloon_floor(); 1224 1225 /* Refuse to balloon below the floor, keep the 2M granularity. */ 1226 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1227 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1228 num_pages -= num_pages % PAGES_IN_2M; 1229 } 1230 1231 while (!done) { 1232 bl_resp = (struct dm_balloon_response *)send_buffer; 1233 memset(send_buffer, 0, PAGE_SIZE); 1234 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1235 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1236 bl_resp->more_pages = 1; 1237 1238 num_pages -= num_ballooned; 1239 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1240 bl_resp, alloc_unit); 1241 1242 if (alloc_unit != 1 && num_ballooned == 0) { 1243 alloc_unit = 1; 1244 continue; 1245 } 1246 1247 if (num_ballooned == 0 || num_ballooned == num_pages) { 1248 bl_resp->more_pages = 0; 1249 done = true; 1250 dm_device.state = DM_INITIALIZED; 1251 } 1252 1253 /* 1254 * We are pushing a lot of data through the channel; 1255 * deal with transient failures caused because of the 1256 * lack of space in the ring buffer. 1257 */ 1258 1259 do { 1260 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1261 ret = vmbus_sendpacket(dm_device.dev->channel, 1262 bl_resp, 1263 bl_resp->hdr.size, 1264 (unsigned long)NULL, 1265 VM_PKT_DATA_INBAND, 0); 1266 1267 if (ret == -EAGAIN) 1268 msleep(20); 1269 post_status(&dm_device); 1270 } while (ret == -EAGAIN); 1271 1272 if (ret) { 1273 /* 1274 * Free up the memory we allocatted. 1275 */ 1276 pr_info("Balloon response failed\n"); 1277 1278 for (i = 0; i < bl_resp->range_count; i++) 1279 free_balloon_pages(&dm_device, 1280 &bl_resp->range_array[i]); 1281 1282 done = true; 1283 } 1284 } 1285 1286 } 1287 1288 static void balloon_down(struct hv_dynmem_device *dm, 1289 struct dm_unballoon_request *req) 1290 { 1291 union dm_mem_page_range *range_array = req->range_array; 1292 int range_count = req->range_count; 1293 struct dm_unballoon_response resp; 1294 int i; 1295 1296 for (i = 0; i < range_count; i++) { 1297 free_balloon_pages(dm, &range_array[i]); 1298 complete(&dm_device.config_event); 1299 } 1300 1301 if (req->more_pages == 1) 1302 return; 1303 1304 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1305 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1306 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1307 resp.hdr.size = sizeof(struct dm_unballoon_response); 1308 1309 vmbus_sendpacket(dm_device.dev->channel, &resp, 1310 sizeof(struct dm_unballoon_response), 1311 (unsigned long)NULL, 1312 VM_PKT_DATA_INBAND, 0); 1313 1314 dm->state = DM_INITIALIZED; 1315 } 1316 1317 static void balloon_onchannelcallback(void *context); 1318 1319 static int dm_thread_func(void *dm_dev) 1320 { 1321 struct hv_dynmem_device *dm = dm_dev; 1322 1323 while (!kthread_should_stop()) { 1324 wait_for_completion_interruptible_timeout( 1325 &dm_device.config_event, 1*HZ); 1326 /* 1327 * The host expects us to post information on the memory 1328 * pressure every second. 1329 */ 1330 reinit_completion(&dm_device.config_event); 1331 post_status(dm); 1332 } 1333 1334 return 0; 1335 } 1336 1337 1338 static void version_resp(struct hv_dynmem_device *dm, 1339 struct dm_version_response *vresp) 1340 { 1341 struct dm_version_request version_req; 1342 int ret; 1343 1344 if (vresp->is_accepted) { 1345 /* 1346 * We are done; wakeup the 1347 * context waiting for version 1348 * negotiation. 1349 */ 1350 complete(&dm->host_event); 1351 return; 1352 } 1353 /* 1354 * If there are more versions to try, continue 1355 * with negotiations; if not 1356 * shutdown the service since we are not able 1357 * to negotiate a suitable version number 1358 * with the host. 1359 */ 1360 if (dm->next_version == 0) 1361 goto version_error; 1362 1363 memset(&version_req, 0, sizeof(struct dm_version_request)); 1364 version_req.hdr.type = DM_VERSION_REQUEST; 1365 version_req.hdr.size = sizeof(struct dm_version_request); 1366 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1367 version_req.version.version = dm->next_version; 1368 1369 /* 1370 * Set the next version to try in case current version fails. 1371 * Win7 protocol ought to be the last one to try. 1372 */ 1373 switch (version_req.version.version) { 1374 case DYNMEM_PROTOCOL_VERSION_WIN8: 1375 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1376 version_req.is_last_attempt = 0; 1377 break; 1378 default: 1379 dm->next_version = 0; 1380 version_req.is_last_attempt = 1; 1381 } 1382 1383 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1384 sizeof(struct dm_version_request), 1385 (unsigned long)NULL, 1386 VM_PKT_DATA_INBAND, 0); 1387 1388 if (ret) 1389 goto version_error; 1390 1391 return; 1392 1393 version_error: 1394 dm->state = DM_INIT_ERROR; 1395 complete(&dm->host_event); 1396 } 1397 1398 static void cap_resp(struct hv_dynmem_device *dm, 1399 struct dm_capabilities_resp_msg *cap_resp) 1400 { 1401 if (!cap_resp->is_accepted) { 1402 pr_info("Capabilities not accepted by host\n"); 1403 dm->state = DM_INIT_ERROR; 1404 } 1405 complete(&dm->host_event); 1406 } 1407 1408 static void balloon_onchannelcallback(void *context) 1409 { 1410 struct hv_device *dev = context; 1411 u32 recvlen; 1412 u64 requestid; 1413 struct dm_message *dm_msg; 1414 struct dm_header *dm_hdr; 1415 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1416 struct dm_balloon *bal_msg; 1417 struct dm_hot_add *ha_msg; 1418 union dm_mem_page_range *ha_pg_range; 1419 union dm_mem_page_range *ha_region; 1420 1421 memset(recv_buffer, 0, sizeof(recv_buffer)); 1422 vmbus_recvpacket(dev->channel, recv_buffer, 1423 PAGE_SIZE, &recvlen, &requestid); 1424 1425 if (recvlen > 0) { 1426 dm_msg = (struct dm_message *)recv_buffer; 1427 dm_hdr = &dm_msg->hdr; 1428 1429 switch (dm_hdr->type) { 1430 case DM_VERSION_RESPONSE: 1431 version_resp(dm, 1432 (struct dm_version_response *)dm_msg); 1433 break; 1434 1435 case DM_CAPABILITIES_RESPONSE: 1436 cap_resp(dm, 1437 (struct dm_capabilities_resp_msg *)dm_msg); 1438 break; 1439 1440 case DM_BALLOON_REQUEST: 1441 if (dm->state == DM_BALLOON_UP) 1442 pr_warn("Currently ballooning\n"); 1443 bal_msg = (struct dm_balloon *)recv_buffer; 1444 dm->state = DM_BALLOON_UP; 1445 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1446 schedule_work(&dm_device.balloon_wrk.wrk); 1447 break; 1448 1449 case DM_UNBALLOON_REQUEST: 1450 dm->state = DM_BALLOON_DOWN; 1451 balloon_down(dm, 1452 (struct dm_unballoon_request *)recv_buffer); 1453 break; 1454 1455 case DM_MEM_HOT_ADD_REQUEST: 1456 if (dm->state == DM_HOT_ADD) 1457 pr_warn("Currently hot-adding\n"); 1458 dm->state = DM_HOT_ADD; 1459 ha_msg = (struct dm_hot_add *)recv_buffer; 1460 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1461 /* 1462 * This is a normal hot-add request specifying 1463 * hot-add memory. 1464 */ 1465 dm->host_specified_ha_region = false; 1466 ha_pg_range = &ha_msg->range; 1467 dm->ha_wrk.ha_page_range = *ha_pg_range; 1468 dm->ha_wrk.ha_region_range.page_range = 0; 1469 } else { 1470 /* 1471 * Host is specifying that we first hot-add 1472 * a region and then partially populate this 1473 * region. 1474 */ 1475 dm->host_specified_ha_region = true; 1476 ha_pg_range = &ha_msg->range; 1477 ha_region = &ha_pg_range[1]; 1478 dm->ha_wrk.ha_page_range = *ha_pg_range; 1479 dm->ha_wrk.ha_region_range = *ha_region; 1480 } 1481 schedule_work(&dm_device.ha_wrk.wrk); 1482 break; 1483 1484 case DM_INFO_MESSAGE: 1485 process_info(dm, (struct dm_info_msg *)dm_msg); 1486 break; 1487 1488 default: 1489 pr_err("Unhandled message: type: %d\n", dm_hdr->type); 1490 1491 } 1492 } 1493 1494 } 1495 1496 static int balloon_probe(struct hv_device *dev, 1497 const struct hv_vmbus_device_id *dev_id) 1498 { 1499 int ret; 1500 unsigned long t; 1501 struct dm_version_request version_req; 1502 struct dm_capabilities cap_msg; 1503 1504 do_hot_add = hot_add; 1505 1506 /* 1507 * First allocate a send buffer. 1508 */ 1509 1510 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); 1511 if (!send_buffer) 1512 return -ENOMEM; 1513 1514 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1515 balloon_onchannelcallback, dev); 1516 1517 if (ret) 1518 goto probe_error0; 1519 1520 dm_device.dev = dev; 1521 dm_device.state = DM_INITIALIZING; 1522 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1523 init_completion(&dm_device.host_event); 1524 init_completion(&dm_device.config_event); 1525 INIT_LIST_HEAD(&dm_device.ha_region_list); 1526 spin_lock_init(&dm_device.ha_lock); 1527 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1528 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1529 dm_device.host_specified_ha_region = false; 1530 1531 dm_device.thread = 1532 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1533 if (IS_ERR(dm_device.thread)) { 1534 ret = PTR_ERR(dm_device.thread); 1535 goto probe_error1; 1536 } 1537 1538 #ifdef CONFIG_MEMORY_HOTPLUG 1539 set_online_page_callback(&hv_online_page); 1540 register_memory_notifier(&hv_memory_nb); 1541 #endif 1542 1543 hv_set_drvdata(dev, &dm_device); 1544 /* 1545 * Initiate the hand shake with the host and negotiate 1546 * a version that the host can support. We start with the 1547 * highest version number and go down if the host cannot 1548 * support it. 1549 */ 1550 memset(&version_req, 0, sizeof(struct dm_version_request)); 1551 version_req.hdr.type = DM_VERSION_REQUEST; 1552 version_req.hdr.size = sizeof(struct dm_version_request); 1553 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1554 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1555 version_req.is_last_attempt = 0; 1556 1557 ret = vmbus_sendpacket(dev->channel, &version_req, 1558 sizeof(struct dm_version_request), 1559 (unsigned long)NULL, 1560 VM_PKT_DATA_INBAND, 0); 1561 if (ret) 1562 goto probe_error2; 1563 1564 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1565 if (t == 0) { 1566 ret = -ETIMEDOUT; 1567 goto probe_error2; 1568 } 1569 1570 /* 1571 * If we could not negotiate a compatible version with the host 1572 * fail the probe function. 1573 */ 1574 if (dm_device.state == DM_INIT_ERROR) { 1575 ret = -ETIMEDOUT; 1576 goto probe_error2; 1577 } 1578 /* 1579 * Now submit our capabilities to the host. 1580 */ 1581 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1582 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1583 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1584 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1585 1586 cap_msg.caps.cap_bits.balloon = 1; 1587 cap_msg.caps.cap_bits.hot_add = 1; 1588 1589 /* 1590 * Specify our alignment requirements as it relates 1591 * memory hot-add. Specify 128MB alignment. 1592 */ 1593 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1594 1595 /* 1596 * Currently the host does not use these 1597 * values and we set them to what is done in the 1598 * Windows driver. 1599 */ 1600 cap_msg.min_page_cnt = 0; 1601 cap_msg.max_page_number = -1; 1602 1603 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1604 sizeof(struct dm_capabilities), 1605 (unsigned long)NULL, 1606 VM_PKT_DATA_INBAND, 0); 1607 if (ret) 1608 goto probe_error2; 1609 1610 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1611 if (t == 0) { 1612 ret = -ETIMEDOUT; 1613 goto probe_error2; 1614 } 1615 1616 /* 1617 * If the host does not like our capabilities, 1618 * fail the probe function. 1619 */ 1620 if (dm_device.state == DM_INIT_ERROR) { 1621 ret = -ETIMEDOUT; 1622 goto probe_error2; 1623 } 1624 1625 dm_device.state = DM_INITIALIZED; 1626 1627 return 0; 1628 1629 probe_error2: 1630 #ifdef CONFIG_MEMORY_HOTPLUG 1631 restore_online_page_callback(&hv_online_page); 1632 #endif 1633 kthread_stop(dm_device.thread); 1634 1635 probe_error1: 1636 vmbus_close(dev->channel); 1637 probe_error0: 1638 kfree(send_buffer); 1639 return ret; 1640 } 1641 1642 static int balloon_remove(struct hv_device *dev) 1643 { 1644 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1645 struct hv_hotadd_state *has, *tmp; 1646 struct hv_hotadd_gap *gap, *tmp_gap; 1647 unsigned long flags; 1648 1649 if (dm->num_pages_ballooned != 0) 1650 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1651 1652 cancel_work_sync(&dm->balloon_wrk.wrk); 1653 cancel_work_sync(&dm->ha_wrk.wrk); 1654 1655 vmbus_close(dev->channel); 1656 kthread_stop(dm->thread); 1657 kfree(send_buffer); 1658 #ifdef CONFIG_MEMORY_HOTPLUG 1659 restore_online_page_callback(&hv_online_page); 1660 unregister_memory_notifier(&hv_memory_nb); 1661 #endif 1662 spin_lock_irqsave(&dm_device.ha_lock, flags); 1663 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 1664 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 1665 list_del(&gap->list); 1666 kfree(gap); 1667 } 1668 list_del(&has->list); 1669 kfree(has); 1670 } 1671 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 1672 1673 return 0; 1674 } 1675 1676 static const struct hv_vmbus_device_id id_table[] = { 1677 /* Dynamic Memory Class ID */ 1678 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1679 { HV_DM_GUID, }, 1680 { }, 1681 }; 1682 1683 MODULE_DEVICE_TABLE(vmbus, id_table); 1684 1685 static struct hv_driver balloon_drv = { 1686 .name = "hv_balloon", 1687 .id_table = id_table, 1688 .probe = balloon_probe, 1689 .remove = balloon_remove, 1690 }; 1691 1692 static int __init init_balloon_drv(void) 1693 { 1694 1695 return vmbus_driver_register(&balloon_drv); 1696 } 1697 1698 module_init(init_balloon_drv); 1699 1700 MODULE_DESCRIPTION("Hyper-V Balloon"); 1701 MODULE_LICENSE("GPL"); 1702